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Foreword 

ECAL’11: Back to the Origins of Alife 

There is a long tradition of software simulations in theoretical biology to complement pure 
analytical mathematics, which are often limited in their ability to reproduce and understand self-
organisation phenomena resulting from nonlinear and spatially grounded interactions of a huge 
number of various and evolving biological objects. Researchers in Artificial Life (Alife) bet that 
they can assist biologists in this domain, transcending their daily modelling and measuring 
practice by using software simulation in the first instance, and robotics, too, in order to abstract 
and elucidate the fundamental mechanisms common to living organisms. They hope to do so by 
discovering the most informative level of abstraction and resolutely neglecting a lot of physical 
and quantitative information deemed not indispensable. The computer is apparently the best 
microscope to achieve this. They want to focus on the rule-based mechanisms that make life 
possible, supposedly neutral with respect to their underlying material embodiment, and replicate 
them in a non-biochemical substrate. The hypothesis is that minimal life begins at the intersection 
of a series of processes that need to be isolated, differentiated and duplicated as such in 
computers, and that only software development and execution make possible to understand the 
way these processes are intimately interconnected in order for life to emerge at the crossroad.   

The rejection of an authoritative definition of “life” is often compensated for by a list of 
functional properties that never finds unanimity amongst its authors. Some demand more 
properties, others require fewer of those properties that are often indicated in vague terms such as 
“self-maintenance”, “self-organisation”, “metabolism”, “autonomy”, “self-replication”, or “open-
ended evolution”. A first determining role of Alife consists in writing and implementing software 
versions of these properties and the way they actually interact. The goal is to disambiguate them 
and make them algorithmically precise enough so that, in the end, the only remaining cause of 
disagreement on the definition of life would reside in the length or the composition of this list but 
not in its items.  

Biologists obviously remain the most important partners; but what may they expect from this 
Alife business? What can they expect from these new “Merlin hackers”, whose ambitions seem, 
above all, disproportionally naïve. Computer platforms are useful and necessary in several ways. 
First of all, they open the door to a new style of teaching and advocating major biological ideas: 
in other words, computer software as a pedagogical tool. For example, Richard Dawkins is the 
best advocate of Darwinian ideas when running a computer simulation in which sophisticated 
creatures known as “biomorphs” evolve on a computer screen by means of a genetic algorithm. 
These same platforms and simulations can, insofar as they are sufficiently flexible, quantifiable 
and universal, be used more accurately by biologists, who will find in them a simplified way of 
simulating and validating a given biological system under study. Cellular automata, Boolean 
networks, genetic algorithms and algorithmic chemistry are excellent examples of softwares to 
download, parameterise and use to reproduce the required natural phenomenon. Their predictive 
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power varies from very qualitative (where results apparently reproduce general trends of the real 
world) to very quantitative (where numbers produced by the computer may be precise enough to 
be compared with those measured in the real world).  

Although being at first very qualitative, precise and clear coding is already the guarantee of an 
advanced understanding accepted by all. Algorithmic writing is an essential stage in formalising 
the elements of the model and making them objective. The linguistic and qualitative style of 
many biological papers could benefit in clarity by attempting a software instantiation of their 
contents. The more the model allows to integrate what we know about the reality being 
reproduced, the detailed structure of the objects and the relationships between them, the more the 
predictions will move from qualitative to precise, and the more easily the model will be validated 
according to Karl Popper’s “falsification” process of good scientific practice. 

Ideally, through systematic software experiments, these platforms can lead to the discovery of 
new natural laws, whose impact will be all the greater as the simulated abstractions will be 
present in many biological realms. In the 1950’s, when Alan Turing discovered that a simple 
diffusion phenomenon, propagating itself at different speeds, depending on whether it is subject 
to a negative or positive influence, produces zebra or alternating motifs, it had a considerable 
effect on a whole section of biology studying the genesis of forms. This was Alife at its best. The 
same happened with John von Neumann’s self-replicating automata. Because of these seminal 
works, Turing and von Neumann remain the two spiritual fathers of the field. When scientists 
discovered that the number of attractors in a Boolean network (Kauffman) or a neural network 
(Hopfield) exhibited a given dependency on the number of units in these networks, these results 
could equally well apply to the number of cell types expressed as dynamic attractors in a genetic 
network or the quantity of information capable of being memorised in a neural network. Entire 
chapters of biology dedicated to networks (neural, genetic, protein, immune, hormonal) had to be 
re-written in the light of these discoveries. When other scientists recently observed non-uniform 
connectivity in many networks, whether social, technological or biological, showing a small 
number of hubs with a large number of connections and a greater number of nodes with far fewer, 
and when, in addition, they explained the way in which these networks are built in time by 
preferential attachment (Barabási), again biology was clearly affected.  

Alife is of course at its best when it reveals new biological facts, destabilizing biologists’ 
presuppositions or generating new knowledge, rather than simply illustrating or refining the old. 
Roughly said, we could construe Alife as being to theoretical biology what mathematics is to 
physics, that is, a more neutral scientific endeavour to provide open-minded biologists with new 
tools and new formal terms to describe and conceptualize the objects of their study. At the 
moment, the fact that this discipline is still young and shows relative immaturity in comparison 
with mainstream biology might explain why some observers remain skeptical in front of the 
current discrepancy between promises and reality. In our opinion, however, they tend to 
underestimate the importance of the results already obtained, as they are too riveted to their 
microscope. They should show less reluctance, indifference or even arrogance – and more 
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curiosity and conviviality – towards these new computer explorers who have set out on the 
conquest of life, just like them but in front of their computer screens. 

This is how we saw Alife when Francisco Varela, Paul Bourgine and myself decided to organize 
the first European Conference on Artificial Life (ECAL) in Paris twenty years ago. We were very 
impressed by the Sante Fe workshops, which Chris Langton had started, and decided to initiate a 
European counterpart. We were aware of this very long tradition of theoretical biology in Europe, 
nevertheless a tradition still largely unaffected by the new opportunities offered by software 
simulations. We also realized that an opportunity existed to expand Alife “toward a practise of 
autonomous systems” with their “embodied cognition”, including not only all forms of life but 
also autonomous robots and collective intelligence. We emphasised the importance of developing 
artificial life toward new trends in theoretical biology, based on such practise of autonomous 
systems and not only on purely literary descriptions or purely mathematical formulations.  

This opportunity exists more than ever for the future and we wanted to provoke discussions at 
ECAL about all major forms of autonomous systems, characterized by self-organized 
architectures, morphogenesis and adaptation, from minimal forms of life to the ecosphere, from 
minimal forms of cognition to human social intelligence, mediated through internet and the web. 
Besides, we did not want artificial life to become a sub-branch of engineering only weakly 
inspired by biology. In fact, other conferences already existed for that. ECAL ought to be 
different and unique, genuinely centred on theoretical biology and the physics of complex 
autonomous systems.  

Today, although we are proud of this series of very successful and exciting ECAL conferences, 
we feel that the domain of Alife should look back to these origins and take even more inspiration 
from the new high-throughput developments at the intersection between computer science and 
theoretical biology. Closing a loop, this year’s ECAL will mark the 20th anniversary of the first 
ECAL and will be framed as a tribute to the late Francisco Varela. It was summer 1990, the three 
of us, with Paul Bourgine, were sitting in a café in Paris, drinking an excellent wine, when 
Francisco proposed to make our own version of an Alife conference. Thanks Francisco, we miss 
you. 

 

Welcome to ECAL 2011!  

Hugues Bersini 
 

Brussels 
August 2011 
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Preface 

ECAL, the European Conference on Artificial Life, is a biennial event that alternates with the 
US-based Alife conference series. In the early 1990’s, the first two ECAL conferences in Paris 
and Brussels were mainly centered on theoretical biology and the physics of complex systems. 
After 20 years and 10 editions of this event, we felt that the domain should look back on these 
origins and our wish was to refocus the ECAL conference on complex biological systems.  
 
Over the past two decades, biological knowledge has grown at an unprecedented rate, giving rise 
to new disciplines such as systems biology, testimony of the striking progress of modeling and 
quantitative methods across the field. During the same period, highly speculative ideas have 
matured, and entire conferences and journals are now devoted to them. Synthesizing artificial 
cells, simulating large-scale biological networks, storing and making intelligent use of an 
exponentially growing amount of data (e.g., microarrays), exploiting biological substrates for 
computation and control, and deploying bio-inspired engineering are all cutting-edge topics 
today. 
 
ECAL’11 leveraged this remarkable development of biological modeling and extended the topics 
of Artificial Life to the fundamental properties of living organisms: their multiscale pattern-
forming morphodynamics, their autopoiesis, robustness, capacity to self-repair, cognitive 
capacities, and co-adaptation at all levels, including ecological ones. Bringing together a large 
interdisciplinary community of biologists, computer scientists, physicists, and mathematicians, 
the conference gave them a moment to reflect on how traditional boundaries between disciplines 
have become blurred, and to revisit in depth what constitutes “life”. 
 
In order to make the event attractive to researchers from a wide range of disciplines, we decided 
to open the possibility to submit 2-page abstracts discussing work previously published by the 
authors in a journal. In addition to 148 full-length (8-page) articles reporting on new, unpublished 
work, we received 29 overview abstracts, for a total of 177 submissions.   
 
Although intrinsically interdisciplinary, these submissions referred in particular to the main 
conference topics, as described by the histogram below. All submissions were subject to peer 
review. The work of our excellent Program Committee (see list of members below) allowed us to 
select 128 papers, subdivided into 72 oral presentations (for a 40.7% acceptance rate) and 56 
posters (31.6%), with no distinction being made between the two submission options, full paper 
or abstract. Two accepted papers were later withdrawn by their authors, reducing the total number 
to 126 (72 + 54). 
 
All papers were presented during the four days of the plenary conference, which was held at the 
Cité Internationale Universitaire de Paris, France from August 9 to 12, 2011. Oral and poster 
sessions alternated with six world-class keynote speakers, whose invited contributions (abstracts 
or full papers) are also published in the front section of these proceedings: Jacques Demongeot, 
David Harel, James D. Murray, Jordan Pollack, Ricard Solé, and Eric Wieschaus (see their 
biosketches below). We thank them for taking the time and effort to participate in the conference. 
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Satellite Workshops 
 
In addition to the plenary conference, we were also pleased to give Alife researchers the 
opportunity to organize satellite workshops and tutorials in two “bookend” sessions, on the first 
day (August 8) and last afternoon (August 12). These special sessions were dedicated to the same 
general topics as the main conference, while allowing for more focused interactions among 
participants. They were independently managed by their organizers and could comprise any 
combination of peer-reviewed papers, posters, invited talks, panel discussions, etc. Workshop 
contributions were not included in these proceedings. We received 15 proposals, of which 14 
effectively took place, testimony of the liveliness of the field: 
 

• AAALE: Alife Approaches to Artificial Language Evolution 
Luc Steels and Tony Belpaeme 
 

• ACCS: Artificial Chemical Computing Systems 
Hideaki Suzuki and Hiroki Sayama 
 

• BioChemIT: 1st COBRA Workshop on Biological and Chemical Information Technologies 
Peter Dittrich, Zarka Khan and Martyn Amos 
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• CoSMoS: 4th Workshop on Complex Systems Modelling and Simulation 
Paul Andrews, Susan Stepney, Peter Welch and Carl Ritson 
 

• CS-Sports: Complex Systems in Sports 
Juan Julián Merelo Guervós, Antonio Mora García and Carlos Cotta Porras 
 

• DDLab: Exploring Discrete Dynamics: From Cellular Automata to Random Networks 
Andy Wuensche, Andy Adamatzky and Genaro Juárez Martínez 
 

• iBioMath: First International Workshop on Integral Biomathics 
Plamen Simeonov, Andrée Ehresmann and Leslie Smith 
 

• INCUP: Information Coding in Unconventional Computing Substrates 
Jerzy Gorecki and Andy Adamatzky 
 

• MASmms: Workshop on Multi-Agent Systems in Biology at meso or macroscopic scales 
Pascal Ballet, Marie Beurton-Aimar, Guillaume Hutzler and Bertrand Laforge 
 

• MEW: 3rd Morphogenetic Engineering Workshop 
René Doursat and Hiroki Sayama 
 

• RUTSAC: Research Using The Stringmol Artificial Chemistry 
Simon Hickinbotham, Ed Clark and Adam Nellis 
 

• SIM-A: System Immunology Models of Autopoesis 
Uri Hershberg and Sol Efroni 
 

• SynBioCCC: Workshop on the Design, Simulation, Construction and Testing of Synthetic Gene 
Regulatory Networks for Computation, Control and Communications 
Nawwaf Kharma and Taras Kowaliw 
 

• WAAT: Workshop on Artificial Autonomy: 20 years of practice of autonomous systems 
Tom Froese, Matthew Egbert and Xabier Barandiaran 

 
Keynote Speakers 
 

• Jacques Demongeot is presently director of the TIMC-IMAG Laboratory, “Techniques of 
Medical Engineering & Complexity” (CNRS 5525) and is also head of the Institute of 
Bioengineering (IFRT 130 IpV) at the University Joseph Fourier, Grenoble, France. He has an 
MD and a PhD in mathematics and has been appointed Chairman of Biomathematics at the Institut 
Universitaire de France in 1994. Jacques Demongeot is also in charge of the Department of 
Medical Information at the University Hospital of Grenoble (CHUG) and is the founder of the 
doctoral school of bioengineering “Health, Cognition & Environment”. He is currently creating a 
new laboratory AGIM, in Archamps near Geneva, devoted to studies of development and ageing. 

 
• David Harel is a professor of computer science at the Weizmann Institute of Science in Israel. 

Harel is best known for his work on dynamic logic, computability and software engineering. In the 
1980s he invented the graphical language of Statecharts, which has been adopted as part of the 
UML standard. He has also published expository accounts of computer science, such as his award 
winning 1987 book “Algorithmics: The Spirit of Computing” and has made appearances on Israeli 
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radio and television. He currently works on many diverse topics, including visual languages, 
graph layout, systems biology and the communication of odours. He is now working on a 
computer model of a nematode, ‘Caenorhabditis elegans’, which was the first multicellular 
organism to have its genome completely sequenced. The eventual completeness of such a model 
depends on his updated version of the test developed by Alan Turing to identify whether 
computers could reason well enough that a human communicating with them could not tell 
whether a human or a machine was at the other end of the communication. 

 
• James D. Murray, FRS, Foreign Member of the French Academy, is Professor Emeritus of 

Mathematical Biology at the University of Oxford, Professor Emeritus of Applied Mathematics at 
the University of Washington, and Senior Scholar at Princeton University. His research is 
characterized by its great scope and depth: an early example is his fundamental contributions to 
understanding the biomechanics of the human body when launched from an aircraft in an ejection 
seat. He has made contributions to many other areas, ranging from understanding and preventing 
severe scarring, to fingerprint formation, sex determination, modeling of animal coat patterns, 
territory formation in wolf-deer interacting populations, growth and control of brain tumors, 
quantifying patient treatments prior to use, and modeling marital interaction and divorce 
prediction with 94% accuracy in a 12-year longitudinal study. He is best known for his 
authoritative and extensive work entitled Mathematical Biology, whose 3rd edition in two 
volumes came out in 2004. 

 
• Jordan Pollack is professor of computer science and complex systems professor at Brandeis 

University, where he is also chairman of the computer science department and director of the 
Dynamical and Evolutionary Machine Organization (DEMO) lab. The laboratory’s work on AI, 
Artificial Life, Neural Networks, Evolution, Dynamical Systems, Games, Self-designed Robotics, 
Machine Learning, and Educational Technology has been reported on by the New York Times, 
Time, Science, NPR, Slashdot.org and many other media sources worldwide. 

 
• Ricard Solé heads the Complex Systems Lab at Universitat Pompeu Fabra, Barcelona, and is an 

External Professor at the Santa Fe Institute. One of his main research interests is understanding the 
possible presence of universal patterns of organization in complex systems, from prebiotic 
replicators to evolved artificial objects. Key questions are how robust structures develop, how 
information is incorporated into these structures and how computation emerges. He is also 
interested in how to determine what are the contributions of selection, chance and self-
organization to the evolution of complexity. One of his main goals is searching for the principles 
of organization responsible for the emergence of fundamental components of complexity, 
including the origins of self-reproduction, development, life cycles, computational processes and 
multicellularity. His work has been featured in newspapers as well as several popular and 
technical books. 

 
• Eric Wieschaus is the Squibb Professor in Molecular Biology at Princeton. His research work has 

focused on embryogenesis in the fruit fly Drosophila melanogaster, specifically in the patterning 
that occurs in the early Drosophila embryo. Most of the gene products used by the embryo at these 
stages are already present in the unfertilized egg and were produced by maternal transcription 
during oogenesis. A small number of gene products, however, are supplied by transcription in the 
embryo itself. He has focused on these “zygotically” active genes because he believes the 
temporal and spatial pattern of their transcription may provide the triggers controlling the normal 
sequence of embryonic development. In 1995, he was awarded the Nobel Prize in Physiology or 
Medicine with Edward B. Lewis and Christiane Nüsslein-Volhard as co-recipients, for their work 
revealing the genetic control of embryonic development. 
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Alife Pioneers Panel Discussion 
 
In addition to an exceptional selection of keynote speakers, an exciting panel discussion 
involving several internationally renown pioneers of Artificial Life took place at the end of the 
second day of the plenary conference. Mark Bedau, Takashi Ikegami, Stuart Kauffman, Norman 
Packard, Steen Rasmussen, Luc Steels, and Susan Stepney all talked about the most impressive 
achievements of Alife in the past, since inception of the field, and pointed to what they thought 
were the most promising research directions for the future. Some of them also provided an invited 
contribution (abstract or full paper), which can be found in the same section as the keynotes’ 
contributions.  
  

• Mark Bedau (Reed College, Portland – European School of Molecular Medicine, Milan – 
Initiative for Science, Society, and Policy, Denmark) pioneered the field of quantifying and 
comparing the evolutionary activity in artificial and natural systems, and is an international leader 
in the evolutionary design of complex biochemical systems using statistical models and prediction 
algorithms. Because he combines training in analytical philosophy with over a decade of 
experience in artificial life, he is recognized as a uniquely qualified expert in the philosophical 
foundations of complex adaptive systems. Mark Bedau is Editor-in-Chief of the international 
journal Artificial Life (published by MIT Press), he co-organized five international conference on 
artificial life, co-founded a start-up company, ProtoLife SRL, and co-founded the European 
Center for Living Technology, a research institute in Venice, Italy, that investigates theoretical 
and practical issues associated with living systems. 

 
• Takashi Ikegami is a professor at the Department of General Systems Sciences of the Graduate 

School of Arts and Sciences, University of Tokyo, where he specializes in complex systems and 
artificial life. Takashi takes a computational/philosophical approach to designing artificial life, 
exploring issues at the margins of his discipline. He is also an arts collaborator with Keichiro 
Shibuya (ATAK) on making three-dimensional sound installations. Keywords: chemical 
computing, smart chemical agents, chemotaxis, living technology, artificial life, first cell. 

 
• Stuart Kauffman (University of Vermont, Burlington) is an American theoretical biologist and 

complex systems researcher concerned with the origin of life on Earth. He is best known for 
arguing that the complexity of biological systems and organisms might result as much from self-
organization and far-from-equilibrium dynamics as from Darwinian natural selection, as well as 
for applying models of Boolean networks to genetic circuits. Stuart Kauffman rose to prominence 
through his association with the Santa Fe Institute, where he was faculty in residence (1986-1997), 
and his work on models in various areas of biology. These included autocatalytic sets in origin of 
life research, gene regulatory networks in developmental biology, and fitness landscapes in 
evolutionary biology. Stuart Kauffman held a joint appointment at the University of Calgary in 
Biological Sciences and Physics and Astronomy (2005-2009), then joined in 2010 the University 
of Vermont where he will continue his work with UVM's Complex Systems Center. 

 
• Barry McMullin’s primary research activity at the Rince Research Institute, Dublin City 

University (DCU), is in the domain of Artificial Life. He serves on the organizing committees of 
both ECAL and Alife conferences, and as a member of the Editorial board of the Artificial Life 
journal. He has a secondary research interest in the area of Web Accessibility, engineering web 
sites and services to best meet the requirements of all users, specifically including those with 
disabilities. Between 1999 and 2004, Barry McMullin was the first DCU Dean of Teaching and 
Learning. In this role he was responsible for the development of a wide series of initiatives to 
significantly enhance the quality of the student learning experience at DCU. Barry McMullin was 
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appointed to the rank of Associate professor at DCU in September 2010, and became Director of 
RINCE, a national research institute specializing in Engineering technology innovation, in 
February 2010. 

 
• Norman Packard (European Center for Living Technology, Venice) has worked in the areas of 

chaos, learning algorithms, predictive modeling of complex time series, statistical analysis of 
evolution, artificial life, and complex adaptive systems. He was co-founder of Prediction 
Company in 1991 and served as its CEO (1997-2003) and chairman until 2005. Norman Packard 
is currently working in a new scientific and business direction based on development of 
evolutionary chemistry in programmable microfluidic technology. Long-range applications of this 
technology include the fabrication artificial cells from non-living material, and their programming 
for useful functionality. In 2004, Norman Packard was co-founder of ProtoLife S.r.l. (Venice, 
Italy), which applies machine learning techniques to the design of experiments (DoE) for high 
throughput experiments in biotechnology. As part of the PACE project (Programmable Artificial 
Cell Evolution, 2004-2008), he also participated in the founding of ECLT, the European Center 
for Living Technology. 

 
• Steen Rasmussen is currently the Head of the Center for Fundamental Living Technology 

(FLinT), a Research Director at the Department for Physics and Chemistry at University of 
Southern Denmark, Odense, and External Research Professor at the Santa Fe Institute. He has 
pioneered approaches, methods, and applications for self-organizing processes in natural and 
artificial systems: abstract self-programmable matter, molecular dynamics (MD) lattice gas 
simulations for molecular self-assembly, rational and evolutionary protocell design, disaster 
mitigation and decision support systems based on collective intelligence, as well as novel 
simulations for large-scale sociotechnical systems. Steen Rasmussen was heading the Protocell 
Assembly (LDRD-DR) project and the Astrobiology program (origins of life) at Los Alamos, 
developing experimental and computational protocells and cell-like entities. He also co-directed 
the European PACE project (Programmable Artificial Cell Evolution) project. 

 
• Luc Steels is professor of Computer Science (at the moment part-time) at the Free University of 

Brussels (VUB), founder and director (since 1983) of the VUB Artificial Intelligence Laboratory 
and co-founder and chairman (1990-1995) of the VUB Computer Science Department. He has 
also been the director of Sony CSL in Paris since its creation in 1996. His scientific research 
interests cover the whole field of artificial intelligence, including natural language, vision, robot 
behavior, learning, cognitive architecture, and knowledge representation. At the moment his focus 
is on dialogs for humanoid robots and fundamental research into the origins of language and 
meaning. Current work focuses on developing the foundations of semiotic dynamics and on fluid 
construction grammars. 

 
• Susan Stepney leads the Non-Standard Computation research group, and is one of the instigators 

of the new interdisciplinary York Centre for Complex Systems Analysis, University of York. 
Originally a theoretical astrophysicist, she has spent the bulk of her professional career in 
industrial R&D (GEC-Marconi and Logica), mostly in mathematical and computational 
modelling, researching aspects of novel computation. She is a moderator of the UKCRC Grand 
Challenge 7 in Non-Classical Computation and is helping to build a conceptual meta-framework 
for bio-inspired computation. Current research interests also include theories of emergence and 
self-organising systems, and nature-inspired computational metaphors. She is the PI of the 
Complex Systems Modelling and Simulation project and was PI of the EIVIS novel computation 
cluster, rated “outstanding”. She also teaches complex biosystems simulation and is responsible 
for designing the new Masters course in Natural Computation at York. 
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Alife Art Exhibit and Performance 
 
Inspiration, imagination and aesthetics are an integral part of science, and they are of particular 
importance in the Alife community, which fuels some of the most creative and provocative 
research at the edge (of chaos) between biology and technology. Accordingly, ECAL’11 
welcomed a prominent visual artist, Louis Bec, and a distinguished musician, François Pachet, 
who showcased their exciting work in the exhibit rooms and main auditorium. 
 

• Louis Bec, born in Algeria and living in France, is a biologist and zoosystematician who extends 
his scientific field with a fabulatory epistemology based on Artificial Life and 
Technozoosemiotics. In 1972, Bec founded the Institut Scientifique de Recherche Paranaturaliste, 
where he studies the incapability of living beings to understand their own existence. Bec is both 
artist and scientist in the field of artificial life and 3D technologies. He is as much a biologist, 
artist, curator and educator, and has been a ministry officer for new technologies in arts. Bec is 
Director of CYPRES (Centre Interculturel de Pratiques et Echanges Transdisciplinaires) in 
Marseille. He has presented his ideas in many exhibitions, such as Alife II (invited by Chris 
Langton) and From Animals to Animats, and articles. 
 

o Upokrinomenes: a fabulated epistemology Zoosystemician Louis Bec forces us to question the 
validity of each claim by reformulating and staging scientific discourse. His reasoning possesses all 
the marks of scientific assertiveness, combining scientific jargon with scholarly neologisms. 
Questioning life and our inability to understand it through traditional investigative methods, he 
founded the field of Upokrinomenology. It is a theory of life using models based on computer 
science, robotics, video and other interactive devices, where irony holds a significant place. By 
putting scientific discourse into perspective, he challenges us to investigate, unravel and interpret 
the propositions that he makes. In this research, scientific discourse becomes poetic and Louis Bec 
becomes a storyteller. Founder of the Scientific Institute of Paranaturalistic Research, he invites us 
to discover a life we did not know existed, one that looms at the border between shapes, language 
and behavior [after C. Beaugrand & A. Charre, Reinventing the museum]. (Art exhibit at ECAL’11 
designed and installed with François Mourre, Patrice Bersani and Delphine Fabbri-Lawson.) 

 
• François Pachet is a Civil Engineer (Ecole des Ponts and Chaussées) and was an Assistant 

Professor in Artificial Intelligence and Computer Science, University of Paris 6, until 1997. He 
then set up the music research team at the Sony Computer Science Laboratories, Paris, and 
developed the vision that metadata can greatly enhance the musical experience in all its 
dimensions, from listening to performance. His team conducts research in interactive music 
listening and performance and musical metadata and developed several innovative technologies 
and award winning systems (MusicSpace, constraint-based spatialization, PathBuilder, intelligent 
music scheduling using metadata, The Continuator for Interactive Music Improvization). He is the 
author of over 80 scientific publications in the fields of musical metadata and interactive 
instruments. 
 

o The Continuator Project: playing with virtual musicians François Pachet (guitar player) and Jeff 
Suzda (professional sax player) performed a short Jazz concert with their band “Quintet of Two”. 
They comprised the two human musicians in the group, performing alongside three “software” 
musicians. The goal of this project was to play “standard” jazz using virtual instruments intimately 
controlled by the human players. The technologies employed, developed at Sony CSL, involve 
Markov chains, constraint programming, signal processing, and a great degree of musical tuning. 
Performance was still exploratory, but the goal is to enhance musical expressivity through 
controllable machines. 
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An event like ECAL’11 would not have been possible without the following dedicated members 
of the Program Committee and additional reviewers. Our gratitude goes to all of them. 
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Andreas Albrecht Gianni Di Caro Robert Lowe Luis Seabra Lopes 
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Lee Altenberg Peter Dittrich Steven Maere Cosma Shalizi 
Paul Andrews Marco Dorigo Davide Marocco Ricard Sole 
Takaya Arita Alan Dorin John McCaskill Antoine Spicher 
Wolfgang Banzhaf René Doursat Chris McEwan Peter Stadler 
Xabier E. Barandiaran Marc Ebner Barry McMullin Susan Stepney 
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Randall Beer Luca Gambardella Luís Moniz Pereira Christof Teuscher 
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Peter Bentley Mario Giacobini Jason Moore Peter Todd 
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Seth Bullock Fumiya Iida Andrew Philippides Jon Umerez 
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Abstract 
The general architecture of a genetic regulatory network 
consists of strong connected components of its interaction 
graph, to which are attached three kinds of sub-structures:  
- a set of up-trees, rooted in the sources of the interaction 
graph, represented either by small RNAs like microRNAs: 
nuclear miRs or mitochondrial mitomiRs, i.e., translational 
inhibitors respectively of the messenger mRNAs and of the 
transfer tRNAs, or by gene repressors and/or inductors,  
- a set of circuits in the core (in graph sense) of the strong 
connected components of the interaction graph,  
- a set of down-trees going to the sinks of the interaction 
graph, i.e., to genes controlled, but not controlling any other 
gene. 
The various state configurations it is possible to observe in the 
above sub-structures correspond to different dynamical 
asymptotic behaviors.  The network dynamics have in general 
a small number of attractors, corresponding in the Delbrück’s 
paradigm to the functions of the tissue they represent. 
Examples of such dynamics will be given in embryology: cell 
proliferation control network in mammals and gastrulation 
control network in Drosophila melanogaster. 

Introduction 
Genetic networks can be considered as the analogues of 
neural networks for controlling the expression of genes. 
Their time constants are different (e.g., the rhythms of 
protein expression are of the order of magnitude of some 
minutes and those of neural firing are of some milliseconds) 
but their connectivity is about the same (in-degree between 
1.5 and 3, i.e., the mean number of the genes or neutrons 
influencing positively or negatively other ones is between 
1.5 and 3) as well as the number of their strong connected 
components (rarely more than 2 for the control of a dedicated 
function). For these reasons, many common mathematical 
features have been adopted by the modelers in charge of 
designing the interaction graph of such networks: i) Boolean 
representation of the state space (1 if the gene is expressed, 0 
if not), ii) Hopfield-like transition function (Demongeot and 
Sené, 2008d; Demongeot et al., 2008c, 2009b, 2011b, in 
press) and iii) extraction of the same features, like entropy 
and motifs (Demongeot et al., 2010). We will use in this 
paper this common theoretical framework in order to 
interpret examples of the genetic network dynamics. 

  

Generalities about the architecture of the 
interaction graph of a genetic network 

 

 

 

 

 
 
 

 
Figure 1: The interaction graph (top left) and the trajectory 
graph of a  Boolean genetic regulatory network 

 
The architecture of a genetic network can be decomposed into 
3 directed graphs: i) the interaction graph with positive (resp. 
negative) arrows for induction (resp. repression), ii) the 
trajectory graph made of the consecutive states from an initial 
state until an asymptotic behavior (fixed state or limit-cycle 
of periodic states) and iii) the updating graph with an arrow 
between two genes if the target gene is updated after the 
source one. The knowledge about the first graph is given by 
DNA-protein interactions, about the second by DNA array 
devices recording gene expression and about the third by the 
chromatin clock. This architecture shows in Figures 2 and 3 
some common features: i) a set of up-trees, issued from the 
sources of the interaction graph of the network, made either 
of small RNAs like siRNAs or microRNAs (nuclear miRs or 
mitochondrial mitomiRs, respectively translational inhibitors 
of the messenger mRNAs and of the transfer tRNAs), or of 
gene repressors and/or inductors, self-expressed without any 
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other gene controlling them, ii) a set of circuits in the core (in  
the graph sense) of the strong connected components of the 
interaction graph. These circuits are unique or multiple, 
disjoint or intersected, reduced to one gene or made of several 
ones, negative (having an odd number of negative 
interactions) or positive, and iii) a set of down-trees going to 
the sinks of the interaction graph. 
 
     By identifying each function of a regulatory network to 
one of the attractor of its dynamics as suggested by Delbrück 
(Demongeot, 1998), it is possible to count the number of the 
attractors provided by isolated circuits, and the number – 
largely reduced – brought by tangential or intersected circuits 
(Demongeot et al., 2009b, 2011a, 2011b, in press), depending 
on the updating mode fixed by the chromatin dynamics. 
 

The control of the genetic networks by 
microRNAs (miRs). Example of mitomiRs 

 
Since a decade, numerous small RNAs issued from the non  
coding part of plant and animal genomes (like silencing 
siRNAs and microRNAs or miRs) have been found as 
inhibiting the translation by hydridizing the mRNAs with the 
help of RNA-binding oligo-peptides. This inhibition is partly 
aspecific because of the large number of possible mRNA 
targets for each small RNA. On Figure 2, the dynamics of a 
circuit of size 3 (3-circuit) is analyzed, when one gene of the 
3-circuit is inhibited by a miR. If the inhibition is associated 
to another inhibition of this gene or if it is sufficiently strong, 
it is able to transform a limit-cycle behavior in a fixed 
configuration, the circuit being either negative or positive 
(Figure 2 top left and top middle). When the miR inhibition is 
less than the activation on the target gene, then the periodic 
behavior is conserved (Figure 2 top right). We can say that 
the inhibitory influence by the small RNAs is exerted only on 
sufficiently “weak” circuits, like on the carved (weak) zones 
of an etching on which only the nitric acid can carve. 
 
     Recently some nuclear miRs like miR-1977 (Figure 3) 
have been discovered whose targets are mitochondrial 
mRNAs coding for enzymes of the oxidative phosphorylation 
(Bandiera et al., 2011). Such miRs have been called 
mitomiRs (Dass et al., 2010). This discovery invited to 
examine if there exist parts of the non-coding mitochondrial 
DNA (called the d-loop, cf. Figure 3) susceptible to code for 
hybridizing RNAs blocking the free parts (the loops) of the 
mitochondrial tRNAs: the corresponding inhibition would be 
totally aspecific and exerted in situ without nuclear control in 
order to slow oxidative phosphorylation in absence of a 
strong energetic need. This effect could be useful for ruling 
the balance Pasteur/Warburg effect versus OxPhos effect, 
allowing to avoid both cancers in case of Pasteur/Warburg 
dominance and degenerative diseases in case of oxidative 
phosphorylation dominance (Demetrius et al., 2010; Israel 
and Schwartz, 2011). 
 
     Several sequences corresponding to the tRNA loops – 
essentially the tRNA D-loop, but also Anticodon-loop and 
TψC-loop have been found both in nuclear and in 
mitochondrial miRs. We will take in the following as 
reference the Lewin’s tRNA given in (Krebs et al., 2009): it 

has been proved that the loops sequence in this reference 
tRNA was the closest among all known tRNAs to an 
Archetypal Basic RNA sequence of 22 bases (called RNA 
AB) verifying the following variational min-max principle:  
 
- to be as short as possible, 
- to present one and only one triplet corresponding to each 
amino-acid, in order to serve as “matrimonial agency” 
favouring the vicinity of any couple of amino-acids, close to 
RNA AB, and able to form strong peptide bonds (i.e., 
covalent chemical bonds formed by two amino-acids, when 
the carboxyl group of one reacts with the amine group of the 
other) between them, in order to initiate the peptide building 
as an ancestral tRNA, well conserved for example in the 
present Gly-tRNA of Œnothera lamarckiana. 
 
     For satisfying the constraints above, the RNA AB must be 
circular and contain at least 20 triplets. The minimal solution 
is given in (Demongeot and Besson, 1983; Demongeot and 
Moreira 2007; Demongeot et al. 2006, 2008a, 2009a, 2009c). 
The corresponding RNA AB sequence can be given in 
circular or hair-pin form and could be considered as the 
ancestor of the present tRNA loops. We will indicate in the 
following in blue the possible hybridization sites, by using 
the complementary pairing A-U, C-G and G-U: 
  
1) for the nuclear mitomiRs, we have a pairing with: 
- the D-loop and TψC-loop (13/22) (Bandiera et al., 2011) 
5’ UAAAUGGUACUGCCAUUCAAGA 3’ AB 
3’ AAUUGUCGAUUCGUGGGAUUAG 5’ miR 1977 
- the Anticodon-loop (12/22) (Bandiera et al., 2011) 
   5’ UUCAAGAUAAAUGGUACUGCCA 3’ AB 
3’ AUAAGAGCGUGCCUGAUGUUGGU 5’ miR 1974  
- the TψC-loop (12/22) (Bandiera et al., 2011) 
5’ GAUAAAUGGUACUGCCAUUCAA 3’ AB 
3’ AUCUUUCCGAUCCUGGUUUGG  5’ miR 1978 
 
2) for the mitochondrial mitomiRs, we have a pairing with: 
-‐	  the	  D-loop (Cui et al., 2007) 
the sequence AAUGGUA is found in many species in the 
CSB part of the mitochondrial d-loop (Figure 3) 
- the TψC-loop (Sbisa et al., 1997) 
the sequence GUACAUU is found in many species in the 
ETAS part of the mitochondrial d-loop (Figure 3) 
 
     Each pairing described above corresponds to a probability 
less than 10-4 to occur (Demongeot and Moreira, 2007) and 
could correspond to the relics of an ancient protein building 
mechanism without ribosomes, in which the amino-acids 
were directly linked to RNA chains or cycles playing the role 
of matrimonial agency, i.e., facilitating the grouping of 
amino-acids, hence favoring the constitution of peptidic 
bonds between them (for other hypotheses concerning the 
catalysis of peptidic synthesis, see (Huber and 
Wächtershäuser, 1998; Hsiao et al., 2009)). When tRNA  
loops are hybridized by nuclear or mitochondrial mitomiRs, 
efficacy and specificity of the complex made of amino-acid, 
tRNA and amino-acyl-synthetase (enzyme esterifying an 
amino-acid for complexing it to a specific tRNA) can be 
affected, causing an inhibition of the translation mechanism. 
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Figure 2: Top) Architecture of 3-circuits controlled by a miR, with negative (left) and positive (middle and right) circuits. Middle) 
Periodic dynamics when the miR is not expressed (miR=0). Bottom) Fixed configuration if the miR is expressed (miR=1), except if 
the miR inhibition is less than the gene activation (in parentheses), case in which the periodic behavior is conserved.

 
 

 
 

 
 
 
 

 
 
 

 

 

 

 

 

Figure 3: Left) General architecture of a genetic network with 2 circuit layers (red), 2 up-trees (green) and 3 down-trees (violet). 
Right) the circular mitochondrial DNA with its non-coding part (d-loop blue) and inside a tRNA structure hybridized by miR 1977. 
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Genetic network ruling the cell-cycle 
 
The genetic network ruling the cell-cycle in mammals, 
centered on the gene E2F, is crucial for cells because of its 
links with Engrailed network controlling: i) through gene Elk 
  
 
 
 
 
 
 
 
 
 

the potassium channels in hippocampus neurons ruling the 
memory (Top of the Figure 4) and ii) through genes 
Engrailed/GATA-6, c-Myc and RAS, in a double incoherent 
control pathway (with both positive and negative arrows, 
respectively in red and green in Figure 4), the apoptosis and 
proliferation processes. This last control must be very precise 
if the tissue controlled has to keep constant its cell number. 
A way to obtain this acute control is to intersect in the 
Engrailed network several circuits (cf. Figure 4 Bottom right 
and (Demongeot et al., 2009b, 2011a, 2011b, in press)) and 
to exert an inhibitory control through miRs and/or mitomiRs, 
themselves possibly controlled by p53 (Figure 4 Middle). 
 

 
 

  
 

 
 

 
 

 

 
 

 
 

 
 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

Figure 4: Middle right) Cell cycle controlling genetic network centered in mammals on the E2F box inhibited by small RNAs (miRs 
or nuclear and/or mitochondrial mitomiRs). Top left) Engrailed network controlling the potassium channels of hippocampus neural 
networks. Middle left) Engrailed network controlling both apoptosis and proliferation processes. Bottom left) Attractors of the 
dynamics specific to the E2F box. Bottom right) General structure of the Engrailed network.  
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Figure 5: Bottom left) Gastrulation controlling genetic network from (Leptin, 1999) with addition of 2 ATP and GTP controlling 
enzymes b and c. Top middle) Myosin controlling subnetwork. Bottom right) The 4 differentiated cells needed for building the 
future digestive tube.
 
     A triple action (accelerate, stop and slow down the cell 
cycle) on proliferation process is exerted negatively by the 
gene GATA-6 which is inhibited 1 time out of 2 by MAPK, 
and successively positively and negatively by the gene c-MyC 
which is activated 1 time out of 2 by Erk. The limit cycle of 
order 4 brought by the negative circuit of size 2 (MKP/Erk) 
leads genes MKP, Erk, MAPK, Engrailed, GATA-6, c-MyC, 
p53, miRNA34, Cdk2, E2F and caspases to the limit-cycle: 
01100001001, 11110100001, 10011110000, 00000011011. 
Then the second fixed point of the E2F box is reached 1 time 
out of 4 and the caspases/apoptose box is activated 1 time out 
of 2: this result allows the exponential growth of the cell 
number to be compensated in a tissue by the linear growth of 
the apoptosis, 2 daughter cells replacing 2 dead cells during 
one period of the limit cycle, hence ensuring the conservation 
of the tissue volume and tissue function, any disequilibrium of 
the balance giving either a tumor growth or tissue rarefaction. 
 

Genetic network ruling the gastrulation 
 

The gastrulation is a dynamical process occurring at the end 
of the blastula phase. It is an early embryonic stage, including 
mass movement of cells to form complex structures from a 
simple starting form. Experiments in vivo have shown that 
there are many types of mass cell movement taking place 
during gastrulation: ingression, invagination, involution, 
epiboly, intercalation and convergent extension. In the next 
Section, we will focus on the simulation of the phenomenon 
of invagination of cells, which leads to the creation of the 
ventral furrow. In order to control the gastrulation process, a 
genetic regulatory network has been proposed in (Leptin, 
1999). This network has been improved by adding 2 genes 

(Figure 5 Bottom left): ATPase (enzyme located inside the 
inner mitochondrial membrane ensuring the resourcing of 
ATP from ADP) and DiNucleotide Phosphate Kinase (enzyme 
resourcing GTP from GDP and ATP). This addition of genes 
allows the network to pass from 2 to 4 attractors, providing 
the 4 types of differentiated cells (from bottle cell to intestinal 
epithelial cell) needed to achieve and finish the digestive tube 
(Figure 5 Bottom right).  The CyT node correspond to the 
genes involved in the CyToskeleton formation, i.e., essentially 
the genes of Actin, Tubulin and Myosin, the latter being 
controlled by a specific subnetwork (Figure 5 Top middle). 
When the genes coding for the two types of Myosin (RLC, 
with Regulatory Light Chain and HC, with Heavy Chain) are 
expressed, then the ventral furrow invagination can start. We 
will model this process in the next Section showing with a 
simple mechanical model that it begins by a cell contraction  
followed by an invagination at the two extremities of the 
Drosophila embryo, extended after to central embryo region. 
 

Physical Model of Ventral Furrow  
 
Several successful models have already been created in order 
to simulate the process of ventral furrow invagination in 
Drosophila melanogaster. Although they have been 
extensively monitored, the parameters driving the movement 
and deformation of cells are not fully explained. We shall 
describe the structure of our physical model, the parameters 
we used to create it, the assumptions we made and the new 
possibilities and questions raised by this approach. This work 
focuses on the area of the structure where the phenomenon 
begins. As a result, we have modelled the upper part of one 
side of blastula (Figure 6) as described in (Abbas et al., 2009).  

5ECAL 2011



 
 

 
 
 
 
 

 
 
Figure 6: a) Representation of the simulated embryo structure 
at its initial shape and b) of an individual cell located at area 
of the centre row of the structure with its centrosome in red. 
 
     In our approach, the structure consists of 75 cells arranged 
in 15 columns of 5 cells each. The first 8 columns form the  
central part of the structure. The curvature of the structure 
starts at column 9 and ends at column 15, for a total curvature 
of 90° (Figure 6a). Each cell is modelled as a hexahedral 
object, composed of 9 particles. 8 particles are used as the 
vertices of the hexahedron and one particle is located in the 
middle, denoting the centrosome of each cell. The cells, with 
the aid of a biomechanical library, are defined as individual 
physical objects, with three distinct characteristics: 
incompressibility, elasticity and contractility. The structure is 
represented on Figure 6 at its initial shape and an individual 
cell is located at the central row of the structure. The grey cell 
corresponds to the cell presented in Figure 6b. The cells of the 
central area are modelled by cubes with edges of 5µm2, 
resulting to 6 facets of initial surface equal to 25 µm2. The 
initial volume is 125µm3. Muscular forces (black arrows) 
connect the particles of the top facet of the cell. The red 
sphere represents the centrosome, initially located at the 
centre of the cell. The particles are modelled as nodes with the 
ability to interact with their environment. They are defined by 
their position and their mass. Elastic and muscular forces are 
applied on them and they can also be submitted to boundary 
conditions. Their combined displacement is the crucial factor 
that affects the cell deformation and movement. The 

incompressibility algorithm, uses the facets geometry and a 
displacement constraint, to keep the volume of cells constant. 
Elasticity forces are defined between neighbouring particles in 
order to model the tissue reaction against deformation (Henon 
et al., 1999; Promayon et al., 2003). The elasticity parameters 
have a small value, so that the cell shape can be modified 
quite easily by other forces. As a result, we have deformable 
cells, with nearly unchangeable volumes (which imitates the 
behaviour of cells in vivo). In addition, using muscular forces, 
we can induce the contraction of cellular objects similar to 
those due to the Myosin excess (Patwari and Lee, 2008). 
Using a higher value of the elasticity parameter for the centre 
particle (centrosome), we ensured that this particle stays close 
to the centre of the cell, even when the cell is deformed. This 
allows us to model the rigidifying effect of the cytoskeleton. 
In vivo experiments have shown that neighbouring cells form 
Adherens Junctions (AJs), which contain complexes of the 
transmembrane adhesion molecule E-cadherin and the 
adaptors α-catenin and ß-catenin (Gumbiner, 2005; Martin et 
al., 2010). In addition, these AJs are formed in the apical areas 
of the lateral surfaces of the cells (Tepass and Hartenstein, 
1994; Oda and Tsukita, 2000). In our model, we have 
considered AJs to offer very strong linking between cells. 
Therefore, the vertices of the hexahedron are merged, 
summing up the forces and constraints of all concurrently 
surrounding cells. This allows a faster propagation of the 
forces during the simulation. 
 
Simulation 
 
Particles at the top of each cell in the central row are linked by 
muscular forces, which are used to model the forces applied 
by the orthogonal perpendicular Myosin fibres (Figure 6b). 
The norm of these forces for each particle is the same, 
resulting from a uniform distribution of forces along the 
structure, as suggested in (Brodland et al., 2010). More, 
boundary conditions are applied to the movement of some 
particles to verify the symmetry of the simulation (Figure 7):  

Figure 7: Representation of the boundary conditions imposed 
on the simulated embryo structure. 

a 

b 

a b 

c d 
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Figure 8: Simulation of the ventral furrow invagination 
process in Drosophila melanogaster. 
 
i) the first boundary condition implies that structure edges  
cannot move in any direction (Figures 7a,b), ii) the second is 
applied on the side parts of the structure (Figures 7c,d).  
 
     The particles can “slide” on the x and y axis but they 
cannot move on the z axis. These boundary conditions allow 
the simulation to consider that this model is a part (Figure 8) 
of a bigger structure, with cells expanding from all sides, in 
order to form a tubular shape, as presented in Figure 9. At the 
beginning of the simulation, all the particles are submitted to 
forces of equal value. This is achieved by applying uniform 
elasticity and contractility coefficients along the structure. The 
simulation is divided in time-steps. Each time-step 
corresponds approximately to 0.05 seconds. At each time-
step, the following processing takes place: 
- the forces are summed up on all the particles and integrated 
along the structure using a classical integration scheme, 
- the velocity and position of each particle are calculated and 
integrated also along the structure, 
- the constraints are applied (incompressibility and boundary 
conditions). 
In Figure 8, we present the geometry obtained for four 
different instances of the simulation, from three different 
angles. In the first row, the geometry is shown from the top, in 
the second row, it is shown from the bottom and in the third 
row it is shown from the side of the structure. In next papers 
to appear, we will provide videos of the entire simulation from 
all three points of view. At the beginning the cells in the 
centre row are contracting due to the activation of the Myosin 
fibres (after entering in the Bottle cells attractor of the 
previous Section). This contraction pulls all the cells of the 
model towards the centre. Due to the initial geometry of the 
structure, as shown in Figure 8, the vertical component of the 
force applied on the particles of the curved area causes the 
particles to move downward. As the cells located on the centre 

row of the curved part move downward, they concurrently 
pull the other cells of the structure as well, due to the cell-cell 
bonds. As a result, all the cells start to move downwards (see 
Figure 8).  

 

 
Figure 9: Simulation of invagination starting at the Drosophila 
embryo extremities (Bottom from (Martin et al., 2010)). 
 
     An important factor concerning the invagination process is 
the surface/volume ratio. In vivo experiments have shown 
that, as the phenomenon proceeds, the area of the cell in 
contact with the nourishment fluid decreases (Leptin, 1999). 
On the other hand, cell volume increases. As a result, the 
surface/volume ratio decreases with time. It has been noted 
that it can decrease up to a certain threshold, after which the 
cell tends to divide (Figure 9) as observed in (Cui et al., 
2005). 

 
 
Figure 9:  Proliferation occurring at the most invaginated part 
of the Drosophila embryo extremities, the Top left showing a 
BrDU pre-mitotic S-phase activity from (Cui et al., 2005)). 
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Conclusion 
 

We have shown in this paper that the general architecture of a 
genetic regulatory network involves several genetic circuits, 
which are crucial for imposing a dynamics having only few 
attractors, corresponding to few functions to fulfil. This small 
number of attractors is well controlled by the existence of 
circuit intersections as well as by the presence of an aspecific 
inhibitory “noise” from small RNAs, like miRs and mitomiRs. 
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Can we Computerize an Elephant? 

David Harel1 

1Dept. of Computer Science and Applied Mathematics 
The Weizmann Institute of Science 

Israel 
dharel@weizmann.ac.il 

 
 

Abstract 
The talk shows how techniques from computer science and software engineering can be applied beneficially to research in the life 
sciences. We discuss the idea of comprehensive and realistic modeling of biological systems, where we try to understand and 
analyze an entire system in detail, utilizing in the modeling effort all that is known about it.  I will address the motivation for such 
modeling and the philosophy underlying the techniques for carrying it out, as well as the crucial question of when such models are 
to be deemed valid, or complete. The examples will be from among the biological modeling efforts my group has been involved in: 
T cell development, lymph node behavior, organogenesis of the pancreas, and fate determination in the reproductive system of the 
Caenorhabditis elegans nematode worm. The ultimate long-term “grand challenge” is to produce an interactive, dynamic, 
computerized model of an entire multi-cellular organism, such as the C. elegans, which is complex, but well-defined in terms of 
anatomy and genetics. 
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Abstract 
Massive Data Flow (MDF) is everywhere these days; from data about neural cells, social insects and genetic networks, to Lifelog 
(digital storage of a person’s visual and audio life log) and SNS (Social network service) data streams. Current web and device 
technology has made it possible for us to record detailed and massive data flows of artificial and real living systems. 

But how can we analyze and understand MDF?  Can a simple toy model based on a plausible narrative and simulation still tell us 
something? Concepts like “the edge of chaos” and “self-organized criticality” once helped us to understand living systems, but we 
do not know whether the same concepts can be useful to MDF. 

I think studies of artificial life in MDF need larger models, because we need the strength of  models that overcomes MDF. 
Possible larger models do not have to mimic existing living creatures but can be larger, in the sense of novel invention and 
utilization of space and time. In other words, to understand the complexity of MDF is to recast and reconfigure it into a larger 
artificial model. Indeed, I myself made a large model called “MTM” (Mind Time Machine) in 2010 that ran for three months in an 
open space, receiving massive visual data from the environment with 15 cameras, processed by internal neural dynamics with a 
learning capability, and showing sustainable complex adaptive dynamics.   

We need a theory to make large artificial life models and to take them out into the real world. 
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Foreword 
Article reproduced with permission from a chapter in S. Barry 
Cooper and Andrew Hodges (editors): The Once and Future 
Turing: Computing the World, Cambridge University Press, to 
appear 2012. 

Introduction 
The first half of the 20th Century was filled with a stunning 
group of scientists, Einstein, Bohr, von Neumann and others.  
Alan Turing ranks near the top of this group.  I am honored to 
write in this Centennial Volume commemorating his work.  
How much do we owe one mind? His was a pivotal role in 
cracking the Nazi war code that profoundly aided the defeat of 
Nazism. His invention of the Turing machine has 
revolutionized modern society, from universal Turing 
machines to all digital computers and the IT revolution. His 
model of morphogenesis, the first example of a “dissipative 
structure”, to use Prigogine’s phrase for it, is one I have 
myself used as a developmental biologist.  

I rightly praise Turing, but seek in this chapter to go 
beyond him.  The core issue is the human mind.  Two lines of 
thought, one stemming from Turing himself, the other from 
none other than Bertrand Russell, have led to the dominant 
view that the human mind arises as some kind of vast network 
of logic gates, or classical physics “consciousness neurons”, 
to use F. Crick’s phrase in The Astonishing Hypothesis (1), 
connected in the 10 to the 11th neurons of the human brain.  

I think this view could be right, but is more likely to be 
wrong. My aim in this chapter is to sketch the lines of thought 
that lead to the standard view in computer science and much 
of neurobiology, note some of the philosophic claims for and 
doubts about the claim, but most importantly I wish to explore 
the emerging behavior of open quantum systems, their new 
physics, and, centrally, our capacity to construct what I will 
call non-algorithmic , non-determinate yet non-random Trans-
Turing Systems.  As we shall see, Trans-Turing systems are 
not determinate, for they inherit the indeterminism of their 
open quantum system aspects, yet non-random due to their 
classical aspects. They are new to us, and may move us 
decisively beyond the beauty but limitations of Turing’s justly 
famous, but purely classical physics, machine. 

Beyond the above, I shall make one truly radical proposal 
that I believe grows out of Richard Feynman’s famous “sum 
over all possible histories” formulation of quantum 
mechanics,(2). This formulation is fully accepted as an 
equivalent formulation of quantum  mechanics.  I will show 
that Feynman’s formulation evades Aristotle’s Law of the 
Excluded Middle, while classical physics and, a fortiori, 
algorithmic discrete state, time, classical physics, Turing 
machines, obey the Law of the Excluded Middle. Following 
philosopher C.S. Pierce, who pointed out that “Possibles” 
evade the Law of the Excluded Middle, while Actuals and 
Probable obey that Law,(3), and Alfred North Whitehead,(4), 
I shall propose for our consideration a new dualism, Res 
potentia and Res extensa, the realms of the ontologically real 
Possible and ontologically real Actual, linked, hence truly 
united, by quantum measurement. In contrast, the dualism of 
Descartes, Res cogitans, thinking stuff, and Res extensa, his 
mechanistic world philosophy, have never been united. I 
believe Res potentia may be a consistent and new 
interpretation of “closed” quantum systems prior to 
measurement. These ideas and other much less radical ones 
resting on open quantum systems lead to new and testable 
hypotheses in molecular, cellular, and neurobiology, and, 
hopefully, a new line of ideas in the philosophy of mind 
including proposals about: how mind acts acausally on brain, 
an ontologically responsible free will, what consciousness IS, 
the experimentally testable loci of qualia as associated with 
quantum measurement itself, the irreducibility of both qualia 
and quantum measurement,  the unity of consciousness, i.e. 
the “qualia binding problem” and its cognate “frame problem” 
in computer science. From these, technological advances in 
numbers of directions may flow. 

Mind as Machine 
As noted, there are two strands, from Turing and the Turing 
machine, and from Bertrand Russell, that both lead to the 
view of the mind as a classical physics “computing machine”. 
 The strand from Turing is well known.  It begins with the 
Turing machine, the very definition of algorithmic behavior. 
To recall, a Turing machine consists, in general, of an infinite 
tape divided into squares. On each square one of a finite 
number of more than one symbol, say “0” and “1”, is written. 
A reading head begins poised over one square. The head 
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contains two sets of rules. The first rule prescribes the 
following actions: If situated over a tape square with a given 
symbol written on it, the head will stay where it is, move one 
step to the left or right, erase the symbol on the square below 
it, and write a symbol from the defined alphabet of discretely 
different symbols on that square. The second rule specifies 
that under the above conditions, the reading head will change 
from one of a finite number of discrete internal states to some 
internal state. Thereafter, the system iterates. There is, in 
addition the crucial “halting state”. 

Turing showed that any recursive computation that could 
be carried out could be carried out by a universal Turing 
machine. From this followed wonderful theorems about the 
formal undecidability of the “Halting problem”, the 
demonstration that most irrational numbers were not 
computable, and other remarkable advances. 

The feature of the Turing machine I wish to emphasize is 
that it is absolutely definite or determinate.  Given the 
symbols written on the tape, and rules in the reading head, its 
behavior at each step is fully determined. This determined  
behavior is essential to the algorithmic character of the Turing 
machine.  Because it is determinate, the Turing machine is 
bound by classical physics. However, Turing machines are 
discrete state and discrete time systems, while classical 
physics more generally is based on continuous variables and 
continuous time and is also deterministic, and can, since 
Poincare’, exhibit deterministic chaos. 

Computer scientists often distinguish between algorithms 
that may halt with an answer, and those that are “processes”, 
such as Holland’s Genetic Algorithm (5), which just continues 
or halts at some defined success criterion.   

Turing, in the Turing Test, or “Imitation Game” (6), soon 
turned to the question of whether the human mind was itself a 
Turing machine. He thought, after careful consideration, that 
the answer was “Yes”.  He did, however, retain doubts, 
partially reflected in his use of humans, not algorithms, as the 
judges in the Turing Test. Turing scholars rightly admire his 
capacity to doubt himself. 

Russell and Onwards to Mind as Machine 
At the turn of the 20th Century, Bertrand Russell, having just 
published with Whitehead the Principia Mathematica, turned 
to the problem of maximally reliable knowledge of the 
“external world”. We could be wrong, he reasoned, that there 
was a chair in the room. But we could hardly be wrong that 
“We seemed to be seeing a chair”.  That is, statements about 
our experiences, say visual, were less corrigible, or error-
prone, than our statements about the external world.  Russell 
and his contemporaries, including the young Ludwig 
Wittgenstein, hoped to build up knowledge of the external 
world from experience itself. 
 Pause and look at the room or world around you. You 
experience a “whole” visual field called in neuroscience, the 
“Unity of Consciousness”. This unity will be central to my 
interests.  However, Russell threw away the Unity of 
Consciousness in his very first philosophic move. He 
invented, whole cloth, “Sense Data”, such as “Red here” or 
the musical note “A flat now” (7).  That is, Russell shattered 
the unity of consciousness into bits, soon to be related to 
computational “bits”.  

Russell’s next step was to invent “Sense data statements”. 
“It is true for Kauffman that ‘A flat now’”,(7).  

Why did Russell make this move? Because his Principia 
hoped to construct the entire mathematical world from first 
order predicate calculus. Then the hope was that the 
statement, “There is a chair in the room”, could be translated 
into a logically equivalent statement comprised of a finite list 
of true or false sense data statements and quantifiers such as 
“There Exists”, and “For All”.  If the move worked, 
knowledge of the external world would be set on a firm 
foundation. 

The discussion took perhaps 40 years, but the move, 
culminating in the Tractatus Logico-Philosophicus by 
Wittgenstein (8), did not work. The statement, “There is a 
chair in the room” could not be translated into a logically 
equivalent set of sense data statements in the first order 
predicate calculus. Philosophers gave up on the idea that there 
was a “basement” language from which all other knowledge 
of the world, captured in propositions, could be formulated.   

Famously, the later Wittgenstein, in his transforming opus 
Philosophic Investigations (9), pointed out that there was no 
basement language. Rather, language about legal proceedings 
could not be translated into logically equivalent sets of 
statements about ordinary human actions. Each “level” 
constituted a “language game”, not reducible to a lower level.  
Thus: “Kauffman is guilty of murder.” requires for its 
understanding a co-defined set of concepts such as “trail”, 
“jury”, “legally admissible evidence”, “legally competent to 
stand trial”...that cannot be translated or “reduced” into sets of 
statements about ordinary human actions. 

This step is critical, for it says that there is no logical 
procedure, surely no first order logic, to get from a lower level 
language game, here normal human action, to a higher level 
language game, here legal language. But then there is no first 
order logic “algorithmic procedure” to get from the lower to 
higher language. Yet we learn legal language. This is one line 
of argument that the human mind is not merely algorithmic.  

Despite some philosophers giving up  on a basement 
language, the early cyberneticians, W. McCulloch and W. 
Pitts, in 1943 published a seminal paper that would lead to the 
contemporary theory of neural networks and 
“connectionism”.  

McCulloch and Pitts showed that in a network of on/off 
formal neurons, constructed in a feed forward network, N 
formal neurons per row and M rows, and in which the input 
row “neurons” could be placed in any arbitrary combination 
of “1” and “0” states, the network, with arbitrary threshold 
Boolean functions such as and, or, and not, could compute 
any logical function on the “states” of the input neurons.  

Implicitly, they identified the “1” or “0” state of a formal 
neuron with the truth or falseness of a Russellian sense data 
statement, such as, “For Kauffman, ‘A flat now’ is true”, 
which might be encoded by a “1” on the first neuron in the 
input layer to the feedforward network of formal neurons.  

More generally McCulloch and Pitts considered networks 
with feedback loops. 

They entitled their paper, “A logical calculus of the ideas 
immanent in nervous activity” (10).  

In this step, McCulloch and Pitts set the stage for the now 
generally accepted view in computer science, neurobiology, 
and much of the philosophy of mind, that an “idea” in the 
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mind was logically identical to the on or/off states of a set of 
formal neurons, or in contemporary neurobiology, with the 
axonal firing or not of members of a set of “consciousness 
neurons”.  

Note that McCulloch and Pitts chose the terms, “immanent 
in nervous activity”. In some magical way, the sense data 
features, or sense experiences, or “qualia” are “slipped” into 
the 1 and 0 behaviors of the formal neural net.  

Note further that this conceptual move: 1) assumes that 
there is a basement language, captured in the “1” and “0” 
states of the formal neurons. 2) Has, with Russell, thrown 
away the Unity of ConscIousness and will have to reconstruct 
it. In contemporary neurobiology this issue has returned as the 
famous “binding problem” ie how does the firing of 
unconnected “consciousness neurons” become bound into a 
unity of consciousness, or more simple examples such as this, 
from F. Crick’s The Astonishing Hypothesis (1): Suppose I see 
a yellow triangle and blue square. Suppose “yellow”, 
“triangle”, “blue” and “square” are, in fact, processed in 
different, unconnected, areas of the brain. How do “yellow” 
and “triangle” become bound together, while “blue” and 
“square” become bound together?  

Following the logic of McCulloch and Pitts, the early hope 
was brain “grandmother cells” that fired if and only if you saw 
a combination of features, sense data, that equaled your 
grandmother. Now reconsider the number of relational 
features of your visual field. How many grandmother cells 
would be required, each to encode by firing “if and only if” 
presented with one of each of the possible combinations of up 
to, say 30 features at a time, out of say 10,000 features you 
can discriminate? The answer is (10,000) Choose (30), i.e 
(10,000!) / 9,9770!) x (30!) a vast number. Crick (ibid), 
concludes that the idea does not work, it would take more than 
the 10 to the 11th neurons to encode all the sets of relational 
features you see.  

One current hope is a 40 Hertz oscillation in the brain. The 
idea is that if “yellow” and “triangle” neurons fire at the same 
phase of the oscillation they will be bound, and if “blue” and 
“square” fire at a different phase, they too will be bound. 
Well, maybe, but how do we squeeze maybe trillions of 
combinations of relational degrees of freedom into different 
phases of a 40Hertz oscillation?  I find it implausible. While 
detailed work on binding is beyond the scope of this chapter, 
in general the issue remains binding anatomically 
unconnected classical physics neurons and their presumed 
qualia, or experiences. 

Note that this binding problem arises, descendant from 
Russell, with the idea of sense data and sense data statements, 
true or false, as a digital and propositional encoding of our 
experience of the world in our Unity of Consciousness. Below 
I will offer an unexpected analog and non-propositional 
encoding which may solve the binding problem. 

But there is another deeper issue: McCulloch and Pitts, and 
all later neural network theory, cannot meet Wittgenstein’s 
language game argument that there is no “basement language” 
and the learning of higher language games cannot be based on 
algorithmic procedures from that basement language.   

Despite the warning of Wittgenstein, connectionism has 
flowered, much along the ideas above, but with important 
improvements such as Back Propagation (11), and Hopfield 
Networks (12), with attractors encoding classes or memories 

and content addressable memory. These are now the basis of 
voice recognitions systems around the world. But the 
language game problem remains unsolved, so mind seems not 
to be algorithmic on this ground. 

I point to another important line of evidence that the mind 
is not algorithmic. I ask you to name all the possible uses of 
screwdrivers: screwing in screws, opening paint cans, tied to 
the end of a stick to spear fish, rented to locals to spear fish 
and you take 5% of the catch...Is there a statable list of the 
possible uses of a screwdriver for all possible purposes? I 
think not. How would we construct such a list? Know we had 
completed the list, or at least made it “infinite but recursively 
enumerable”?  Yet we find new uses for screwdrivers and 
other artifacts all the time.  This is the famous “frame” 
problem of computer science, never solved algorithmically. I 
believe there is no bounded or recursively orderable set of 
functionalities of human artifacts  for all possible purposes, 
yet we literally discover and invent them all the time in the 
evolution of the econosphere.  We routinely solve the frame 
problem. If so, the human mind is not always algorithmic.   

I note that R. Penrose, in The Emperor’s New Mind (13), 
and Shadows of the Mind (14) also argues that the human 
mind is not always algorithmic based on its capacity to prove 
incompleteness theorems such as Godel’s theorem and the 
Halting Problem. I join Penrose, who precedes me, but on 
different grounds, in thinking the mind is not algorithmic and 
join him in thinking that quantum mechanics is related to 
consciousness.  

Mind, Consciousness, and the Mind as 
Machine 

Two major positions can be taken with respect to mind as a 
classical physics, and further, a discrete space, time, and state 
algorithmic computational machine with inputs from a 
discrete space, time and state environment. First, we are not 
conscious at all, but are zombies. This view is discussed by 
Daniel Dennett in Consciousness Explained (15), which is, in 
part, a sophisticated form of logical behaviorism making use 
of an extensively developed computer science framework.  A 
contrary argument is made by John Searle in his debated but 
famous Chinese Room argument which claims to show that 
mind is not a Turing machine, which is merely syntactic in its 
manipulation of symbols having no semantics, hence the 
Turing machine cannot experience the meanings of words 
(16).   

In one form or another, the view of the mind-brain system 
as a network of classical physics neurons, with continuous 
variables, and continuous time, interacting in classical physics 
causal ways via action potentials, vast networks with classical 
physics inputs and outputs, is the dominant view today.  
Gerald Edelman, Bright Air, Brilliant Fire (17), Francis Crick, 
The Astonishing Hypothesis (1), John Searle, The Mystery of 
Consciousness (16), and most working neuroscientists hold 
this view.  According to Searle, Functionalists such as H. 
Putnam and D. Lewis are “property dualists” who see mental 
terms such as “believe” as constituted by a classical physics 
causal network, whether made of neurons or beer cans. Searle 
asserts that functionalists do not mean by mental terms the 
actual experience of, for example, pain (16).  These two 
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paragraphs cannot characterize the vast scholarly work above, 
yet these efforts neither answer Descartes, introduced just 
below, nor finds a home for consciousness itself. 

Then whence consciousness, experience, qualia? A popular 
view is that at some level of complexity of a network of logic 
gates, whether electronic, water bowls pouring into one 
another above and below a 0/1 threshold, or classical physics 
continuous time and state neurons, consciousness will 
“emerge”. It is popular to point out that a single H2O 
molecule is not wet, but a sufficient collection of them is. So 
too, consciousness can emerge. 

Perhaps consciousness can so emerge, but here is the first 
deep problem. If the emergent consciousness is a classical 
physical “process”, for example an electromagnetic field as 
some argue, then it is a deterministic classical physical 
system. Consider Newton’s three laws of motion and 
universal gravitation, and billiard balls moving on the table. 
The boundary conditions of the table and current positions, 
momenta and diameters of the balls entirely determine the 
entire future trajectory, perhaps deterministic chaos, of the 
sets of balls.  

But if the mind-brain is a deterministic machine, we can 
have no ontologically real and responsible free will. I walk 
down the street, kill the little lady with a frying pan, but I am 
not responsible. I was physically determined to whack her. 
Even in the face of deterministic chaos I have no ontologically 
real responsible free will, merely perhaps the epistemic 
illusion of one.  

Thus, the familiar view, derived from Turing and Russell, 
may be right, consciousness may be a classical physical 
“something”, but we buy it at the price of no ontologically 
real responsible free will.  

It is a huge price to pay. I will offer below a set of ideas 
that appear to afford us, among other things, an ontologically 
responsible free will. 

There is another huge set of problems, derived from 
Descartes in 1637 in his Discourse on Method.  Descartes 
postulated a famous dualism (18): Res cogitans, thinking 
stuff, and Res extensa, his mechanical world view which led, 
a century later to Newton and celestial mechanics, and thence 
to classical physics. 

But the problem immediately arose how Res cogitans is 
connected to Res extensa. Descartes proposed the pineal 
gland. The idea does not work. 

Given Newton, here is the issue: If the brain is a 
deterministic dynamical system, like the billiard balls on the 
table, then the current state of the brain is entirely sufficient 
for the next state of the brain. Then there is nothing for mind 
to do. worse, there is no way for mind - experiences - to act on 
brain! What should mind do, some- magical-how cause the 
billiard balls to swerve despite the sufficiency of Newton’s 
laws? 

This central problem arises due to the causal closure of 
classical physics. It is due to causal closure that we claim 
Newton’s laws, plus the initial positions and momenta and 
diameters of the billiard balls and boundary conditions, plus 
Newton’s laws in differential form, once integrated, are 
entirely sufficient to yield the entire future trajectory of the 
balls on the table.  

Thus, the Turing  model of the Machine Mind leaves us 
with no free will, and mind, experiences or qualia, if they can 

arise at all, as unable to affect the classical physics machine 
aspect of the mind-brain system. We retreat to mind as a mere 
epiphenomenon, of no effect in our actions as humans, or a 
“compatibilism” which rejoices that at least as deterministic 
systems we can train one another to be moral machines.  

In truth, we have been stuck with this cycle of problems 
since Descartes. Turing machine minds are frozen in the same 
way.  

If the central problem above is due to the causal closure of 
classical physics, then I believe we must forsake the 
limitations of classical physics and purely classical physics 
“consciousness neurons” for a view that embraces the non-
determinant behavior arising from quantum mechanics. 

I turn now to such a radically different approach to the 
mind-body problem. It will take us through open quantum 
systems, the “Poised Realm” between open quantum and 
classicality for all practical purposes, FAPP, to non-
determinate, hence non-algorithmic, yet non-random Trans 
Turing systems beyond Turing, to my tentative postulate 
about a new dualism, ontologically real Res potentia, the 
realm of the Possible, and Res extensa, the realm of the 
Actual, linked  - hence united - by quantum measurement. 
This postulate is also an interpretation concerning what the 
unmeasured Schrodinger wave is “about”, where we have had 
no idea since the Schrodinger equation in 1927 (19).  The 
postulate of Res potentia leads to a resulting idea of 
consciousness as a participation in Res potentia, ie in 
ontologically real Possibilities and strengthens the 
independent hypothesis that qualia, i.e. conscious experiences, 
are associated with quantum measurement.  Most of what I 
shall say is independent of a real Res potentia. 

But there is more: We escape the digital “propositional” 
model of mind with the realization that a quantum wave 
process in a potential well knows in an analog, not 
propositional or digital, way its potential well boundary 
condition  or “context”, as part of solving the binding 
problem. I will link this analog “knowing of qualia” to 
quantum entanglement among many synapses in the brain as 
candidate loci of quantum behavior, and quantum 
measurement of those entangled degrees of freedom to 
achieve non-local EPR high correlations (20), hence 
“binding” of vastly many qualia, one per measurement,  to 
solve the binding problem and achieve the Unity of 
Consciousness.  

Answering Descartes 
With the discovery that chlorophyll wrapped by its 

chromophore bearing antenna protein can be quantum 
coherent for 700 femtoseconds or more,(21), “quantum 
biology” is emerging.  I believe, however, that quantum 
coherence may be only a small part of quantum effects in 
biology. We biologists may find ourselves learning and 
collaborating with quantum physicists, and quantum chemists, 
in untellable ways. This part of the chapter is an attempt to see 
into this new territory. 
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Closed Quantum Systems and the Two Slit 
Experiment 

Many readers will be familiar with the famous two slit 
experiment (22). A photon gun emits photons, say one per 
minute, at a screen with two slits close together and behind 
the screen is a photodetector, say a film emulsion. If either slit 
is covered, one obtains a bright spot on the photodetector 
behind the open slit. Stunningly, if both slits are open, one 
obtains the famous bars of light, dark, light, dark.., the 
interference pattern. No classical objects, such as classical 
particles, can yield this result. It is the hallmark mystery of 
quantum mechanics, QM. 

A classical analogy helps understand the subsequent time 
dependent linear Schrdodinger equation of QM. Imagine a sea 
wall with two gaps, and a beach beyond. Let a series of plane 
waves approach the wall. As it passes through the gaps, each 
wave yields two semicircular wave patterns that approach the 
beach.  If these semicircular patterns overlap at the beach, 
there will be points on the beach where the crests of the two 
wave patterns coincide, yielding a higher wave crest. 
Similarly there will be beach points where the troughs of two 
waves coincide yielding lower troughs. But there will also be 
points on the beach where the peak of one wave coincides 
with the trough of another wave and the two will cancel 
entirely. 

The Schrodinger time dependent linear wave equation 
produces similar waves. Where peaks and peaks coincide, or 
troughs and troughs coincide, one obtains a bright bar of 
photons in “constructive interference”. Where peaks meet 
troughs, they cancel yielding dark bars in “destructive 
interference” and hence the interference pattern.  An “action” 
variable in the equation keeps track of the phases in time and 
space of the Schrodinger waves. 

Quantum “weirdness” arises due to the linearity of the 
equation, for sums and differences of solutions are also 
solutions. This linearity permits the famous Schrodinger Cat 
puzzle in which a cat in a box, prior to measurement, is 
simultaneously both dead and alive.  

It is notable that, since 1927, no one knows what is 
“waving” in the Schrodinger wave equation. Meanwhile, von 
Neumann’s axiomatization of quantum mechanics (23), 
includes this propagating Schrodinger wave and the 
mysterious quantum measurement process. Here each wave 
has an amplitude. The square of the modulus of an amplitude, 
called the Born rule (24), yields the probability that that 
amplitude will be measured in von Neumann’s Process 1, or 
“R” process with its controversial “collapse of the wave 
function” of many amplitudes to only one, which can become 
classical as in the spot each photon makes on the screen of the 
two slit experiment. In general, there is, to the best of my 
knowledge, no agreed derivation of quantum measurement 
from within QM. 

Open Quantum Systems 
The emergence of the classical world from the propagation of 
the Schrodinger wave equation is a deep mystery. One of the 
current best hypotheses requires distinguishing a quantum 
“system” from its “environment” yielding an “open quantum 

system” and its “environment”.  The key idea is that phase 
information within the open quantum “system” can be lost, 
acausally, to the quantum environment. This process is called 
“decoherence” (25). Then, within the system, the “action” 
gradually loses information about where the peaks and valleys 
of the Schrodinger wave “are”, so constructive and destructive 
interference cannot happen, nor can interference patterns. This 
interference hallmark of quantum effects is gradually lost and 
classicality is approached arbitrarily closely, reaching 
classicality “for all practical purposes”, FAPP. 

Decoherence is well established experimentally. It disrupts 
quantum coherent qubit behavior in quantum computers.  

Critically, decohrence is yielding new physics. First 
decoherence takes time. A typical time scale is a femtosecond. 
During that time phase information is being lost from the 
quantum system. The Schrodinger wave equation is time 
reversible. But decohrence is a dissipative process, so is not 
fully describable by the Schrodinger equation. New physics is 
expected and found.  

I give three examples of this new physics. We are all 
familiar with the radioactive decay half life, due to closed 
quantum system Poisson distributed decay of the radioactive 
nucleus, whose integral is the familiar half life of exponential 
decay. In the confirmed Quantum Anti  Zeno Effect, the decay 
is faster than any exponential (26). New physics.  

Of interest to us as biologists, decoherence can alter the rate 
of chemical reactions (27).  Decoherence happens in cells. 
What are the implications for molecular, cellular, neural, 
biomedical, drug and other behaviors? We don’t yet know. 

An essential feature of decoherence is that the weird 
superposition states, the cat simultaneously dead and alive, 
decohere very rapidly, leaving what are called one or more 
“pure states”, if more than one, this is called a mixed state. 
Thus the cat is either dead or alive, but not simultaneously 
both. We don’t know which until quantum measurement (Seth 
Lloyd pc, Miles Blencowe, pc).  

Recoherence, including to a new superposition state, is 
possible for open quantum systems. i. Several papers by Paz 
et. al.,(28,29) and Briegel (30,31), show that a quantum 
entangled state can decohere to classicality FAPP and 
recohere again. ii. Imposition of a classical field can induce 
recoherence (32). iii. The Shor quantum error correction 
theorem (33), proves that if in a quantum computer some 
qubits are partially decoherent, measurement can be done and 
information injected, correcting the qubits back to full 
coherence. 

In summary, and stunningly, for open quantum systems it is 
just becoming known that both decohrence to classicality 
FAPP and its reverse, recoherence, perhaps to a new quantum 
coherent superposition state, can occur. 

Then, in principle, quantum degrees of freedom, including 
biomolecules, can “hover” between open quantum behavior 
and classicality FAPP.  It is right to stress, as above, that this 
may have very large implications for the actions of molecules 
in cells, and drug discovery, design, and action.  After all, we 
treat biomolecules as classical. We may be wrong. 

The Poised Realm 
Gabor Vattay, a quantum physicist at Eotvos Univesity 
Budapest, Samuli Niiranen, a Computer Scientist at the 
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Tampere University of Technology, Finland, and I, have 
proposed “The Poised Realm” between fully coherent 
quantum quantum behavior in open quantum systems and 
classicality FAPP.  Picture a two dimensional coordinate X, Y 
system.  The Y axis rises from the origin, where there is open 
quantum coherent behavior, via decohrence, to classicality 
FAPP up the Y axis, and via recoherence down the Y axis to 
open quantum coherent behavior. The X axis is new, 
comprising “order”, “criticality” and “chaos”. The two axes 
box in the Poised Realm. The X axis, order, criticality, and 
chaos is well defined in the classical limit and now is being 
extended to embrace partially open quantum behavior in the 
presence of different extents of decoherence and recoherence.  

Motion out the X axis from the origin, characterized 
classically by a frictionless pendulum, can be obtained in at 
least two ways. The first concerns the “Hamiltonian” of the 
classical system. A pendulum is perfectly ordered. If released 
from different initial heights, the frictionless pendulum 
describes roughly circular orbits in a coordinate space of 
position and velocity. These circular orbits are parallel, hence 
neither converge nor diverge. Mathematically, this lack of 
divergence or convergence is described by a 0 valued 
Lyapunov exponent. As one moves out the X axis, the 
Hamiltonian of the system changes.  In the ordered regime, 
the Lyapunov exponent remains a constant 0. But when the 
Hamiltonian is deformed enough, at “criticality” the 
Lyapunov exponent becomes slightly positive, the onset of 
divergence of flows in state space constitute chaos. As the 
Hamiltonian is modified further, the Lyapunov exponent 
becomes more positive. This kink at “criticality” is a “second 
order phase transition”, and well established (34).  

A second means to move out the X axis consists in using a 
“kicked quantum rotor”. A quantum rotor is a one 
dimensional hoop of states around which a quantized electric 
charge rotates. It can be kicked by a laser, with intensity K. As 
K increases in intensity, Vattay (pc), has shown that at first 
there are many amplitudes propagating, then few, then a 
single amplitude transforms to “classical” diffusive behavior 
in momentum space (35).  

This classicality is reversible if K is decreased or the 
Hamiltonian is changed. 

Thus, classicality, presumably FAPP, can be reversibly 
achieved up the Y axis or out the X axis.  

The Non-Algorithmic, Non-Determinate, Yet 
Non-Random Trans -Turing System. 

I recall here the fully algorithmic Turing machine described 
above. Several points, sketched above, are essential. First, all 
contemporary computers are based on the Turing Machine. 
Second, the Turing machine is completely definite. It is the 
perfect instantiation, restricted to discrete space, time, and 
state, of classical physics and Descartes’ Res extensa machine 
world view. iii. This definite behavior of a Turing machine is 
the definition of algorithmic behavior. iv. Critically, a major 
contemporary view in neuroscience and computer science and 
much of the philosophy of mind is that the mind-brain system 
must be algorithmic - some huge system of interconnected 
logic gates or, more broadly, continuous time and state 
classical physics neurons firing.  

I now describe non-algorithmic, non-determinate, but also 
non-randomTrans-Turing systems. None has been 
constructed. I believe they are constructible. More the mind-
brain system may be not only a vast non-algorithmic, non-
determinate system, in contrast to classical physics in general, 
but also a non random Trans-Turing System. More broadly, 
classical physics is state determined. The mind brain system 
may be partially open quantum and Poised Realm, hence, via 
decoherence to classicality FAPP, or via quantum 
measurement, the mind-brain system may not be a state 
determined system. 

The central ideas are simple. A Trans-Turing System, TTS, 
“lives in” the Poised Realm, and perhaps involves quantum 
measurement in the Poised Realm. i. There are quantum 
degrees of freedom propagating in short lived superposition 
states that decay rapidly due to decoherence. But these short 
lived superposition states undergo constructive and 
destructive interference and will be one basis for a non-
Determinacy in the Trans-Turing system when coupled to 
decoherence to classicality for all practical purposes, FAPP, 
or quantum measurement. Thus TTS are not algorithmic, not 
determinate and not state determined, in contrast to a Turing 
machine. 

Second, either via decoherence or motion out the X axis or 
both, quantum degrees of freedom become classical FAPP or 
via quantum measurement, become classical “Simpliciter”. 
Both decoherence and measurement are acausal and yield the 
non-determinant behavior of the Trans-Turing System. 

Third, there are, in addition, coupled classical degrees of 
freedom in the TTS.  

Fourth, when quantum degrees of freedom, and either 
superposition states or pure states become classical FAPP, or 
are measured, that alters in different specific ways the effects 
of the now classical degrees of freedom on one another, thus 
alters the non-random collective dynamics of the coupled 
classical degrees of freedom. In turn this altered non-random 
classical behavior alters non-randomly the behavior of 
remaining quantum degrees of freedom.   

Fifth, in turn this non-random alteration of the behavior of 
the remaining quantum degrees of freedom alters non-
randomly which of the open quantum degrees of freedom 
decohere or move out the X axis to classicality FAPP. In 
particular, higher quantum amplitudes tend to decohere with 
higher probability. So non-randomly altered quantum 
behavior, including altered constructive and destructive 
interference, alters non-randomly which amplitudes become 
higher, thus alters non-randomly which amplitudes decohere 
to classicality FAPP. 

Sixth, in turn, classical FAPP degrees of freedom can 
recohere, for example, driven by a coherent electromagnetic 
field whose intensity and period distribution can be tuned non-
randomly thereby injecting information. The recoherent 
degrees may achieve a new controlled superposition state, 
thereby altering non-randomly the constructive, destructive, 
and pure states behaviors among themselves and other 
quantum amplitudes, thereby non-randomly affecting which 
amplitudes achieve higher amplitudes and tend to decohere, 
and also non-randomly altering the behaviors of the coupled 
classical degrees of freedom in the TTS. 

These six are the building blocks of a Trans-Turing System. 
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A part of a TTS has been realized in a computation by D. 
Salahub, a quantum chemist at U Calgary and colleagues, in 
JACS.  Salahub et. al.,(36), considered a quantum system of 
many nuclei and many electrons. The system consists of two 
potential wells, say A and B. The vertical Y axis is energy. 
The X axis is a chemical reaction coordinate. The two 
potential wells overlap at some point in the X and Y plane, in 
what they call the “seam region”. Here at this seam the nuclei 
are in a superposition of states, simultaneously A and Not A, 
B and Not B. Via gradual decoherence the nuclei  fall into one 
of the minima, either well A or well B, and become classical 
FAPP.   But in turn this alters the effect of the now classical 
FAPP nuclei on the electron cloud which does not rapidly 
decohere.  Thus, if the nuclei are now in well A the electrons 
behave differently than if the now classical nuclei FAPP are in 
well B and the electrons behave differently if the nuclei are 
still a superposition in the seam region.  

This model is the first instantiation in quantum chemistry 
that I know in which some quantum degrees of freedom, here 
the nuclei in a superposition of A and Not A and 
simultaneously B and Not B, decohere to classicality FAPP, to 
well A or well B, and thereby alter the behavior of the 
remaining quantum degrees of freedom, the non-decohering 
electrons.  

A more refined calculation would allow the many nuclei in 
this system to decohere in some sequential order. As they do, 
the newly classical FAPP nuclei will yield a sequential 
alteration in the behavior of at least the electrons and probably 
the remaining open quantum system superposition nuclei, as 
well as the other now classical FAPP nuclei. That research lies 
in the future as does study of such a system if the classical 
FAPP nuclei can be made to recohere to some perhaps new 
superposition state, perhaps by an external field, perhaps by 
interactions of many such subsystems within a molecule. 

The essential points about Trans Turing Systems are:  
i. Their behavior is not Turing definite, both because 

of constructive and destructive interference of 
superposition states, followed by falling to a 
classical FAPP state where high amplitudes 
preferentially decohere, and remaining quantum pure 
states will also decohere probabilistically or by 
quantum measurement. Further, the total 
constructive and destructive interference behavior, 
and further controlled recoherence behavior, alter 
non-randomly which amplitudes achieve high 
amplitude so decohere preferentially to classicality 
FAPP with what probabilities, or are quantum 
measured, by the Born rule, with what probabilities. 
The ongoing behavior is not definite, hence NOT 
algorithmic. The behavior is not state determined. 
The behavior is also non-random.  

ii. The above behavior is, as noted, not “quantum 
random”, as in the case of radioactive decay, for a 
further reason: The classical degrees of freedom 
have their own Hamiltonian, hence non-random 
dynamics, which may, in addition, affect non-
randomly the behaviors of the quantum degrees of 
freedom, hence which quantum amplitudes, via 
constructive and destructive interference, become 
high amplitudes and preferentially decohere and 

when or are preferentially measured via the Born 
rule. The behavior is both non-deterministic, and 
non-random.   

The TTS may receive quantum, open quantum, Poised 
Realm, and classical inputs and output open quantum, Poised 
Realm, and classical output behaviors. So it is a non-
algorithmic , non-deterministic via decoherence to classicality 
FAPP or quantum measurement, yet non-random, information 
processing system. Consequently if TTS, as single or coupled 
systems are constructible,  perhaps in liposomes, or nano-
devices, we have a new non-algorithmic, not state determined, 
and not random “device”, unlike a Turing machine or logic 
gate, or deterministic classical physical system to consider for 
the mind-brain system. We no longer are almost forced to the 
conclusion that mind-brain must be classical physics, definite, 
and either discrete time and state logic gates or continuous 
time continuous variable deterministic  “consciousness 
neurons, coupled into a huge network. TTS may also take us 
far beyond the Turing machine technologically.  

A Responsible Free Will 
As noted above, the view that consciousness emerges from a 
vast network of classic physics logic gates or classical physics 
neurons may be entirely correct. However, it has a big price: 
We are deterministic so have no ontologically real responsible 
free will. Such a system could exhibit chaotic behavior, 
yielding the “illusion” of free will, but such a free will would 
not be ontologically real, for the classical physics neural 
system remains deterministic. 

But there is another horn to this free will dilemma if we 
seek an ontologically real and responsible free will and then 
try to use standard quantum randomness. I have a radioactive 
nucleus in my brain, I walk down the street, the nucleus 
randomly decays, and I kill the little old man so my “free 
will” is ontologically real due to quantum indeterminism.   
But killing the old man is not my fault, just random quantum 
chance!  I have no responsible free will if we use quantum 
randomness. 

But a Trans-Turing system is both not deterministic, hence 
not algorithmic, and not quantum random, it is something 
entirely new. I hope this can break the horns of the standard 
responsible free will dilemma and allows for an ontologically 
real and responsible free will.  I believe more is needed, 
building upon the idea of Ross Ashby’s famous homeostat 
(37), with its subset of  “essential (classical physics) 
variables” that must be kept in bounds, to provide an internal 
“goal state” for the total system, to begin to yield a non-
random but non-deterministic responsible free will. 

This starting sketch, even if right, is inadequate. There is no 
mention of some analogue or actuality of sensory inputs, 
motor outputs or the capacity of a coupled Trans-Turing 
System, or set of entangled TTS systems, joined to the 
classical aspects of the brain, presumably classical physics 
neural networks, to classify its environments and act 
appropriately given goals and subgoals. Below, in proposing 
the testable hypothesis that qualia are associated with 
quantum measurement, it seems that “expreriences” have as a 
natural dual, that which experiences, the rudiments of an 
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“I”.”Agency”, on this view, is an elaboration of these 
rudiments in the total mind-brain system.  

I note that R. Penrose (13,14), seeks a non-deterministic, 
non-algorithmic, yet non-random behavior of consciousness 
via a modified non-deterministic, so non-algorithmic, yet non-
random quantum measurement process, “objective 
reduction”,  which might be associated with quantum gravity. 
Unlike Penrose, who may surely be right, I seek the same non-
deterministic, so non-algorithmic, yet non-random behavior in 
Trans-Turing systems operating in the Poised Realm. 

 Answering Descartes: How Can Mind Act 
On Brain 

Due to the causal closure of classical physics, we have 
remained frozen with the Cartesian problem for 350 years. 
Mind has nothing to do and no way to do it. I believe that 
open quantum systems and the mind-brain system as one or 
trillions of interlocked Trans-Turing systems may afford an 
answer to Cartesian dualism, for it breaks the causal closure of 
classical physics. Decoherence is an acausal process.  Thus if 
the mind brain system lies in the poised realm, decoherence  
of “mind” to classicality FAPP allows “mind” to have acausal 
consequences for brain, without acting causally on brain. We 
have indeed escaped the causal closure of classical physics.  

But we want mind to do this many times in our lives. 
Trans-Turing systems, living in the Poised Realm, where 
recoherence, perhaps to new superposition states, allows mind 
to repeatedly decohere to have acausal consequences for 
material brain.  

Quantum measurement can occur in Trans-Turing systems. 
But quantum measurement, von Neumann’s Process 1 or “R” 
process, is also acausal, and also allows mind to have acausal 
consequences for brain.  More, even should von Neumann’s 
Process 1 or “R” depend upon the Born rule and his square of 
the amplitudes to achieve the probability of its acausal 
measurement, the ongoing behavior of the Trans-Turing 
systems modifies non-randomly which amplitudes are 
propagating and which achieve high amplitudes and tend to 
decohere or be measured, so the total behavior is non-random. 
Once measured a classical degree of freedom can flower again 
into quantum behavior again, allowing repeated acausal mind-
brain action. The non-random but non-determinant total 
behavior may support a responsible free will. 

Res Potentia and Res Extensia Linked by 
Quantum Measurement 

I now come to the most radical proposition in this chapter. It 
can be false and the remainder of this chapter stay largely 
intact. I am, with proper hesitation, about to propose a new 
dualism, Res potentia, the realm of the ontologically real 
Possible, and Res extensa, the realm of the ontologically real 
Actual, linked - hence united - by quantum measurement. The 
very basis of this is quantum mechanics itself. 

I turn first to the late 19th Century American philosopher 
C.S. Pierce (3). He noted that Actuals and Probables obey 
Aristotle’s Law of the Excluded Middle. Here it is: The table 
is or is not in the room. There is nothing “in the middle”. 

Hence the statement, “The table simultaneously is and is NOT 
in the room” is a contradiction, always false. Now consider: 
“The probability of 5234 heads out of 10,000 fair coin flips is 
simultaneously 0.245 and is not 0.245”.  It too is a 
contradiction, always false. Classical physics obeys 
Aristotle’s Law of the Excluded Middle. But, said Pierce, 
“Possibles” evade the law of the Excluded Middle. “A is 
possibly true and A is possibly not true.” is NOT a 
contradiction. 

Now consider Richard Feynman’s (2), “sum over all 
possible histories” formulation of quantum mechanics, agreed 
by all to be an equivalent formulation.”A photon on its way 
through the two slits, simultaneously takes all possible 
pathways through the two slits to the photoreceptor.” It 
follows that the single photon “simultaneously possibly does 
and possibility does not pass through the left slit”. This is not 
a contradiction.  

The critical implication is that Feynman’s formulation of 
quantum mechanics evades Aristotle’s Law of the Excluded 
Middle. Therefore, I claim, Feynman’s formulation of 
quantum mechanics is fully interpretable in terms of 
ontological real Possibles, Res potentia. The unmeasured 
Schrodinger wave concerns Res potentia. Res potentia 
proposes an answer to what the unmeasured Schrodinger 
wave is “about”.  

This is a huge step, not to be taken lightly. I note that 
Aristotle himself toyed with the reality of “potentia”. And 
British philosopher Alfred North Whitehead in Process and 
Reality, 1929,(4), proposed ontologically real Possibles which 
gave rise to ontologically real Actuals which gave rise to 
ontologically real Possibles. P -> A -> P -> A. 

The idea may be radical, and may be right, but I am not the 
first to propose it. We will find evidence consistent with the 
reality of Res potentia below in the Conway Kochen Strong 
Free Will Theorem. Further, outstanding quantum physicists 
are very close to the concept of Res potentia. I quote Dieter 
Zeh: 
"in classical physics you can and do assume that only one of 
the possibilities is real (that is why you call them 
possibilities). It is your knowledge that was incomplete before 
the observation. Mere possibilities cannot interfere with one 
another to give effects in reality. In particular, if you would 
use the dynamical laws to trace back in time the improved 
information about the real state, you would also get improved 
knowledge about the past. This is different in quantum theory 
(for pure states): In order to obtain the correct state in the past 
(that may have been recorded in a previous measurement), 
you need all apparent "possibilities" (all components of the 
wave function - including the non-observed ones). So they 
must have equally been real." (38). 

Clearly Zeh is saying, “possibilities”... “must have been 
equally real.” Res potentia removes the quotes from 
“possibilities” to propose an ontologically real Res potentia.  

More, a founder of quantum mechanics, W. Heisenberg, 
often spoke of “Potentia” sometimes as “Probabilities” (39), 
sometimes as “Possibilities”  (40), as a separate ontologically 
real realm along with ontologically real Actuals. I am 
following Heisenberg with my Res potentia as a realm of 
ontologically real Possibles.  

See M. Epperson (41), for a cogent discussion of many 
quantum authors and an ontological dualism based on real 
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Actuals and real “Probables” which DO obey the Law of the 
Excluded Middle. I stress again that unlike Descartes Res 
cogitans and Res extensa, never united, Res potentia and Res 
extensia truly are united by quantum measurement  

What is Consciousness  
Philosopher of mind Jerry Foder quipped that “Not only have 
we no idea what consciousness “is”, we have no idea what it 
would be like to have an idea what consciousness “is” (42). 

To my surprise, Res potentia leads to an obvious idea about 
what consciousness IS. Consciousness is a participation in 
The Possible, an ontologically real Res potentia.  

I offer three pieces of evidence: 
1. Where is the possibility I will skate across town 

reading the NY times and not be hit by a car?  I 
think we all feel that the “possibility” itself is not 
spatially locatable, it is not spatially extended. 

2. Now consider your experienced visual field. Where 
is your experienced field located? I think we all 
sense that our experienced field is not located 
spatially. It is not spatially extended. 

3. Just below I will propose that qualia are associated 
with quantum measurement and further below 
hypothesize that entanglement of many quantum 
degrees of freedom, perhaps among neurotransmitter 
receptor molecules in anatomically unconnected 
synapses in the brain, may, by each being quantum 
measured, yield causally non-local Einstein, 
Podolsky, Rosen, EPR, high correlations of now 
bound qualia (20), to solve the “qualia binding 
problem” in neurobiology. Non-local correlations 
are “non local” because they are beyond speed of 
light signaling and “instantaneous”, hence also “non-
spatial”. 

This non-spatial character of “Possibilities”,  Experience 
and Non-Local EPR quantum measurements may be 
happenstance or a clue. Taking this parallel as a clue may lead 
us forward in new ways. 

Qualia may be Associated With Quantum 
Measurement  

Where is it natural to locate experience itself, the blueness of 
blue, the taste of wine, qualia? I suggest qualia are associated 
with quantum measurement, ie Possible “becomes” Actual, 
Possible -> Actual. As we shall see, this leads to testable 
consequences.  It is not a bald hypothesis standing alone, for 
as just noted I will propose below that quantum entanglement 
among many quantum degrees of freedom in anatomically 
unconnected synapses, and non-local EPR correlations 
achieved by a set of quantum measurements of these 
entangled degrees of freedom may help solve the “qualia 
binding problem” and the Unity of Consciousness issue. Thus 
solving the binding problem may require the hypothesis that 
quantum measurement is associated with qualia. The 
hypothesis should be testable in the brain. More, entanglement 
to solve the binding problem is testable. I note that physicist 

H. Stapp has different but somewhat related ideas (43) See 
also Penrose (14). 

A critical feature of quantum measurement, my physicist 
friends assure me, is that it has never been derived from 
within quantum mechanics. Granted Res potentia, such a 
derivation may be disallowed. “X is Possible” does not imply 
“X is Actual”. Our difficulties with such a derivation since 
1927 may be ontological, not technical - mathematical.  If Res 
potentia is ontologically real, the same ontological issue may 
bear on our failure to unite General Relativity and Quantum 
Mechanics: the “X is Possible” of unmeasured quantum 
mechanics does not imply the “X is Actual” of General 
Relativity. 

On Res potentia, a second feature of measurement becomes 
equally important. What is the “becomes” of Possible 
“becomes” Actual? What is the status of “->” in P -> A? It is 
not a classical becoming like water freezing, nor the unitary 
propagation of the Schrodinger wave. As a “becoming” it 
seem not to be an existing state at all. Qualia are a 
“becoming” not an “existence”. Nor can “->” be a 
mathematizable deductive entailing process, for if it were, it 
would enable deduction from “X is Possible” to “X is Actual”, 
which is invalid if Res potentia is real.  Then there is no 
mechanism for the quantum measurement captured in von 
Neumann’s “ad hoc” Process 1 or “R” projection process.  

The above paragraph depends upon the reality of Res 
potentia. But the proposal of a real Res potentia ties to the 
recent, 2009, Conway Kochen Strong Free Will Theorem 
(44), which states that if physicists have free will so do 
electrons, that the world is non-determinant, that there can be 
no mechanism for quantum measurement, and that the 
relevant property does not exist before measurement. This 
theorem rests on free will for the physicist. But above I have 
argued that Trans-Turing systems in the Poised Realm, 
without relying on an ontologically real res potentia, may 
afford an ontologically responsible free will. Responsible free 
will may well require qualia, experience, which I propose is 
associated with quantum measurement. This again is a 
proposal that does not require the reality of Res potentia. But 
a responsible free will supports the claims of the Strong Free 
Will Theorem.  Conversely, this theorem states that, given the 
free willed physicist, the world is non-determinant. This is 
consistent with the hypothesis of the reality of res potentia. 
More, by this theorem, if qualia are associated with quantum 
measurement, there is no mechanism for that measurement. 
But measurements yield classical degrees of freedom that, as 
such, can have classical causal effects on the classical world. 
Mind, qualia, can, via acausal measurement, act causally on 
the world classically. Perhaps, as I propose below, 
neurotransmitter receptors are the loci of quantum 
measurement and qualia. Then the classical variable 
consequences could alter post synaptic voltage gate behaviors 
leading to neural firing or not. In turn qualia themselves 
emerge as irreducible.  

The vice of this view is that it hides the mystery of qualia 
in the mystery of measurement. The virtue of this “hiding’ is 
that it may explain, at last, why we cannot isolate or pin down 
an irreducible character of qualia. Philosopher David 
Chalmers (45), also proposes on independent grounds that 
qualia are irreducible.  

I stress that this hypothesis does not say what qualia are.  
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This hypothesis is testable. Anesthetics bind to 
hydrophobic pockets in neurotransmitter receptors in synapses 
(46). If they freeze receptors so they cannot quantum measure, 
no more qualia can arise. Moreover, Drosophila can be 
anesthetized by ether. Select for ease of being anesthetized 
and seek the molecular components involved in easy 
anesthetization. The normal, or wild type, versions of these 
molecules may be involved in consciousness and their 
quantum and quantum measurement properties studied. 

If I assume qualia are associated only with measurement, a 
potential role for unmeasured quantum behavior in the mind-
brain system could be unconscious mental processing, which 
may have classical consequences via decoherence to 
classicality FAPP, without measurement. Possibly this bears 
on Libet’s  results of neural activities 200 or more 
milliseconds before conscious awareness of a decision to act 
(47). This too should be testable. 

If qualia ARE associated with quantum measurement, it 
seems natural that the dual of “experience” is that which 
experiences, a rudimentary “I”. From this rudimentary “I” in 
the entire mind-brain system with its inputs and outputs, my 
hope is that full “Agency” and an ontologically real and 
responsible free will can be found.  

Standing the Brain on its Head 
I begin with a stunning fact. The Box jelly fish, with only a 
loose neural net, no evolved brain, but eyes that have evolved 
to see shape and color, swims at five knots adroitly avoiding 
obstacles (48). An evolved brain is not needed for these feats. 
Also choanoflagellates, single cell precursors to the animals, 
have many molecular components of synapses (49).  

Many readers of the chapter know the neuroanatomy of the 
human brain and much of its physiology. In brief, we have 
about 10 to the 11th neurons, each with an average of 6000 
synapses. Cell bodies have descending axons which may or 
may not branch, but each ends on synapses associated by 
synaptic spikes on dendrites in arborizations which lead into 
cell bodies. When an action depolarization potential travels 
down an axon to a synapse, presynaptic vesicles release one of 
a set of neurotransmitters, such as GABA, which crosses the 
synaptic cleft to the adjacent dendrite of the post synaptic 
neuron, and binds to post synaptic neurotransmitter receptors 
which are often in clusters of many proteins. In turn, often this 
leads to opening of an ion channel, a transient flow of ions, 
and a very short term depolarization or hyper-polarization 
(excitatory or inhibitory respectively) of the tiny local patch of 
dendritic transmembrane potential. These local changes flow 
to the cell body and are summed. If the resulting 
transmembrane potential at the cell body is more than - 20 
mV, an action potential is initiated and travels down the axon. 
Most neurobiologists think classical physics action potentials 
in neurons carry a “neuronal code” underlying consciousness.  

In Francis Crick’s Astonishing Hypothesis (1), he notes in a 
throw away line, that vast amounts of information about tiny 
time-space alterations in dendritic transmembrane potentials 
and behaviors of synaptic molecules are thrown away in 
neural classical physics action potentials.  

What if we consider “standing the brain on its head”, and 
supposing that this vast amount of information in and around 
synapses and local dendritic regions are the “business end” of 

the brain- sensory-motor system. This does not vitiate at all 
the huge amount of work on neural circuitry and  classical 
action potentials and information processing by classical 
neural action in the brain.  

However, it does raise the possibility that the “neural 
correlates of consciousness” may lie in synaptic and local 
dendritic, possibly poised realm behavior, possibly in 
quantum measurement processes.   

I note that Beck and Eccles have considered quantum 
processes in synapses (50) 

 Quantum Entanglement, Niirnan’s idea, 
and the Binding Problem 

Consider, says Crick, a yellow triangle and blue square. Let 
“yellow”, “triangle”, “blue”, and “square” be processed in 
different, anatomically unconnected brain areas. How are they 
bound into yellow triangle and blue square. This is the binding 
problem. Crick focuses hope on squeezing perhaps millions of 
distinct sets of features to be bound into different phases of 
the 40 Hertz oscillation, as I have described. 

The first idea I propose is to use quantum entanglement to 
link quantum processes in different, anatomically unconnected 
synapses to start to solve the binding problem. Entanglement 
occurs if a quantum degree of freedom, say a photon, decays 
into two lower energy photons that go off in opposite 
directions, even so far apart that even light cannot travel 
between them in the interval between quantum measurements 
of the two entangled photons. QM says, and it is confirmed 
over and over, that the two quantum measurements will be 
highly correlated, even though no light or information can 
have traveled between the two sites. This is “EPR non-local 
correlation” (20). I stress that in the entangled state, the two 
photons remain in a single quantum state. 

I want to try to use quantum entanglement among many 
synaptic degrees of freedom to try to solve the Binding 
Problem. Hence, as I have emphasized, it is very attractive to 
me that these quantum correlations require quantum 
measurement of the entangled degrees of freedom, and I have 
already supposed that quantum measurement itself is 
associated with qualia. Then these many entangled degrees of 
freedom in a single quantum state when measured yield qualia 
that are bound. The hypothesis that qualia are associated with 
quantum measurement does not stand alone, it may afford a 
part of an answer to the Unity of Consciousness.  

Clearly, such entanglement may require long range 
entanglement among anatomically unconnected synapses and 
neurons in the brain connecting the “right” set of, say, 
synaptic molecules. How and whether this may be 
accomplished is, at present, uncertain, but see below. 

Samuli Niianen had a lovely idea. “If you measure the 
position and momentum a single classical gas particle in a 
box, do you know about the shape of the box?”  No you do 
not. “But”, he continued, “a quantum wave process in a 
potential well that serves as its boundary condition “knows” 
about the shape of that potential well, for example in its 
measured energy spectrum!”. He is right.  

Think of music in a room and trying to describe air 
pressure waves using bits. Now think of 1000 differently 
shaped drum heads well placed in the room. Their patterns of 

20 ECAL 2011



vibrations, ie the eigenfunction spectra of the drums bound to 
drumheads, “know” the music in the room, and do so in an 
analog embodied way, not a digital or propositional way. A 
telephone is not digital either.  

This leads to the idea that the brain’s sensory system and 
the whole brain, may tune the synaptic or local dendritic 
transmembrane potentials in tiny time-space regions of the 
brain, such as synapeses and adjacent local dendritic 
membranes so they jointly “cover”, like many tuned antennas, 
the visual scene such that quantum processes in those 
potential wells, when entangled and measured yield both a 
Unity of Consciousness and solve the Binding Problem in an 
analog not digital way. 

Two final points. It now appears that increasing the number 
of entangled degrees of freedom increases the quantum EPR 
correlations. This increase is the opposite of the curse of 
dimensionality. This helps the binding problem. Second, local 
actions can alter which quantum degrees of freedom are 
entangled, perhaps offering an account for serially shifting 
focus of attention, and might entangle the “correct” set of 
quantum degrees of freedom for each focus of attention (51). 

Can all this be correct? I certainly do not know. But the 
ideas seem coherent, testable, and jointly seem to offer new 
purchase on manifold problems. 

“Programming Trans-Turing Systems” 
We have known about Turing Machines since the mid 1930s 
and programming the von Neumann architecture for over fifty 
years.  We have no experience with Trans-Turing Systems, 
TTS.  But we face a problem: How would we achieve a TTS 
that “does something we want”?    

There seem to be two approaches. Simulate the TTS on a 
digital computer and evolve a population of TTS, or a 
population of interacting entangled, measured, TTS, to yield 
the behavior desired. This is analogous to the Genetic 
Algorithm of Holland (5).  

Another approach which may be worth considering is 
creating self reproducing molecular systems, perhaps 
autocatalytic sets of polymers in dividing liposomes, supplied 
with energy by pyrophospate or in other ways, and capable of 
open ended evolution. Recent work shows that: 1) collectively 
autocatalytic sets arise as the diversity of polymers in a 
reaction set is increased (52,53). 2) Such systems can undergo 
open ended evolution (54). 3) Liposomes can grow and divide 
(55). 4) A collectively autocatalytic set in a reproducing 
container can yield synchronization of the reproduction of 
each (56).  Experimental collectively autocatalytic sets have 
been constructed (57). Libraries of stochastic DNA, RNA, 
peptides, polypeptides and proteins can be made (58), so we 
can test for the emergence of collectively autocatalytic sets. 

It is an exciting prospect that work on the origin of life and 
work on Trans-Turing Systems may come together. More 
Darwinian preadaptations among such co-evolving protocells 
generate new, unprestatable biological functions that maintain 
one or more such protocells, hence solve the frame problem 
(59).  Co-evolving TTS in protocells may well solve the frame 
problem too.  

Work with minimal cells as vehicles for TTS evolution and 
co-evolution may be possible (60). 

In addition, nanotechnology, perhaps with populations of 
nano-devices that can be subjected to Holland’s Genetic 
algorithm (5), may prove useful. 

 

Conclusions 
I have argued that classical physics Turing machines as 
models of the mind are possible, but leave us at best with no 
free will, and an epiphenomenal consciousness. I believe that 
we can begin to go beyond Turing, to create non-algorithmic, 
non-determinate, and non- randomly behaving Trans-Turing 
systems, living in the Poised Realm, perhaps in self 
reproducing protocells, perhaps as nano-devices, both open to 
evolution or co-evolution to achieve useful ends. I propose 
tentative answers to Descartes about mind and body. Many of 
the ideas in the Chapter are new science or even radical.  They 
may portend transformations in quantum physics, quantum 
chemistry, a new Poised Realm behavior of biomolecules 
hovering between quantum and classical behaviors, a new 
approach to neurobiology, the philosophy of mind, and the 
radical possibility of Res potentia with consciousness a 
participation in The Possible, qualia as irreducible and 
associated with quantum measurement which also may be 
irreducible, and entanglement and quantum measurement to 
achieve a unity of consciousness. I hope these concepts point 
the way forward for us all. 
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Abstract 
The prognosis for patients with high grade brain tumours 
(gliomas) is grim and the various treatment protocols such as 
surgery, radiation and chemotherapy cannot effect a cure. I 
describe, without any technical details, a simple but very 
practical model which uses patient data and brain scans to 
quantify the spatio-temporal growth of such brain tumours. 
Analysis of the model shows how difficult it is to decide on the 
tumour volume to be treated and shows why such treatments 
have so little success. The model simulations can estimate life 
expectancy for individual patients and show how it is possible 
to use the patient's past record to predict the efficacy of possible 
treatments. Recent patient data indicates that calculating such 
an index of treatment efficacy is indeed a realistic aim. With the 
increasing discussion about cell phone use and a possible 
increase in brain tumours, I describe how to obtain an estimate 
for when a brain tumour started given its size at detection.  
 

Introduction 
High grade brain tumours, gliomablastoma multiforme 
(GBM), are the most aggressive brain tumours and make up 
more than 50% of all brain tumours. There is 100% mortality 
rate for patients with such tumours with an approximate 
median life expectancy of 9-12 months. The various treatment 
protocols such as surgery (resection), radiation and 
chemotherapy cannot effect a cure but can sometimes extend 
survival time.  Treatment efficacy depends on various factors 
such as where the tumour is located in the brain and the size 
of the key parameters, namely the growth rate and the 
diffusion rate. Diffusion in white matter is larger than in grey 
matter. It is the aggressive infiltration of cancer cells which 
make treatment protocols so difficult to localize. In spite of 
increasing accuracy of imaging techniques they still cannot 
detect cancer cell densities sufficiently accurately. The 
inadequacy of medical imaging is substantiated by the fact 
that irrespective of the extent of  surgical resection or focused 
irradiation of the tumour it is always followed by multifocal 
tumour  recurrence at or near the edge of the resected volume 
(Silbergeld et al. 1991).  

A basic practical model which encompasses the two key 
elements in the growth of such tumours, namely the invasive 

diffusive properties of the cancer cells and their growth rate is 
qualitatively given by the equation: 

 
Rate of change of tumour cell density 

                      =    diffusion (invasion) of tumour cells  
+ net proliferation of tumour cells       (1) 
        

The mathematical form which quantifies the various terms in 
(1) is  

!c
!t
=" .D(x)"c + #c      (2) 

 
where the various terms in this equation are defined as: 

• c(x,t)  = glioma cell density, cells/mm3, which is a 
function of  the position, x, in the brain at time. 

• t = time, measured in months. 
• D(x) = diffusion (invasion), mm2/month, which 

quantifies the invasiveness of the cancer cells at 
position x in the brain.  

• ρ = proliferation rate (/month) of the cancer cells 
which gives the turnover time as log2/ρ (months).   

 
The solutions of (2) are unbounded as time increases 

because of the form of the growth term which implies 
exponential growth. A more accurate model has in place of ρc 
the expression ρc(1-c/k) where k is a constant associated with 
the maximum concentration possible in the brain tissue. This 
equation, with a constant diffusion coefficient, is a classical 
population equation known as the Fisher-Kolmogoroff 
equation (Murray 2002). Solutions of it are bounded and 
exhibit traveling waves.  However, in the time scales relevant 
to glioma growth and patient survival time it does not 
contribute significantly to the solutions relevant to cancer 
patients.  

With two individual patient brain scans, such as CT, MRI 
and others, the key model parameters, namely diffusion and 
cell growth can be calculated. With these we can then predict 
the subsequent growth of such brain tumours. As illustrated 
below, analysis of the model shows how difficult it is to 
decide on the tumour volume to be treated and shows why 
such treatments can have little success. The model simulations 
can estimate life expectancy for individual patients and how to 
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predict the efficacy of different treatments. Patient data 
indicates that calculating such an index of treatment efficacy 
is a realistic aim. With the increasing debate on the possible 
increase in brain tumours as a result of cell phone radiation, 
realistic and scientific clinical trials will require information 
such as when a tumour started, how fast it grows and where it 
is in the brain outside of what can be detected with current 
brain imaging techniques. Here we show how the model 
provides a means of estimating the time from tumour 
initiation and life expectancy from tumour detection for 
individual patients. 

The original model was first proposed and analised in 
various situations. The brain was considered to be 
homogeneous matter bounded by the ventricles and skull 
(Cruywagen et al. 1995). Even with such a simple anatomical 
model the predictions of the analysis were broadly in line with 
patient observation of both low and high grade brain tumours. 
The limitations of current imaging techniques were clear. The 
model was then used to mimic various accepted medical 
treatments, specifically radiation, surgical resection 
(Woodward et al. 1996) and chemotherapy (Tracqui et al. 
1995), Swanson et al. (2002), Rockne et al. (2010).  A three 
dimensional model was proposed and studied by Burgess et 
al. (1997) who were the first to demonstrate that cancer cell 
diffusion, mainly ignored up to that time, is a major 
component of glioma growth. They showed that only those 
tumours with a low diffusion rate could benefit from wide 
surgical resection although eventually there will be multifocal 
recurrence.  See Murray (2003) for a full discussion and 
review which encompasses anatomically correct brains. 

Virtual gliomas: enhanced imaging and 
current limitations 

A major advance in the practical application of the model (1) 
was the availability of the brain web atlas (Collins et al. 
1998). This allowed the model to be applied to anatomically 
correct brains (Swanson et al. 2002, 2004, Murray 2003). 
Among other things it made it possible to refine the gross 
anatomic boundaries and to vary the degree of motility of 
glioma cells in grey or white matter: these are biologically 
significant.  

With the BrainWeb it was possible to solve equation (2) in 
a three dimensional  anatomically correct brain in which the 
grey and white matter is clearly delineated.   

The procedure is to evaluate the tumour size from brain 
scans and, crucially, estimate the parameter values for each 
patient to obtain the average diffusion coefficient and the 
average growth rate. There is a lower threshold of detection of 
cancer cells with all imaging techniques, whether CT or MRI, 
such as T1Gd and T2 imaging, or microscopic studies. To use 
the predictive potential of the mathematical model (2), serial 
imaging of the tumour was used to calculate its volume which 
was then taken as the volume of an equivalent sphere with 
radius r, namely 4πr3/3. We then consider the model to be 
radially symmetric with a constant diffusion coefficient, based 
on averaging the values from imaging. Equation (2) then 
becomes 

!c
!t
= D !2c
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&
' + (c      (3) 

 
We consider that at time t=0 there is a concentrated number 

of cancer cells, N cells/mm3, at r=0 in which case the solution 
of (3) is given by  

c(r, t) =
N exp(!t -

r2

4Dt
)

8("Dt)3 /2
     (4) 

 
If the smallest level of image detection is denoted by c1 

cells/mm3, then the radius, r, of the tumour for this cell 
density is, from (4) on solving for r, 

 

r = 2t D! 1"
1
!t
log(

c1
N
(4#Dt)3/2 )      (5) 

  
For large time, t, the solution (5) gives the radius of 

detectable tumour and the velocity of growth, v, as 
approximately  
 

r = 2t D! " v = r / t = 2 D!      (6) 
 
That is, the equivalent radial growth is linear in time. 

Approximate in vivo patient survival time 
If we consider detection is when the spherical equivalent 
tumour volume is of radius 15mm and that death occurs when 
the radius is 30mm the approximate survival time from 
detection, in the absence of any treatments, is given, from (6), 
by  

Survival time (months)  

= tsurvival = tr=30 ! tr=15 =
7.5
D"

     (7) 

 
Typical growth rates vary quite widely, approximately from 

1-5 /month and diffusion rates from 1-8 mm2/month.  The 
medians for 9 patients in the study by Rockne et al. (2010) are 
D=0.9 mm2/month and ρ=1.16/month which gives a median 
survival time of 7.34 months. 

Survival time, however, depends on where the tumour is 
mainly situated. If it is primarily in the grey area of the 
thalamus, for example, the diffusion is smaller and so the 
survival time is longer, as is clear from (7).   

The diffusion in grey matter, Dg, is smaller than that in 
white matter, Dw: they can vary by as much as 100-fold. 
Swanson et al. (2002) defined by γ the ratio of the diffusion 
coefficient in white to that in grey matter, that is γ = Dw/ Dg. 
An average diffusion coefficient for the entire brain can be 
defined as the diffusion coefficient in white matter times the 
volume fraction of brain that is white matter plus the diffusion 
coefficient in grey matter times the volume fraction of brain 
that is grey matter. The figures from the brain web database 
give the fraction of grey matter as 0.5723 and of white matter 
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as 0.4277 (Collins et al. 1998). So an average diffusion is 
given by  

 
Daverage = 0.5723Dg + 0.4277Dw = Dg(0.5723 + 0.4277γ)   

=> Dg= Daverage /(0.5723+0.4277γ) 

Swanson et al. (2002a) took as a typical average diffusion, 
Daverage = 3.9 mm2/month so the diffusion in grey matter from the 
last equation gives Dg = 3.9/(0.5723 + 0.4277γ) mm2/month. They 
evaluated survival time as a function of γ  for a frontal tumour 
where it is mainly white matter and in the thalamic region where it 
is mainly grey matter.   

Simulations of an anatomically correct brain highlights the 
problems with current imaging techniques.  Figure 1 is a computed 
solution of equation (2) which shows the detectable tumour at 
death and the spread of the tumour cells beyond what can be 
detected by the most accurate current CT or MRI imaging 
techniques. Simulations of the model thus greatly enhance current 
imaging techniques to whatever level of cancer cell density is 
required. 

 

 
Figure 1  Computed solutions of equation (1) in a three 
dimensional anatomically accurate brain.  These show the 
horizontal section of the virtual human brain through the site 
of the original tumour (+ in (a), * in (b)).  The left image in 
each is the tumour at diagnosis while the right image is the 
same tumour at time of death.  The thick black contour 
defines the edge of the tumour that can be detected by 
enhanced CT. The blue contours outside this black line 
represent cancer cell densities peripheral to the imaging limits. 
(a) Tumour in grey matter: the time from diagnosis to death is 
approximately 256 days. (b) Tumour in white matter: the time 
from diagnosis to death is approximately 158 days. (Figures 
extracted from Swanson et al. 2002a). 

The model described here has been used to quantify the effect 
of different treatment efficacies prior to their use.  
Incorporating periodic chemotherapy was studied by Tracqui 
et al. (1995) and Swanson et al. (2002b).  The model used was 
equation (1) with a further (negative) term on the right hand 
side which quantifies the periodic reduction in growth as a 
consequence of the chemotherapy. Incorporating subtotal and 
total tumour resection in patient survival was considered by 
Woodward et al. (1996).  This involves visually excising a 
given volume of the tumour in the model simulations. The 
predictions compared well with the data of Kreth et al. (1993). 
The modeling study (Woodward et al. 1996) predicted patient 
survival rates which, considering the basic aspect of their 
model, compared surprisingly accurately with the extant data 
at the time and recently published by Ramakrishna et al. 
(2010).  Incorporating radiation treatment was also considered 
in the model and it has been used by Rockne et al. (2010) in 
the clinical study of 9 patients. A full review and how such 
treatments are incorporated are given by Murray (2003). 

Estimating the time from tumour initiation 
An unsolved problem with all cancers is how to determine 
when a tumour started. In the case of glioma brain tumours 
detection is when the tumour volume is approximately equal 
to an equivalent sphere of radius 3cm in diameter but this also 
depends on the imaging technique used and where the tumour 
is in the brain. With the increasing discussion and justifiable 
concern of the possible increase in brain tumours as a 
consequence of the ever expanding use of cell phones it is 
inevitable that serious clinical studies will be carried out in the 
relatively near future. The paper by Tafforeau et al. (2004) 
clearly demonstrates the serious effect cell phone radiation 
has on plant growth. They showed that a single 2 hour 
exposure to radiation emitted at 105 GHz from a (GSM) cell 
phone resulted in considerable growth deformity. The Journal 
of the American Medical Association article by Volkow et al. 
(2011) reports on an increase in brain glucose in the region 
closest to the antenna. To date no study has definitively stated 
that brain tumours can arise from prolonged use of cell phones 
(I personally believe that there will be an increase in tumour 
incidence.) 

Irrespective of the possible cell phone use connection, 
knowing when a tumour actually started is useful information 
which could possibly provide clues and pose relevant 
questions in any major clinical study.  

With the increasing use and the quantitative clinical 
confirmation of many of the predictions of the model 
discussed here and in numerous publications since it was first 
introduced, it is reasonable to use it to obtain estimates of 
brain tumour initiation times.  As a first approximation 
expression (6) gives the radius of the tumour and its velocity 
as a function of the diffusion coefficient and growth rate but 
for large times, mainly from when the tumour is first 
detectable, that is when it has an equivalent spherical volume 
of at least diameter 3cm.  This however is only valid for 
sufficiently large times and although useful for calculating 
approximate life expectancy it is insufficiently accurate to 
back extrapolate to when the tumour started: it significantly 
underestimates the time. 
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Figure 2  (top) This shows the survival time from initiation 
for a typical range of diffusion coefficients while (bottom) 
shows the survival time from detection at an equivalent 
tumour diameter of 3cm to death at a tumour diameter of 6cm.  
 

We can obtain a considerably more accurate estimate using 
the exact solution (4) for the cell concentration as a function 
of time.  If c1(r,t) is the outermost cancer cell density level of 
detection when the tumour has an equivalent sphere radius of 
r then the time it takes for a density of  N cells to grow and 
diffuse is given by the solution of (5) for given r, c1, N, D and 
ρ, namely the value of t such that  

 

2t D! 1 " 1
!t
log(

c1
N
(4#Dt)3/2 ) " r = 0       (9) 

 
There is no analytical solution of this equation but it is 

possible to use MATLAB to obtain the value for t for given r, 
c1, N, D and ρ.  This gives the time to initiation for all radii r, 
not only the radius at the smallest detection but whenever the 
tumour is first observed.  It also gives a more accurate 

estimate for the survival time by assigning the radius to be 
3cm. We do not know how many cancer cells are required 
before they start to diffuse nor an accurate value for the 
detection level c1.  By way of example we chose c1/N in (9) to 
be 80,000.  Figure 2 illustrates the times from initiation for a 
typical range of growth rates and diffusion coefficients.         

From Figure 2 the effect of higher growth rates play a 
smaller role than diffusion variability while at low growth 
rates the interplay between growth and diffusion is more 
complex. 
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Abstract 

In Nature, the embryogenesis process proceeds from a single fertilized cell through division, migration, specialization and 
apoptosis. Although a lot is known about development, we still have a long way to go from theories of pattern formation towards 
understanding the intelligence within an unsupervised manufacturing process which robustly assembles complex biological forms.  

Our approach has been to co-evolve bodies and brains in simulation and then convert them into reality using commercial 
manufacturing technology. I will review several generations of robots which were automatically designed using co-evolutionary 
techniques. The goal has been the fully automated design and construction of artificial lifeforms. 

The first generation was based on genetic programming and a simulation of LEGO rod adhesion. The second generation used 
direct evolution on a iterative simulation of truss structures and used 3D printing for the output. A third generation was based on 
generative representations using L-systems. 

In each of these cases, we assumed a perfect factory which could accept an evolved specification and then manufacture the 
desired result.  In reality, there is no perfect factory, except for the science fiction Star Trek replicator. All manufacturing and 
assembly systems are subject to error. Each primitive manufacturing action results not in a deterministic new state, but a probability 
distribution of outcomes. 

In later work, we replaced the idea of a perfect factory with one subject to noise and error. Even the smallest bit of error ruins the 
outcome of deterministic construction plans. We first evolved construction plans which could overcome errors through redundancy, 
and then this led to a new model for machine embryogenesis as a process which continuously optimizes assembly processes in a 
game against Nature. 
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Abstract 
When seeking to assemble minimal life from the bottom up in wet carbon chemistry, the critical properties of life apparently emerge 
from the interconnected functions of three subsystems: information, metabolism and container. Such interconnected supramolecular 
systems, so-called protocells, are under the right circumstances able to mimic the main functions of a living cell although in a very 
simplified manner1. 

Seeking to create minimal life from the top down leads us to a somewhat different picture, where construction of synthetic / 
streamlined genomes become the critical scientific issue2,3. How to integrate the knowledge we obtain from the top down- and the 
bottom up approaches is a great challenge for our and related communities4,5 and a good problem to discuss at this meeting.  

In technical terms, our bottom up team explores ruthenium-based photocatalysis as metabolism, fatty acids vesicles, oil droplets 
and reverse micelles as containers and lipophilic XNA as minimal informational systems6,7. Based on our experimental, 
computational and theoretical work we review protocell feeding, growth, division, motility, and information controlled metabolic 
production of containers8,9,10,11.  

Finally, we demonstrate preliminary integration of biochemical- and microelectromechanical (MEMS) systems where life-like 
information processing and material production occur and interact in different medi12,13 and as such form an exciting frontier for the 
study of artificial life.  
 
 
 
 
 
 
 
 
1 Rasmussen S, et al., Protocells: Bridging nonliving & living matter, MIT Press, 2009 
2 Gibson DG, et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science doi: 
10.1126/science.1190719  
3 Rasmussen S, Life after the synthetic cell – Bottom up will be telling more (2010), Nature, 465422a, May 20 
4 Sunami T, et al., (2010) Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter, Langmuir 
26: 15098 
5 Porcar M, et al., (2011), Ten grand challenges for synthetic life, to appear in Synthetic Biology. 
6 Rasmussen S, et al., (2003) Bridging nonliving and living matter, Artificial Life 9; 269 
7 Rasmussen S, et al.,(2004) Transitions from nonliving to living matter, Science 303: 963 
8 Fellermann H, et al., (2007) Life-cycle of a minimal protocell – A dissipative particle dynamics study, Artificial Life 13; 319 
9 DeClue M, et al., (2009) Nucleobase mediated, photocatalytic vesicle formation from ester precursor molecules, JACS 131 931 
10 Toyota T, et al., (2009) Self-propelled oil droplets consuming “fuel” surfactant. JACS 
11 Maurer S, et al., (2011) Interactions between catalysts and amphiphilic structures and the implications for a protocell model. 
Chem Phys Chem 12; 828 
12 http://www.fp7-matchit.eu 
13 McCaskill, p. 253, in Protocells: Bridging nonliving & living matter, eds Rasmussen S, et al., MIT Press, 2009 
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Abstract

Computation is defining trait of biological systems and a
broad framework that captures the complex adaptive nature
of molecules, cells and organisms. Computation is also at the
core of the genotype-phenotype mapping, since it provides a
natural framework to define function in a self-consistent way.
The study of existing biological systems (from signalling cas-
cades to ant colonies or brains) as well as the evolution of
synthetic in silico networks performing computations reveals
a number of nontrivial patterns of organization, sometimes in
clear conflict with standard view of engineering or optimiza-
tion. In spite of our increasing knowledge, there is a lack
of a theoretical framework where computation and its pos-
sible forms is integrated within a general picture. Synthetic
biology provides a new avenue where engineered molecular
circuits can be implemented to perform non-standard com-
putations. Here we review recent advances in the domain
of multicellular synthetic computing and suggest a potential
morphospace of computational systems including both stan-
dard and non-standard approximations.

Introduction
Computation in nature is a fascinating and yet difficult topic.
Biological systems perform computations as they gather in-
formation and process it in order to respond to environmen-
tal cues. Computation is in fact one formal way of capturing
functionality in a well defined fashion (1), (2). Computation
has also become a key aspect within the emergent field of
synthetic biology (for a recent review, see (19)). This field
allows to construct completely new molecular and cellular
structures able to perform artificial computations (3).

Cells can be engineered in order to behave as autonomous,
potentially programmable computing devices. These bio-
computing devices would be able to perform complex tasks
and designed for a wide range of applications, including
bioremediation, food production or biomedicine (4). How to
make these systems reusable and scalable is a major prob-
lem, but new approaches involving non-standard forms of
computing have been able to overcome some key difficul-
ties (5). They define novel ways of computing using living
matter and suggest potential scenarios to outline a general
framework to unify the landscape of computational struc-
tures, both in the natural and artificial realms.

Figure 1: Computation occurs in natural systems in many
different systems and spanning multiple scales. This include
immune networks, social insect colonies, brains or some so-
cial amobeae.

In order to use computation as a unifying framework
where biological complexity and its evolutionary dynamics
can be suitably integrated, some formalism is needed. One
possibility is to consider classical models of computation.
Turing’s formalization of computations in terms of machines
with a number of internal states provides a powerful frame-
work where -in principle- any potential form of computation
could be described (6). The fact that some particular macro-
molecular systems, such as ribosomes act pretty much as
Turing-like nanomachines (reading a ”tape” defined by the
messenger RNA, creating an output chain of aminoacids and
starting and ending the process by means of detecting given
sequences) seems to support this picture. Such avenue has
been successfully taken by some researchers (7) proving the
viability of making molecular computations close to finite
automata. However, as pointed out by Melanie Mitchell (8)
there is a range of biological systems, from immune net-
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works to ant colonies or even plants, where computations
occur and yet seem to escape from being fully captured by
classical, Turing-like formal approaches to computation.

The special features shown by information-processing
systems in biology have been recognized for decades. Many
of them have to do with special ways of treating given com-
putational tasks in a parallel way and using the internal dy-
namical features characteristic of each system. Task alloca-
tion in ants, for example, can be favoured in some cases by
means of colony-level oscillations which seem in principle
inappropriate for dealing with colony needs. Simple models
of ant dynamics based on a neuron-like mapping between
ant states and formal neurons have bee very useful in this
context. In particular, it has been shown that oscillations ac-
tually favour an optimal task fulfilment that is not possible if
a constant, average activity level were at work (9), see also
(10).

Similarly, other properties exhibited by complex biolog-
ical machines strongly depart from standard engineering-
based principles. One such principle is the robust behav-
ior based on redundancy. Here two identical components
of the system making the same function can replace each
other in case of failure. Redundancy is thus the intuitive
(although sometimes expensive) solution to the problem of
failure. However, it has been shown that in many cases (may
be in most cases) robust behavior is not obtained from redun-
dant structures. Instead, it seems to be a consequence of so
called degeneracy (11), (12), (13). It can be defined as the
capacity of elements of a given system that are structurally
different to perform the same function or yield the same out-
put. This ubiquitous feature appears to be present in many
diferent systems and scales. Modeling in silico evolved cir-
cuits performing computations under selection for robust be-
havior (14) reveal that robustness is achieved through degen-
eracy, but the underlying mechanistic explanation escapes
from our intuition. Degeneracy implies a novel concept be-
yond standard engineering, suggesting that new forms of
thinking might be required.

How can we go beyond the limits imposed by real sys-
tems, which are the result of evolution and might be diffi-
cult to fully characterize? Similarly, how can we test exist-
ing theories and try novel ones if they are sometimes diffi-
cult to compare with their real counterparts? The field of
synthetic biology seems to provide the best scenario for de-
signing novel computational systems in vivo whereas non-
standard forms of computation are used as alternatives to
engineering-inspired metaphors. Here we present some of
these results and suggest a potential framework to define a
space of computational designs that includes existing natural
and artificial systems as well as engineered, artificial ones.

Logic gates from gene circuits
One way of creating synthetic biological circuits performing
predefined logic operations is based on engineering genetic
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Figure 2: Logic gates and switches of different types can be
obtained by engineering cellular and/or molecular systems.
Examples would include (a) the AND and (b) the NOT gates,
from which a NAND gate (c) or a N-IMPLIES gate (d) can
be obtained through combination. In (e) and (f) we illus-
trate these two examples through a hypothetic gene regula-
tory system (the inset pictures are the compact representa-
tion of the gates).

regulatory systems. In figure (2) we show some examples of
logic gates that can be implemented by using available ge-
netic components and their interactions. Such circuits are
obtained by means of standard genetic engineering tech-
niques and the components can actually come from differ-
ent, completely unrelated species, which can mix together
genes from viruses, bacteria or mammals. Typically these
engineered circuits are built within plasmids, i. e. closed
chains of DNA defining genetic information physically sep-
arated from the chromosomal DNA. A different strategy in-
volves using appropriate gene. In figure 2a we illustrate this
by means of two basic examples and their genetic counter-
parts (other implementations are also possible). In our ex-
ample (e) the NAND gate is obtained by using a molecular
complex formed by two different proteins which repress the
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Figure 3: A genetic toolkit (central line) can be used to engineer cellular computations. The toolkit might include all sorts of
regulatory elements and reporters. The standard approach is putting together within a single cell, where all regulations take
place. Alternatively, a library of different engineered cells can be created, thus defining a cellular consortia (top diagrams).

expression of a so called reporter gene (here GFP=green flu-
orescent protein) which generates, when activated, a fluores-
cent signal.

These examples illustrate the standard approach of elec-
tronic design based on combinatorial logic. In principle, ev-
ery circuits could be designed in this way. However, a major
difficulty emerges here: in electronics, every wire is defined
in terms of a conducting piece of material, which is always
the same. When dealing with cellular engineered systems,
where molecules share the same medium where they are
mixed, identity becomes a problem. In a cell, every wire
needs to be a different molecule to properly connect different
elements or cells. Because the liquid nature of the medium
where computations need to occur, the spatial insulation of
wires that is assumed in electronics is no longer satisfied.
As a consequence, each wire needs to be implemented by
using a different molecular carrier and the chemical diver-
sity of constructs rapidly grows. This is illustrated in figure
1g-h by the so called multiplexor, widely used in electronic
designs. This is a 3-input, one-output system where a given
signal ”selects” one of the two inputs. In principle a syn-
thetic genetic network implementing a MUX circuit can be
designed (an example shown in figure 1h) using a single cell

implementation. Although such circuit can be constructed
(15) it is a hard task, with no hope of being re-used as part
of a larger system (as it occurs in electronics).

To sum up, the combinatorial approach can lead to a
nightmare when dealing with an experimental design, since
the properties of each carrier and how it interacts with other
can be very different and difficult to predict. Additionally,
one goal of the field is to have engineered systems capable
of extensive reuse of available parts in such a way that a
LEGO-like system is at work. Both premises are basic re-
quirements for reaching the computational complexity for
achieving autonomous machines able to make decisions in a
biological context. Only recently a general approach, based
on engineering several cell types, has been successfully ob-
tained.

Cellular consortia: division of labor
One way of dealing with the wiring problem is considering
alternative ways of avoiding the mixing of molecular carri-
ers that seems inevitable within the cell cytoplasm. Spatial
segregation of the basic components provides one easy way
of dealing with computation avoiding molecular mixing. Al-
though the explicit use of spatial locations is one possibility
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(see for example (16) a simpler scenario involves using cel-
lular consortia, namely a population of cells having different
types of engineering designs. In such scenario, a library of
different cell types, each one having a different subset of
genetic components, is build out of a collection of molec-
ular components. This is schematically displayed in figure
3, where we show three different ways of combining them
within single or multicellular constructs.

Here different cell ”types” are indicated as CT1, CT2,
etc. A standard consortium (top left) is obtained by splitting
some of the elements from the toolkit between cells. Com-
munication is then also introduced, so that a sender and a re-
ceiver cell are usually designed, although feedbacks are also
introduced in most designs. A reporter cell is present (here
CT2) which will (1) or will not (0) express a target molecule.
This type of consortium has been used in many different
contexts. In particular, using two cell types it was possible
to artificially recreate predator-prey systems (Lotka-Volterra
dynamics), mutualistic ensembles (hypercycle-like systems)
or parasitic organizations. Extensions of these include mul-
tispecies ecosystems where different groups of cells belong-
ing to different kingdoms are involved (17). Once again,
however, the resulting synthetic cells are hard to reuse to
obtain other types of computations. An alternative approach
requires breaking some predefined rules.

In any standard circuit design, the truth table defines the
input-output relation between incoming sets of signals and
the resulting outputs. The outputs are placed in given loca-
tions of the circuit and it makes sense that this is the case.
Let us limit ourselves here to a single-output system. That
means that there is an output unit where the final result of
the information processing is released. What happens if we
free ourselves from such (rather reasonable) assumption?
The view of a computational device as being implemented
by a circuit that clearly differentiates between input, pro-
cessing and output units seems too obvious to replace it by
some other paradigm. But there is actually one solution that
emerges from not forcing that assumption to be true. In-
stead, more than a cell type is able to respond as output ele-
ment.

Distributed computation
Here we introduce our basic model approach to synthetic
computation. We will use a Boolean approximation, thus
confining our approximation to the digital domain. Our state
space will be described by a set Σ = {0, 1}. Although this
is in principle a limitation, many relevant cellular computa-
tions seem to take place by means of genetic switches. Such
switches effectively define binary states with low and high
levels of gene expression. A given functionality will be de-
scribed as an input string I, namely an element of

ΣN = {0, 1} × . . .× {0, 1}︸ ︷︷ ︸
n
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Figure 4: The general architecture used here to generate our
circuits using distributed computation, as defined in the text.
A feed-forward structure (a) is assumed as the basic scaf-
fold, with a number of input signals that affect separated
arrays of communicating cells (gray spheres). Each cell im-
plements a given logic function (b). All columns end up in a
reporter cell, but several reporter cells can be present, since
each column is seggregated from others, thus removing po-
tential cross-talks.

It will indicate, in our framework, a string of absent (0) or
present (1) chemical signals.

The functional trait to be implemented is formally defined
as a Boolean function φi with N input signals and a single
output. Formaly, this reads:

φi : ΣN −→ Σ (2)

Two particularly relevant subsets of Boolean functions
are the one input-one output gates, i. e. the set G(1,1) =
{NOT, Id} (the negation and identity functions, respec-
tively) and the 24 two-input logic gates defining the set
G(2,1) = {gj} where gj is a maping

gj : Σ2 −→ Σ (3)

(represented by a simple table). Standard functions include
OR, AND and their “inverse”, i. e. NOR and NAND.

Our approach to a general design of complex computa-
tional circuits (5) is based on two general assumptions, to be
translated into a basic circuit design (fig 4). First, we limit
ourselves to a feed-forward network where each node is one
type of engineered cell from the library. Each link means
the existence of a molecular connection, i. e. a diffusible
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Figure 5: Combinatorial design of multicellular consortia using our distributed computation method. Here in (a) we sketch
some basic engineered cell types (implemented on yeast cells) and several examples (b) of combinations performing given
functions. Many other circuits can also be constructed using this library or small extensions of it.

wire molecule. Secondly, several cell types can incorporate
the gene responsible for the output molecule (GFP). Once
a given Boolean table is chosen, an evolutionary algorithm
is applied to the basic wiring structure, which explores the
landscape of potential networks implementing the desired
function (3). The algorithm searches over the space of basic
functions, wiring configurations and other constraints. Once
a given network is found, standard rules of circuit minimiza-
tion are applied in order to obtain the minimal circuit solving
the problem by means of distributed computation.

What are the results of this method? Along with this evo-
lutionary algorithm, the theoretical analysis demonstrates
that it is possible to minimize the number of required cells
and wires using the distributed output assumption combined
with a small library of cells implementing only the AND and
the inverted Implies gates (N-IMPLIES). Despite this com-
bination of gates are not usually used in circuit designs they

define a functional complete set, i.e. any arbitrary Boolean
function can be implemented only combining this two gates.
In some embodiments, these gates can be simplified and re-
placed by the IDENTITY and the NOT gates respectively al-
lowing for a circuit simplification. Furthermore, the wiring
pattern of connections is restricted, i.e. different circuits
can involve different number of cells and wires but all cells
only respond to an external input and to single diffusible
molecule acting as a wire according with the specific logic
function implemented, i.e. AND or N-IMPLIES, indepen-
dently on the circuit complexity.

Using yeast cells as the model organism to implement
our cell library (following the theoretical predictions) it was
possible to construct, by combining different cell types, all
kinds of simple gates (figure 5) but also complex circuits.
As an illustration of the enormous simplification of circuit
complexity that is derived from our approach, in figure 5 we
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can see that the MUX circuit can be obtained by combining
three cells from the library (it can also be done with only
two). Similarly, much more complex circuits, such as a bi-
nary adder (figure 5) was also obtained. As we can see from
the two complex circuits, the assumption of distributed com-
putation makes possible to actually split the circuit in differ-
ent segregated (and thus disconnected) parts. Once again,
this is in deep contrast with the standard view of electronics.

A final result concerns the predicted types of cell-cell in-
teractions that is predicted by the evolutionary algorithm.
Using the MUX circuit as the basic reference, we run the
algorithm in such a way that many different circuits were
obtained, all consistently implementing the multiplexer. In
figure 6 we display a graph summarizing two relevant pieces
of information. The nodes are the basic gates implemented
by individual cells. Their size here is proportional to their
frequency in the evolved circuits. We can see that there are
wide differences between different logic components. Sec-
ondly, the weighted links between different gates indicate
how frequently two given gates appeared connected within a
given solution. The resulting network illustrates once again
the nonstandard character of our solutions. The first lesson
is that, although it is known that NOR and NAND gates
could be in principle used as the single logic elements to
implement any logic circuit (18) this solution is largely ig-
nored by the algorithm. Secondly, the N-IMPLIES function,
which was successfully used in (5) seems to be a key com-
ponent in most solutions. Since the N-IMPLIES gate is not a
standard component in electronics but seems to be very im-
portant here, this suggests that some design principles used
in synthetic biology might need to be revisited.

The potential power of distributed computation as de-
scribed above is illustrated by noticing that even a small
number of engineered cell types makes possible to create
hundreds of synthetic circuits (5) and thus a huge poten-
tial array of functions. Adding wires makes the combina-
torial power of the system to rapidly increase in orders of
magnitude the number of potential circuits, which are easily
achieved thanks to the enormous capacity for tinkering and
combination.

Discussion
Synthetic biology has been rapidly gaining relevance and
potential as novel techniques are getting incorporated to the
field and new applications start to emerge (? ), (20), (21).
Our view of the area in terms of computation is simply a
way of addressing the combinatorial potential of functional
circuits in a very broad way. Such view allows to properly
address some of the key problems in the field, namely wiring
constraints and real combinatorial design. Our recent work
indicates that by removing the assumption of specified out-
put units, by allowing the output to be distributed over mul-
tiple cell types, low-wiring, combinatorial circuits can be
obtained.

NOR
AND

NI2NAND

IM2

IM1

OR

NOT

NI1

Figure 6: The weighted network obtained for many differ-
ent evaluations of the evolutionary algorithm searching for
multicellular MUX networks.

The previous results are encouraging in two different
ways. On the one hand, given the truly combinatorial po-
tential of the method, hundreds of possible synthetic designs
can now be constructed. The method allows to predict pos-
sible ways of building minimal circuits and thus adapt the
required result to experimental constraints. But it also opens
an interesting framework to approach more general ques-
tions. Our method shows that an unexpected way of solving
computational problems can be obtained.

The resulting solutions are counterintuitive and reveal an
alternative form of actually achieving the right computation
through cellular consortia that can be disconnected into sev-
eral pieces. Moreover, the results might be more general.
For convenience, we have presented our work in terms of
cellular consortia, where the basic, spatially defined units
are cells. But it might well be the case that other scenar-
ios, such as sub-cellular structures, also fit within our frame-
work. Different cellular compartments could in principle
perform parts of the computational processing required to
implement a given function in a distributed manner. Since
biology tends to make possible everything that can be imag-
ined under reasonable terms, we predict that the kind of
computations presented here are likely to be found in living
systems.

It is also interesting to notice that reliable computation at
low wiring cost has been achieved through a method where
autonomous parts emerge as part of the solution. Given a
function to be implemented, the architecture of the result-
ing design involves different parts contributing to the over-
all computation but essentially independent. This result sug-
gests that the evolved circuits might actually display a high
degree of robustness, and preliminary results seem to con-
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Figure 7: A toy space of computations where the three
axes include the presence of spatial segregation, degree of
multicellularity and to what extent the computation is se-
quential or parallel. Several well known examples are lo-
cated at roughly representive locations. Here LV= Lotka-
Volterra synthetic ecosystem, HC=mutualistic synthetic sys-
tem, NAND, NOR chips: small chips constituted by only
NAND and NOR gates, widely used as basic building blocks
in many electronic designs; FPGAs: field programmable ar-
rays.

firm this point.
Finally, our results also introduce an additional layer of

complexity within biological computation. If we define
an imaginary, qualitative space of computational structures
where the number of different cells and the presence of space
define two axes, a third one would be the relative importance
of distributed computation as defined here (in terms of the
output). A tentative (and by no means exhaustive) picture of
this space is provided in figure 7. In this space, we have al-
located different known systems that differ in their computa-
tional power and how it works. Our distributed computation
approach defines, a corner of this diagram (encircled, right
sphere). The three axes are intended to capture three relevant
features of computational systems. These are: (a) degree of
parallelism, (b) diversity of units involved (cells for our en-
gineered systems but can be ant castes or electronic compo-
nents in other contexts) and (c) spatial embedding, meaning
how relevant is the spatial distribution of the agents while
performing computations.

This is a largely unexplored space, where spatial degrees
of freedom can help to further simplify our implementation
and simultaneously increase our combinatorial power (un-
published results). Moreover, it is possible to show that
a limit case of our implementation, where all cells in the
consortia are actually disconnected among them, can suc-
cessfully be implemented too. Many open questions emerge
from this work, but it also provides an elegant and promising

scenario where many relevant questions will be testable, in-
cluding potentially unexplored forms of computation, their
robustness and evolution.
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Abstract 

Biological systems are insanely complicated.  If we look at the details of plant growth, of the vertebrate adaptive immune system, of 
bacterial horizontal gene transfer (to pick three areas with which I have a soupçon of familiarity), it is all insanely complicated, on 
every level, from top to bottom.  When a feature is this ubiquitous, it may just be necessary.  It is at least telling us something 
important. 

One of the guiding principles of ALife is studying, understanding, and creating life from the bottom up.  Since our only current 
exemplar, biological life, is insanely complicated, even at the bottom, what does this tell us about in silico implementations? 

Everything we are taught in Software Engineering is about reducing, constraining, containing, and managing complexity.  Well-
defined small stable interfaces.  Formally specified requirements.  Rigorous development of correct code.  And all this known and 
documented before the code is deployed in the field. 

Life however exhibits open-ended evolution, continual novelty: not only new organisms, but new species, new families, new 
phyla, new kinds of life.  Evolution evolves.  The code of life writes itself.   

Object-oriented agent-based simulations running inside an evolutionary algorithm, no matter how bio-inspired the genetic 
operators, nor how bio-inspired the developmental stage, are closed.  They cannot escape their small pre-specified box in possibility 
space.  They cannot exhibit open-ended evolution.  If we want life in silico, we have to allow the code to write itself. 

I am not suggesting that we throw up our hands in despair, pour assembly language into a big bucket and just let it trample all 
over itself, in the hope that life will emerge after several billion CPU years.  We can use bio-inspiration at the whole simulation 
level, to develop code that can self-adapt and self-modify in ways plausibly analogous to bio-evolutionary processes.  Hand-in-hand 
with our sophisticated understanding of biology, we need to use more sophisticated computer science, including self-modification 
through computational reflection.   
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Abstract 
With the first three hours of development, the Drosophila embryo establishes a precise pattern of transcription factors that divides 
the blastoderm into groups of cells destined to form different organs and tissues in the adult.  Along the dorsal ventral axis, the first 
and perhaps most important of these cell fate decisions is the establishment of mesoderm controlled by expression of the Twist and 
Snail transcription factors.   These cell fates decisions are immediately translated in changes in the shapes and physical properties of 
the 800 mesodermal cells and result in the formation of the furrow that translocates them to the interior.  Although at the cellular 
level these changes involve a re-organization of the cytoskeleton, adhesion and motor activities to achieve distinct shape we are 
interested in the underlying physical parameters that govern behavior.  

In my talk I will discuss the relationship between the initial transcription profiles and a novel pulsating reorganization of the 
Actin/Myosin cytoskeleton in the apical region of cells that will make the ventral furrow.  We show that the resultant contractile 
pulses drive cell shape changes in the entire mesodermal primordium.  The individual contractions appear to be unpolarized but they 
result in polarized wedge-like constrictions because global tension in the sheet is polarized along the AP axis.  We analyze the force 
distributions in the mesodermal primordia using a combination of genetics and RNAi to lower adhesive strengths between cells, and 
laser dissections to locally disrupt the cytoskeleton.  

We have developed analytical tools that allow tracking surface areas and volumes of all 800 mesodermal cells during the process 
of furrow formation.  We find that cell volume is essentially constant during the process and that global cell shape changes are 
pulsed in synchrony with the Actin/Myosin contractions in the apical surface.  We envision that force generated apically is 
transmitted over large distances by the non-compressible nature of the cytoplasm and suggest that similar mechanism that may 
underlie many morphogenetic movements. 
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Abstract

Knowing every single component of a given biological sys-
tem is not enough to understand the complexity of the system
but rather it becomes crucial to understand how these com-
ponents interact with each others. It is not only important
the knowledge of genes and proteins, but also knowing their
structures and primarily the laws and parameters governing
their dynamics, which is often unknown and impossible to
measure directly. The Gene Regulatory Networks explain ex-
actly how a genomic sequence encodes the regulation of ex-
pression of sets of genes, which progressively generate de-
velopmental patterns, and execute the construction of multi-
ple states of differentiation. Their main aim is to represent
the regulation rules underlying the gene expression. In this
work we have designed the CMA-ES algorithm to infer the
parameters in the S-system model of a gene regulatory net-
work. This model is a well-known mathematical framework
whose structure is rich enough to capture many relevant bi-
ological details, and it can model more complicated genetic
network behaviour. CMA-ES has been compared against 7
state-of-the-art algorithms to evaluate its efficiency and its ro-
bustness. From a general point of view, it seems clear how
CMA-ES is able to estimate in a better way the target pa-
rameters with respect to the state-of-the-art methods, either
in terms of success rate or in terms of Euclidean distance. Fi-
nally, this research paper includes a study on the convergence
of CMA-ES through Time-To-Target plots, which are a way
to characterize the running time of stochastic algorithms; and
a global sensitivity analysis method, the Morris algorithm.

Introduction
In the past few years studying how a system interacts
with the environment, or how simple components effect the
global behaviour of a given system, or even how parts of a
system interact with each others has been the main and most
challenging issue in many research areas. Many problems in
science and engineering are often hard to solve mainly be-
cause of the difficulty in understanding their indirect causes
and effects, which are not related in an obvious way. Assess-
ing all the single parts of a structure, or knowing all single
components of a given system is not enough to determine
and understand the complexity of system, although we need
to know how these objects interact. It is also well known that

the information on the complex molecular features are con-
tained in the genome of the organism, but is not clear what
are the codes and mechanisms that translate the sequences
into structures and functions. For example, from systems bi-
ology point of view, it is not only important a knowledge of
genes and proteins, but it is of primary importance under-
standing their structures, dynamics, and how their param-
eters influence the global dynamics: such parameters are
unknown and often impossible to measure directly. More-
over, studying dynamic properties of a biological system is
not only very important to gain a deep understanding of bi-
ological processes, but also to develop efficient treatments
against diseases. In systems biology reverse engineering the
processes can be regarded as a central part of the discipline
itself (Lee, 2005). Reverse engineering can be considered
as a process from which is possible to infer structural and
dynamics features of a given system from external observa-
tions and relevant knowledge. Thanks to that, today reverse
engineering techniques play a central role in systems biol-
ogy (Csete and Doyle, 2002; D’haeseleer et al., 2000). The
main focus in reverse engineering field is the identification
of genetic networks (Cho et al., 2007) in order to learn how
transcription factors are connected to genes (the determina-
tion of the interactions between all genes and understanding
of the regulatory networks are crucial to identify and develop
novel drugs), and understand the gene expression profile that
is a major issue in computational biology. In other words,
reverse engineering can help us to answer questions as: (1)
what are the functions of this gene? (2) which genes regulate
this gene? (3) how several genes interact? (4) which genes
are responsible for this disease? (5) which drugs will treat
this disease? Of course, a method to interpret these answers
is needed, in order to enhance our learning of living organ-
isms. Gene Regulatory Networks (GRNs) explain exactly
in which way genomic sequences encode the regulation of
expression of sets of genes that progressively generate de-
velopmental patterns and execute the construction of mul-
tiple states of differentiation (Davidson and Levin, 2005).
The main aim of GRN is to represent the regulation rules
underlying the gene expression. Albeit the study of GRNs
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nowadays is made easier thanks to the advances of new tech-
nologies however the solution to the problem is not trivial
due to the enormously large space of the unknown parame-
ters. In the last years several reverse engineering methodolo-
gies based on evolutionary algorithms have been presented
(Kabir et al., 2010; Kikuchi et al., 2003; Noman and Iba,
2007), which are more suitable to effectively and efficiently
reconstruct the networks in a given dynamic model. It is well
known as evolutionary algorithms work better than standard
methods when the problem to solve is nonlinear, and there-
fore or no solution is known a priori, or it is impossible to be
analytically solved. The great advantage of the evolution-
ary approaches on these tasks is own their applicability to
almost any models where mathematical analysis and revers-
ing is unavailable or inefficient. A good comparative study
among evolutionary algorithms in gene regulatory network
can be found in (Schlitt and Brazma, 2007). In this research
work, we present a new approach to infer parameters of a
gene regulatory network from time-series gene expression
data using S-system model (Irvine and Savageau, 1990). For
this kind of task, one of the best population-based optimiza-
tion algorithms has been used as learning paradigm: Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES)
(Hansen and Ostermeier, 2001).

The S-system model for gene expression
Developing accurate computational and mathematical mod-
els is needed to study the response of the gene regulation and
the gene sets with respect to their specific dynamics (many
important cell functions are largely determined by dynamic
processes of biochemical networks). Therefore, using math-
ematical models for the analysis of metabolic and regula-
tory pathways may contribute to a better understanding of
the behaviour of metabolic processes. These models, once
built, can be used to predict the behaviour of the organism
under certain conditions (Sirbu et al., 2010), it has been also
postulated that, once inferred the basic mechanisms of life,
it should be (theoretically) possible to create synthetic or-
ganisms (Barrett et al., 2006). Of course, the choice of the
model to use depends by how much information we try to
capture: more information a model trying to learn - more
parameters need to be inferred - more complex becomes
the model. Nowadays, there exist several types of mod-
els in literature that describe a gene regulatory network, as:
Boolean networks (D’haeseleer et al., 2000; Akutsu et al.,
1999); Bayesian networks (Friedman et al., 2000), and meth-
ods based on a steady-state description (Tegner et al., 2003).
Unfortunately, the main drawback of these models is that
the gene expression is represented only in the two extreme
levels, and therefore all genes are mapped only in a binary
state: on (1) or off (0). This disadvantage makes limited
use of such models since the real gene expression levels
tend to be continuous rather than binary. An other draw-
back is also given from their not ability to capture the non-

linear gene regulations, typical feature of the gene regula-
tory networks. To overcome this limitation, models based
on ordinary differential equations (Chen et al., 1999) have
been designed, which represent a very powerful and flexi-
ble model to describe complex relations among more com-
ponents. One of the most popular and studied approaches,
based on ODE, is the S-system model, whose structure is
rich enough to capture many relevant biological dynamics,
and it can models much more complicated GRN behaviour
(Wessels et al., 2001). A comprehensive interesting compar-
ative study on the three most used continuous systems based
on ordinary differential equations has been made in (Swain
et al., 2010) (S-system, artificial neural network (Vohrad-
sky, 2001), and general rate law of transcription (Mendes
et al., 2003)), where the advantages and disadvantages of
each deterministic model used for modelling gene regulatory
networks have been reported. In the last decades, inferring
gene regulatory networks from time-series data has attracted
a lot of attentions by many researchers in systems biology. It
is then important to develop proper models that incorporate
a suitable compromise among different requirements, as e.g.
computational complexity, the ability to capture nonlinear
gene regulations and the ability to handle noisy data. More-
over, it is also able to model much more complicated GRN
behaviour (Wessels et al., 2001), and therefore it presents a
good compromise between accuracy and mathematical flexi-
bility. The S-system model is a type of power-law formalism
used to model molecular networks, whose expression rates
are described as the difference between the activation and
degradation terms of a gene product. It is formally defined
as a set of non-linear ordinary differential equations of the
form:

dXi

dt
= αi

n∏
j=1

X
gij
j − βi

n∏
j=1

X
hij

j , (1)

where n is the number of the genes; Xi is the expression
level of the i–th gene; the exponential parameters gij e hij
represent the effective interaction of Xj to Xi. In equa-
tion (1), the first term represents all influences that increase
Xi, whilst the second term the ones that decrease Xi : if
Xj has a positive exponent it means that it has a positive
correlation on the aggregation process, whilst if it is neg-
ative then the genes are negatively correlated. Of course,
if the exponent is zero then there not exist any influence
on the aggregation process. From biochemical engineering
point of view, the non-negative parameters αi, βi ∈ [Rl, Ru]
are called rate constants, whereas the real value exponents
gij , hij ∈ [Kl,Ku] are referred to as kinetic orders. The
aim on the S-system model is inferring the set of param-
eters Ω = {αi, βi, gij , hij}, such that the fitness function
is minimized. Is easy to see how extracting the parameters
Ω in a genetic network with n genes is not trivial task due
to the high dimensionality of the problem: 2n(n + 1) pa-
rameters indeed must be inferred. Obviously, the difficulty
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of the problem increases by how much information need to
be captured. To overcome this limitation and facilitate the
regression task a decoupled variant of the model has been
proposed (Kimura et al., 2005; Noman and Iba, 2006; Vilela
et al., 2008a), which reduces the problem in n sub problems.
Through this decomposition strategy, the original optimiza-
tion problem is divided into n sub-problems where in any
gene i the parameter values (αi, βi, gij , hij) are individu-
ally estimated to attempt to capture the dynamics of the own
gene. In this way, the original problem of 2n(n+ 1) dimen-
sional is reduced in n sub problems each of 2(n+ 1) dimen-
sion. Thus, in the i–th sub-problem the expression level of
the gene i is computed by the following ordinary differential
equation:

dXi

dt
= αi

N∏
j=1

Y
gij
j − βi

N∏
j=1

Y
hij

j , (2)

where:

Yj =

{
Xj , if i = j

X̂j , otherwise,

with Xj computed solving the differential equation (2); and
X̂j estimated directly from experimentally observed time–
series data using differential equation (1). Estimating the in-
ferred set of the parameters is usually evaluated by the Mean
Squared Error (MSE) between the experimentally observed
expression levels, and the ones computed solving the system
of equation (1). Therefore, the optimization task is inferring
the parameters Ω in decoupled form in order to minimize
MSE.

The CMA-ES algorithm
To attempt to inferring the set of parameters of a genetic net-
work using the S-system model, we have adopted the CMA-
ES algorithm (Hansen and Ostermeier, 2001), one of the
best population-based optimization algorithms that is very
suitable primarily on non-linear and non-convex optimiza-
tion task. Since CMA-ES algorithm is well known inside
the evolutionary computation community, in this section we
give a short description on its main features. It is a (1 + 1)
elitist evolutionary strategy that generates candidate solu-
tions by adapting a covariance matrix C, such that steps
promising large fitness progress are sampled more often.
Conversely to other self-adaptive evolutionary algorithms,
CMA-ES adapts the covariance matrix, at generation g, by
additive updates of the form C(g) = αC(g−1) + βV (g−1),
where V (g−1) ∈ Rn×n is positive definite and α, β ∈ R+

0

are weighting factors. Let v(g−1) ∈ R a promising mu-
tation step, to increase the probability of sampling v(g−1)

in the next generation, the rank-one update is performed
in the equation: C(g) = αC(g−1) + βv(g−1)v(g−1)T . This
update strategy shifts the mutation distribution towards the
Gaussian with highest probability of generating v(g−1). The

CMA-ES algorithm is based on three main procedures: (1)
main loop, (2) step size updating procedure, and (3) covari-
ance matrix updating strategy. The CMA-ES main loop
follows the classical (1 + 1) scheme, where the offspring
xoffspring replaces the parent xparent if its fitness value
is better. Successively, the algorithm updates the step size,
which is based on the heuristic that increases it if the suc-
cess rate is high, and reducing it otherwise. The proce-
dure performs an update based on a binary variable (λsucc),
which is set to 1 if f(xoffspring) ≤ f(xparent), with
learning parameter cp ∈ (0, 1] using a target success rate
ptargetsucc . If psucc > ptargetsucc the argument is greater then
zero and the step increased; if psucc < ptargetsucc , the argu-
ment is smaller than zero and the step size is decreased oth-
erwise it remains unchanged. Finally, the update of the co-
variance matrix and the evolution path (pc) takes place if
f(xoffspring) ≤ f(xparent), and it depends on the values
of psucc; if psucc is high the update of pc is blocked in or-
der to prevent a fast increase of the C axis when the step
size is low, otherwise the update occurs by an exponential
smoothing. The new covariance matrix is a weighted mean
of the old matrix and the outer product pcpTc . Major de-
tails on CMA-ES can be found in (Auger and Hansen, 2005;
Hansen and Ostermeier, 2001; Cutello et al., 2010).

Results
For our experiments we have used the classical artificial
genetic networks that include an overall of 5 different in-
stances: 2 instances with 2 genes (Vilela et al., 2008a),
where 12 parameters need to be inferred for each; 1 instance
with 4 genes (Vilela et al., 2008a) and 40 parameters to be in-
ferred; and finally 2 artificial networks with 5 genes (Vilela
et al., 2008a; Kikuchi et al., 2003; Noman and Iba, 2006),
where 60 parameters must to be inferred. Of course, thanks
to these experiments we are also able to evaluate the per-
formances and efficiency of CMA-ES on this new kind of
complex optimization task. Due to a limit pages we show
in this section the results on the networks with 5 genes. In
all experiments, we have considered the ranges where com-
pute parameters (α, β ∈ [Rl, Ru], and gij , hij ∈ [Kl,Ku]),
as well as initial conditions, the same ones used in the rel-
ative papers from where each instance has been taken into
account. About CMA-ES algorithm, instead, we have fixed
µ = λ = 100, and 100 sample points; as termination cri-
terion has been used a maximum number of fitness func-
tion evaluation fixed to 108. Moreover, each experiment has
been performed over 10 independent runs as proposed in
(Vilela et al., 2008a). In the first experiments presented in
this section we compare CMA-ES with the algorithm pro-
posed in (Vilela et al., 2008a) (in the follows called Voit’s
algorithm), which is based on eigenvector optimization of a
matrix formed from multiple regression equations of the lin-
earized decoupled S-system. In these experiments we have
tested CMA-ES on artificial gene networks with 2 (two in-
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Table 2: CMA-ES versus state-of-the-art optimization algorithms. The comparisons have been done on a genetic network with
5 genes considering the Euclidean distance (deuc) as evaluation measure. In all algorithms, for each gene has been included
the best computed parameters (the rate constants αi, βi and the kinetic orders gi,j , hi,j).

gene αi gi1 gi2 gi3 gi4 gi5 βi hi1 hi2 hi3 hi4 hi5 deuc

CMA-ES
X1 5.0 0.0 0.0 1.0 0.0 −1.0 10.0 2.0 0.0 0.0 0.0 0.0

0.0
X2 10.0 2.0 0.0 0.0 0.0 0.0 10.0 0.0 2.0 0.0 0.0 0.0
X3 10.0 0.0 −1.0 0.0 0.0 0.0 10.0 0.0 −1.0 2.0 0.0 0.0
X4 8.0 0.0 0.0 2.0 0.0 −1.0 10.0 0.0 0.0 0.0 2.0 0.0
X5 10.0 0.0 0.0 0.0 2.0 0.0 10.0 0.0 0.0 0.0 0.0 2.0

MO-HDE (Liu and Wang, 2008)
X1 4.95 0.0 0.0 1.007 0.0 −1.011 9.9 1.997 0.0 0.0 0.0 0.0

0.05
X2 9.95 1.992 0.0 0.0 0.0 0.0 9.96 0.0 1.999 0.0 0.0 0.0
X3 10.22 0.0 −0.968 0.0 −0.002 0.0 10.24 0.0 −0.966 1.998 0.0 0.0
X4 7.93 0.0 0.0 2.009 0.0 −1.008 9.89 0.0 −0.004 0.0 1.993 0.0
X5 9.97 0.0 0.0 0.0 1.993 0.0 9.97 0.0 0.0 0.0 0.0 1.996

coop-CE (Kimura et al., 2005)
X1 4.917 −0.009 −0.003 1.019 −0.017 −1.014 9.922 2.021 −0.009 0.002 −0.009 −0.009

0.6178
X2 10.03 1.995 0.002 −0.002 0.006 −0.001 10.026 0.002 1.995 −0.002 0.002 0.0
X3 9.851 −0.005 −0.991 −0.004 −0.003 0.002 9.835 −0.004 −0.993 2.036 −0.01 0.002
X4 8.02 −0.007 0.006 2.0 −0.002 −0.998 10.054 0.001 0.003 0.008 1.988 0.007
X5 9.875 −0.002 0.003 0.018 2.015 −0.02 9.892 0.004 0.002 0.008 −0.01 2.017

HDE (Tsai and Wang, 2005)
X1 5.0145 0.0 0.0 1.0128 0.0 −1.0031 10.01 1.9936 0.0 0.0 0.0 0.0

0.737
X2 9.9 1.99 0.0 0.0 0.0 0.0 9.871 0.0 1.99 0.0 0.0 0.0
X3 10.321 0.0 −0.963 0.0 0.0 0.0 10.344 0.0 −0.9594 1.9987 0.0 0.0
X4 7.99 0.0 0.0 2.0157 0.0 −1.0026 9.981 0.0 0.0 0.0 2.0018 0.0
X5 9.966 0.0 0.0 0.0 1.985 0.0 9.967 0.0 0.0 0.0 0.0 1.997

TDE1 (Noman and Iba, 2005)
X1 4.762 −0.021 −0.021 0.993 0.0 −1.013 9.607 1.916 0.0 0.0 0.0 0.0

2.0597
X2 10.08 1.99 −0.001 0.035 0.0 0.0 9.817 0.0 1.938 0.0 0.012 0.0
X3 9.823 0.0 −1.00 −0.008 0.0 −0.001 9.835 0.0 −1.00 2.031 0.0 0.0
X4 7.182 0.0 −0.036 2.039 −0.052 −1.044 9.415 0.0 0.0 0.0 2.034 0.0
X5 10.103 0.0 0.005 0.05 1.997 −0.003 10.049 0.0 0.0 0.0 0.0 2.005

TDE2 (Noman and Iba, 2006)
X1 4.99 0.0 −0.008 0.98 −0.004 −0.997 10.003 1.978 0.0 0.0 0.0 0.0

2.2774
X2 10.051 1.995 0.004 0.009 0.002 −0.002 10.06 0.0 1.998 0.012 0.0 0.01
X3 9.936 0.004 −1.001 −0.001 0.0 0.0 9.937 −0.004 −1.001 2.007 0.0 0.001
X4 8.032 0.0 −0.011 1.949 0.0 −0.996 10.153 0.0 0.007 0.0 1.972 0.0
X5 10.011 0.0 0.003 0.023 2.002 −0.009 9.992 0.006 0.0 0.002 0.0 1.99

PEACE1 (Kikuchi et al., 2003)
X1 5.9 0.0 0.0 0.9 0.0 −0.9 10.6 1.7 0.0 0.0 0.0 0.0

74.0434
X2 10.0 2.1 0.0 0.0 0.0 0.0 10.2 0.0 2.1 0.0 0.0 0.0
X3 9.6 0.0 −0.9 0.0 0.0 0.0 9.7 0.0 −0.9 2.3 0.0 0.0
X4 9.4 0.0 0.0 1.9 0.0 −0.9 11.5 0.0 0.0 0.0 1.8 0.0
X5 10.2 0.0 0.0 0.0 2.1 0.0 10.2 0.0 0.0 0.7 0.0 1.9

Table 1: Success rate (SR) obtained by CMA-ES and Voit’s
algorithm (Vilela et al., 2008a) on 10 independent runs.
Both algorithms have been tested on an artificial network
with 5 genes.

gene CMA-ES Voit’s alg. (Vilela et al., 2008a)
X1 100% 100%
X2 100% 100%
X3 100% 0%
X4 100% 100%
X5 100% 100%

stances – normal and rescaled), 4 (rescaled) and 5 compo-
nents. For each instance three different data sets have been
used. All details about the instances can be found in the
relative additional material (Vilela et al., 2008b). On the

artificial genetic network with 2 genes both algorithms are
comparable in term of success rate (SR), that is how many
times the algorithm infers the parameters target. However,
if we compare the results where both algorithms fail, it is
possible to see as CMA-ES outperforms the compared al-
gorithm in terms of Euclidean distance between the com-
puted parameters and estimated parameters. This means that
CMA-ES is able inferring the set of parameters closer to the
estimated ones. The rescaled 2 genes network is, instead,
equal to the normal one where however α and β are multi-
plied by a constant. In this experiment, using all three data
sets, CMA-ES has been found the Ω target for each gene in
all 10 runs with SR = 100%, except for the gene X2 of the
3rd data set where SR = 70%. The compared algorithm,
instead, presents SR = 100%, excepts for the gene X2 in
the 2nd and 3rd data set, with respectively SR = 80% and
SR = 70%. In the overall, we can say that CMA-ES out-
performs the Voit’s algorithm (Vilela et al., 2008a) in both
artificial genetic networks with 2 components (in terms of

42 ECAL 2011



success rate and Euclidean distance). For the network in-
stance with 4 genes, both algorithms are equivalent, since
they have been able to find always the network target in all
10 runs (SR = 100%). About the experiments on the artifi-
cial network with 5 genes, CMA-ES and the Voit’s algorithm
have been compared on three different data sets. However,
due to the limit pages we report in Table 1 only the results
obtained on the 2nd data set. Inspecting the Table, is possi-
ble to see that albeit both algorithms reach a SR = 100%
for the genes X1, X2, X4, and X5 CMA-ES is able also
to inferring the estimated parameters for the gene X3 on all
10 runs (SR = 100%), where instead Voit’s algorithm fails
with a zero success rate. Fig. 1 shows the gene expression
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Figure 1: Gene expression levels computed by CMA-ES on
the artificial network with 5 genes using 100 sample points.

levels computed by CMA-ES on the second data set. Look-
ing the Table 1 is easy to understand how these curves repre-
sent exactly the gene expression levels of the target network.
These plots have been obtained with a time-series based on
100 sample points. Instead, about the experiments in order
to the other two data sets, we can say that from the obtained
results is clear as both algorithms are able to estimate for
all genes the target parameters, with SR = 100%, about
the first data set, unlike the third data set, where CMA-ES
shows best performances (in the overall) than the Voit’s al-
gorithm. In this last data set, CMA-ES outperforms Voit’s
Algorithm on the genes X1, X4 and X5 with a success rate
of 100%, with respect to a success rate of 30% (X1), and
0% (X4 and X5). Only on the gene X3 CMA-ES fails
over all 10 runs unlike the Voit’s algorithm that produces a
SR = 70%.However, although CMA-ES seems not compa-
rable to the Voit’s algorithm for the gene X3, if we take into
account only the remaining 30% of the computed parame-
ters by Voit’s algorithm, where SR = 0%, and we compare
them with all ones produced by CMA-ES is possible to note
how the inferred parameters by our algorithm seem better
in term of Euclidean distance from the expected target pa-
rameters. To better evaluate the robustness of our proposed

algorithm on these kinds of complex optimization tasks we
have compared CMA-ES with state-of-the-art algorithms on
S-system models. For these new experiments the Euclidean
distance from the estimated parameters has been chosen as
evaluation measure. A new instance with 5 genes has been
considered that is different from the previous one because
different ranges have been used where compute Ω parame-
ters. For this instance, moreover, it is important to point out
that CMA-ES has been tested on 100 independent runs, pro-
ducing an high success rate very closer to 100%. In Table
2 we report the comparisons of CMA-ES with the state-of-
the-art, where only the best results for all algorithms have
been included. The algorithms compared with CMA-ES are:
(1) MO-HDE (Liu and Wang, 2008), a multi-objective op-
timization approach based on an hybrid differential evolu-
tion; (2) coop-CE (Kimura et al., 2005), a cooperative Co-
evolutionary algorithm; (3) HDE (Tsai and Wang, 2005), a
hybrid differential evolution; (4) and (5) two different ver-
sions of trigonometric differential evolution (TDE1 (Noman
and Iba, 2005) and TDE2 (Noman and Iba, 2006)); and fi-
nally (6) PEACE1 (Kikuchi et al., 2003) based on a Ge-
netic algorithm. From the Table is clear as CMA-ES pro-
duces the best performances with zero Euclidean distance,
whilst the best among the compared algorithms was able to
reach 0.05 as Euclidean distance from the estimated param-
eters. The genetic algorithm is instead the one with worst
performances. It is possible to claim that CMA-ES outper-
forms the current state-of-the-art optimization algorithms on
S-system models.

Time-To-Target Analysis
Time-To-Target plots (Aiex et al., 2002) are a method to
characterize the running time of stochastic algorithms to
solve a given computational optimization problem. They
display the probability that a given algorithm will find a
solution as good as a target within a given running time.
Nowadays they are standard graphical methodologies for
data analysis to compare the empirical and theoretical distri-
butions (Aiex et al., 2002, 2007). By Time-To-Target analy-
sis two kinds of plots are produced: QQ-plot with superim-
posed variability information, and superimposed empirical
and theoretical distributions.

We ran CMA-ES on the genetic network with 5 genes,
and where the success rate in inferring the set of parameters
of all genes is 100%. For this kind of experiments a different
termination criterion has been properly tuned: until finding
the parameters target for each gene (SR = 100%). Because
larger is the number of runs closer is the empirical distribu-
tion to the theoretical distribution, the plots presented in this
section have been produced after 100 independent runs. The
Fig. 2 shows the convergence process produced by CMA-
ES using tttplots.pl on n = 5 network instance. In
the top plot is showed the comparisons among empirical and
theoretical distributions, whilst in bottom one is showed the
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Figure 2: Time-To-Target plots for the network with 5 genes.

QQ-plot with variability information. Looking the top plot
is possible to see as the curves of the empirical and theoreti-
cal distribution are equivalent. A different behaviour instead
is showed on the bottom plot; this is likely due, since CMA-
ES finds in quick way the parameters target.

Sensitivity Analysis – The Morris Method
The Morris method is one of the most popular models to
evaluate the importance of any single parameter of a given
system, showing own the main interactions between the pa-
rameters. In this method, any parameter assumes a discrete
number of values chosen inside a range of variation; these
values are called levels. Morris (Morris, 1991) has used a
sensitivity analysis based on the elementary effect of the j–
th parameter, defined as:

EEj(p
∗) =

[
f(p∗1 ,...,p

∗
j−1,p

∗
j +∆,p∗j+1,...,p

∗
Np

)−f(p∗)
]

∆ ,

where ∆ is a predetermined multiple of 1/(k − 1) (k is the
number of levels) . To understand what are the parameters,
which influence on the output we have performed the Morris
method for the S-Systems models, with n = (2, 4, 5) genes.
The obtained results are showed in Fig. 3. Two sensitivity
measures, µj and σj , have been evaluated for any parameter
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Figure 3: Sensitivity analysis by Morris method. A high
value of µ indicates a parameter with an important overall
influence on the output. A high value of σ indicates a param-
eter involved in interaction with other parameters or whose
effect is nonlinear. The results show high µ and σ values for
h21 and β2 for the GRN with N=2 genes (top plot), for α2

and β3 for the GRN with N=4 (middle plot), for g24, g44,
g51, h15, h24, h32, h45 for the GRN with N=5 (bottom plot).

j: the first represents an estimate of the mean of the distri-
bution of the elementary effects, whilst the last indicates its
standard deviation. High value of mean represents an impor-
tant overall influence on the output by the given parameter;
whereas high values of the standard deviation for the j–th
parameter means that it is involved in interaction with other
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parameters, or whose effect is nonlinear.

Conclusion
In this research paper we have presented a new approach
for inferring the parameters in S-system models of gene reg-
ulatory networks. The CMA-ES algorithm has been used
for this complex optimization task, and 5 different instances
have been taken into account to evaluate its performances
and its robustness: 2 instances with 2 genes - 12 parame-
ters need to be inferred for each network; 1 instance with
4 genes - 40 parameters to be inferred; and 2 artificial net-
works with 5 genes - 60 parameters must to be inferred for
each instance. The proposed algorithm has been compared
with 7 state-of-the-art algorithms: (1) Voit’s algorithm, (2)
MO-HDE; (3) coop-CE; (4) HDE; (5) and (6) two differ-
ent versions of trigonometric differential evolution; and (7)
PEACE1. The first experiments have been done on the in-
stances with n = (2, 4, 5) components taken from (Vilela
et al., 2008a), comparing also CMA-ES with Voit’s algo-
rithm. Due to the limit pages only the Table with the results
obtained on a genetic network with n = 5 genes has been
included in the paper. Analyzing the results obtained on all
instances appear to be clear how CMA-ES is more able to
estimating in a better way the parameters target, either in or-
der to the success rate and in term of Euclidean distance. To
have a better knowledge about the robustness of CMA-ES,
we have compared it also with the current state-of-the-art
algorithms, where the Euclidean distance has been used as
evaluation metric. From these comparisons, CMA-ES is the
only algorithm able to inferring the parameters effectively.
Reviewing all experiments from an overall point of view is
possible to claim that CMA-ES is an effective optimization
algorithm for complex tasks, ranking as among one of the
best reverse engineering methodologies on S-system mod-
els. Finally, in this research paper has been also included
a study on the convergence process of CMA-ES through
Time-To-Target plots, which are a way to characterize the
running time of stochastic algorithms; and a global sensitiv-
ity analysis method, the Morris’ algorithm.
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Abstract

Quinn (2001) sought to demonstrate that communication be-
tween simulated agents could be evolved without pre-defined
communication channels. Quinn’s work was exciting because
it showed the potential for ALife models to look at the real
origin of communication; however, the work has never been
replicated. In order to test the generality of Quinn’s result
we use a similar task but a completely different agent archi-
tecture. We find that qualitatively similar behaviours emerge,
but it is not clear whether they are genuinely communicative.
We extend Quinn’s work by adding perceptual noise and in-
ternal state to the agents in order to promote ritualization of
the nascent signal. Results were inconclusive; philosophical
implications are discussed.

Introduction
Artificial life researchers have been modelling the evolution
of communication for some time now (for early examples
see MacLennan, 1992; Werner and Dyer, 1992; Noble and
Cliff, 1996). Communication is of interest in our field for a
range of overlapping reasons, most notably because it is as-
sociated with two of the major transitions in evolution (May-
nard Smith and Szathmáry, 1995): the jump from solitary to
social living; and the later development of language and cul-
ture in our own species. ALife’s agent-based simulations
are a natural match for this research area as they can pro-
vide emergent explanations of communication and related
co-evolutionary phenomena that are not possible using more
traditional modelling techniques.

However, prior to the publication of a seminal paper by
Quinn (2001), computational models of the origins of com-
munication and language were missing an important oppor-
tunity. Influenced by game theory, by the long shadow of
Shannon and Weaver (1949), and by what Lakoff and John-
son (1980) called “the conduit metaphor” for communica-
tion, modellers tended to assume that a signalling channel al-
ready existed between the relevant agents, and that the thing
to be explained was how and why that signalling channel
would come to be used for honest, coherent, and reliable
communication. MacLennan’s (1992) early work, for exam-
ple, imagined agents with eight possible world states, each

matched with one of eight preferred responses, and a con-
venient library of eight ready-made symbols that had to be
mapped, over evolutionary time, in a way that would allow
pairs of agents to communicate and thus perform optimally.

These kinds of models ignored the apparently vicious cir-
cle involved in the evolution of natural communication sys-
tems: for a signal to have any meaning, for it to be worth
producing, there has to be a community of responders. But
why would the appropriate response behaviour already exist
if the signal itself has not evolved yet?

This paradox had been noted, and resolved, many years
earlier by the ethologists (Tinbergen, 1964). The two
key concepts in the ethological picture of the evolution of
communication are “intention movements” — non-signals
which provide the raw materials for signal evolution — and
the subsequent “ritualization” of the nascent signal. Inten-
tion movements have not been selected for per se; they are
simply a physically necessary step in performing some ac-
tion, e.g., an animal that intends to bite an opponent must
bare its teeth before doing so. Intention movements thus
provide information about future behaviour, and it is not dif-
ficult to see how such movements, coupled with the comple-
mentary ability to recognize them, might provide the seeds
for the evolution of a communication system. Ritualization
is what happens when an initially irrelevant movement such
as teeth-baring starts to be of informational value to other
animals. The ethologists, assuming that the reliable trans-
mission of information would always carry a selective ad-
vantage, thought that the original cue would then be exag-
gerated or stylized in the interests of reducing ambiguity.

Inspired in part by the ethological perspective, Quinn
(2001) sought to demonstrate in a simulation that communi-
cation between agents could be evolved without pre-defined
communication channels; in other words, he hoped to pro-
duce a genuine account of the origin of communication.
Quinn’s point was that by supplying a signalling channel
and a library of signals, most of the previous models were
assuming the existence of exactly what it was they should
be trying to explain. He began with pairs of agents that were
linked only by basic sensory-motor interaction, i.e., if one
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agent moved this could be detected by the visual system of
the other agent. The agents were then faced with an explic-
itly cooperative task: moving their joint centre of mass as
far as possible within a time limit. A genetic algorithm (GA)
was used to select for agents that, when paired with another
member of the population, managed to coordinate their be-
haviour and score highly on the task. Quinn interpreted his
results as showing that communication had evolved in the
form of a dance-like negotiation process between the agents
that was followed by matched movement away from their
starting positions. Note that no explicit role allocation had
been forced on the agents: each one was equally likely to
end up as the leader or the follower in the movement phase.

Quinn’s work was exciting because it showed the poten-
tial for ALife models to look at the real origin of communi-
cation, rather than just the conditions under which it could be
maintained in a system where it was already possible. The
model is appealing in that it provides a great example of the
kind of emergent explanation that ALife can provide, and
a potential bridging account between two levels of descrip-
tion (i.e., the level of raw sensory-motor interaction and the
level of symbols and reference). It is also a valuable con-
tribution to the biological literature on communication be-
cause it lends support to the ethological theory of intention
movements and ritualization. Finally, Quinn (2001) is a very
popular paper, having been cited 113 times as of April 2011,
according to Google Scholar.

However, Quinn’s work has never been replicated. We
feel that precisely because Quinn’s approach is so promis-
ing, it is important to establish its generality before going
further: one goal of the current paper is to check whether
Quinn’s central result is robust. Quinn was working in
the area of evolutionary robotics and used a fairly detailed
model of a real robot; he also employed a continuous-time
recurrent neural network (CTRNN) as the evolvable control
architecture. What if his result was a freak occurrence, and
turned out to be contingent on some detail of the robot’s sen-
sory system or cognitive architecture? The general finding
should be robust across these specific details if it is going to
be of any value, and therefore we have attempted to repli-
cate Quinn’s work using a different model of agent percep-
tion and movement, as well as a different evolvable control
architecture.

We also want to ask: did Quinn pick the right task? He
showed the emergence of (at least) a coordination protocol
between pairs of agents, but did he definitively show the evo-
lution of communication? This in turn raises questions about
how to define communication and how to distinguish it from
“mere” coordinated behaviour; we will address these issues
below. Scheutz and Schermerhorn (2008) make the point
that in many simple ALife scenarios, there may not in fact
be any selective pressure for a communicative solution, and
we feel this may regrettably apply in the Quinn case.

Figure 1: The layout of the ray-cast sensors of our agents.
Note that this is not an exact replication of Quinn’s simulated
Khepera robots. The diagram is not to scale: robot diameter
is 55 mm and maximum sensor range is 50 mm.

The model
Our goal in the first instance is to find out how general
Quinn’s result was, and thus we have set up a similar task
but used a completely different agent architecture. Quinn’s
agents were fairly realistic simulations of a Khepera — these
are small, low-cost cylindrical robots, 55 mm in diameter
and 30 mm in height, with two independent motors driv-
ing two wheels, and a set of eight infra-red (IR) proximity
sensors giving the robot the ability to perceive nearby ob-
jects. We constructed our own 2D simulator that was less
detailed than Quinn’s. Our agents are of the same size and
shape as a Khepera robot but the sensors are of a different
kind, number, and position: see figure 1 for details. Most of
the changes we have made to Quinn’s design are arbitrary,
and that is exactly the point. We need to keep certain basic
features the same so that the coordinated movement task is
both recognizable and feasible, but beyond that our simula-
tion will work best as a measure of the generality of Quinn’s
result if it is as different as possible.

The agents have been simplified in several ways, but the
cylindrical shape has been kept in order to make them rota-
tionally invariant and thus prevent any simple short-cuts that
would allow one agent to detect the orientation of its part-
ner. The drive wheels of the Khepera, and details such as
inertia and friction, are no longer simulated. Movement and
rotation are simply transforms in the two-dimensional sim-
ulated environment; agents are moved and rotated around
their centre-point. The eight IR sensors have been replaced
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by ten ray-cast sensors. They operate by throwing a ray of
a certain length and infinitesimal width along the vector the
sensor is pointing to. If the ray collides with the other agent
(there is nothing else in the environment) within its 50 mm
range, the sensor reports the collision distance. If the ray
gets to the end of its range without colliding with anything
(either because the other agent is not present in that direc-
tion, or is more than 50 mm away) the sensor reports 51 mm.
Since the amount of space covered by these sensors is sig-
nificantly smaller than the overlapping fan-shaped response
areas of the IR sensors, two additional sensors have been
added, bringing the total to ten per agent.

Instead of using a CTRNN as a controller, as Quinn did,
our model is based on a simple production-rule system. This
is much like a classifier system but with the real-time learn-
ing capability removed. Every rule or classifier is composed
of a set of ten sensor threshold values, logical operators link-
ing each of these, a comparator condition describing how the
sensor values should be compared with the thresholds (less
than, greater than, or equal to) and an associated behaviour.
Classifiers are fired when the sensory input of the agent at
a given time-step matches the classifier condition. When no
classifier can be matched a default behaviour is chosen. Ev-
ery classifier also has a “weight” to avoid clashes when more
than one classifier matches the sensory input. In such cases
the highest-weighted classifier is fired. Note that the weight
of a classifier is not altered by experience: it is a purely ran-
dom value which can be affected by mutation as can the rest
of the classifier.

Agents with internal state are introduced later on in the
paper (the initial agents do not have internal state) and they
are effectively finite-state machines. Classifiers are specific
to a particular internal state of the agent, and when a classi-
fier is fired the state of the agent changes to the output state
of the classifier. If no classifier can be matched, there is a
default output state, and thus any time the default behaviour
is fired, the agent switches to this default state.

In order to make this a replication, the task the agents
face is exactly the same as in Quinn’s work: a pair of agents
must move their joint centre of mass as far as possible while
staying within each other’s sensor range and without collid-
ing. We used much the same type of GA as Quinn did to
evolve the population of agents, but some of the parameters
employed, as well as the way fitness is computed, are dif-
ferent. As in the original model, there is no predefined role
allocation. Agents are drawn randomly from a population
of 25 individuals and evaluated in pairs. The initial posi-
tions and angles of every pair are not randomly generated
but picked from a predefined set (see Quinn’s original pa-
per for more details). Each pair is given 15s (in simulation
time) to solve the task. Evaluation is performed in discrete
time steps of 0.25s; at every time step new sensor values
are computed for both agents; and finally the agent behaves
according to its sensory input through the activation of the

highest-weighted matching classifier. Each agent in the pair
gets the same score depending on their joint performance. A
selection process keeps the best 60% of agents and deletes
the rest in every generation, with new agents being created
through recombination and mutation of the successful in-
dividuals of the previous generation. Recombination is per-
formed as an uniform macro crossover operation by combin-
ing the classifiers from both parents. Since recombination is
performed at a macro scale, classifiers are never split. Every
classifier element is susceptible of mutation. Mutation rates
are, depending on the number of state bits, 0.21 (stateless
case), 0.22 (1 bit state case) or 0.23 (2 bits state case).

The fitness of every pair of agents is computed as an
average over two different terms. The first term measures
whether or not the agents are in each other’s sensory range
and is itself averaged across all simulation time steps. This
term is important in shaping effective solutions, as the agents
are effectively very short-sighted and moving out of sensor
range is usually a disaster for the over-arching goal of mov-
ing the joint centre of mass in a consistent direction. The
score of an agent on a given time step is computed as an ex-
ponential decay function on the distance to the other agent.
If an agent is in sensor range the fitness obtained is 1.0, oth-
erwise fitness decreases exponentially with the distance. The
maximum distance is computed as the maximum linear dis-
tance an agent could achieve given its linear velocity and the
overall simulation time.

At the end of the simulation the second fitness term is
computed: it measures the distance that the agents have trav-
elled. If either agent has travelled at least 250 mm then
this component of fitness is 1.0. If the agents have trav-
elled a shorter distance from their starting positions, this fit-
ness component will be the quotient of the distance trav-
elled by whichever agent has travelled the furthest, over the
target distance. Note that an agent could travel approxi-
mately 500 mm — double the target distance — during the
time available if it moved away in a straight line, which
means that the fitness function allows the agents a reason-
able amount of time for potential communication before
movement begins in earnest.

Even though the overall goal is moving the joint centre
of mass, we do not measure this directly. Optimal perfor-
mance is achieved by staying in sensor range and moving
as far as possible. The final fitness score is the average of
the two terms described above, and thus the maximum score
is 1.0. Fitness scores of 0.5 are relatively easily achieved
by either not moving at all (thus staying in sensor range and
scoring highly on the first component) or moving off in ran-
dom directions at full speed (scoring highly on the second
component).

Finally, at the end of a generation the final fitness of each
agent is equal to the average of its scores across many differ-
ent evaluations with different partners and in different initial
positions. Note that all initial positions have the agents start-
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Front Right Rear Left
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 Behaviour

Rule 1 49 ∨ 9 ∧ 35 ∧ 37 ∧ 29 ∨ 13 ∧ 33 ∨ 29 ∧ 18 ∧ 19 Forward
Rule 2 14 ∨ 16 ∧ 47 ∧ 37 ∧ 47 ∧ 20 ∧ 38 ∨ 10 ∧ 23 ∨ 26 Backward
Rule 3 23 ∧ 39 ∨ 49 ∨ 14 ∧ 40 ∨ 16 ∨ 35 ∨ 8 ∧ 27 ∧ 20 Rotate CCW
Rule 4 49 ∨ 9 ∧ 2 ∧ 37 ∧ 29 ∧ 19 ∧ 4 ∨ 37 ∧ 26 ∨ 19 Forward
Rule 5 3 ∧ 9 ∧ 15 ∨ 43 ∧ 14 ∧ 8 ∧ 6 ∨ 44 ∧ 38 ∨ 20 Backward

Default Rotate CCW

Table 1: The production rule set of a high-performing strategy found during the replication runs (this rule set leads to perfect
performance on the task). For each rule, the table lists the threshold value in mm for each of the ten sensors, and the logical
operator (either “and” or “or”) used to link them. In every case the rules used the “less than” comparator, i.e., the value would
be true if the other agent was detected at the given distance or closer. Note the mix of “forward”, “backward”, and “rotate
counter-clockwise” behaviours that combine to produce coordinated movement. An agent that could detect nothing within
sensor range would fall through to the default behaviour of counter-clockwise rotation.

ing inside each other’s 50 mm sensor range.

Replication results
We ran our simulation 30 times, with each run lasting 2000
generations.

Quantitatively our mean and maximum fitness values
were similar to Quinn’s despite the differences in the agent
architecture, the GA, and the fitness function. Some of the
agents scored very high and even perfect fitness levels al-
though these could not be maintained in the long run as
mutation pressure prevented the population as a whole from
adopting an optimal strategy. Table 1 shows one of the best
rule sets evolved.

Qualitatively, we have analyzed in detail the kinds of
strategies that evolved in the most successful runs. Al-
though many different strategies evolved that could accom-
plish the coordination task, we found that the most common
and the most successful one we observed fits reasonably well
with the main strategy described by Quinn. Figure 2 illus-
trates the sequence of behaviours. Both agents start rotating
counter-clockwise (A) until the first agent (shown in brown)
reaches its favoured alignment relative to the second agent
(shown in white) and starts moving one step forward and
one step backwards in order to “signal” its readiness and di-
rection to the second agent (B). In the meantime, the second
agent keeps rotating counter-clockwise until it matches the
first agent’s alignment (C). When both agents are aligned
and pointing in opposite directions, the first agent starts
moving backwards while the second agent starts moving
forward, and thus they move together until the end of the
time frame (D). Many variations on this strategy exist, with
varying degrees of speed and reliability in achieving align-
ment. Quinn also notes that the strategy he picked to illus-
trate the behaviour of the agents is just one of the simplest
cases among many variants observed.

The change in the number of collisions over evolutionary
time also matches Quinn’s results. The collision rate is ex-

tremely high in the early generations but rapidly decreases
as fitness increases. Sudden decreases in the collision rate
usually match fitness jumps even though our implementa-
tion does not include an explicit penalty for collisions. We
can also confirm that, as Quinn stated, the evolution of suc-
cessful behaviours is extremely sensitive to the initial condi-
tions used (the starting distance between the two agents and
their relative orientations) as well as to how the agents are
evaluated. In essence every agent has to be evaluated with
every possible angle and distance: random runs in which ev-
ery agent is evaluated with different randomly chosen start-
ing distances and relative orientation angles are completely
unsuccessful.

There were many differences introduced between Quinn’s
setup and our own, notably the use of a different sensory sys-
tem and control architecture. Nevertheless we managed to
replicate Quinn’s findings: very similar behaviours evolved.
We therefore suggest that the emergence of coordinated (and
possibly communicative) behaviour to solve this type of task
is likely to be a general and framework-independent finding.

Re-examination of the Quinn paradigm
In the previous section we reported the successful replica-
tion of a dance-like negotiation phase between the pairs of
agents. This is a pleasing result as it goes some way to-
wards showing that Quinn’s findings are general. However,
we did not observe any unequivocal “ritualization” process
by which the signal became more exaggerated over time.
This led us to wonder whether our agents were really com-
municating at all.

So what do we mean by communication anyway? Should
we expect a sharp dividing line between coordinated be-
haviour and “true” communication? Some ideas from the
philosopher Millikan (1984) will be useful here. She argues
that although there is no sharp line between those two cat-
egories, there is certainly a distinction worth making. Mil-
likan lays out four classes of representational phenomena,
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A B
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Figure 2: Illustration of the evolved sequence of behaviours in a typical case. A: agents rotate until one reaches a favoured
orientation. B: the first agent to achieve this starts moving backwards and forwards. C: the second agent orbits the first until it
is aligned in the opposite direction. D: the two agents move away together, with the second agent moving in reverse.

in order of increasing sophistication: tacit suppositions, in-
tentional icons, inner representations, and mental sentences.
The first two are all we will need given the simplicity of our
agents. (Millikan’s typology was initially directed at the is-
sue of what might count as an internal representation within
a single organism but it is relevant to our purposes as she
sees communication as simply the exchange of representa-
tions between organisms.)

Tacit suppositions occur when the design of an organism
meshes so neatly with a feature of the environment that it
is tempting to say the design “represents” that feature. For
example, if a biological clock produces a cycle close to 24
hours then we may be tempted to say that the clock mech-
anism somehow represents the length of the day. Millikan
refers to such adaptations as tacit suppositions because they
presuppose certain facts about the environment in order that
their evolved function is fulfilled.

For a system to qualify as minimally representational, it
must involve more than tacit suppositions. Firstly, there
must be something identifiable as the representation itself:
an “icon”. Furthermore, the icon must have a “producer”

and a “consumer”. It must be the function of the producer
to generate the icon in accordance with a mapping rule that
relates one or more dimensions of possible variance in the
icon to variance in the environment. It must be the evolved
function of the consumer to use or be guided by the icon
in some way. If all of these conditions are met, Millikan
suggests that the system involves an “intentional icon”. For
example, the waggle dance of the honeybee is a paradigm
case of an intentional icon: the dance itself is the icon, the
dancing bee is the producer, and a mapping rule relates the
angle and duration of the dance to the direction and distance
to a food source. The watching bees are the consumers of the
icon, because it is the adaptive function of the dance to guide
them to the food source. The important point is that there is
a difference between tacitly supposing that the world — in-
cluding your interaction partners — regularly works in a cer-
tain way, and evolving a distinct behaviour or trait that has
been selected for on both sides (production and reception)
precisely because it conveys information from one agent to
the other.

Consider the difference between two scenarios. In the first
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one, you are at home, and it is my job to pick you up in a car.
I drive to your house: you are not outside, so I drive around
the block repeatedly and check again for your presence each
time I go by. Assuming I do that reasonably reliably, you
can tacitly suppose the existence of my strategy, and go out
into the street whenever you see my car going by. I will then
see you and stop to pick you up on the next cycle. Both of
us have strategies that rely on the other one acting a certain
way but neither strategy has been exaggerated into a signal.
We are coordinated but not communicative. The second sce-
nario is exactly the same, except that through some adaptive
process we have arrived at a communicative solution: I honk
the horn three times in quick succession, and you come out-
side in response.

These two scenarios demonstrate the difficulty of showing
that Quinn’s (or our) observed behaviours are anything more
than coordinated. Each agent is tacitly supposing that the
other will rotate, align, move forwards and/or backwards,
etc. The dance-like movement is, on the surface, reminiscent
of the bee dance, and we suspect this resemblance has made
many readers of Quinn’s original paper confidently interpret
the behaviour as communication. However, it is important
to note that there is no mapping rule and no clear referential
signalling going on.

What would it take to make Quinn’s negotiation dance a
signal? In answering this question, Millikan would agree
closely with the ethologists. Non-signalling behaviours
must provide the seed for signalling behaviours — how
could it be otherwise? So the thing to look for in classifying
something as “real communication” is a history of selection
for exaggeration on both sides, both in the production of the
signal and the sensitivity or scale of the response. In Quinn’s
paradigm we do not really see this: as far as we can tell from
historical analyses of our runs, the agents hit on their coor-
dination strategy and it remains essentially unchanged.

Quinn’s dance in its current form appears to be a bor-
derline case: it surely qualifies as an intention movement,
and is quite possibly ripe for exaggeration into a signal. In
the next section we try to push things towards communica-
tion by adding both perceptual noise and internal state to
the agents. Noise may make a difference in that we can
imagine the “dance signal” being exaggerated or strength-
ened to make sure it cannot be misunderstood in a noisy
environment. State is a slightly different story: our state-
less agents are necessarily reactive. It is not clear whether
Quinn’s CTRNN agents had any internal state; they might
have, due to the possibility of recurrent connections. If we
add state bits and find that this improves performance, that
means that the task was “state-hungry”, which in turn sug-
gests a potential interpretation in terms of intentional icons,
i.e., that the agents could be communicating about their cur-
rent internal state.

Results of the extended model
We extended our replication of Quinn’s model to try to as-
sess whether or not the evolved behaviours really qualify as
communicative. In order to do so we have added two new
features: perceptual noise and internal state. The addition
of Gaussian noise to the sensory inputs adds ambiguity to
the perceptual world of the agents and would seem likely to
make the task more difficult. Thus it might be a driver for
more explicitly communicative strategies. The second ex-
tension is the addition of 1 and then 2 bits of internal state
to the agents. The acquisition of internal state enhances the
cognitive capabilities of the agents, giving them more be-
havioural options than a purely reactive agent. This should
make it easier for the agents to sequence their coordinated
behaviours over time, but for our purposes it may also give
them something to communicate about, i.e., their current in-
ternal state values.

We added 17 new sets of 30 runs each, employing dif-
ferent noise values (0%, 1%, 2%, 4%, 8% and 16%) and
adding either 0, 1 or 2 bits of internal state to the agents. In
the end we have a total of 18 run sets (including the origi-
nal noiseless-stateless run) exploring every combination of
noise and number of state bits. In order to reflect the in-
creased range of behavioural possibilities that come with
having internal state, we have also increased the number
of classifiers from 5 (in stateless runs) to 10 (for 1-bit state
runs) and 15 (for 2-bit state runs).

The results are presented in figure 3; the general pattern is
in line with our expectations. We can see that the addition of
noise decreases the performance of the agents in solving the
task. On the other hand, the addition of state seems to make
the task easier: the 2-bit condition is only slightly superior
to the 1-bit condition, but both increases the mean fitness of
the population over the stateless case.

When looking at the different runs individually, we find
that state-equipped agents evolved more robust strategies
than stateless ones. In fact, some of the 2-bit state so-
lutions reach consistently optimal performance across the
lower noise levels. In such cases, the mean fitness of the
population reaches a sustained score of 1.0 with only occa-
sional perturbations due to the randomness added by muta-
tion. Since we have not observed such robust performance in
any of the of the stateless runs we take this as evidence that
the task chosen by Quinn, despite its simplicity, is “state-
hungry”.

In order to qualitatively assess whether or not the agents
were evolving genuinely communicative solutions, we
looked for the equivalent of Tinbergen’s “intention move-
ments” in the early stages of each evolutionary time line, and
looked also for their ritualization or exaggeration into proper
signals. We have found some suggestive cases of exagger-
ation in state-equipped runs, in particular for the forward-
backwards movement that Quinn originally highlighted as
a suspected signal. The movement sometimes becomes ex-
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Figure 3: Results from the extended model. Mean fitness reached at the end of the evolutionary run is shown for various
combinations of perceptual noise level and the number of state bits. Each plotted data point is an average across 30 replications.
Standard errors across these replications are not shown for reasons of clarity, but the mean size of the standard error was
0.013. The general result is that performance is reduced as noise levels increase, and that at least one bit of state leads to better
peformance on the task.

aggerated just before the population starts to score perfect
fitness scores. The exaggeration consists of a two-steps-
forward-two-steps-backwards routine instead of the former
one-step-forward-one-step-backwards. Despite this interest-
ing result, we found no indications of a general trend. Fur-
thermore, the runs that evolved such exaggerated “signals”
were not among the runs with the highest overall average
fitness (although, on the other hand, this kind of exagger-
ation never appeared in stateless runs). It may be that the
task picked by Quinn is not “communication hungry”, i.e., it
does not require explicit information transmission between
the agents in order to achieve optimal performance levels
(see Scheutz and Schermerhorn, 2008).

Conclusions
We have achieved one of our goals, in demonstrating the
generality of Quinn’s (2001) finding that sensory-motor in-
teraction with no pre-defined communication channels can
lead to coordinated behaviour. The result does not seem to
be dependent on specific details of Quinn’s setup such as the
CTRNN control architecture.

We also asked some critical questions as to whether the
dance-like coordination behaviour should be seen as com-
municative. We extended Quinn’s model to include in-

creased levels of perceptual noise, and internal state for
the agents. This was done with the intention of pushing
the agents into developing exaggerated signalling and re-
sponse behaviours over evolutionary time that would more
clearly fit the definition of communication. Unsurprisingly,
we found that higher levels of noise make the task more dif-
ficult. We also found that adding one or two bits of internal
state improved performance, indicating that Quinn’s task is
somewhat “state hungry”. Unfortunately we were not able to
get consistent evidence of signal exaggeration and ritualiza-
tion. We have to conclude that the dance-like coordination
behaviour exhibited by the agents is at best a borderline case
of true signalling.

The difficulty is that Quinn’s chosen task simply appears
not to provide selective pressure for communication in Mil-
likan’s sense of producing intentional icons. Scheutz and
Schermerhorn (2008) have noted that this is true of many of
the simple scenarios employed by ALife researchers. If we
look at the world inhabited by our agents, it becomes clear
that there is effectively not much to talk about: they always
begin their interaction within sensor range of each other, the
other agent is the only feature in the world and thus the only
thing that can be detected by their sensors, and the coopera-
tive goal of joint movement is always consistent. Once a co-
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ordinated solution has been evolved, the agents are already
performing near-optimally and there is no evolutionary pres-
sure towards any exaggeration of the signal. We suspect that
a promising direction for future work in this area is to use
tasks in which referential communication about distant ob-
jects is essential for optimal peformance (see e.g., Williams
et al., 2008).

Why does all this matter anyway? Coordination or com-
munication — what’s the difference? We believe it matters
because there are two very different messages one can take
from Quinn’s original finding. On the one hand you may
see Quinn’s result as showing how the appearance of com-
munication can be explained away as being just the result
of mechanical feedback loops in a physical system. Some
“enactivist” thinkers in ALife appear to endorse this posi-
tion. The hope is to eventually demonstrate that human-level
intelligence is really made up of a toolkit of sensory-motor
tricks and hacks; Beer’s (2003) dynamical systems approach
is a good example.

On the other hand, Quinn’s result can be seen as an at-
tempt to bridge two levels of description. Quinn published
his paper out of frustration with previous ALife work on sig-
nalling that constantly presupposed the very thing it was try-
ing to explain, but that does not mean that he hoped to ren-
der talk of signals and channels irrelevant. If a model like
Quinn’s could successfully show that communication can
indeed emerge from sensory-motor interactions, we could
take that not as undermining the concept of communication
but as explaining how one level of description (L2: that of
signals, symbols, and representations) can emerge from an-
other (L1: the mechanics of sensory-motor feedback).

It has been argued (de Pinedo and Noble, 2008) that in
explaining the behaviour of evolved agents, both agent- and
sub-agent-level explanations will be necessary — and mod-
els like Quinn’s seem a useful step in that direction. Hav-
ing established that L1 can give rise to L2, we thus es-
tablish that every subsequent simulation which incorporates
L2-type communication does not need to provide direct ev-
idence of the origins of that communication — we are safe
in assuming that said communication would evolve in some
fashion or other. Models like Quinn’s can thus provide
bridging explanations: they verify the relationship between
L1 and L2 and then allow those interested in L2 alone to get
on with simulating phenomena at that level, confident that
L2’s origins are understood.

The question as to which of these two views of communi-
cation and reference will ultimately prevail is of course still
open. However, we are convinced that ALife simulations
such as Quinn’s provide a uniquely valuable testing ground
for working out the consequences of either approach.
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Abstract

Many natural processes occur over characteristic spatial and
temporal scales. This paper presents tools for (i) flexibly and
scalably coarse-graining cellular automata and (ii) identify-
ing which coarse-grainings express an automaton’s dynamics
well, and which express its dynamics badly. We apply the
tools to investigate a range of examples in Conway’s Game
of Life and Hopfield networks and demonstrate that they cap-
ture some basic intuitions about emergent processes. Finally,
we formalize the notion that a process is emergent if it is bet-
ter expressed at a coarser granularity.

Introduction
Biological systems are studied across a range of spa-
tiotemporal scales – for example as collections of atoms,
molecules, cells, and organisms (Anderson, 1972). How-
ever, not all scales express a system’s dynamics equally
well. This paper proposes a principled method for identify-
ing which spatiotemporal scale best expresses a cellular au-
tomaton’s dynamics. We focus on Conway’s Game of Life
and Hopfield networks as test cases where collective behav-
ior arises from simple local rules.

Conway’s Game of Life is a well-studied artificial sys-
tem with interesting behavior at multiple scales (Berlekamp
et al., 1982). It is a 2-dimensional grid whose cells are up-
dated according to deterministic rules. Remarkably, a suffi-
ciently large grid can implement any deterministic compu-
tation. Designing patterns that perform sophisticated com-
putations requires working with distributed structures such
as gliders and glider guns rather than individual cells (Den-
nett, 1991). This suggests grid computations may be better
expressed at coarser spatiotemporal scales.

The first contribution of this paper is a coarse-graining
procedure for expressing a cellular automaton’s dynamics
at different scales. We begin by considering cellular au-
tomata as collections of spacetime coordinates termed occa-
sions (cell ni at time t). Coarse-graining groups occasions
into structures called units. For example a unit could be a
3 × 3 patch of grid containing a glider at time t. Units do
not have to be adjacent to one another; they interact through

channel – transparent occasions whose outputs are marginal-
ized over. Finally, some occasions are set as ground, which
fixes the initial condition of the coarse-grained system.

Gliders propagate at 1/4 diagonal squares per tic – the
grid’s “speed of light”. Units more than 4n cells apart cannot
interact within n tics, imposing constraints on which coarse-
grainings can express glider dynamics. It is also intuitively
clear that units should group occasions concentrated in space
and time rather than scattered occasions that have nothing to
do with each other. In fact, it turns out that most coarse-
grainings express a cellular automaton’s dynamics badly.

The second contribution of this paper is a method for dis-
tinguishing good coarse-grainings from bad based on the
following principle:

• Coarse-grainings that generate more information, rela-
tive to their sub-grainings, better express an automaton’s
dynamics than those generating less.

We introduce two measures to quantify the information gen-
erated by coarse-grained systems. Effective information, ei,
quantifies how selectively a system’s output depends on its
input. Effective information is high if few inputs cause the
output, and low if many do. Excess information, ξ, mea-
sures the difference between the information generated by a
system and its subsystems.

With these tools in hand we investigate coarse-grainings
of Game of Life grids and Hopfield networks and show that
grainings with high ei and ξ capture our basic intuitions
regarding emergent processes. For example, excess infor-
mation distinguishes boring (redundant) from interesting
(synergistic) information-processing, exemplified by blank
patches of grid and gliders respectively.

Finally, the penultimate section converts our experience
with examples in the Game of Life and Hopfield networks
into a provisional formalization of the principle above.
Roughly, we define a process as emergent if it is better ex-
pressed at a coarser scale.

The principle states that emergent processes are more
than the sum of their parts – in agreement with many other
approaches to quantifying emergence (Crutchfield, 1994;
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Tononi, 2004; Polani, 2006; Shalizi and Moore, 2006; Seth,
2010). Two points distinguishing our approach from prior
work are worth emphasizing. First, coarse-graining is scal-
able: coarse-graining a cellular automaton yields another
cellular automaton. Prior works identify macro-variables
such as temperature (Shalizi and Moore, 2006) or centre-
of-mass (Seth, 2010) but do not show how to describe a sys-
tem’s dynamics purely in terms of these macro-variables. By
contrast, an emergent coarse-graining is itself a cellular au-
tomaton, whose dynamics are computed via the mechanisms
of its units and their connectivity (see below).

Second, our starting point is selectivity rather than pre-
dictability. Assessing predictability necessitates building a
model and deciding what to predict. Although emergent
variables may be robust against model changes (Seth, 2010),
it is unsatisfying for emergence to depend on properties of
both the process and the model. By contrast, effective and
excess information depend only on the process: the mecha-
nisms, their connectivity, and their output. A process is then
emergent if its internal dependencies are best expressed at
coarse granularities.

Probabilistic cellular automata
Concrete examples. This paper considers two main ex-
amples of cellular automata: Conway’s Game of Life and
Hopfield networks (Hopfield, 1982).

The Game of Life is a grid of deterministic binary cells. A
cell outputs 1 at time t iff: (i) three of its neighbors outputted
1s at t− 1 or (ii) it and two neighbors outputted 1s at t− 1.

In a Hopfield network (Amit, 1989), cell nk fires with
probability proportional to

p(nk,t = 1|n•,t−1) ∝ exp

 1

T

∑
j→k

αjk · nj,t−1

 (1)

Temperature T controls network stochasticity. Attractors
{ξ1, . . . , ξN} are embedded into a network by setting the
connectivity matrix as αjk =

∑N
µ=1(2ξ

µ
j − 1)(2ξµk − 1).

Abstract definition. A cellular automaton is a finite di-
rected graph X with vertices VX = {v1 . . . vn}. Vertices
are referred to as occasions; they correspond to spacetime
coordinates in concrete examples. Each occasion vl ∈ VX
is equipped with finite output alphabet Al and Markov ma-
trix (or mechanism) pl(al|sl), where sl ∈ Sl =

∏
k→lAk,

the combined alphabet of the occasions targeting vl. The
mechanism specifies the probability that occasion vl chooses
output al given input sl. The input alphabet of the entire au-
tomaton X is the product of the alphabets of its occasions
Xin :=

∏
l∈VX

Al. The output alphabet is Xout = Xin.
Remark. The input Xin and output Xout alphabets are dis-
tinct copies of the same set. Inputs are causal interven-
tions imposed via Pearl’s do(−) calculus (Pearl, 2000). The
probability of output al is computed via the Markov matrix:

pl
(
al|do(sl)

)
. The do(−) is not included in the notation ex-

plicitly to save space. However, it is always implicit when
applying any Markov matrix.

A Hopfield network over time interval [α, β] is an abstract
automaton. Occasions are spacetime coordinates – e.g. vl =
ni,t, cell i at time t. An edge connects vk → vl if there is
a connection from vk’s cell to vl’s and the time coordinates
are t − 1 and t respectively for some t. The mechanism is
given by Eq. (1). Occasions at t = α, with no incoming
edges, can be set as fixed initial conditions or noise sources.
Similar considerations apply to the Game of Life.

Non-Markovian automata (whose outputs depend on in-
puts over multiple time steps) have edges connecting occa-
sions separated by more than one time step.

Coarse-graining
Define a subsystemX of cellular automaton Y as a subgraph
containing a subset of Y ’s vertices and a subset of the edges
targeting those vertices. We show how to coarse-grain X .
Definition (coarse-graining). Let X be a subsystem of Y .
The coarse-graining algorithm detailed below takes X ⊂ Y
and data K as arguments, and produces new cellular au-
tomaton XK. Data K consists of (i) a partition of X’s occa-
sions VX = G∪C∪U1∪· · ·∪UN into ground G, channel
C and units U1 . . .UN and (ii) ground output sG.

Vertices of automaton XK, the new coarse-grained occa-
sions, are units: VXK := {U1 . . .UN}. The directed graph
of XK is computed in Step 4 and the alphabets Al of units
Ul are computed in Step 5. Computing the Markov matrices
(mechanisms) of the units takes all five steps.

The ground specifies occasions whose outputs are fixed:
the initial condition sG. The channel specifies unobserved
occasions: interactions between units propagate across the
channel. Units are macroscopic occasions whose interac-
tions are expressed by the coarse-grained automaton. Fig. 1
illustrates coarse-graining a simple automaton.

There are no restrictions on partitions. For example, al-
though the ground is intended to provide the system’s ini-
tial condition, it can contain any spacetime coordinates so
that in pathological cases it may obstruct interactions be-
tween units. Distinguishing good coarse-grainings from bad
is postponed to later sections.

Algorithm. Apply the following steps to coarse-grain:
Step 1. Marginalize over extrinsic inputs.

External inputs are treated as independent noise sources;
we are only interested in internal information-processing.
An occasion’s input alphabet decomposes into a product
Sl = SXl × S

Y \X
l of inputs from within and without the

system. For each occasion vl ∈ VX , marginalize over exter-
nal outputs using the uniform distribution:

pl
(
al
∣∣sXl ) :=

∑
S

Y \X
l

pl
(
al
∣∣sXl , sY \Xl

)
· punif (sY \Xl ). (2)
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Figure 1: (A) An automaton of 6 cells connected to their imme-
diate neighbors. (B): The directed graph of occasions over time
interval [−6, 0]. Green occasions are ground. Red and blue oc-
casions form two units. Other occasions are channel. (C): Edges
whose signals do not reach the blue unit have no effect. (D): The
coarse-grained system consists of two units (macro-occasions).

Step 2. Fix the ground.

Ground outputs are fixed in the coarse-grained system.
Graining K imposes a second decomposition onto vl’s in-
put alphabet, SXl = SG

l × SC
l × SU

l where U = ∪kUk.
Subsume the ground into vl’s mechanism by specifying

pGl
(
al
∣∣sCl , sUl ) := pl

(
al
∣∣sGl , sCl , sUl ).

Step 3. Marginalize over the channel.

The channel specifies transparent occasions. Perturba-
tions introduced into units propagate through the channel
until they reach other units where they are observed. Trans-
parency is imposed by marginalizing over the channel occa-
sions in the product mechanism

pK(x
K
out|xKin) :=

∑
l∈C

∏
l∈C∪U

pGl
(
xlout|xlin

)
, (3)

where superscripts denote that inputs and outputs are re-
stricted, for K, to occasions in units in K (since channel is
summed over and ground is already fixed) and, for each l, to
the inputs and outputs of occasion vl.

For example, consider cellular automaton with graph
va → vb → vc and product mechanism p(c|b)p(b|a)p(a).
Setting vb as channel and marginalizing yields coarse-
grained mechanism

∑
b p(c|b)p(b|a)p(a) = p(c|a)p(a).

The channel is rendered transparent and new mechanism
p(c|a) convolves p(c|b) and p(b|a).
Step 4. Compute the effective graph of coarse-grainingXK.

The micro-alphabet of unit Ul is Ãl :=
∏
k∈Ul

Ak. The
mechanism of Ul is computed as in Eq. (3) with the prod-
uct restricted to occasions j ∈ C ∪ Ul, thus obtaining
pUl

(al|xin) where al ∈ Ãl.
Two units Uk and Ul are connected by an edge if the

outputs of Uk make a difference to the behavior of Ul. More

precisely, we draw an edge if ∃ak, a′k ∈ Ãk such that

pUl
(al|xin, ak) 6= pUl

(al|xin, a′k) for some al ∈ Ãl.

Here, xin denotes the input from all units other than Uk.
The effective graph need not be acyclic. Intervening via

the do(−) calculus allows us to work with cycles.

Step 5. Compute macro-alphabets of units in XK.

Coarse-graining can eliminate low-level details. Outputs
that are distinguishable at the base level may not be after
coarse-graining. This can occur in two ways. Outputs b and
b′ have indistinguishable effects if p(a|b, c) = p(a|b′, c) for
all a and c. Alternatively, two outputs react indistinguish-
ably if p(b|c) = p(b′|c) for all c.

More precisely, two outputs ul and u′l of unit Ul are
equivalent, denoted ul ∼K u′l, iff

pK(xout|xin, ul) = pK(xout|xin, u′l) and

pUl
(ul|xKin) = pUl

(u′l|xKin) for all xout, xin.

Picking a single element from each equivalence class ob-
tains the macro-alphabet Al of the unit Ul. The mechanism
of Ul is pUl

, Step 4, restricted to macro-alphabets.

Information
This section extends prior work to quantify the information
generated by a cellular automaton, both as a whole and rela-
tive to its subsystems (Balduzzi and Tononi, 2008, 2009).

Given subsystem m ofX , let pm(xout|xin), or m for short,
denote its mechanism or Markov matrix. The mechanism is
computed by taking the Markov matrix of each occasion in
X , marginalizing over extrinsic inputs (edges not in X) as
in Eq. (2), and taking the product. It is notationally conve-
nient to write pm as though its inputs and outputs are xout
and xin, even though m does not in general contain all oc-
casions in X and therefore treats some inputs and outputs
as extrinsic, unexplainable noise. We switch freely between
terms “subsystem” and “submechanism” below.

Effective information quantifies how selectively a mech-
anism discriminates between inputs when assigning them to
an output. Alternatively, it measures how sharp the func-
tional dependencies leading to an output are.

The actual repertoire p̂m(Xin|xout) is the set of inputs
that cause (lead to) mechanism m choosing output xout,
weighted by likelihood according to Bayes’ rule

p̂m
(
xin|xout

)
:=

pm
(
xout|do(xin)

)
p(xout)

· punif (xin). (4)

The do(−) notation and hat p̂ remind that we first inter-
vene to impose xin and then apply Markov matrix pm.

For deterministic mechanisms, i.e. functions f : Xin →
Xout, the actual repertoire assigns p̂ = 1

|f−1(xout)| to ele-
ments of the pre-image and p̂ = 0 to other elements of Xin.
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Figure 2: Categorization and information. Cells fire if they re-
ceive two or more spikes. The 16 = 24 possible outputs by the top
layer are arranged in a grid. (AB): Cells n1 and n4 fire when the
output is in the orange and blue regions respectively. Cell n1’s re-
sponse is more informative than n4’s since it fires for fewer inputs.

The shaded regions in Fig. 2 show outputs of the top layer
that cause the bottom cell to fire.

Effective information generated when m outputs xout is
Kullback-Leibler divergence (KL[p‖q] =

∑
i pi log2

pi
qi

),

ei(m, xout) := KL
[
p̂m
(
Xin|xout

)∥∥∥punif (Xin)
]
. (5)

Effective information is not a statistical measure: it depends
on the mechanism and a particular output xout.

Effective information generated by deterministic function
f is ei(f, xout) = log2

|Xin|
|f−1(xout)| where | · | denotes cardi-

nality. In Fig. 2, ei is the logarithm of the ratio of the total
number of squares to the number of shaded squares.

Excess information quantifies how much more informa-
tion a mechanism generates than the sum of its submecha-
nisms – how synergistic the internal dependencies are.

Given subsystem with mechanism m, partition P =
{M1 . . .Mm} of the occasions in src(m), and output xout,
define excess information as follows. Let mj := m∩ (M j ×
X) be the restriction of m to sources in M j . Excess infor-
mation over P is

ξ(m,P, xout) := ei(m, xout)−
∑
j

ei(mj , xout). (6)

Excess information (sans partition) is computed over the
information-theoretic weakest link PMIP

ξ(m, xout) := ξ(m,PMIP , xout). (7)

Let AMj :=
∏
l∈Mj Aj . The minimum information parti-

tion1 PMIP minimizes normalized excess information:

PMIP := argmin
P

ξ(m,P, xout)
NP

, where

NP := (m− 1) ·min
j
{log2 |AMj |} .

1We restrict to bipartitions to reduce the computational burden.

Excess information is negative if any decomposition of
the system generates more information than the whole.

Fig. 3 shows how two cells taken together can generate
the same, less, or more information than their sum taken
individually depending on how their categorizations overlap.
Note the figure decomposes the mechanism of the system
over targets rather than sources and so does not depict excess
information – which is more useful but harder to illustrate.

Effective information and excess information can be com-
puted for any submechanism of any coarse-graining of any
cellular automaton.
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Figure 3: Independent, redundant and synergistic information.
(AB): Independent. Orthogonal categorizations, orange+pink and
blue+pink shadings respectively, by n1 and n2. (C): Partially
redundant. Both cells fire; categorizations overlap (pink) more
“than expected” and ei(n3n4, 11) < ei(n3, 1) + ei(n4, 1). (D):
Synergistic. Overlap is less “than expected”; ei(n3n4, 01) >
ei(n3, 0) + ei(n4, 1).

Application: Conway’s Game of Life
The Game of Life has interesting dynamics at a range of
spatiotemporal scales. At the atomic level, each coordinate
(cell i at time t) is an occasion and information processing
is extremely local. At coarser granularities, information can
propagate through channels, so that units generate informa-
tion at a distance. Gliders, for example, are distributed ob-
jects that can interact over large distances in space and time,
Fig. 4A, and provide an important example of an emergent
process (Dennett, 1991; Beer, 2004).

This section shows how effective and excess information
quantifiably distinguish coarse-grainings expressing glider
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Figure 4: Detecting focal points. (A): A glider moves 1 diago-
nal square every 4 time steps. (B): Cells in the orange and black
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ground; other occasions are channel. Shifting the position of the
black square produces a family of coarse-grainings. Effective in-
formation is shown as the black square’s center varies over the grid.

dynamics well from those expressing it badly.

Effective information detects focal points. Fig. 4A
shows a glider trajectory, which passes through 1 diagonal
step over 4 tics. Fig. 4B investigates how glider trajectories
are captured by coarse-grainings: if there is a glider in the
3 × 3 orange square at time 0, Fig. 4B, it must have passed
through the black square at t = −20 to get there. Are coarse-
grainings that respect glider trajectories quantifiably better
than those that do not?

Fig. 4B fixes occasions in the black square at t = −20 and
the orange square at t = 0 as units (18 total), the ground as
blank grid at t = −21 and everything else as channel. Vary-
ing the spatial location of the black square over the grid, we
obtain a family of coarse-grainings. Effective information
for each graining in the family is shown in the figure. There
is a clear focal point exactly where the black square inter-
sects the spatiotemporal trajectory of the glider where ei is
maximized (dark red). Effective information is zero for lo-
cations that are too far or too close at t = −20 to effect the
output of the orange square at t = 0.

Effective information thus provides a tool analogous to
a camera focus: grainings closer to the focal point express
glider dynamics better.

Macroscopic texture varies with distance. The behavior
of individual cells within a glider trajectory is far more com-
plicated than the glider itself, which transitions through 4
phases as it traverses its diagonal trajectory, Fig. 4A. Does
coarse-graining quantifiably simplify dynamics?
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Figure 5: Macro-alphabets as a function of distance. (A): Con-
sider two families of coarse-grainings with channel and ground as
in Fig. 4. First, take the blue squares (filled and empty) as units at
times −4n and 0 where n is the diagonal distance between them.
Second, repeat for the red squares. (B): Log-plot of the size of the
filled squares’ macro-alphabets as a function of −4n.

Fig. 5 constructs pairs of 3 × 3 units out of occasions
at various distances from one another and computes their
macro-alphabets. A 3 × 3 unit has a micro-alphabet of
29 = 512 outputs. The macro-alphabet is found by group-
ing micro-outputs together into equivalences classes if their
effect is the same after propagating through the channel. We
find that the size of the macro-alphabet decreases exponen-
tially as the distance between units increases, stabilizing at
5 macro-outputs: the 4 glider phases in Fig. 4A and a large
equivalence class of outputs that do not propagate to the tar-
get unit and are equivalent to a blank patch of grid. A similar
phenomenon occurs for pairs of 4× 4 units, also Fig. 5.

Continuing the camera analogy: at close range the texture
of units is visible. As the distance increases, the channel
absorbs more of the detail. The computational texture of the
system is simpler at coarser-grains yielding a more symbolic
description where glider dynamics are described via 4 basic
phases produced by a single macroscopic unit rather than 29

outputs produced by 9 microscopic occasions.

Excess information detects spatial organization. So far
we have only considered grainings of the Game of Life that
respect its spatial organization – in effect, taking the spatial
structure for granted. A priori, there is nothing stopping us
from grouping the 8 gray cells in Fig. 6A into a single unit
that does not respect the spatial organization, since its con-
stituents are separated in space. Are coarse-grainings that
respect the grid-structure quantifiably better than others?

Fig. 6A shows a coarse-graining that does not respect the
grid. It constructs two units, one from both gray squares at
t = 1 and the other from both red squares at t = 0. Intu-
itively, the coarse-graining is unsatisfactory since it builds
units whose constituent occasions have nothing to do with
each other over the time-scale in question. Quantitatively,
excess information over the obvious partition P of the sys-
tem into two parts is 0 bits. It is easy to show ξ ≤ 0 for
any disjoint units. By comparison, the coarse-grainings in
panels CD, which respect the grid structure, both generate
positive excess information.
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Figure 6: Detecting spatial organization. Units are the cells in
the red (thick-edged) and gray (filled) squares at t = 0 and t = 1
respectively; other occasions are extrinsic noise. (A): ξ = 0. The
coarse-graining groups non-interacting occasions into units. (B):
ξ < 0. A blank grid is highly redundant. (CD): ξ > 0. Gliders
perform interesting information-processing.

Thus we find that not only does our information-theoretic
camera have an automatic focus, it also detects when pro-
cesses hang together to form a single coherent scene.

Excess information detects gliders. Blank stretches of
grid, Fig. 6B, are boring. There is nothing going on. Are
interesting patches of grid quantifiably distinguishable from
boring patches?

Excess information distinguishes blank grids from glid-
ers: ξ on the blank grid is negative, Fig. 6B , since the in-
formation generated by the cells is redundant analogous to
Fig. 3C. By contrast, ξ for a glider is positive, Fig. 6CD,
since its cells perform synergistic categorizations, similarly
to Fig. 3D. Glider trajectories are also captured by excess
information: varying the location of the red units (at t = 0)
around the gray units we find that ξ is maximized in the po-
sitions shown, Fig. 6CD, thus expressing the rightwards and
downwards motions of the respective gliders.

Returning to the camera analogy, blank patches of grid
fade into (back)ground or are (transparent) channel, whereas
gliders are highlighted front and center as units.

Application: Hopfield networks
Hopfield networks embed energy landscapes into their con-
nectivity. For any initial condition they tend to one of few
attractors – troughs in the landscape (Hopfield, 1982; Amit,
1989). Although cells in Hopfield networks are quite differ-
ent from neurons, there is evidence suggesting neuronal pop-
ulations transition between coherent distributed states simi-
lar to attractors (Abeles et al., 1995; Jones et al., 2007).

output INT: B → B EXT: A→ B

t A B ei max ξ ei max ξ
0 00000000 01010101
1 10100011 01010101 2.42 0.10 0.31 0.04
2 10101010 00010101 1.85 0.08 2.44 0.16
3 10101010 00101011 1.96 0.12 6.89 0.27
4 10101010 00101010 1.85 0.08 1.60 0.10
5 10101010 10101010 2.42 0.10 0.90 0.06
6 10101010 10101010 2.42 0.10 0.31 0.04

Table 1: Analysis of unidirectionally coupled Hopfield networks
A → B each containing 8 cells. The networks and coupling
embed attractors {00001111, 00110011, 01010101} and their mir-
rors. Temperature is T = 0.25. A sample run is analyzed using
two coarse-grainings: INT captures B’s effect on itself and EXT
captures A’s effect on B; see text.

Attractors are population level phenomena. They arise
because of interactions between groups of cells – no sin-
gle cell is responsible for their existence – suggesting that
coarse-graining may reveal interesting features of attractor
dynamics.

Effective information detects causal interactions. Ta-
ble 1 analyzes a sample run of unidirectionally coupled Hop-
field networks A → B. Network A is initialized at an un-
stable point in the energy landscape and B in an attractor.
A settles into a different attractor from B and then shoves
B into the new attractor over a few time steps. Intuitively,
A only exerts a strong force on B once it has settled in an
attractor and before B transitions to the same attractor. Is
the force A exerts on B quantitatively detectable?

Table 1 shows the effects ofA andB respectively onB by
computing ei for two coarse-grainings constructed for each
transition t→ t+1. Coarse-graining INT sets cells inB at t
and t+1 as units and A as extrinsic noise. EXT sets cells in
A at t andB at t+1 as units and fixesB at time t as ground.

INT generates higher ei for all transitions except 1 →
2 → 3, precisely when A shoves B. Effective information
is high when an output is sensitive to changes in an input
so it is unsurprising that B is more sensitive to changes in A
exactly whenA forcesB out from one attractor into another.
Analyzing other sample runs (not shown) confirms that ei
reliably detects when A shoves B out of an attractor.

Macroscopic mechanisms depend on the ground. Fix-
ing the ground incorporates population-level biases into a
coarse-grained cellular automaton’s information-processing.

The ground in coarse-graining EXT (i.e. the output of B
at t − 1) biases the mechanisms of the units in B at time
t. When the ground is an attractor, it introduces tremendous
inertia into the coarse-grained dynamics since B is heavily
biased towards outputting the attractor again. Few inputs
from A can overcome this inertia, so if B is pushed out of
an attractor it generates high ei about A. Conversely, when
B stays in an attractor, e.g. transition 5 → 6, it follows its
internal bias and so generates low ei about A.
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Excess information detects attractor redundancy. Fol-
lowing our analysis of gliders, we investigate how attractors
are captured by excess information. It turns out that ξ is neg-
ative in all cases: the functional dependencies within Hop-
field networks are redundant. An attractor is analogous to
a blank Game of Life grid where little is going on. Thus,
although attractors are population-level phenomena, we ex-
clude them as emergent processes.

Excess information expresses attractor transitions. We
therefore refine our analysis and compute the subset of units
at time t that maximize ξ; maximum values are shown in
Table 1. We find that the system decomposes into pairs of
occasions with low ξ, except when B is shoved, in which
case larger structures of 5 occasions emerge. This fits prior
analysis showing transitions between attractors yield more
integrated dynamics (Balduzzi and Tononi, 2008) and sug-
gestions that cortical dynamics is metastable, characterized
by antagonism between local attractors (Friston, 1997).

Our analysis suggests that transitions between attractors
are the most interesting emergent behaviors in coupled Hop-
field networks. How this generalizes to more sophisticated
models remains to be seen.

Emergence
The examples show we can quantify how well a graining
expresses a cellular automaton’s dynamics. Effective in-
formation detects glider trajectories and also captures when
one Hopfield network shoves another. However, ei does not
detect whether a unit is integrated. For this we need ex-
cess information, which compares the information generated
by a mechanism to that generated by its submechanisms.
Forming units out of disjoint collections of occasions yields
ξ = 0. Moreover, boring units (such as blank patches of grid
or dead-end fixed point attractors) have negative ξ. Thus, ξ
is a promising candidate for quantifying emergent processes.

This section formalizes the intuition that a system is emer-
gent if its dynamics are better expressed at coarser spa-
tiotemporal granularities. The idea is simple. Emergent
units should generate more excess information, and have
more excess information generated about them, than their
sub-units. Moreover emergent units should generate more
excess information than neighboring units, recall Fig. 4.

Stating the definition precisely requires some notation.
Let srcvl = {vl}∪{vk|k → l} and similarly for trgvl . LetJ
be a subgraining ofK, denoted J ≺ K, if for every Uj ∈ J
there is a unit Uk ∈ K such that Uj ( Uk. We compare
mechanism m ⊂ K with its subgrains via

ξK/J (m, xout) := eiK̃(m, xout)−
∑
vj∈J

eiJ̃ (m
j , xout),

where mj = m ∩ srcvj and eiK̃ signifies effective informa-
tion is computed over K using micro-alphabets.

Definition (emergence). Fix cellular automatonX with out-
put xout. Coarse-graining2 K is emergent if it satisfies con-
ditions E1 and E2.

E1. Each unit Ul ∈ K generates excess information about
its sources and has excess information generated about
it by its targets, relative to subgrains J ≺ K:

0 < ξJ /K
(
srcUl

, xout
)

and 0 < ξJ /K
(
trgUl

, xout
)
.

(8)

E2. There is an emergent subgrain J ≺ K such that (i)
every unit of K contains a unit of J and (ii) neighbors
K′ (defined below) of K with respect to J satisfy

ξJ /K′
(
srcU′ , xout

)
≤ ξJ /K

(
srcU, xout

)
(9)

for all U ∈ K, and similarly for trg’s.

If K has no emergent subgrains then E2 is vacuous.
Grain K′ is a neighbor of K with respect to J ≺ K if for

every U ∈ K there is a unique U′ ∈ K′ satisfying

N1. there is a unit T ∈ J such that T ⊂ U,U′, srcT ⊂
srcU, srcU′ and similarly for trg; and

N2. the alphabet of U′ is no larger than U:
∣∣∏

k∈U′ Ak
∣∣ ≤∣∣∏

l∈UAl
∣∣, and similarly for the combined alphabets

of their sources and targets respectively.

The graining EX that best expresses X outputting xout is
found by maximizing normalized excess information:

EX(xout) := arg max
{K | emergent}

ξ(K, xout)
NKPMIP

. (10)

Here, NKPMIP is the normalizing constant found when com-
puting the minimum information partition for K.

Some implications. We apply the definition to the Game
of Life to gain insight into its mechanics.

Condition E1 requires that interactions between units and
their sources (and targets) are synergistic, Fig. 6CD. Units
that decompose into independent pieces, Fig. 6A, or per-
form highly redundant operations, Fig. 6B, are therefore not
emergent.

Condition E2 compares units to their neighbors. Rather
than build the automaton’s spatial organization directly
into the definition, neighbors of K are defined as coarse-
grainings whose units overlap with K and whose alpha-
bets are no bigger. Coarse-grainings with higher ξ than
their neighbors are closer to focal points, recall Fig. 4 and
Fig. 6CD, where ξ was maximized for units respecting glider
trajectories. An analysis of glider boundaries similar in spirit
to this paper is (Beer, 2004).

2Ground output sG is xout restricted to ground occasions.
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Finally, Eq. (10) picks out the most expressive coarse-
graining. The normalization plays two roles. First, it bi-
ases the optimization towards grainings whose MIPs con-
tain few, symmetric parts following (Balduzzi and Tononi,
2008). Second, it biases the optimization towards systems
with simpler macro-alphabets. Recall, Fig. 5, that coarse-
graining produces more symbolic interactions by decreasing
the size of alphabets. Simplifying alphabets typically re-
duces effective and excess information since there are less
bits to go around. The normalization term rewards simpler
levels of description, so long as they use the bits in play more
synergistically.

Discussion
In this paper we introduced a flexible, scalable coarse-
graining method that applies to any cellular automaton. Our
notion of automaton applies to a broad range of systems.
The constraints are that they (i) decompose into discrete
components with (ii) finite alphabets where (iii) time passes
in discrete tics. We then described how to quantify the in-
formation generated when a system produces an output (at
any scale) both as a whole and relative to its subsystems.
An important feature of our approach is that the output xout
of a graining is incorporated into the ground and also di-
rectly influences ei and ξ through computation of the actual
repertoires. Coarse-graining and emergence therefore cap-
ture some of the suppleness of biological processes (Bedau,
1997): they are context-dependent and require many ceteris
paribus clauses (i.e. background) to describe.

Investigating examples taken from Conway’s Game of
Life and coupled Hopfield networks, we accumulated a
small but significant body of evidence confirming the prin-
ciple that expressive coarse-grainings generate more infor-
mation relative to sub-grainings. Finally, we provisionally
defined emergent processes. The definition is provisional
since it derives from analyzing a small fraction of the possi-
ble coarse-grainings of only two kinds of cellular automata.

Hopfield networks and the Game of Life are simple mod-
els capturing some important aspects of biological systems.
Ultimately, we would like to analyze emergent phenomena
in more realistic models, in particular of the brain. Con-
scious percepts take 100-200ms to arise and brain activity
is (presumably) better expressed as comparatively leisurely
interactions between neurons or neuronal assemblies rather
than much faster interactions between atoms or molecules
(Tononi, 2004). To apply the techniques developed here
to more realistic models we must confront a computational
hurdle: the number of coarse-grainings that can be imposed
on large cellular automata is vast. Nevertheless, the ap-
proach developed here may still be of use. First, manip-
ulating macro-alphabets provides a method for performing
approximate computations on large-scale systems. Second,
for more fine-grained analysis, initial estimates about which
coarse-grainings best express a system’s dynamics can be

fine-tuned by comparing them with neighbors.

Acknowledgements. The author thanks Dominik Janzing
for many useful comments on an earlier draft, Giulio Tononi
for stimulating conversations and Virgil Griffiths for empha-
sizing the importance of excess information.
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Abstract

We present a model of how transcription factors scan DNA
to find their specific binding sites. Following the classical
work of Winter et al. (1981), our model assumes two modes
of transcription factor dynamics. Adjacent moves, where the
proteins make a single step movement to one side, or short
walks where the transcription factors slide along the DNA
several binding sites at a time. The purpose of this article is
twofold. Firstly, we discuss how such a system can be effi-
ciently modelled computationally. Secondly, we analyse how
the mean first binding times of transcription factors to their
specific time depends on key parameters of the system.

Introduction
Regulation of gene activity can be understood as a compu-
tational process, in the sense that the cell reacts to changes
in the environment by changing its internal states. There
are several mechanisms the cell can use to make such inter-
nal changes. One important such mechanisms is the regula-
tion of genes. In bacteria, gene regulation often involves the
binding of regulatory proteins, so calledtranscription fac-
tors (TFs), to particular binding sites on the DNA.

One aspect that has commanded significant attention from
bioscientists, physicists and systems biologists is the time
required for regulatory proteins to find their target binding
site on the genome. The problem is as follows: In order to
turn a gene on (or indeed repress it) the TF needs to locate a
specific binding site. The problem is that TFs are “sticky” to
all parts of the DNA. When binding to the DNA a TF actu-
ally binds to anl-long sequence of nucleotides. The binding
strength depends on the match between the bound sequence
and an optimal pattern which represents the sequence of the
specific binding site. The closer the match, the higher the
affinity. While the binding affinity to specific sites is much
higher than to most non-specific sites, the contribution of the
latter is still significant enough to potentially “distract” a TF
from locating its specific site. Furthermore, there are mil-
lions of non-specific sites and only few of the specific and
active sites for each particular TF. Therefore, even though a
TF spends very little time being bound to each of the non-
specific sites, it may take a significant time to sample all

of them before the specific site is eventually found. The
process of a TF finding its specific binding site necessarily
limits the speed of a biological computation.

This problem, which has been known about for a long
time, was first addressed by Winter et al. (1981), who pro-
posed a random walk model of facilitated diffusion. The
idea of this model is that the TF performs a mixed 1D and
3D random walk. The 1D random walk explores a small
adjacent neighborhood of DNA, while the 3D random walk
allows the TF to explore far-away, unconnected parts of the
genome. It has been suggested by Wunderlich and Mirny
(2008); Slutsky et al. (2004) and Murugan (2009) that the
most efficient exploration of the genome, in the sense that
it offers the fastest location of the specific binding site, is
achieved when the 3D and 1D components are weighted ap-
proximately equally.

Most of the above work has been analytical. There are
also a number of other results available. In this article we
will describe an approach to building an efficient computer
simulation model of TFs finding their specific binding sites
(Barnes and Chu (2010)). This new approach will allow
realistically sized simulations, thus significantly expanding
the scope of previous models. The essence of the efficiency
of the model is a careful management of memory to make
the problem scalable, regardless of genome occupancy.

The Model

The movement dynamics of TFs involves a search across
a discrete (but very high) number of spatially organised
binding sites. This suggests the potential for an individual
agent-based modelling approach. The environment of the
TF agents is a non-metric space; that is, there is no mea-
sure of distance between the agents. Embedded in this space
is the DNA itself, which is represented as a string of the
symbolsa,c,g,t with periodic boundary condition. For
all simulations reported here we used the genome ofE.coli
K12 (The University of Wisconsin (2009)). At any given
time, every agent is either bound to one of the binding sites
of the genome, or suspended in the non-metric space. We
think of the space as a ‘reservoir’ of currently unbound TFs.
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We define two types of agents, namely focal and non-focal
TFs. We are primarily interested in the former, yet the latter
are important in that their presence on the DNA could inter-
fere with the search dynamics of the focal TFs. The number
of non-focal TFs is kept constant during a specific simula-
tion run (for reasons of computational efficiency), whereas
the focal TFs are created and degraded with user-defined
rates, hence particle numbers within the cell fluctuate over
time.

Focal TFs have a definite bindingmotif m that is used
to determine their binding energy and, hence, their mean
binding time at every DNA binding site in the model. If
the length of the binding motifm is l then the binding free
energy to a particular sequence is calculated as follows:

Fs =

l∑

i=1

ωiδmi,si (1)

Here,mi is thei-th entry of the motifm, si the correspond-
ing base of the actual binding sequences andωi the empir-
ically determined weighting factor of the binding motif. In
contrast, non-focal TFs do not have specific binding sites;
rather, they share low, position-dependent affinities to all
sites on the DNA. Rather than calculating the binding ener-
gies dynamically, the affinity values for both types of TF are
pre-calculated for every position on the DNA and stored in
arrays of the same length as the DNA, making binding-time
calculation very efficient.

The model update algorithm is event based, with three
main classes of event available at each step:

• Create a focal TF.

• Bind a TF of either type to the DNA.

• Unbind a bound TF from the DNA.

Unbind events can result in complete unbinding into the
reservoir or short, local 1D movements. Essential for the
reliability of the model is to design the update algorithm
so that the behaviour of the model is correct with respect
to the choice of parameters (in the sense that it reproduces
the statistics implied by the various binding and unbinding
rates). To achieve this, we have adapted the Gillespie algo-
rithm (Gillespie (1977)) to schedule events.

On every event, regardless of its class, only a single TF is
updated. Breaking down the event classes in more details:
an update consists of one of the following actions:

• A new focal TF is created and might attempt to bind.

• A TF binds from the reservoir to the DNA.

• A bound TF unbinds from the DNA into the reservoir.

• A bound TF moves to an adjacent binding site on the
DNA.

• A bound TF makes a short move, i.e., binds with a uni-
form probability to an available binding site in the vicinity
of its current site. The range of what counts as “vicinity”
is user determined.

• A bound TF is destroyed.

Scheduling of events

At model initialization all non-focal TFs are created and
seeded onto random locations on the DNA via bind events
at time zero. If there is insufficient space then the excess
ends up in the reservoir. Then the creation times of all fo-
cal TFs are determined according to a user-defined rate, and
creation events scheduled accordingly. Their lifetime is also
determined at creation with a random number drawn from an
exponential distribution with a mean of 1 over the deletion
rate.

When its creation event occurs, a focal TF will immedi-
ately attempt to bind to a site on the genome with a user-
defined probability; any such attempt is successful with a
probabilityp = Nfree/Nrange whereNrange is the total number
of binding sites in range andNfree is the number of unoccu-
pied sites in that range. We specifyNrange because the ini-
tial bind attempt for a focal TF takes place within a limited,
user-defined birth range on the DNA. This models the effect
that (in bacterial cells) transcription and translation are per-
formed in one step and hence proteins are produced close to
their gene.

If the newly-created TF does not bind, then it is placed
in the reservoir and may have the opportunity to attempt a
general bind (i.e., one over the full range of the DNA) at a
later time. The range restriction only applies to the initial
binding attempt of a focal TF.

Binding events

General binding is used both to seed initial occupancy of
the DNA with non-focal TFs, and to support binding of both
types of TF from the reservoir. A random available binding
site is chosen from the full length of the DNA.

At the completion of every event, there is a probability
that an unbound TF might attempt to bind from the reser-
voir. The time to the bind event is drawn from an exponen-
tial distribution with a mean of 1 over a value that depends
upon the number of unbound TFsTu, the number of avail-
able binding sitesNfree along the full range of the DNA, and
a constant factork:

P (bind) = (kNfreeTu) (2)

A new binding event will only be scheduled if it would occur
before the next already scheduled event. This is because
the binding probability depends on the current availability
of binding sites which generally changes over time.
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Unbinding events
The duration time of a DNA-protein bond depends on the
affinity of the type of TF for its binding site; specifically, for
focal TFs this affinity is determined from equation 1. It is
drawn from a Poisson distribution with meanµ.

µ = exp(−
Fs

kT
)

Herek is the Boltzmann constant andT the absolute tem-
perature. Binding from the reservoir onto the DNA is deter-
mined stochastically with a given user-determined rate.

At every unbind event, the next state of the TF is deter-
mined stochastically. Assuming that the TF has not reached
the end of its life (in which case it would be destroyed), with
a user-defined probability one of the following options will
apply to it:

• the TF will attempt to make a one place move left or right
(an immediately scheduled bind event);

• the TF will attempt a short move within a user-defined
range either side of the previous binding site (an immedi-
ately scheduled bind event);

• the TF goes into the reservoir.

Either move could fail, due to roadblocks, and lead to the
TF going into the reservoir. It should be clear from the above
description that, on each iteration, the heart of the event loop
is primarily concerned with: placing a TF on the DNA; re-
moving a TF from the DNA; or both. Therefore, identifying
free sections on the DNA is a potential performance bot-
tleneck that could prevent scaling of the method to realistic
sizes of both DNA and numbers of TFs.

The memory model
The key to efficient implementation of binding and move-
ment is the fast identification of available binding sites —
i.e., not just empty bases but runs of bases that are at least
as long as the binding motif (see eq 1) and can thus support
binding of a TF. A naive representation of the DNA might
be an array of Boolean values, one for each possible site,
recording whether a site is currently occupied by a bound
TF or not. In this implementation, an attempt to bind would
involve the generation of a random number within the de-
sired location range and a check as to whether that location
is free or not. If it is not free then options might be: abandon-
ing the attempt immediately; searching from that location in
one or other direction until a free site is found; or identify-
ing a fresh random location and repeating the process until a
free site is found. While simple to implement, the weakness
of this approach is immediately clear as the time to find a
free location is dependent upon the occupancy of the DNA.
Indeed, even when there are plenty of free individual bases,
there are no guarantees that a long enough consecutive run

will exist to allow a TF to bind, and the approach outlined
above must ensure that a search in vain will ultimately ter-
minate.

Using this scheme the time to locate a free binding site
depends on the occupancy of the DNA, and scales poorly
with the size of the genome. In this model we therefore
use a different approach that can find binding sites within
a time independent of the occupancy. Rather than an un-
structured array of Boolean status values we maintain a data
structure that records all the remaining bindable sections of
the DNA, as(position, length) pairs. The DNA is modeled
as a 1D wrap-around structure. Note that because binding
and unbinding occur at irregular intervals, sections of bind-
ing sites are occupied and freed according to no particular
regular pattern. The resulting space management problem
is akin to dynamic storage allocationin program runtime
environments (Knuth (1997)), as opposed tostack(last-in,
first-out) memory management, for instance. A significant
difference, however, is that traditional allocation algorithms,
such asfirst fit andbest fit , are inapplicable in this context,
because the memory manager must always allocate a par-
ticular section of free space that has been selected by the
bind event, rather than having a free choice. In common
with dynamic memory allocation, available space quickly
becomes “fragmented”. For instance, consider a run ofl+n
unoccupied sites, wherel is the length of a TF to be bound
andn >= l (Figure 2a). This sequences offersn + 1 po-
tential binding sites before a bind but anywhere between0
andn − l + 1 sites after the bind, depending on where the
bind takes place within the run and the size ofn in compar-
ison to l. If the TF were to bind across the middle of the
section then the two fragments either side may well be too
short to support another TF (Figure 2b). As a result, the data
structure recording bindable sections must be supplemented
by a similar data structure recording unbindable fragments.
For both we use theset associative container from the C++
STL (Meyers (2001)), which provides efficient access via its
key which, in our case, is the binding position. Note that a
fragment resulting from the bind of one TF may become us-
able before that particular TF unbinds — as a result of the
earlier bound TF occupying the adjacent section at the other
end of the fragment becoming unbound (Figure 2c). Indeed,
most of the complexity of the memory management occurs
during the bind-unbind cycle, at the point where a TF un-
binds and the section it occupies becomes available again.
Before being returned to the set of available sections it must
be reunited with any fragments at either end. In addition,
the newly freed section may now be contiguous with another
already available section, in which case the two must be co-
alesced into one.

Methods
All simulations in this article were performed by starting
with an empty wraparound DNA of length4639675 at time
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Figure 1: A histogram of the binding free energies as calcu-
lated from eq. 1. The energies are Gaussian distributed.

Figure 2: DNA section illustrating fragmentation and de-
fragmentation during TF binding and unbinding: a) Two
bound TFs, fragments and an available section; b) A third
TF binds, resulting in two new fragments; c) A TF unbinds,
fragments become available again.

0. Upon starting, the simulation protein was created with
a rate of0.01. The degradation rate of protein was0.0009.
Each simulation was run for a maximum of109 time units,
but was halted as soon as a TF was bound to the specific
binding site at position4540692 on the DNA. The halting
time was taken as the mean first binding time (MFBT) re-
ferred to below. For each set of parameters the MFBT was
calculated from 10 independent simulations (unless speci-
fied otherwise). In the graphs below, each point indicates the
MFBT where the mean has been taken over the set of sim-
ulations that had been performed. Error-bars and standard
deviation are not indicated in the graphs to preserve legibil-
ity. In nearly all experiments we performed, the standard
deviation is comparable to the mean, indicating that typical
binding times deviate significantly from the mean.

The source code of the program used here is available for
free download.1

1via anonymous FTP fromftp.cs.kent.ac.uk as
pub/djb/exp/exp-distrib.tgz

Results
One of the main variables to consider is the time the TF re-
quires to reach its specific site. For a single random walker
it is expected that MFBT scales with the square root of the
distance. In the case of an ensemble walking this may be
different. We decided to check this. To this end we per-
formed a number of experiments with the following setup:
We chose a synthesis site at which the TFs were produced.
This has the effect that the TFs would attach at random to
the binding site within a specified window. This introduces
a stochastic element into the simulation, in the sense that not
all TFs start from the same site. Some will start closer to the
specific site, some from farther away. This choice has an-
other effect. It limits the number of TFs that can attach to
the DNA per time unit. The reason is that, upon binding to
the DNA, TFs either occupy the binding sites within the ini-
tial binding window or they are released into the cytoplasm
(represented by the “reservoir” in our model). If all sites
within this window are occupied, no further TFs can bind
and newly synthesised TF will always be released into the
cytoplasm. We set the parameters such that no binding from
the cytoplasm to the DNA is possible; hence, for the purpose
of our simulation, once a TF unbinds from the DNA it is, in
effect, lost forever. We found that the initial binding window
is a strong restriction on the number of bound TFs.

We first performed a number of simulations with the ini-
tial binding window equal in size to the DNA. The effect
of this is that newly created TFs will bind anywhere on the
DNA. We allow the TFs to perform short moves of length
up to 50 binding sites at a time; adjacent moves happen with
a probability of 0. In this case we would predict that the
MFBT is independent of the location of the synthesis site,
but we would expect that the MFBT decreases as the TFs
can travel faster, that is a higher short move length should
lead to lower MFBTs. We varied both the probability of
short moves and the site where TFs are synthesized. Fig-
ure 3 summarises the results of these simulations and con-
firms that the synthesis site is irrelevant, as expected. The
graph shows the MFBT when all movements are only adja-
cent neighbor moves (P = 1), they are all short move events
(P = 0) and an in-between case (P = 0.8). For other val-
ues ofP we found that the MFBT always increases with
increasingP . As can be seen from figure 3 the difference
between the MFBTs for extreme cases ofP are at the order
of a magnitude.

In bacteria translation and transcription are closely inter-
linked. This means that protein tends to be made in close
spatial proximity to the gene that codes for the particular
protein. Following gene synthesis there is thus an increased
chance that a TF binds to a particular local region of the
DNA. We investigate the effect of this on the MFBT by
varying the location of the initial binding window. Figure
4 shows a number of simulations with a window size of 40
(20 on each site of an assumed protein synthesis site). Such a
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Figure 3: The mean first binding time to reach a particular
specific site as a function of the short move distance. The
window size equals the size entire genome. The short move
length was set to 50 in these simulations.
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Figure 4: The mean first binding time to reach a particular
specific site as a function of the short move distance. The
short move probability was set to0.9.

small preferred binding window is, admittedly, biologically
unrealistic. However, it was chosen for practical consider-
ations relating to the simulation speed. We found a strong
dependence of the MFBT on the protein synthesis location
as summarised in figure 4.

From these experiments it seems that a higher short move
probability speeds up the search process. However, we
would expect that the importance of this effect depends on
the proximity of the synthesis site to the specific binding
site. If the binding site is very close to the synthesis site,
then one would conjecture that large step sizes will tend to
“overshoot,” that is they will simply miss the specific site
during the movement. With larger initial distances this over-
shoot will happen as well, but TFs will move faster into the
proximity of the specific site, hence counteracting this ef-
fect.
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Figure 5: The mean first binding time to reach a particular
specific site as a function of the short move distance. The
short move probability was set to0.9.

We performed a variant of the above experiments to un-
derstand this in more detail. The graph in figure 5 shows
simulations where we kept the initial binding site fixed at an
offset of±3000 binding sites from the specific site. Thex-
axis shows the short move length in the simulation and the
sign of thex-axis indicates the centre of the initial binding
site. So, for example the point marked atx = −100 rep-
resents a simulation with an offset of the initial binding site
of −3000 from the specific binding site, and a short move
length of 100. In these simulations each point represents
the average MFBT over 1000 simulation experiments. The
graph shows values for 3 different adjacent move probabili-
ties, corresponding to all movements are short-moves, 90%
of all events are short-move events and 10% of all move
events are short move events.

The graph is somewhat complex to interpret, but shows
that the MFBT falls faster than exponential with the short
move length. ForP = 0 andP = 0.9 the MFBT decreases
by several orders of magnitude as the short move length in-
creases from 20 to 100. When the short move length is
smaller than 20, then irrespective of the value ofP in the
simulations shown here the MFBT is larger than the maxi-
mum simulation time of109 time units.

A closer look at the simulation results, particularly at fig-
ure 5 reveals that the MFBT is asymmetric around the spe-
cific binding site. When the binding site is to the right of the
specific site (i.e., higher id-numbers in the coordinate sys-
tem used here), then the MFBT tends to be lower than when
the TF is synthesised to the left. This effect is clearly illus-
trated in figure 5. Particularly for high short move length
values there is a clear difference between the two synthesis
sites. For example, when the short move length is 180, then
for the parameters used in the figure the difference between
the MFBTs amounts to nearly a factor of 2.

The underlying cause of the difference appears to be the
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Figure 6: Same as figure 5, but withP = 0 and with an
offset of±100.

presence of 3 further specific binding sites to the right of the
focal site we are interested in. These three additional spe-
cific binding sites are in very close spatial proximity to the
focal site with offsets of 18, 303 and 321 binding sites re-
spectively. One can think of the dynamics as follows: When
a TF binds to one of the 4 binding sites, then it acts as a re-
flecting boundary for random walkers in the area, confining
random walkers within the area of the specific binding sites.
This has the net effect of reducing the MFBT for the random
walkers.

In figure 5 it appears that the longer the sliding distance,
the shorter the MFBT. This is somewhat counter-intuitive.
We would expect that there is an optimum sliding distance,
which allows fast approach of the specific binding site, while
balancing this with the problem of over-shooting the specific
site. Within the short move distances considered in figure 5
such an optimum is not apparent. However, we would ex-
pect that such an optimum short move distance depends on
the distance of the synthesis site from the specific site; the
closer the synthesis site, the shorter the optimal short move
distance. To check this we performed another set of exper-
iments varying the short move distance, but with synthesis
sites located at an offset of±100. Figure 6 shows the results.
It is apparent that there is a clear minumum MFBT for both
offsets, as expected.

Discussion and Conclusion

In this contribution we have presented a model that supports
the efficient simulation of the process of TFs finding their
specific binding sites. One of the problems that we had iden-
tified was that realistic simulations are computationally ex-
tremely demanding. For this reason, modeling of specific
binding site localisation has been restricted to mathemati-
cally tractable but unrealistic models. Here we have made
the first steps towards a computationally feasible implemen-
tation. One of the bottlenecks we have identified is the lo-

calisation of free binding sites on the DNA. By adapting ap-
proaches from dynamic memory allocation we were able to
achieve speedups with respect to a naive algorithm of many
orders of magnitude.

Apart from finding an efficient simulation implementa-
tion, we found that the MFBT depends in a complicated way
on the short move distance, the synthesis site, but also the
local configuration of the binding sites. Our simulations are
a significant extension (although in simulation) to the ana-
lytical results developed by both Murugan and Mirnyet al.
The picture emerging from these simulations is that the situ-
ation is significantly more involved than suggested by these
previous articles. For example: One of the conclusions by
Murugan was that there is an optimal division between ad-
jacent moves and short moves. We could not reproduce this
in our setup. Instead we found that, up to the range we in-
vestigated, short moves are generally faster and more effi-
cient than adjacent moves. We do not mean to imply that
the their conclusions are wrong. However, it is clear that the
conclusions of various models are not robust with respect
to variations of underlying assumptions. This is normally a
worrying sign in modelling.

This suggests that a more thorough investigation of this
system is necessary, in order to come to a clear understand-
ing of how previous mathematical results relate to the simu-
lation results obtained here.
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Abstract

We introduce a fast cellular automata model for the simula-
tion of surfactant dynamics based on a previous model by
Ono and Ikegami (2001). Here, individual lipid-like par-
ticles undergo stochastic movement and rotation on a two-
dimensional lattice in response to potential energy gradi-
ents. The particles are endowed with an internal structure
that reflects their amphiphilic character. Their head groups
are weakly repelled by water whereas their hydrophobic tails
cannot be readily hydrated. This leads to the formation of a
variety of structures when the particles are placed in solution.
The model in its current form compels a myriad of poten-
tial self-organisation experiments. Heterogeneous boundary
conditions, chemical interactions and an arbitrary diversity
of particles can easily be modelled. Our main objective was
to establish a computational platform for investigating how
mechanisms of lipid homeostasis might evolve among popu-
lations of protocells.

Introduction
The debate concerning the containers within which the first
biochemistries developed is hotly contested. One uncontro-
versial observation however, is that Nature has since fixed
upon a single class of molecule to use as the barrier between
cell contents and the external environment, be it the inter-
cellular space or the outside world. These special molecules
- lipids - possess the crucial property of being amphiphilic,
they contain both hydrophilic and hydrophobic groups. Am-
phiphilic molecules are an example of a surfactant, a sub-
stance which reduces the interfacial tension between two flu-
ids (we shall use the terms amphiphile, surfactant and lipid
interchangeably). They are thus endowed with an ability to
arrange themselves into meso-scale structures when placed
in solution. The shapes of these structures reflect the sys-
tems’ attempts to minimise contact between hydrophobic
groups within the amphiphiles, and water molecules. One
such structure, the vesicle, can be conveniently used to sep-
arate one aqueous environment from the surrounding water.
It is this molecular device that organisms have adopted as
a means of separating the inner cell space from its exterior.
All nutrients and waste products must pass through this bar-
rier in order to carry out their function within a cell. The

membrane must also grow, sever, re-connect and undergo
various other transformations during the cell cycle. Other
lipid membranes separating organelles from the intracellu-
lar space must also adopt various shapes and curvatures in
order to maximise their function. Given the tremendous im-
portance of membranes both during the early stages of the
evolution of life and in contemporary organisms, it is easy
to justify the pursuit of a complete understanding of am-
phiphile dynamics.

The electrostatic interactions between the constituents of
lipid molecules are fairly well understood as are the equa-
tions of motion for the behaviour of such molecules in solu-
tion. Furthermore, the equilibrium properties of surfactant-
water-oil systems have been analysed using a lattice model
first introduced by Widom (1986). Having successfully re-
produced some key features of surfactant phase diagrams,
Widom’s simple lattice model as well as other spin-based
models (so-called due to their being isomorphic to a spin-
1

2
Ising model), stimulated a profusion of investigations to

be carried out both analytically and through Monte Carlo
simulation (Larson et al., 1985). For a summary of the re-
search performed during this period, see also the review of
Kawakatsu et al. (1994). Despite these successes, there re-
main significant analytical obstacles to the complete under-
standing of more complex, biologically relevant lipid sys-
tems (for example, if we wish to include processes such as
the synthesis and decay of lipids through metabolic path-
ways). Life is the antithesis of thermodynamic equilibrium,
and exhibits highly non-linear dynamical behaviour to boot.
These factors, among others, have presented what appear to
be insurmountable barriers to a pure analytical understand-
ing of the higher level systems of molecular biology. In-
stead we must, for the time being at least, look to computa-
tional methods. Even numerical integration of the equations
of motion is a daunting task. Real systems of interest involve
massive numbers of molecules, and interesting dynamic be-
haviour occurs over time scales which are much longer than
typical numerical integration steps. Therefore models de-
rived from first principles which solve the exact system of
equations (molecular dynamics) are very expensive in terms
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of computational resources. Multi-scale and hybrid mod-
els have been put forward by Ayton and Voth (2002) and
Lyubartsev (2005) for example, but simulations over longer
time scales and mesoscopic length scales with the potential
for variable environments and boundary conditions are still
relatively rare.

The popularisation of cellular automata (CA) models has
given birth to a family of simulation techniques which have
shown considerable promise for modelling complex systems
such as amphiphile solutions (Kier et al., 1999; Nilsson and
Rasmussen, 2003; Rothman and Zaleski, 2004). CAs are
discrete time and space models in which all interactions
occur on a local scale. These properties allow CAs to be
much less computationally demanding than traditional nu-
merical schemes. The lattice and discretisation constraints
of CAs can cause problems with respect to invariance un-
der geometric transformations but there is one class which
has been shown to mimic reality with surprising effective-
ness. So-called lattice gas models simulate hydrodynamics
by allowing a set of particles to move and collide on a lat-
tice. The rules of interaction are defined such that mass and
momentum are conserved and one can derive the Navier-
Stokes equations from the microdynamical rules of the CA
(Frisch et al., 1986). The basic lattice gas has been extended
for a variety of applications including the fluid dynamics of
water-oil-surfactant mixtures (Boghosian et al., 1996, 2000;
Mayer et al., 1997). Both of these models were successful in
re-creating some key lipid phases and were later applied to
more specific systems including, in the case of the model of
Boghosian et al. (1996), self-reproducing micelles (Coveney
et al., 1996), which showed impressive agreement with the
experimental results of Bachmann et al. (1992).

In this investigation, we explored the abilities of a new
CA for the simulation of amphiphile solution systems based
upon the artificial chemistry model of Ono and Ikegami
(2001). This model differs from the lattice gases mentioned
above. Particles move in pursuit of potential energy min-
ima, but they do not collide and exchange momentum. We
perform this simplification of neglecting the individual parti-
cle momenta because we wish to focus on the self-assembly
process and the meso-level dynamics of more complex sys-
tems with variable boundary conditions. By ignoring the
explicit hydrodynamics of the system, the formulation of
the model is greatly simplified as are the computational
demands. We believe that the key dynamics of the self-
assembly process are nevertheless retained.

An important feature of our simulations is the way in
which surfactants are defined. Rather than a generic ‘mem-
brane’ particle, we have applied a more explicit representa-
tion of the internal structure of amphiphiles. In addition, we
introduced three different lipid species, each with its own
geometry. Real cell membranes consist of many different
lipid types. Some of them naturally form bilayers but there
are also non-bilayer forming lipids present. The exact func-

tion of these non-bilayer lipids has been debated for many
years and it is likely that they play several roles in the cel-
lular performance (Lindblom et al., 1986). The stability, ro-
bustness and versatility of cell membranes derives in part
from the homeostatic balance of the distribution of these var-
ied lipid species (Beard et al., 2008). Therefore we aimed
to endow our model with the additional freedom of having
lipids with a range of membrane-forming properties. Our
objective was to construct a platform which we could use to
investigate the spontaneous evolution of lipid homeostatic
mechanisms. Ono and Ikegami (2001) have already shown
that simple cell-like entities arise spontaneously within their
model framework. We aim to extend that model framework
such that we can simulate not only the formation of pro-
tocells, but also the evolution by those protocells of mech-
anisms for balancing the lipid composition of their mem-
branes. In our model, the geometry of vesicles (or proto-
cell membranes) resulting from the spontaneous organisa-
tion process depends not only on environmental factors but
also on the distribution of the different lipid species, since
each species has its own preferred membrane curvature.

In this paper we wish to present the model in its cur-
rent form as a tool for simulating an interesting and im-
portant class of complex system. As well as simulating
the emergence of lipid homeostasis, the model could eas-
ily be modified to simulate complex reaction-diffusion or
self-reproducing micellar systems, among others. We shall
first give a brief description of the workings of the model,
before describing the main results of our investigations so
far. These will include simple phase separation of water and
hydrophobic monomers, micelle formation, bilayer forma-
tion, ternary mixtures leading to monolayer formation and
finally a set of hysteresis experiments. We shall then con-
clude with a discussion of the significance of these results
before suggesting some relevant systems which will be sim-
ulated by our model in the future. Due to space restrictions,
we shall not present a strong focus on the technical details
of the model, instead we shall describe the most important
features and highlight its phenomenological successes.

Model Description
The mechanics of our model are essentially the same as
those of Ono and Ikegami (2001); Ono (2005). The simula-
tion domain is a 2-dimensional triangular lattice over which
particles move and interact. An arbitrary number of parti-
cles can reside on each lattice site, and the boundaries of
the lattice are periodic. The model proceeds via a standard
metropolis algorithm (relaxation towards a global potential
energy minimum). All interactions between possible parti-
cle pairs across all relative orientations are defineda priori
in the form of a lookup table. Same site interactions consist
of a strong excluded volume repulsion which is the same for
all particle types and acts between all particle types. The
nearest-neighbour interactions take several different forms.
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All forces are repulsive but the strength depends on the phys-
ical properties of the two particles involved in the interac-
tion. In order to approximate the effect of hydrogen bond-
ing, water particles repel one another with almost negligible
force. Hydrophobic monomers also repel each other weakly.
There is a strong repulsion felt between water particles and
hydrophobic monomers. This is due to the frustration of
the surrounding water molecules, which are unable to satisfy
all of their potential hydrogen bonds. Interactions involving
surfactants are slightly more complicated.

The crucial differences between our version of the model
and that of Ono and Ikegami (2001), are the structure and
interactions of the surfactants. We make use of a more ex-
plicit representation of lipid particle geometry. Although the
surfactants have internal structure, we do not model the har-
monic motion of the individual molecular components. Each
surfactant is represented as a rigid particle free only to ro-
tate in discrete increments (reflecting the discrete nature and
underlying symmetry of the lattice). The pairwise interac-
tions between these particles are computed using the sum
of a set of Lennard-Jones functions. These calculate Van
der Waals forces for the four interactions between the hy-
drophilic heads and hydrophobic tails of all pairs of surfac-
tants which are nearest neighbours. Physically, these four
terms represent the dipole-dipole interaction between the
polar head regions, the dipole-induced dipole interactions
between the heads and hydrocarbon tails, and the induced
dipole-induced dipole interaction between the two tail re-
gions.

(a) (b)

Figure 1: Equilibrium orientations of pairs of surfactant par-
ticles. a)M1 particles at adjacent lattice sites align with their
tails closer than their heads due to their cone-like geometry.
b) anM2 particle and anM3 particle prefer to align with an
angle ofπ/6 between their axes. This is due to the wider
splay of the tails ofM3 particles.

M1 particles are modelled on detergent particles with sin-
gle alkyl chains. This gives them a cone-like shape with a
broader head region. Figure 1(a) shows a schematic illus-
tration of their pairwise equilibrium configuration. The two
M1 particles align with an angle ofπ

3
between their vertical

axes.M2 particles are based on lipids with double hydrocar-
bon chains giving them a cylindrical geometry. As a result

they prefer to align parallel with one another.M3 particles
have broader tail regions, wider than their head groups. A
second example of the equilibrium configuration of a pair
of particles is shown in figure 1(b), which illustrates how
the cylindricalM2 particle and the broad-tailedM3 particle
prefer to align with one another. Since theM2 particle has
a cylindrical geometry but theM3 particle has a broader tail
region, these two particles prefer to align with an angle ofπ

6
.

The other equilibrium configurations are defined in a similar
way, e.g. an angle ofπ

3
for pairs ofM3 particles (with head

groups closer than tails) and an angle of0 for pairs consist-
ing of anM1 and anM3 particle.

We now turn to defining the interactions between surfac-
tants and water. Clearly the head groups ofM1 particles
will be attracted to water over a broader range of angles than
those ofM2 andM3. The repulsion between the tails ofM3

particles and water will also extend over a wider range of
angles than the other two particles. These varying affinities
for water are summarised in figure 2, which shows the vari-
ation of the pairwise potentialφ for an amphiphile neigh-
bouring a water particle over a range of orientation angles
θ. The M2 particle with its cylindrical geometry, feels an
anti-symmetric repulsion as a function ofθ. Conversely, the
M3 particles feel a broad ranged repulsion when their tails
face water and only over a narrow range do they experience
an attraction to water.

0 1 2 3 4 5 6
θ

π/3

φ θ

 

 

W

θ

M
1

M
2

M
3

Figure 2: Pairwise potentialφ for a water and surfactant par-
ticle at neighbouring lattice sites. The potential varies as a
function of the surfactant orientationθ and takes on a differ-
ent functional form for each of the three surfactant species.
Note that in the model, the possible values ofθ are discre-
tised, the continuous curves are indicative only.

At each time step, the potential energy field for each parti-
cle type is calculated using the interactions described above.
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Particles then undergo stochastic transitions in pursuit of
local energy minima. These transitions consist of transla-
tion by one lattice spacing and rotation (in the case of the
anisotropic surfactant particles). Particle states are updated
synchronously. As the particles relax into local minima the
system as a whole tries to reach a state of global energy min-
imum analogous to the process of simulated annealing. The
probability of a particle undergoing a transition is propor-
tional to the value of the energy response function, evaluated
for that transition (Ono and Ikegami, 2001):

f(∆Φ) =
∆Φ

eβ∆Φ
− 1

(1)

∆Φ is the potential energy change of the transition and
β = 1/T is the inverse temperature (we take Boltzmann’s
constant equal to unity). This function is designed to im-
plement the basic character of a Boltzmann factor without
the risk of the value diverging for large negative∆Φ (tran-
sitions which are energy-reducing are not guaranteed to be
accepted, as in a standard Monte Carlo algorithm). Simu-
lations proceed by making use of this function to calculate
transition probabilities. Particle states are then updated syn-
chronously and randomly, biased by these probabilities.

Results
We shall now examine the most important results from test-
ing the model over a range of conditions. Note that all
images shown here are sections taken from larger systems
therefore the boundaries in the images do not wrap around
in the periodic way that they do in the simulation. In all fig-
ures, depth of green corresponds to the concentration of oil
particles, depth of blue corresponds to water concentration
and depth of red to surfactant concentration.

Phase Separation
We begin with a simple, characteristic situation: a 50:50
water-oil mixture. Since polar and organic solvents do not
mix due to their differing capabilities for hydrogen bond for-
mation, we would expect such a system to relax to a state
of phase separation in which the surface tension (interfacial
area or contour in 2D) between the two substances tends to
a minimum. Figure 3 shows two snapshots from a simula-
tion containing average densities ofρw = ρo = 7.5 particles
per lattice site, at a temperature ofT = 0.8. We can see in
figure 3(a) that the system separates into regions of almost
pure water and oil in the early stages. Over time the av-
erage curvature of the interface between the two regions is
persistently reduced. Close observation reveals the propa-
gation of capillary waves across this interface (see anima-
tion at: http://tinyurl.com/lipid-CAs), a characteristic sur-
face tension effect. Given sufficient time, the system will
reach a state of a single straight interface separating the two
phase regions. Since the relaxation time scales approxi-
mately exponentially with system size, one would have to

run the simulation for an extremely long time to reach this
state. However we can already see this minimum energy
configuration at smaller length scales within the system.

(a)

(b)

Figure 3: System configuration after a)t = 1 × 104 and b)
t = 1 × 106 time steps for a binary mixture of water and oil
particles.

Surfactant-Water Mixtures

We now turn our focus to the behaviour of the surfactant
particles in the presence of water. Experimental results from
studies of real lipid systems lead us to expect structures such
as micelles, bilayers and vesicles among others (Tresset,
2009). We also know that the appearance of such structures
should depend on certain parameters such as the temperature
and surfactant concentration.

Micelles M1 particles were designed to emulate detergent
molecules with single alkyl chains. We represented this in
the model by endowing them with a cone-like structure: a
narrow tail region and broad head section. We would ex-
pect such particles to coalesce into micelles in the presence
of water. In a micellar configuration, the contact between
hyrocarbon tails and water is minimised whilst the energetic
aspirations of the amphiphiles are also reasonably satisfied.
We can see from figure 4 that the equilibrium structure ex-
hibited by M1 particles is the micelle. The configuration
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shown contains average densities ofρw = 12 andρM1
= 3

particles per lattice site and had a temperature ofT = 0.3.
Increasing the surfactant concentration does not alter the mi-
cellar configuration, it simply causes a greater number and
hence closer packing of micelles. Likewise decreasing the
M1 concentration simply results in a smaller number of mi-
celles as the surfactants have a lower probability of encoun-
tering one another as they perform random walks over the
lattice. Given time they do begin to aggregate but the pro-
cess is slow. Furthermore, if the temperature is high, the
micelles cannot form because they require a certain thresh-
old number of constituents before they can remain robust to
thermal fluctuations. Micelles containing only a small num-
ber of particles are not robust to these perturbations and thus
do not persist. Hence at low surfactant concentrations, mi-
celles can only form at low temperatures where fluctuations
are less frequent. Below the critical micelle concentration
(CMC), micelles would be unable to form at any tempera-
ture. In our model the CMC is very low (ρM1C

< 1 particle
per lattice site) and we have not yet explored such low sur-
factant concentrations.

Figure 4: System configuration aftertf = 2×105 time steps
for a binary mixture of water andM1 surfactant particles.

Bilayers We definedM2 particles as being similar to lipids
with a cylindrical geometry. Their energetic requirements
are satisfied if they align parallel with one another form-
ing a straight bilayer. As was the case forM1 particles,
this arrangement minimises the interfacial contact between
hydrophobic tails and water while also satisfying the ener-
getic preferences of the surfactants. Figure 5 shows a typ-
ical steady state of a water-M2 mixture. It is clear that the
self-assembly properties of this surfactant species are quite
different from those of theM1 particle. Under identical
conditions and concentrations,M2 particles assemble into
bilayers, in contrast to the micelles formed by theM1 par-
ticle. If the concentration ofM2 particles is very low, i.e.,
ρM2

< 1 particle per lattice site, below the critical bilayer
concentration (CBC), micelles are formed rather than bilay-

ers. However they do not possess the central voids of the
M1 micelles so they could also be described as small clus-
ters. At these low concentrations, tuning the temperature to
a critical value ofT ≈ 0.3 allows a small number of bilayer
sections to form but they are rapidly destroyed once the tem-
perature reachesT = 0.4. This critical structure formation
is analogous to the formation of micelles at low concentra-
tions described in the previous section. Further investiga-
tions will reveal the nature of this transition region, within
which well-defined structures form, but outside of which no
such structures persist. As the concentration ofM2 parti-
cles is increased above the CBC, the system becomes more
densely packed with bilayers and the interconnectivity of the
bilayers increases concomitantly.

Figure 5: System configuration aftertf = 2×105 time steps
for a binary mixture of water andM2 surfactant particles.

Bilayers and Reverse Micelles The M3 surfactant pos-
sesses a broad tail region so it should be averse to micelle
formation. Bilayers are also not the ideal structure since
pairs ofM3 particles would prefer to align with an angle
of π

3
between their long axes. In an organic solvent these

particles would form reverse micelles, but it is not obvious
what structures they would form in a polar solvent. Because
M3 particles prefer not to form micelles or bilayers, they ac-
tually attempt to create an environment in which reverse mi-
celle formation is possible. Figure 6 shows the equilibrium
configuration of a mixture of water andM3 surfactants at the
same concentration and temperature as the systems shown in
figures 4 and 5. We can see that the system adopts a mix-
ture of bilayers and clusters. On closer inspection, one finds
that the clusters consist of amphiphiles forming a hexagonal
phase. There are water particles at the centres of the reverse
micelles due to the surfactant head groups being water solu-
ble. In contrast the inter-micellar voids are just that, they are
devoid of particles since they are apolar environments.

Monolayers Having evaluated the behaviour of water-oil
and water-surfactant mixtures, we can now explore the equi-
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(a)

(b)

Figure 6: a) System configuration aftertf = 2 × 105 time
steps for a binary mixture of water andM3 surfactant par-
ticles. b) A closer view of the highlighted region from the
upper figure showing a cluster ofM3 particles which have
assembled into a honeycomb structure allowing the forma-
tion of reverse micelles. Particles are drawn where there are
2 or more surfactants present in that position and orientation.

librium configurations of ternary solutions. The polar and
organic solvents should again separate but now the surfac-
tants can take up positions along the phase boundary in order
to further minimise the total surface free energy. The surfac-
tants should align themselves such that their polar heads are
hydrated and their lyophilic tails mingle with the oil regions.
Figure 7 displays such behaviour when we initialise a simu-
lation with average densities ofρw = ρo = 7 andρM2

= 1
and allow it to relax fortf = 2 × 105 time steps at a tem-
perature ofT = 0.1. The surfactants rapidly line the oil-
water interface and at low temperatures the system reaches
a steady state where the oil islands become stationary and
almost completely cease to merge or divide. At higher tem-
peratures the system adopts a configuration identical in ge-
ometric character to that in figure 8(a). At this temperature,
T = 0.4 the system has more freedom to explore its mi-

crostates and hence over time the oil regions merge, grow
in size and change shape in an effort to minimise their aver-
age curvature, analogous to the situation for the binary oil-
water case. Fluctuations present in the initial conditions are
gradually damped out. At these high temperatures, the pro-
cess of potential energy minimisation struggles since the en-
ergy response function makes less of a distinction between
transitions which are energy-reducing and those which in-
cur an energy cost. So although there is phase separation
and the surfactants assemble on the phase boundary, there
are also surfactants spread thinly across the entire lattice.
The bulk phase separation effects dominate here due to the
large numbers of water and oil particles present and the high
temperature. In contrast, at lower temperatures, the pres-
ence of the surfactants is more influential. This is visible
in figure 7. SinceM2 particles prefer to align parallel to
one another, the oil-water interface takes on a slightly dif-
ferent appearance. It is composed of straight sections punc-
tuated by sharp corners, typically turning through angles of
π
3

. Because the surfactant monolayer is rather inflexible at
this low temperature, the system does not undergo any sig-
nificant geometric changes once settled into the bicontinu-
ous state shown in figure 7. We also explored situations in
which the average oil densities were lower than the water
densities. In these cases, the so-called microemulsion phase
is exhibited, in which droplets of oil form, surrounded by
surfactant boundaries. These droplets were seen to merge
when they encountered one another.

Figure 7: System configuration aftertf = 2 × 105 time
steps for a ternary mixture of water, oil andM2 surfactant
particles.

Melting and Re-freezing: Temperature-driven
Hysteresis
In this section we shall present an example of a hysteretic
effect in a ternary mixture. Comparison of figures 7 and
8(a), show that the temperature has a strong influence on
the properties of the steady state structure. Higher temper-
atures allow a broader range of microscopic configurations
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(a)

(b)

Figure 8: System configuration from a temperature-driven
hysteresis experiment after a)t = 6 × 105 and b)t = 10 ×

105 time steps, for a ternary mixture of water, oil andM2

surfactant particles. An animation of this experiment can be
found at: http://tinyurl.com/lipid-CAs

to be explored per unit time. However these structures are
much less stable than those which emerge at low temper-
atures. At high temperatures, what we see at large scales
is an average of a large number of possible configurations
which are being adopted and then eradicated again in rapid
succession. Alas the randomising effects of thermal energy
reign. Since the absence of these effects allows the system
to maintain its configuration over longer periods, we would
expect that cooling a warm system should freeze in the ap-
proximate configuration which prevailed before the cooling
began. So if we were to take a stationary cool system, heat
it, allow it to relax and then cool it again, the final steady
state will be different from that which results from leaving
the system at a constant low temperature. It is this effect that
gives glasses their amorphous structure. The relaxation time
required for the molecular constituents of glasses to settle
into their equilibrium positions is so long that they have the
appearance of a liquid which has had its molecular motion
suspended. We expect that we can create a similar effect

with our model system. We performed just such an experi-
ment in which we intialised a simulation with identical pa-
rameters to those of the system shown in figure 7. It was
allowed to relax for2 × 105 time steps before the tempera-
ture was linearly raised fromT = 0.1 → 0.4 over a period
of 2 × 105 time steps. The system was then left for another
2 × 105 time steps. The configuration at this point is shown
in figure 8(a). The temperature was then returned toT = 0.1
linearly over2× 105 time steps and the system was allowed
to relax once more. The final state of the system at the end
of this process is shown in figure 8(b). The most prominent
feature of figure 8 is that the high temperature state has in-
deed been ‘frozen in’ or quenched. However the alignment
preferences of the surfactants have caused the monolayer to
become much more rigid. Furthermore, because the total in-
terface length has been reduced by the heating process, there
are now more than enough surfactants to line it. As the tem-
perature was lowered and potential minimisation became a
stronger imperative, free drifting surfactants were forced out
of the water regions and were adsorbed onto the monolayer.
Some surfactants then started to form bilayer sections since
joining the monolayer incurred a greater energy cost than
extending a bilayer into the water region. This experiment
showed that the geometric features of the configuration are
not a simple function of state. They depend not only on the
current conditions, but also on the system’s history. When
the system is initialised at a low temperature and remains at
that temperature, it retains remnants of its initial configura-
tion. If the same system is heated and then cooled again, the
final configuration reflects the state of the system at previous
times when the environment was different. Not all details are
retained but the differences between figures 7 and 8(b) high-
light the fact that current environmental conditions alone are
not sufficient to define the configuration of the system.

Conclusions
We have presented a model of amphiphile structure forma-
tion which is both simple and shows qualitative agreement
with experiment. As a foundation we adopted the frame-
work of the artificial chemistry model of Ono and Ikegami
(2001). By re-formulating the way that surfactants are rep-
resented in the model, we have given it the ability to suc-
cessfully simulate some of the most common phases of am-
phiphilic systems. We have shown its ability to reproduce
micelles, bilayers, reverse micelles and monolayers. Other
phases including microemulsions have also been simulated.

Armed with the knowledge that protocells spontaneously
formed in the original model of Ono and Ikegami (2001),
and having established the basic lipid phenomenology of
this new model version, our future work will involve simu-
lating protocellular chemical systems in which the cells can
adopt different membrane curvatures depending on the dis-
tribution of lipids in their membranes. This lipid distribution
will directly impact their robustness and hence their ‘fitness’
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with respect to other cells within the system. For example,
possessing a small number ofM1 andM3 particles would
enable a cell to have a membrane composed of straight sec-
tions (primarilyM2 particles) punctuated by high curvature
corners (M1 particles on the inner side of the bilayer andM3

particles on the outer side). Such a membrane would have
a significantly lower surface tension than one constructed
purely fromM2 particles. The ability to exchange resources
and wastes involved in the synthesis of new lipid particles
controls how efficiently a protocell can repair damage to its
membrane and also how easily it can grow and divide to
form a pair of daughter cells. Therefore this ‘full’ version of
the model might give clues as to how mechanisms for cel-
lular lipid homeostasis might emerge spontaneously. Fur-
ther selection pressure could be placed upon the protocells
by relaxing the assumption of a uniform, stationary environ-
ment. We should also be able to simulate self-reproducing
micelles (Bachmann et al., 1992), and complex reaction-
diffusion systems (Szymanski et al., 2011).
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Abstract

We examine whether the process of technological innovation
is an evolutionary process, in the sense that information that
determines entities in the past is transmitted to entities in the
future. We compare citation and PageRank statistics applied
to data from the US patent record with data produced by cer-
tain non-evolutionary processes, captured by three classes of
models that are driven respectively by what we term ran-
dom, preferential, and a priori attachment. We make qual-
itative and quantitative comparisons of the cumulative cita-
tion curves produced by the patents and the three models,
and find that random, a priori, and preferential attachment
processes fail to explain certain significant patterns observed
in the patent record—a result that corroborates the hypothesis
that technological innovation is an evolutionary process.

Is technological innovation evolutionary?
The advent of massive-scale systematic mining of aggre-
gated social data, e.g., Michel et al. (2011), is transforming
study of the evolution of science and technology. Earlier
empirical study of the diffusion of innovations through so-
cial and economic markets (Rogers, 2003) can now be wed-
ded with narrative theories the evolution of technology, e.g.,
Arthur (2009), and the analysis of innovation networks re-
vealed in patent citation data (Jaffe and Trajtenberg, 2002).
Interest in this topic rose sharply with the discovery that the
growth and evolution of many kind of networks, including
those consisting of citations among scientific papers (Red-
ner, 1998; Barabasi and Albert, 1999; Lehmann et al., 2005)
and patents (Valverde et al., 2007), exhibit power law be-
havior that can be modeled by various preferential attach-
ment models. Here we take another look at this issue, and
ask whether the characteristic dynamics of patent citations
is well explained by three natural classes of models of the
growth of patent citation networks.

There are a variety of reasons why those in artificial life
might be interested in the evolution of technology. The pro-
cess is driven by innovation, and understanding the role of
innovation is essential to understand evolution, both in arti-
ficial life and in biology. If the technosphere—the set of all
technological artifacts—displays a nontrivial form of evolu-

tion, it might itself be considered a sort living system, or a
form of living technology (Bedau et al., 2010b,a).

The term “evolution” is usually used to describe the
change of biological organisms over very long time peri-
ods, through a process that includes genetic variation of or-
ganisms from one generation to the next and natural selec-
tion based on survival of the fittest. This narrow biologi-
cal view of evolution has been broadened to include long
term changes in other non-biological systems; in recent lit-
erature one may find references to evolution of computer
algorithms, evolutionary psychology, evolutionary history,
cultural evolution, social evolution, sociocultural evolution,
and technological evolution. But one may question the use
of the term in all these contexts. A system may change over
the long run, but when is that change properly termed evolu-
tion? Is there a well defined and empirically discernible dif-
ference between evolutionary change and non-evolutionary
change?

Our view is that there is indeed a difference between evo-
lutionary change and non-evolutionary change. For a system
to evolve, it must be comprised of a population of entities,
with a process for continual creation of new entities (the en-
tities are analogs of biological organisms). The entities must
be determined, at least in part, by some set of information
(analog of an organism’s genome). And finally, there must
be some process of selection taking place so that different
entities are present to greater or lesser degree. We hold that
such a system undergoes evolutionary change if and only
if some of the information used in determining past enti-
ties persists and affects the determination of present and fu-
ture entities (a form of heritability). If the present state of
the population is substantially causally disconnected from
all the determining information of previous populations, we
would say that change is non-evolutionary. Biological evo-
lution meets our definition of evolutionary change because
the genetic information specifying present entities is copied
from the genetic information from previous entities, perhaps
modified by certain kinds of random mutations. Note that
evolutionary change in the sense defined here covers both
random genetic drift and darwinian evolution by natural se-
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lection.

If the information determining a system’s entities is mea-
surable, the hypothesis that the system is evolving is testable
through statistical analysis of those measurements. We con-
sider the issue for technology, using citations in the patent
record to examine whether or not technological change is
evolutionary. In particular, we will consider the set of all
technology that is represented by a patent granted by the
United States Patent and Trademark Office (USPTO) dur-
ing the period 1976-2010. Following our earlier work in
this vein (Skusa and Bedau, 2002; Buchanan et al., 2011;
Chalmers et al., 2010), we consider the set of patents as a
changing population of entities, and we consider a patent to
be “selected” whenever it is cited by another patent. When
a new patent is issued, its immediate “ancestors” are con-
sidered to be the earlier patents that it cites, so citations
are treated as the informational token indicating heritabil-
ity. The most heavily cited patents are the key drivers of
technological innovation.

Our previous work used various statistical measures based
on citations to examine whether technological change is evo-
lutionary. The citation-based statistics highlight various a
posteriori narratives about superstar patents, i.e., those that
have especially high citation-based scores. Here we ex-
tend this analysis and examine other statistical indicators of
a patent’s persistence; specifically, we study second-order
citations and PageRank, which can be viewed as depend-
ing on arbitrarily high-order past citations, and we examine
whether these different statistical metrics alter the narratives
of superstar patents. Finally, we measure the distance from
the citation distributions observed in the patent record, to the
characteristic citation distributions produced by three candi-
date generative models—a flat random attachment model,
a preferential attachment model, and an a priori attachment
model—and thus test the degree to which structure observed
in the patent record is explained by our models. If the statis-
tical character of data produced by a model is indistinguish-
able from the statistical character of the actual data, the ac-
tual data is well-explained by that model. We conclude that
none of the three models considered effectively captures the
structure found in the patent record.

Statistics for quantifying evolution

In describing the citation dynamics of the patent record, we
count citation events in which one patent cites another. A ci-
tation is a tuple: if p1 cites p2, this first-order citation is the
tuple (p1, p2), and we say the relation c(p1, p2, t) holds, for
p1 citing p2 at time t. (We sometimes assume an implicit ex-
istential quantifier over times, and simply speak of atempo-
ral citation links between patents.) Previous work has exam-
ined the content of the citers of a patent p (Chalmers et al.,
2010); in the present work, we focus on citation event tuples.

Let←−C1(p) be the set of first-order incoming citations of p:

←−C1(p) = {(p′, p) : ∃t, c(p′, p, t)}.

We can identify superstar patents by ranking all patents p
according to their number of incoming citations, |←−C1(p)|.
We can partition the set of incoming and outgoing citations
into those received at some specific time t:

←−
Ct

1(p) = {(p′, p) : c(p′, p, t)}.

Generalizing, we let the second-order citations of a patent,←−C2(p), be all the citation triples that end in p:

←−C2(p) = {(p′′, p′, p) : ∃t, t′, c(p′′, p′, t) ∧ c(p′, p, t′)},

and partition a patent’s second-order citations into those re-
ceived at a specific time, t:

←−
Ct

2(p) = {(p′′, p′, p) : ∃t′ < t, c(p′′, p′, t) ∧ c(p′, p, t′)}.

We regard a patent’s impact on subsequent technologi-
cal innovation as the cumulative weight of each citation
event. For a counting function for an nth-order citation,
f t(pn, pn−1, . . . , p1, p), we define a patent’s nth-order im-
pact Ct

n(p) as the cumulative weight of citations to patent p
up to time t:

Ct
n(p) =

t′=t∑
t′=0

 ∑
(pn,...,p)∈

←−
Ct′

n (p)

f t(pn, . . . , p)

 . (1)

The simplest version of a counting function is
f t(pn, . . . , p) ≡ 1, in which case each citation in

←−
Ct

n(p)
is counted with equal weight. Ct

1(p) with this counting
function is shown in the top of Figure 1. Buchanan et al.
(2011) have shown that even this simple counting function
reveals the main trends that remain prominent in the data
after biases are removed.

We also iteratively calculate a patent’s PageRank, which
reflects the expected time that someone randomly surfing
the patent citation network would spend visiting any given
patent, as follows:

Rt
p(n) = (1− d) + d

∑
p′∈
←−
Ct

(p)

(
Rt

p′(n− 1)

|
−→
Ct(p)|

)
, (2)

where n is the current iteration, d is a damping factor, and
←−
Ct(p) = {p′ : c(p′, p, t)} and

−→
Ct(p) = {p′ : c(p, p′, t)}

are, respectively, the citers and citees of p up to time t. For
all p, we let Rt

p(0) = 1 and set d to 0.85, and perform 50
iterations—all as per convention in Page et al. (1999). A
patent’s PageRank changes over time, as the patent citation
networks grows.
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Comparison of citations, second-order
citations, and PageRank narratives

Earlier work operationalized high impact inventions as the
most highly cited patents—termed patent “superstars.” Un-
derstanding superstar patents can help us understand what
drives the evolution of technology in general. It turns out
that superstar patents in the past few decades often involve
PCR (the polymerase chain reaction that revolutionized con-
temporary biotechnology), inkjet printing, and stents (wire-
mesh tubes that allow blocked coronary arteries to be re-
paired without open-heart surgery); see Buchanan et al.
(2011) for details. The same methods also provide evidence
that semiconductors, e-commerce, and wireless communi-
cation, for example, are also among the significant drivers
of innovation during the last few decades (Chalmers et al.,
2010). But the superstar status of PCR, ink-jet printing and
stents remains a dominant pattern, so we illustrate our argu-
ment here by discussing those three key innovations.

Earlier work (Skusa and Bedau, 2002; Buchanan et al.,
2011; Chalmers et al., 2010) compared citation counts of
patents. Here, we extend the analysis to include two other
natural statistics. We see in Figure 1 that the ten most cited
patents appear among the top 100 when patents are ranked
by second-order citations and PageRank, because more or
less the same colored patents occur in all three plots. This
shows that the PCR (red), inkjet printing (blue) and stents
(green) narratives remain dominant when the patent record
is analyzed by either citations, second-order citations, or
PageRank. This rough correspondence between the three
statistics tends to confirm that PCR, inkjet printing, and
stents deservedly rank among the major technological inno-
vations of the last thirty five years.

Nevertheless, the three different statistics do highlight dif-
ferent aspects of the patent record. For example, second-
order citations correspond to the number of branches two
levels down in the patent’s phylogenetic tree. The amount
of green in the second-order citation plot shows the bushi-
ness of the phylogenetic tree of the invention of stents—a
conclusions confirmed by comparison of the phylogenetic
trees of PCR, inkjet printing, and stents (data not shown).
On the other hand, PageRank weights citations by the citer’s
PageRank, so phylogenetic bushiness is insufficient by itself
to boost PageRank. We see in the bottom of Figure 1 that
stents (green) are significantly downplayed by PageRank,
compared to PCR (red) and inkjet printing (blue). The obser-
vation that 25% of the top 20 patents ranked by second-order
citation are about stents (green), while the top 100 patents
include very few of the stent patents, might be connected
with the earlier conclusion (Buchanan et al., 2011) that the
stent patents are less “door-opening” than PCR and inkjet
printing.

These qualitative conclusions are confirmed quantita-
tively by measuring the rank correlation between the patents
when ranked by the three different statistics. The bottom
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Figure 1: Top three panels: Dynamics in the patent record of
cumulation first-order citations, cumulative second-order ci-
tations, and PageRank. Only the 100 highest-ranked patents
are shown. Patents are color coded as follows: inkjet print-
ing (blue), PCR (red), stents (green), other (gray). At the
left are listed the patent numbers for the top twenty patents
shown in each figure. Bottom: Rank correlations between
the patents when ranked by citations and PageRank (C &
PR), by PageRank and second-order citations (PR & 2C),
and by citations and second-order citations (C & 2C), for
the top 100 (orange) and the top 35k (purple) patents.
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of Figure 1 reveals a significant difference between how the
patents are ranked by the three statistics.

This conclusion can be generalized after examination of
Figures 2 and 3. We can see in Figure 2 that most of the
most heavily cited patents are also ranked highly by second-
order citations and PageRank, because there is a lot of purple
and brown at the top of the graphs. So, citations are high-
lighting something that is also picked up to some extent by
second-order citations and PageRank. Similarly, we can see
in Figure 3 that most of the patents with the highest PageR-
ank are not also ranked highly by citations or second-order
citations, because there is relatively little purple and brown
at the top of the graphs. So, PageRank is highlighting some-
thing somewhat different than citations and second-order ci-
tations.
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Figure 2: Above: First-order impact (cumulative citation)
curves for the top 100 patents when ranked by citations or
PageRank. Below: The same for the top 100 patents when
ranked by PageRank or second-order citations. Patents are
colored as follows: patents ranked among the top 100 only
by citations (blue), those ranked among the top 100 only by
PageRank (green), those ranked among the top 100 only by
second-order citation (orange), those ranked among the top
100 by both citations and PageRank (purple), those ranked
among the top by both PageRank and second-order citation
(brown).

Comparison with three models
We test whether a system is producing evolutionary change
by comparing its citation network with the citation networks
produced by various hypothetical non-evolutionary model
systems, consisting of processes that generate citation net-
works, with different degrees of structure built into the pro-
cesses. We test the likelihood of the hypotheses that the ac-
tual patent citation network was produced by a process em-
bodied by those model systems, by comparing the statistical
character of the citation networks produced by the model
systems with that of the actual data. If, for a particular model
system, the statistical character of the citation network were
indistinguishable, we would say that the actual data is well-
modeled by that model system.

1975 1980 1985 1990 1995 2000 2005 2010

0
20

40
60

80
10

0

Top pagerank and cited by pagerank.

Year

P
ag

eR
an

k

● ● ●

Color Scheme

pagerank cited intersect

1975 1980 1985 1990 1995 2000 2005 2010

0
20

40
60

80
10

0

Top pagerank and second by pagerank.

Year

P
ag

eR
an

k

● ● ●

Color Scheme

pagerank second intersect

Figure 3: Above: First-order impact (cumulative citation)
curves for the top 100 patents when ranked by citations or
PageRank. Below: The same for the top 100 patents when
ranked by citations or PageRank. Patents are colored as in
Figure 2.

All the models work in the same basic fashion. Rather
than the actual references made, each patent’s citations are
semi-randomly assigned, creating a new network of patent
citations. The models differ in how citations are assigned,
from completely randomly to significantly favoring certain
patents as described below. All of these models are non-
evolutionary because citation do not transfer information
from one patent to another; information about a past patent
is not inherited when a later patent cites it. Differing from
the actual data, there is no lag between application and issue
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Figure 4: Curves of first-order impact (cumulative citations)
for the 100 most-cited patents produced by four different
processes: Top: patents, including those about inkjet print-
ing (blue), PCR (red), and stents (green). Upper Middle:
flat neutral model. Lower Middel: preferential attachment
model, PW = 2.0. Below: a priori attachment model (col-
ors mirror US patents), APW = 0.9.

date in the models. An actual patent faces a delay of any-
where from two to four years on average between applica-
tion and issuance, when other patents may begin to cite it. In
the models, patents become eligible for citation immediately
after their own citations have been reassigned. The models
also differ from the actual data in allowing a patent to cite
the same patent more than once. This eases implementation
of models, and is not expected to significantly change their
behavior.

Random attachment model
In the random attachment model, the chance that a given
patent has of being cited at a given time is equal to the
chance that any other patent has of being cited at that time
(Skusa and Bedau, 2002; Buchanan et al., 2011; Chalmers
et al., 2010). Of course, the set of patents that available
to be cited continually grows over time, and the number
of incoming citations can fluctuate over time. More pre-
cisely, given a citing patent c, the chance of an earlier patent
e receiving a citation is 1/N , where N is the number of
patents in our dataset issued before patent c. The random at-
tachment model prevents the information determining past
patents from having any effect on present or future patents
that cite them.

Preferential attachment model
We define a family of preferential attachment models, PA-
k, where k is a parameter equal to the weight of preference
parameter in the model. Here, we set k = 2.0, which re-
sults in the most frequently cited patents receiving approxi-
mately the same number of citations as most frequently cited
real patents. More precisely, each patent, p′, is assigned a
weight, w, which affects the chance of later patents citing it.
That weight is a linear function of the number of citations
received so far:

w′ = b+ kr (3)

where b is the weight of a patent with no citations and r is
the number of citations received to that point. Here, b was
set to 1.0. A patent’s chance of being cited is

w′p∑
p∈M wp

where M is the set of patents in our dataset issued prior to
c. In the preferential attachment model, there is information
about a patent that directly affects its probability of being
cited—specifically, the number of citations it has already re-
ceived. But that information is not inherited by the other
patents that cite it.

A priori attachment model
We define a family of a priori attachment models, AP-k,
where k is a parameter equal to the weight of a priori at-
tachments. These models choose which patents to cite by
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sampling from a fixed “a priori” distribution of the relative
“value” of each patent. Here, we choose this distribution to
be given by the actual number of citations a patent has re-
ceived by the end of 2010. We choose k = 0.9, because
this leads to similar maximum numbers of citations received
in the model and the actual data. Each patent’s weight for
deciding citation assignments is given by

w′ = ak (4)

where a is the patent’s a priori weight, in this case the num-
ber of citations received by 2011. Each patent’s chance of
being cited is given by the ratio of its weight to the total
weight, as in the preferential attachment model. As in the
previous two models, in the preferential attachment model
information used to determine a patent is not inherited by
later patents that cite it.

Comparison of scaled citation curves
We investigate whether the curves of cumulative citation
counts of patents have a distribution of shapes that is signifi-
cantly different from the distribution of shapes of cumulative
citation curves produced by random attachment, preferential
attachment, and a priori attachment.

The impact curves produced by random attachment, pref-
erential attachment, and a priori attachment have distinc-
tive characteristic shapes. The models produce curves with
different characteristic shapes. Furthermore, none of the
models produce curves very much like those displayed by
patents. The different shapes are readily apparent in Fig-
ures 4 and 5.

Figure 4 compares the typical impact (cumulative cita-
tion) curves in the patent record with curves produced by
three different null hypotheses. The 10 most cited patents
fall into inventions: PCR (red), inkjet printing (blue), and
stents (green). Note that the random attachment process pro-
duces curves of which the highest are over an order of mag-
nitude smaller than the highest actual patent curves, even
though both processes produce the same total number of ci-
tations. By contrast, we note that preferential and a priori
attachment produce curves of about the same size as the
patents; however, the similar sizes is a direct consequence
of how we set the weights in those two modes. (Current
work includes estimating the weights from the patent record
itself.) Note that none of the colored patents appear in the
random and preferential attachment curves; this is because
we plot only the top 100 most cited patents, and the most
cited patents in the random and preferential attachment pro-
cesses are chosen from a uniform distribution, so the prob-
ability of a colored patent being in the top 100 is very low
(about 3× 10−6). By contrast, since we set a patent’s a pri-
ori probability of being cited by its actual citation count in
2010, the patents that are actually most cited—the colored
patents—are expected to be the most cited patents produced
by the a priori attachment model.
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Figure 5: Curves of first-order impact (cumulative citations),
scaled to the interval [0, 1], for the 100 most cited patents
(top, black), the 100 most cited patents produced by the ran-
dom attachment model (green), preferential attachment (red)
and a priori attachment (bottom, blue).

82 ECAL 2011



A good way to visualize the characteristic shape of the
impact curves produced by the different processes is to
mask their size differences by scaling them to the interval
[0, 1]. Figure 5 shows that the shape of the curves of patents
(black, top panel) is qualitatively different from the shape of
the curves produced by random attachment (green, second
panel), by preferential attachment (red, third panel), and by
a priori attachment (blue, bottom panel). The random at-
tachment curves (green) all increase at roughly the same ex-
pected linear rate. The preferential attachment curves (red)
all have the same expected shape, which increases in lock-
step with the number of patents being issued (Buchanan
et al., 2011). The a priori attachment curves all increase
linearly, starting immediately once a patent is issued. By
comparison, the actual patents (black) display a wide vari-
ety of shapes, many of which are not found in the curves
produced by the three models. This is strong evidence that
the process producing the actual patent citation networks is
not random attachment, preferential attachment, or a priori
attachment.

The difference between these families of curves can be
quantified using a measure of statistical distance between
distributions, where each family corresponds to samples
from the distribution describing that family. Statistical dis-
tance between univariate distributions is well measured by
the Kolmogorov-Smirnov distance measure, which is sim-
ply the maximum difference between the cumulative distri-
bution functions of the two distributions. The citation and
Page rank curves, however, are not univariate. They are typ-
ically sampled each quarter of the year, which results in 132
measurements for each patent; i.e., each curve is represented
by a point in a 132-dimensional space, where each dimen-
sion represents the value of a statistic for one of the 132
quarters.

For distributions in higher dimensions, i.e., multivariate
distributions, distance measures are not quite so straight-
forward as in the univariate case. This is because in d-
dimensional spaces the cumulative distribution depends on
a choice of ordering of the coordinates, and there are 2d − 1
possible orderings. One can define a distance as the supre-
mum over all orderings, which is cumbersome to compute,
or estimate based on a sample of orderings, or choose a par-
ticular ordering. We have used an mecdf R package that
computes a multivariate empirical cumulative distribution
function for computation of a Kolmogorov-Smirnov dis-
tance.

Before constructing the cumulative distribution function,
however, it is useful to reduce the dimension of the curves
by fitting them to orthogonal polynomials. We used the
first four Legendre polynomials, reducing each 132-value
curve to a point in a five dimensional space. We then used
mecdf to construct the empirical cumulative distributution
functions in the five dimensional space for each family of
curves, and sampled that cdf eight values in each dimen-

sion (85 = 32, 786 samples), equally spaced over the range
obtained by taking the minimum and maximum values for
each coordinate. The estimated distance between two dis-
tributions is then the maximum value of the difference be-
tween the cdf samples for the two distributions, over all the
sampled points. For example, the estimated Kolmogorov-
Smirnov distance between two families of points in five di-
mensions, one produced by a Gaussian with mean zero and
standard deviation one, and the other produces by a Gaus-
sian with the same standard deviation, but a displaced mean,
is about 0.4 if the two Gaussians are separated by two stan-
dard deviations.

Figure 6 shows the KS distances from the distribution
of scaled cumulative citation curves in the patents for the
curves produced by the a priori attachment model (blue), the
preferential attachment model (red), and the random attach-
ment model (green). The KS distance between the patents
and both preferential and random attachment models quanti-
tatively confirms what the eye can see in Figure 5: The shape
of the curves is significantly different. At the same time, the
KS distance is much less for the curves produced by a priori
attachment, which also confirms what the eye tends to see in
Figure 5.
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Figure 6: KS distances between distributions of cumulative
citation curves scaled to [0, 1]. Curves produced by the ran-
dom, a priori, and preferential attachment models are com-
pared with the curves derived from the patent record.

Conclusions
The statistical exploration of the patent record supports two
main conclusions about the process of technological inno-
vation. First, the superstars of citations show up among the
superstars of second-order citations, and also but to a lesser
extent among the superstars of PageRank. The different
statistics highlight somewhat different aspects of the patent
record, but roughly the same stories come through with all
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the statistics. In particular, PCR, inkjet printing, and stents
are among the dominant innovations from all three perspec-
tives. This implies that the superstar status of PCR, inkjet
printing, and stents is not just a quirk of citation statistics;
instead, those innovations are genuinely among the robust
and dominant drivers of innovation in the past forty years.

Second, the shape of cumulative citation curves produced
by the patents is significantly different from the shapes of
the curves produced by random, a priori, and preferential
attachment processes. This qualitative difference is corrob-
orated by the significant KS distance between those same
sets of curves. This implies that the process producing tech-
nological innovation is a fundamentally different from the
processes produced by random, a priori and preferential at-
tachment. This conclusion tends to be corroborated by ear-
lier work that analyzed the size (rather than shape) of cu-
mulative citation curves (Skusa and Bedau, 2002; Buchanan
et al., 2011). Current work includes examining whether this
conclusion is affected if the a priori and preferential attach-
ment models are driven with an empirically estimated distri-
bution of the probability of receiving a citation as a function
of both the number of citations already accumulated and the
age of the patent, in line with augmenting preferential at-
tachment with “death” (Lehmann et al., 2005) or “aging”
(Valverde et al., 2007).

The difference between the citation statistics found in the
patent record and those produced by random, a priori, and
preferential attachment processes suggests a further conclu-
sion. Random, a priori, and preferential attachment are
all non-evolutionary processes, because the information that
determines the entities in the population is not inherited
when those entities are cited in the future. By contrast, intu-
itively it seems that citations between patents do represent
the propagation into the future of information about past
technology, which implies that technological change is an
evolutionary process. The difference between the statistical
features of the data produced by the three classes of mod-
els and by the data found in the patent record corroborates
the hypothesis that technological innovation is a genuinely
evolutionary process.
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Abstract

We investigate the problem of optimal control of mutation
by asexual self-replicating organisms represented by points
in a metric space. We introduce the notion of a relatively
monotonic fitness landscape and consider a generalisation of
Fisher’s geometric model of adaptation for such spaces. Us-
ing a Hamming space as a prime example, we derive the prob-
ability of adaptation as a function of reproduction parameters
(e.g. mutation size or rate). Optimal control rules for the pa-
rameters are derived explicitly for some relatively monotonic
landscapes, and then a general information-based heuristic is
introduced. We then evaluate our theoretical control func-
tions against optimal mutation functions evolved from a ran-
dom population of functions using a meta genetic algorithm.
Our experimental results show a close match between theory
and experiment. We demonstrate this result both in artifi-
cial fitness landscapes, defined by a Hamming distance, and a
natural landscape, where fitness is defined by a DNA-protein
affinity. We discuss how a control of mutation rate could oc-
cur and evolve in natural organisms. We also outline future
directions of this work.

Introduction
The problem of optimal mutation rate has been studied for
a long time (e.g. see Eiben et al., 1999; Ochoa, 2002; Falco
et al., 2002; Cervantes and Stephens, 2006; Vafaee et al.,
2010, for reviews). It relates directly to optimisation of
genetic algorithms (GAs) in operations research and engi-
neering problems (i.e. meta-heuristics). It is also related
to some fundamental questions in evolutionary theory about
the role of mutation in adaptation and biological mecha-
nisms of DNA repair and mutation control.

As noted by Eiben et al. (1999), there are two trends in
optimisation of parameters in GAs — optimal parameter
setting and optimal parameter control. In the former, one
looks for an optimal value of a parameter, which is than kept
constant. Thus, Mühlenbein (1992) proposed mutation rate
µ = 1/l, where l is the length of sequences. The value
1/l, as was pointed out by Ochoa et al. (1999), is related
to the error threshold (Eigen et al., 1988). However, while
mutation rate 1/l can give satisfactory performance in some
problems, the advantages of using a variable rate were be-
coming obvious to many researchers, leading to the problem

of optimal parameter control. In particular, Ackley (1987)
suggested that mutation probability is analogous to temper-
ature in simulated annealing, and should decrease with time.
A gradual reduction of mutation rate was also proposed by
Fogarty (1989). In a pioneering work, Yanagiya (1993) used
Markov chain analysis of GAs to show that in any problem
there exists a sequence of optimal mutation rates maximis-
ing the probability of obtaining global solution at each gen-
eration. A significant contribution to the field was made by
Bäck (1993), who suggested that mutation rate µ should de-
pend on fitness values rather than time. Recently, Vafaee
et al. (2010) used numerical methods to optimise a mutation
operator based on the Markov chain model of GA by Nix
and Vose (1992). The complexity of this model, however,
restricts the application of this method to small spaces and
populations. Thus, the precise form of the optimal mutation
rate control, as well as question about the existence of such
a control in the general case, remain open problems. These
problems are extremely important not only for applications
of GAs, but also for biology and evolutionary theory.

In biological systems, mutation, unlike natural selection,
is an evolutionary process controlled, to a degree, by the
organism. This control is primarily seen in highly refined
DNA repair and replication machinery (e.g. Hakem, 2008).
This ensures both that physical damage to genetic mate-
rial is repaired and that, in the process of cell division, the
newly synthesised copies of DNA faithfully reproduce the
parental sequence. The result is that biological mutation
rates are very low: DNA-based organism values typically
being 1/300 per genome per replication, which, for genomes
frequently in the range between 106 and 1010 base-pairs,
means extremely faithful repair and replication (Drake et al.,
1998). Nonetheless, this observation also implies that bio-
logical mutation rates per base-pair are not minimised, since
widely varying genome sizes imply very different per-base-
pair rates. At a mechanistic level, some organisms do exist,
such as the bacterium Deinococcus radiodurans with sub-
stantially more developed DNA repair or replication mecha-
nisms than closely related species (Cox et al., 2010), imply-
ing that mutation rates elsewhere at least are not minimised.
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Genetic variation also exists in mutation rates within species
and in the way mutation rate changes with environment for
a single genotype (Bjedov et al., 2003). Therefore, mutation
rates and their variation are potentially subject to biological
evolution themselves. Thus, while mutation rates are only a
part of the biological evolutionary process, they merit exam-
ination independent of the vicissitudes of selection that are
imposed on their products, which is what we address.

Our approach is based on theories of optimal control and
information. However, we believe that the key to finding so-
lutions that are relevant not only for engineering, but also
for biology, is understanding the relation between a repre-
sentation space, which is a discrete space of genotypes, and
its (pre)-ordering by phenotypic fitness. Biology typically
understands this relation via landscape metaphors, used in
a variety of ways (e.g. classically adaptive landscapes of
Wright, 1932, and ‘epistatic’ landscapes of Waddington,
1957). However, while the underlying elements, particu-
lar alleles of genes, are acknowledged as discrete, these
landscapes have almost uniformly been theorised (and visu-
alised) in continuous space following Fisher (1930). This is
problematic when one comes to the mechanistic basis of bi-
ological evolution in discrete DNA mutations. Attempts are
being made to reconcile such continuous models with indi-
vidual DNA mutations (Orr, 2005). However, hitherto, these
attempts have maintained a continuous view of the land-
scape space, in contrast to the reality of its discrete domain.
Discrete views have typically been restricted to abstracted
biological systems, such as aptamer (Knight et al., 2009) or
RNA structure evolution, where landscape analogies can be
dropped in favour of networks of sequences (Cowperthwaite
and Meyers, 2007) which do not lend themselves to consid-
eration of variable mutation sizes.

This work presents elements of a theory on optimisation
of asexual reproduction by a mutation rate control together
with its experimental evaluation. We introduce the notion
of relatively and weakly monotonic fitness landscapes, and
then develop the necessary machinery for Hamming spaces
of sequences with arbitrary alphabets, which are particularly
relevant in biology. Then we evolve mutation rate control
functions using a meta genetic algorithm, and show that they
closely match our theoretical predictions.

Theory
Let Ω be a countable set of all possible individuals ω and
f : Ω → R be a fitness function. Assuming that fitness value
x = f(ω) is the only information available, let P (xs+1 | xs)
be the conditional probability of an offspring having fitness
value xs+1 given that its parent had value xs at generation
(time) s. This Markov probability can be represented by
a left stochastic matrix T , and if P (xs+1 | xs) does not
depend on s (i.e. T is stationary), then T t defines a linear
transformation of distribution ps := P (xs) of fitness values
at time s into distribution ps+t := P (xs+t) of fitness values

after t ≥ 0 generations:

ps+1 = Tps =
∑
xs

P (xs+1 | xs) P (xs) ⇒ ps+t = T tps

We denote the expected fitness at generation s as

E{xs} :=
∑
xs

xs P (xs)

If E{xs+t} ≥ E{xs}, then individuals have adapted.
Suppose that the transition probability Pµ(xs+1 | xs) de-

pends on a control parameter µ, so that the Markov operator
Tµ(x) depends on the control function µ(x). Then the ex-
pected fitness Eµ(x){xs+t} also depends on µ(x). We inter-
pret µ(x) as a control function that parents use in reproduc-
tion to maximise expected fitness of their offspring based on
the value of their own fitness. A particular example we shall
consider here is when µ is the mutation rate parameter.

If Ω is the space Hl
α := {1, . . . , α}l of sequences of

length l and α letters, then by mutation we understand here
a process of independently changing each letter in a parent
sequence to any of the other α − 1 letters with probability
µ/(α− 1). This is point mutation, the simplest form of mu-
tation defined by one parameter µ, called the mutation rate.

The main result that we present in this paper is a mutation
rate control function, which is approximately optimal for
maximising expected fitness E{xs+t} in landscapes f(ω)
that are locally monotonic relative to the Hamming met-
ric (this property will be defined later). This mutation rate
function corresponds to the cumulative distribution function
(CDF) Pe(xr > x), r ∈ [s, s + t], computed from empir-
ical distribution Pe(xr) of observed fitness values xr over
the period [s, s + t]:

µe(x) = Pe(xr > x) =
∑

xr>x

Pe(xr) (1)

We refer to this function as informed mutation rate, because
it uses information communicated by random variable x. We
first present the theory and assumptions behind this heuris-
tic. Then we evaluate it against nearly optimal mutation
functions, evolved using a meta genetic algorithm both for
artificial and natural fitness landscapes.

Problem Definition
Formally, an optimal control function (e.g. an optimal mu-
tation rate function) is µ̄(x) achieving the following optimal
(supremum) value:

x(λ) := sup
µ(x)

{Eµ(x){xs+t} : t ≤ λ} (2)

Here, λ represents a time constraint. Function (2) is non-
decreasing and has the following inverse

x−1(υ) := inf
µ(x)

{t ≥ 0 : Eµ(x){xs+t} ≥ υ} (3)
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Here, υ is a constraint on the expected fitness at s+ t. Thus,
x(λ) is the maximum adaptation in no more than λ genera-
tions; x−1(υ) is the minimum (infimum) number of genera-
tions required to achieve adaptation υ.

Optimal solutions µ̄(x), defined by function (2), depend
on the constraint t ≤ λ. We are interested in solutions for
λ that is large enough to achieve the maximum expected fit-
ness E{xs+t} = sup f(ω). This can be represented dually
by function (3) with constraint υ = sup f(ω). We note
that x(λ) = sup f(ω), if λ = ∞. However, generally
x−1(υ) ≤ ∞, even if υ = sup f(ω). Thus, our objective
is to derive one optimal control function µ̄(x) that can be
used by each individual parent based on their fitness value
throughout the entire ‘evolution’ [s, s+ t]. We note also that
our formulation uses only the values of fitness, and therefore
it extends to the case where f(ω) is time-variable.

Specific expressions for Pµ(xs+1 | xs), defining Tµ(x),
can be learnt or derived analytically from the domain Ω and
its structure. The operator Tµ(x) contains all information
required to compute optimal values (2) and (3). Thus, in
principle, one can find an optimal control function µ̄(x), if
the family of operators Tµ(x) is known. For example, con-
sidering values x ≥ υ as absorbing states, one can use Tµ(x)

to compute the fundamental matrix of the corresponding ab-
sorbing Markov chain and minimise the expected conver-
gence time to the absorbing states. Solving the complete
optimisation problem, however, can be an intractable task.
We shall formulate additional assumptions that will allow us
to solve the problem for some important cases.

Relatively Monotonic Landscapes

First, we shall make some assumptions about fitness f(ω),
which on one hand will generalise and clarify the terms
‘smooth’ and ‘rugged’ fitness landscape, and on the other
hand will allow us to obtain expressions for Pµ(xs+1 | xs).
In particular, we assume that there exists optimal individual
> ∈ Ω (not necessarily unique) such that sup f(ω) = f(>).
This is always true if Ω is finite. Also, we shall equip Ω with
a metric d : Ω × Ω → [0,∞), so that similarity between a
and b ∈ Ω can be measured by d(a, b), and assume that there
is a relation between the metric d and the fitness function f .
In particular, we define f to be monotonic relative to d.

Definition 1 (Monotonic landscape). Let (Ω, d) be a met-
ric space, and let f : Ω → R be a function with f(>) =
sup f(ω) for some > ∈ Ω. We say that f is locally mono-
tonic (locally isomorphic) relative to metric d if for each >
there exists a ball B(>, r) := {ω : d(>, ω) ≤ r} 6= {>}
such that for all a, b ∈ B(>, r):

−d(>, a) ≤ −d(>, b) =⇒ ( ⇐⇒ ) f(a) ≤ f(b)

We say that f is monotonic (isomorphic) relative to d if
B(>, r) ≡ Ω.

Example 1 (Needle in a haystack). Let f(ω) be defined as

f(ω) =
{

1 if d(>, ω) = 0
0 otherwise

This fitness landscape is often used in studies of GA per-
formance. A two-valued landscape is used to derive er-
ror threshold and critical mutation rate, and elements >
are referred to as the wild type. Such f is locally mono-
tonic relative to any metric, if for each > ∈ Ω there exists
B(>, r) 6= {>} containing only one >. Then conditions of
the definition above are satisfied in all such B(>, r) ⊂ Ω.
If Ω has unique >, then the conditions are satisfied for
B(>,∞) = Ω. In a two-valued landscape, optimal function
µ̄(x) for any λ in (2) is defined by maximising the one-step
transition probability Pµ(xs+1 = 1 | xs).

Example 2 (Negative distance to optimum). If f is isomor-
phic to d, then one can replace fitness f(ω) by the negative
distance−d(>, ω). The number of values of such f is equal
to the number of spheres S(>, r) := {ω : d(>, ω) = r}.
One can easily show also that when f is isomorphic to d,
then there is only one > element: f(>1) = f(>2) ⇐⇒
d(>2,>1) = d(>2,>2) = 0 ⇐⇒ >1 = >2.

In monotonic landscapes, spheres S(>, r) cannot contain
individuals with different fitness. We can generalise this
property by weak or ε-monotonicity, which requires that the
variance of fitness within individuals of each sphere S(>, r)
is small or does not exceed some ε ≥ 0. These assump-
tions allow us to replace fitness f(ω) by negative distance
−d(>, ω), and derive expressions for transition probability
Pµ(xs+1 | xs) using topological properties of (Ω, d).

Monotonicity of f depends on the choice of metric,
and one can define different metrics on Ω. Fitness land-
scapes that are at least weakly locally monotonic relative to
the Hamming metric seem biologically plausible given the
abundance of neutral mutations in nature and redundancy in
the translation of DNA to protein sequences. Thus, we focus
our attention on the case when Ω is a Hamming space.

Mutation and Adaptation in a Hamming Space
First, we outline a model of asexual reproduction in met-
ric space (Ω, d), and define the relation of parameter µ to
topology on Ω. This model is a generalisation of Fisher’s
geometric model of adaptation in Euclidean space (Fisher,
1930). Then we shall specialise this to a Hamming space.

Let individual a be a parent of b, and let d(a, b) = r. We
consider single-parent reproduction as a transition from par-
ent a to a random point b on a sphere: b ∈ S(a, r). We refer
to r as a radius of mutation. Suppose that d(>, a) = n and
d(>, b) = m. We are interested in the following probability:

P (m | n) := P (b ∈ S(>,m) | a ∈ S(>, n))

=
l∑

r=0

P (m | r, n)P (r | n) (4)
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where the following notation was used

P (m | r, n) := P (b ∈ S(>,m) | b ∈ S(a, r), a ∈ S(>, n))
P (r | n) := P (b ∈ S(a, r) | a ∈ S(>, n))

If mutation radius r can be controlled via parameter µ,
then transition probability (4) depends on this parameter as
well. Specific expressions for Pµ(m | n) depend on the
topology of Ω. Let us consider the Hamming space.

Let Ω be a space Hl
α := {1, . . . , α}l — a space of se-

quences of length l and α letters and equipped with the Ham-
ming metric d(a, b) := |{i : ai 6= bi}|. Then, given proba-
bility of mutation µ(n) ∈ [0, 1] of each letter in the parent
sequence a ∈ S(>, n), the probability that b ∈ S(a, r) is

Pµ(r | n) =
(

l

r

)
µ(n)r(1− µ(n))l−r (5)

Probability P (m | r, n) is defined by the number of ele-
ments in the intersection of spheres S(>,m) and S(a, r):

P (m | r, n) =
|S(>,m) ∩ S(a, r)|d(>,a)=n

|S(a, r)|
(6)

where cardinality of the intersection S(>,m)∩S(a, r) with
condition d(>, a) = n is computed as follows

|S(>,m) ∩ S(a, r)|d(>,a)=n = (7)∑
(α− 2)r0

(
n− r−

r0

)
(α− 1)r+

(
l − n

r+

)(
n

r−

)
where the triple summation runs over r0, r+ and r− satisfy-
ing r+ ∈ [0, (r + m − n)/2], r− ∈ [0, (n − |r − m|)/2],
r−−r+ = n−max{r, m} and r0 +r+ +r− = min{r, m}.
These conditions are based on metric inequalities for r, m
and n (e.g. |n − m| ≤ r ≤ n + m). The number of se-
quences in S(a, r) ⊂ Hl

α is

|S(a, r)| = (α− 1)r

(
l

r

)
(8)

Substituting equations (5)–(8) into (4) we obtain the expres-
sion for Pµ(m | n) in Hamming space Hl

α.

Analytical Solutions for Special Cases
If fitness f is isomorphic to the Hamming metric, then tran-
sition probabilities Pµ(xs+1 | xs) are completely defined
by Pµ(m | n) with xs+1 = −m and xs = −n. The corre-
sponding Markov operator Tµ(n) is then an (l + 1)× (l + 1)
matrix completely defining the evolution on [s, s+ t], t ≤ λ,
for a given mutation rate function µ(n), if all individuals are
allowed to reproduce (with selection, one has to compose
Tµ(n) with a selection operator). For example, one can show
that for λ = 1, the optimal mutation rate is a step function:

µ1(n) :=

 0 if n < l(1− 1/α)
1
2 if n = l(1− 1/α)
1 otherwise

Unfortunately, analytical or numerical solutions to optimi-
sation problems (2) or (3) are not available or tractable for
λ > 1 and large l. However, analysis allows us to derive
some main features of an optimal control function µ̄(n).

Minimisation of the convergence time to state m = 0 is
related to maximisation of probability Pµ(m = 0 | n). Be-
cause r = n and |S(>, 0)∩S(a, n)|d(>,a)=n = 1, it has the
following expression:

Pµ(m = 0 | n) = (α− 1)−nµn(1− µ)l−n (9)

Mutation rate maximising this probability is obtained by tak-
ing its derivative P ′

µ over µ to zero, and together with con-
dition P ′′

µ ≤ 0, this gives n− lµ = 0 or

µ2(n) =
n

l
(10)

This linear mutation control function has very intuitive inter-
pretation — if sequence a has n letters different from the op-
timal sequence >, then substitute n letters in the offspring.
One can show that the linear function (10) is optimal for
two-valued fitness landscapes with one optimal sequence,
such as the Needle in a Haystack discussed in Example 1.
This is because expected fitness Eµ(x){xs+t} in this case
is completely defined by probability (9). For other fitness
landscapes that are monotonic relative to the Hamming met-
ric, function (10) is an approximation of the optimal control,
because it does not take into account transition probabilities
Pµ(m 6= 0 | n 6= 0) between other (transient) states, which
may influence the expected time of convergence to m = 0.
As a result, the convergence can be very poor in the initial
stages of evolution on [s, s + t].

Bäck (1993) derived probability Pµ(m < n | n) of ‘suc-
cess’ in the space Hl

2 of binary sequences, and then con-
sidered mutation rates µ̂ maximising its value for each n =
d(>, ω). Our equations (4)–(8) allow us to perform such
optimisation for arbitrary α. This method makes significant
improvement over the linear control for the speed of conver-
gence in the initial stages of evolution on [s, s+ t]. We note,
however, that the resulting mutation controls do not achieve
optimal values (2) or (3). One can show that maximisation of
Pµ(m < n | n) is equivalent to maximisation of conditional
expectation E{u(m,n) | n} =

∑
m u(m,n)Pµ(m | n) of a

two-valued utility function: u(m,n) = 1 if m < n; 0 oth-
erwise. This function has only two values, and such optimi-
sation of µ(n) is not precise for fitness functions with more
than two values. In fact, analysis using absorbing Markov
chains shows that linear control (10) achieves shorter ex-
pected times of convergence into absorbing state m = 0.

Empirically Informed Mutation Rate
Another approach to optimal control of parameters in evo-
lutionary systems is based on theories of information and
optimal coding. In brief, one can reformulate problems (2)
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and (3) by replacing the time constraint t ≤ λ with a con-
straint on information ‘distance’ Es+t{ln(ps+t/ps)} ≤ λ of
distribution ps+t = T tps from ps. Although minimisation
of information distance is not equivalent to minimisation of
convergence time, this formulation has the advantage that
the corresponding optimal values can be computed exactly
and used to evaluate various control functions.

Our evaluation shows that adaptation E{xs+t} ≥ υ with
the least information distance of ps+t from ps is achieved
if mutation rate is identified with the CDF of the ‘least in-
formed’ distribution P0(x) of fitness values. In particular,
assuming a uniform distribution P0(ω) = α−l of sequences
in Hl

α, the distribution P0(n) := P0(ω ∈ S(>, n)) of their
distances from > can be obtained by counting sequences in
the spheres S(>, n) ⊂ Hl

α. One can show also that this
corresponds to binomial distribution with µ = 1− 1/α:

P0(n) =
(

l

n

) (
1− 1

α

)n (
1
α

)l−n

=
(

l

n

)
(α− 1)n

αl

In this case, E{n} = lµ = l(1 − 1/α). Under the mini-
mal information distance assumption, the offspring will have
very similar distribution, and the probability P0(m < n)
that an offspring is closer to> is given by the CDF of P0(n),
which can be used to control the mutation rate:

µ0(n) = P0(m < n) =
n−1∑
m=0

P0(m) (11)

This mutation control function has the following interpreta-
tion — if sequence a has n letters different from the optimal
sequence >, then substitute each letter in the offspring with
the ‘least informed’ probability of improvement relative to
the current value n = d(>, a). Figure 1 shows P0(m < n)
for H30

2 and H30
4 . We note that minimisation of information

distance of ps+t from ps := P0 corresponds to maximisa-
tion of entropy of ps+t, but adaptation E{xs+t} ≥ E{xs}

leads to increasing the distance and decreasing the entropy
(i.e. slow ‘cooling’ as in simulated annealing).

In the next section, we present nearly optimal mutation
rate functions, obtained experimentally, and find that they
correspond to CDFs of distributions that are skewed towards
the optimum compared to the CDFs of the least informed
distributions P0 (i.e. skewed to the left compared to those
used in Figure 1). This can be explained by the fact that
the offspring sequences do not have a uniform distribution
in Hl

α during long intervals [s, s + t] due to adaptation
Eµ(n){m} ≤ E{n} = l(1 − 1/α). Therefore, the prob-
abilities of improvement relative to the current fitness are
higher than P0(m < n), and they can be approximated by
empirical functions Pe(m < n), observed during [s, s + t].
Thus, we refer to such a control as ‘informed’.

Finally, we note that if fitness is monotonic relative to the
Hamming metric, then function Pe(m < n) can be replaced
by function Pe(xr > x) for fitness values. We conjecture
that the corresponding control (1) of mutation rate should
achieve good performance also in landscapes that are only
weakly or ε-monotonic. Our experiments with an aptamer
landscape (Rowe et al., 2010) support this hypothesis.

Evolving Optimal Mutation Rates
To evaluate our theoretically derived mutation control func-
tions, we have evolved such functions independently us-
ing a meta-genetic algorithm (Meta-GA). Populations of the
Meta-GA comprised individual functions µ(x), which were
then used to control mutation rates of another GA, referred
to as Inner-GA. We first give some details about the Inner-
and Meta-GAs, and then describe results of the experiments.

Inner-GA
The Inner-GA is a simple generational genetic algorithm
that uses no selection and no recombination. Each geno-
type in the Inner-GA is a sequence ω ∈ Hl

α, and we used
populations of 100 individuals. The initial population had
equal numbers of individuals at each fitness value, and all
runs within the same Meta-GA generation were seeded with
the same initial population. Individuals were evolved by the
Inner-GA for t = 500 generations using simple mutation.
The objective was to maximise a fixed fitness function f(ω).
Here, we report results of the following three experiments:

1. H30
2 (i.e. α = 2, l = 30) and fitness f(ω) = −d(>, ω),

where d is Hamming metric.

2. H10
4 (i.e. α = 4, l = 10) and fitness f(ω) = −d(>, ω),

where d is Hamming metric.

3. H10
4 (i.e. α = 4, l = 10) and fitness f(ω) defined by

a complete DNA-protein affinity landscape for 10-base-
pair sequences (Rowe et al., 2010), which we refer to as
the aptamer landscape.
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Figure 2: Average of evolved mutation functions µe(n) and
CDF Pe(m < n) for fitness f(ω) = −d(>, ω) in H30
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Meta-GA
The Meta-GA is a simple generational genetic algorithm
that uses tournament selection (a good choice when little
is known or assumed about the structure of the landscape).
Each genotype in the Meta-GA is a mutation rate function
µ(x), which is a sequence of l +1 real values µ ∈ [0, 1] rep-
resenting per-locus probabilities of mutation. We used pop-
ulations of 100 individual functions, which were initialised
to µ(x) = 0.

The Meta-GA evolved functions µe(x) for t = 5 · 105

generations to maximise the average fitness in the final gen-
eration of the Inner-GA. The Meta-GA used the following
selection, recombination and mutation:

• Randomly select three individuals from the population
and replace the least fit of these with a mutated crossover
of the other two; repeat until all individuals from the pop-
ulation have been selected.

• Crossover (recombination) uses a single cut point chosen
randomly (excluding the possibility of being at either end,
so that there are no clones).

• Mutation adds a uniform-random number ∆µ ∈ [−.1, .1]
to one randomly selected value µ (mutation rate) on the
individual (mutation rate function), but then bounds that
value to be within [0, 1].

The Meta-GA returned the fittest mutation rate function
µe(x). In addition, we recorded empirical frequencies Pe(x)
of fitness values x = f(ω), observed during running the
Inner-GA for t generations on the relevant landscape and
using that mutation rate function. We note that empirical
frequencies Pe(x) counted only the number of phenotypic
mutations (i.e. genetic mutations that result in a change
in fitness). Empirical frequencies Pe(x) were then used to
compute the cumulative distribution functions Pe(xr > x),
which we then compared to the evolved µe(x).
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Experimental Results
We performed multiple runs of each experiment collect-
ing multiple versions of evolved mutation control functions
µe(x) and cumulative distribution functions Pe(xr > x) of
observed fitness values. Figures 2, 3 and 4 show the av-
erage of these functions from 20 runs together with stan-
dard deviations. Figures 2 and 3 are for the experiments in
H30

2 and H10
4 respectively, and with fitness f(ω) defined by

the negative Hamming distance −d(>, ω) to a fixed opti-
mum >. Figure 4 is for the experiment in H10

4 , but with fit-
ness f(ω) defined by the complete aptamer landscape from
(Rowe et al., 2010). The evolved functions µe(x) are ap-
proximated fairly by the cumulative distribution functions
Pe(xr > x), supporting heuristic (1). The mismatch in the
areas of low fitness can be explained by slower convergence
of functions µe(x) in this part of the space Hl

α due to lim-
ited exploration of it by populations of 100 individuals in the
Inner-GA, which are small relative to |Hl

α| = αl.
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Discussion
In this work, we have made some progress towards under-
standing optimal control of mutation rate, and some general
principles can be formulated. It appears that choice of a rep-
resentation space and its topology is crucial, as it defines the
monotonic property of a fitness landscape. Our analysis was
performed for a Hamming space, but the ideas can be ex-
tended to other spaces, such as a space of variable or infinite
sequences with p-adic metric. If the right representation has
been found, then specific formulae can be derived using geo-
metric analysis in the representation space. These principles
can also be extended to sexual reproduction and control of
recombination. Our analysis and experiments suggest that
an optimal control of mutation rate is based on statistical in-
formation about the distribution of fitness values.

The existence of optimal mutation rates that vary depend-
ing upon an individual’s fitness raises a number of questions
about the existence and control of variable mutation rates
in biological organisms. For mutation rate control to have
evolved in nature, a first prerequisite is that biological mu-
tation rates can vary and are not simply minimised. There
is ample evidence that mutation rates do vary in nature,
between distantly (Drake et al., 1998) and closely-related
(Matic et al., 1997) organisms, between regions of genomes
(Lang and Murray, 2008) and even within an organism in
stressful versus benign environments (Bjedov et al., 2003).
However, the question of whether there may be an adaptive
trait, allowing an individual organism to affect the number of
mutations between itself and its offspring, dependent upon
environmental cues, remains an open question. This would
be an example of ‘higher-order’ selection, that is selection
not on the immediate fitness of an individual, but on its abil-
ity to produce fitter descendants, potentially many genera-
tions later. Such higher order effects have always been ques-
tioned in biology, since they might be expected, in real popu-
lations, to be swamped by direct selective effects (Pigliucci,
2008). However, discussion has intensified recently over the
concepts of ‘robustness’ and ‘evolvability’ (Masel and Trot-
ter, 2010). These are higher order effects of somewhat un-
clear definition; the latter potentially relates directly to the
control of mutation rate considered here. Very recent results
from experimental evolution of microbial populations show
that higher order evolvability effects can indeed play an im-
portant part in the evolution of real biological populations
(Woods et al., 2011). However, in mechanistic terms, only
the gross evolution of mutation rate itself (rather than muta-
tion rate control) in ‘mutator’ strains has been identified in
such experiments (Arjan et al., 1999).

If one moves from complete organisms to viruses and in
silico quasi-biological evolution, there is more work on op-
timal mutation rates and their evolution. Optimal mutation
rates can be identified (Kamp et al., 2002), relating to the
concept of an ‘error threshold’ (Ochoa et al., 1999) the mu-
tation rate at which selection can no longer be sufficient to

balance the deleterious effects of mutation (Biebricher and
Eigen, 2005). However, Clune et al. (2008) used digital or-
ganisms to show that natural selection does not always ef-
fectively evolve optimal mutation rates for adaptation in the
long-term, and this fact is particularly apparent when evolu-
tion occurs on a rugged fitness landscape. There is evidence
that, in nature, epistasis is widespread (e.g. Costanzo et al.,
2010), leading to rugged fitness landscapes. This potentially
reduces the biological relevance of work, such as ours, with
simple fitness functions. Nonetheless, even in rugged land-
scapes, biological evolution is, empirically, able to occur via
locally monotonic accessible paths (Poelwijk et al., 2007),
and we find a good agreement between the evolved and the-
oretical functions, even for a fitness landscape known to be
rugged (e.g. Fig. 4 in Rowe et al., 2010). Similarly, tem-
poral variation in fitness landscapes has been highlighted as
biologically important (Costanzo et al., 2010), which, while
it calls into question the biological relevance of optimal mu-
tation rates in static landscapes, leads back to the potential
biological importance of mutation rate variation in response
to environmental cues (Stich et al., 2010).

Finally, we observe that understanding of evolution and
dynamical systems, such as populations of organisms, may
be facilitated by theories of information and information dy-
namics. In particular, optimisation problems, defined by
functions (2) and (3), can be reformulated by replacing time
with an information distance between probability distribu-
tions. Analytical solutions for such problems can be ob-
tained (e.g. Belavkin, 2010), providing an alternative way to
evaluate control functions. Although we do not report such
evaluation here, we have observed that these information-
theoretic optimal values are achieved when the mutation rate
corresponds to a CDF of the ‘least informed’ distribution of
fitness values. Understanding this relation between muta-
tion rate control and information, along with its biological
relevance, are some of the directions of our future work.
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Abstract

One of the practical challenges facing the creation of self-
assembling systems is being able to exploit a limited set of
fixed components and their bonding mechanisms. Staging ad-
dresses this challenge by dividing the self-assembly process
into time intervals, and encodes the construction of a target
structure in the staging algorithm itself and not exclusively
into the design of components. Previous staging strategies do
not consider the interplay between component physical fea-
tures (morphological information). In this work we use mor-
phological information to stage the self-assembly process,
with the benefit of reducing assembly errors and leveraging
bonding mechanism with rotational properties. Four experi-
ments are presented, which use heterogeneous, passive, me-
chanical components that are fabricated using rapid prototyp-
ing. Two orbital shaking environments are used to provide en-
ergy to the components, and to investigate the role of morpho-
logical information with component movement in either two
or three spatial dimensions. The experiments demonstrate,
as proof-of-concept, that staging enables the self-assembly of
more complex morphologies not otherwise possible.

Introduction
Comprehending the principles of self-assembly has been de-
scribed as one of the important aspects to understanding
life (Ingber, 1998). Self-assembly is also considered to be-
ing an enabling technology for the creation of artificial sys-
tems (Pelesko, 2007). Constructing systems with natural
characteristics (e.g. self-assembly, self-repair, and parallel
construction) as a form of emergent engineering requires
an understanding of the interplay between programmabil-
ity/controllability and self-organisation (Doursat, 2008).

One important challenge when creating artificial self-
assembling systems is caused by the use of components
that lack the plasticity of biological cells. Using compo-
nents that cannot differentiate results in self-assembly being
constrained to a limited set of fixed components and their
bonding mechanisms (Demaine et al., 2008). One strategy
to address this challenge is to divide the self-assembly pro-
cess into stages, referred to as staged or hierarchical self-
assembly. Demaine et al. (2008) formalised the method
of staging where components can be added to, or removed
from, an environment at various time intervals.

Demaine et al. (2008) demonstrated the benefits of stag-
ing theoretically using abstract tiles, where staging the self-
assembly process was based on the temporal aspects of con-
ducting laboratory experiments. In contrast, we use physical
components, and propose using morphological information
as the dividing basis to staging the self-assembly process,
inspired by biological development. Here we consider how
physical features in a set of heterogeneous, passive, me-
chanical components can be exploited to reduce potential
assembly errors, leverage rotational bonding mechanisms,
and create structures with symmetrical/assymerical features.
Our staging strategy is consistent with the definition of self-
assembly (Whitesides and Gryzbowski, 2002), as a process
involving components that can be controlled through their
proper design and their environment, and where components
can adjust their relative positions.

Staged self-assembly provides the advantage of encoding
the construction of a target structure in the staging algorithm
itself and not exclusively into the design of the components.
For example, a staging algorithm can be used to reintro-
duce previously used components and bonding mechanisms
at later time intervals, prevent the formation of holes, and
create more complex morphologies that may not be other-
wise possible due to shape conflicts between components.

The following section provides background material to
which our staging strategy is built upon. Next, an overview
of our approach is provided, including a theoretical model
and physical description of the components and environ-
ments used. Four experiments follow that demonstrate the
creation of self-assembled structures, from a set of com-
ponents that are divided into two time intervals based on
their physical features. Components are fabricated using
rapid prototyping, and are placed in one of two orbital shak-
ing environments (on a tray surface or in a jar of fluid).
These two environments are used to demonstrate the role
of morphological information in terms of component move-
ment spatially in two and three dimensions (2D and 3D). We
conclude by summarising how this work provides proof-of-
concept evidence for staging the self-assembly process using
morphological information.
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Background
Biological development utilises explicit stages in its provi-
sion of a solution to the construction of multicellular organ-
isms (Wolpert, 1998). The explicit stages in biological de-
velopment are often irreversible, and cannot be repeated at
later stages, such as invagination, gastrulation, and the for-
mation of a body plan. Staged development in nature allows
for the creation of more complex phenotypes, which other-
wise would not be possible (Wolpert, 1998).

A challenge towards the creation of self-assembling sys-
tems is the use of fixed components in contrast to compo-
nents that can differentiate and communicate (e.g. cells in
biological organisms). DNA nanotechnology is one exam-
ple of an application area using fixed components, such as
DNA tiles (using interwoven double-stranded DNA to cre-
ate the body of a tile, and single DNA strands extending
from the edges of a tile’s body; Winfree et al., 1998). The
staged Tile Assembly Model (sTAM) addresses this chal-
lenge by incorporating the temporal aspects of conducting
laboratory experiments, using DNA tiles for example, into
the self-assembly process (Demaine et al., 2008).

The sTAM is an extension to the abstract Tile Assembly
Model (aTAM; Winfree, 1998). The aTAM was developed
to provide a theoretical framework to investigate the assem-
bly of square tiles (based on DNA tiles) in a square lattice
environment. A tile type is defined by the bonding domains
on the North, West, South, and East edges of a tile. At least
one seed tile must be specified to start the self-assembly pro-
cess. Tiles cannot be rotated or reflected. There cannot be
more than one tile type that can be used at an assembly lo-
cation in the growing structure. Tile types are in infinite
supply, of equal concentration, in the model. All tiles are
added to the same environment, one-pot-mixture. Tiles can
only bond together if the interactions between them meet or
exceed the temperature parameter. As a result, temperature
dictates co-operative bonding. The seed tile is first placed in
the environment, and additional tiles are added one at a time
if the bonding constraints are satisfied.

The sTAM extends the aTAM by dividing the self-
assembly process into time intervals. Components can be
added to, or removed from, as set of environments, mirror-
ing the laboratory operations of adding/filtering DNA-based
components to solutions that can be mixed together. The
sTAM has been used to investigate the algorithmic construc-
tion of structures, such as a fully connected n×n square (n ∈
N). The construction of a square is problematic, as assem-
bling tiles must be coordinated to prevent the occurrence of
holes. The sTAM has shown an algorithmic efficiency with
minimal tile sets and bonding mechanisms (not requiring co-
operative bonding, at temperature one) in the construction of
such structures. This efficiency is due to staging, and is an
advantage over the aTAM itself that relies on co-operative
bonding (Rothemund and Winfree, 2000), or other exten-
sions to the aTAM that use either changes in temperature

Level 1: Definition of Rule Set

Level 3: Physical Realisation of Rule Set

map rule set to physically-
independent model for 
evaluation

map rule set 
to physically 
encoded 
information

Level 2: Virtual 

Execution of 

Rule Set

Figure 1: Three-level approach to self-assembly design.

(Kao and Schweller, 2006) or by varying the concentration
of tiles (Adleman et al., 2001; Doty, 2009).

Situated development is another method investigating
staged construction, where artificial evolution was used to
evolve the assembly plan of a structure (Rieffel and Pol-
lack, 2005). Based on rapid prototyping, assembly plans
were evolved using permanent and temporary components
which were “dropped” in an environment. Temporary com-
ponents act as scaffolding and can be removed (representing
how support material can be removed in rapid prototyping).

In contrast to Demaine et al. (2008) and Rieffel and Pol-
lack (2005), physical examples of staged self-assembly in-
clude Wu et al. (2002) where templates were used to self-
assemble spherical beads into substructures with specific
patterns (e.g. linear, triangular, and hexagonal shapes). As
well, He et al. (2008) used three-point start motif tiles to
self-assemble tetrahedrons, dodecahedrons, and buckyballs
by controlling the motif length and concentration of tiles in
a two-step process. Despite this work, there is little (if any)
literature that describes the use of morphological informa-
tion to stage the self-assembly process.

Staging and the Three-Level Approach
The three-level approach provides a high-level description
to designing self-assembling systems via physically encoded
information (Bhalla et al., 2010). The three levels include:
(1) definition of rule set, (2) virtual execution of rule set, and
(3) physical realisation of rule set (Fig. 1). Here we extend
the three-level approach to incorporate our staging strategy.
At level one, a new self-assembly rule is introduced to spec-
ify which components are present at a particular time inter-
val. To accommodate this new rule, an extension to a self-
assembly model based on the aTAM is provided at level two.
Finally, physical features of components that are exploited in
our staging experiments is described at level three.

Level One: Definition of Rule Set
A system is described by three categories of self-assembly
rules, component, environment, and system, which are in the
context of component movement spatially in 2D or 3D.

Component rules specify shape and information. Concep-
tually similar to DNA tiles, components are either squares
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Figure 2: 3D component spatial relationship, and an exam-
ple of information orientation on a 3D component’s face.

(2D) or cubes (3D). Each edge/face of a component serves
as an information location (Fig. 2), in either a four-point
(Top-Left-Bottom-Right) or six-point arrangement (Top-
Left-Bottom-Right-Front-Back). Information is represented
by a capital letter (A to H for 2D components, and I to T
for 3D components). A subscript (1 to 4) is used with each
capital letter (e.g. N4) to indicate orientation on a 3D com-
ponent’s face. The dash symbol (−) represents a neutral site
(where no assembly information is present). The spatial re-
lationship of a component’s information defines its type.

Environment rules specify environmental conditions such
as temperature (φ) and boundary constraints. An assembly
protocol must at least meet the temperature for assembly
bonds to occur. The boundary confines components to the
environment. Components are permitted to translate and ro-
tate in 2D and 3D systems. In addition, components have
rotational information and can be reflected in 3D systems.

System rules specify component type frequency in each
time interval (ψ), and two interaction rules (fits and breaks).
Time intervals indicate when components are added to a sin-
gle environment (e.g. ψ0; using a subscript 0 to n, where n
∈ N and 0 indicates the start of the self-assembly process).
If two complementary pieces of information come into con-
tact, (e.g. A fits B), it will cause them to assemble. This rule
type is commutative (e.g. if A fits B, then B fits A). Further-
more, fits rules encapsulate component-to-component rota-
tional interactions in 3D systems. A subscript (360, 180,
and 90) is used to represent if the faces of complementary
3D components can fit together in four, two, or in one way
respectively (e.g. M fits180 N). If two assembled pieces of
information experience at least a temperature of two (φ2),
then their assembly breaks. The system rules in conjunction
with their physical counterparts is provided at the end of this
section, Level Three: Physical Realisation of Rule Set.

Level Two: Virtual Execution of Rule Set
At level two, a self-assembly rule set is mapped to an ab-
stract tile model for computational efficient evaluation, and
is used to determine if physical evaluation of a self-assembly
rule set is applicable at level three. We extend the concurrent
Tile Assembly Model (cTAM; Bhalla et al., 2010) to incor-
porate staging. In contrast to the aTAM, the cTAM is better
suited to the type of self-assembling systems used here by al-
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Figure 3: 2DscTAM example, and 2D assembly violations.

lowing multiple substructures to self-assemble concurrently,
not using seed tiles, permitting more than one tile type to
be used at an assembly location, and requiring all tiles to
be in the same one-pot-mixture environment. The extended
cTAM is referred to as the 2D and 3D staged concurrent Tile
Assembly Model (2DscTAM and 3DscTAM). Components
are permitted to translate and rotate in both the 2DscTAM
and the 3DscTAM, but only be reflected in the 3DscTAM.

The input into the 2DscTAM and the 3DscTAM is the
number of time intervals, and the multiset of components
in each interval (type and frequency). At the start of each
time interval, the components corresponding to the current
time interval are added to the environment (Fig. 3). A sin-
gle assembly operation is applied during a time interval, ini-
tialised by selecting a single tile/substructure with an open
assembly location at random. If no other tile/substructure
has an open complementary information location, then the
location on the first tile/substructure is labelled unmatch-
able. If there are tiles/substructures with open complemen-
tary information locations, all those tiles/substructures are
put in an assembly candidate list. From the assembly can-
didate list, tiles/substructures are selected at random until a
tile/substructure can be added. If no such tile/substructure
can be added, due to an assembly violation (Fig. 3), then
the location is labelled unmatchable. If a tile/substructure
can be added, the open assembly locations on the two
tiles/substructres are updated and labelled match (all appli-
cable assembly locations, including their rotational proper-
ties in the 3D case, must match when adding two substruc-
tures). This process repeats until all assembly locations are
set to either match or unmatchable. At the end of a time in-
terval, the resulting structures are placed in a single grid en-
vironment to determine if boundary violations occur. Before
starting the next time interval, all unmatchable information
locations are reset. The algorithm repeats, and halts when
all time intervals have been completed in sequence.

An added constraint to the 3DscTAM is that substructures
(with three or more components) cannot assemble together.
This constraint represents observations in preliminary phys-
ical experiments conducted by the authors.

Level Three: Physical Realisation of Rule Set
Components are physically realised using rapid prototyping,
at level three. Both 2D and 3D components are defined by
their design space (set of physically feasible designs, Fig. 4
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ϕ2 breaks A+B → A ; BA fits B → A+BA000Lock

ϕ2 breaks C+D → C ; DC fits D → C+DC110Lock

ϕ2 breaks E+F → E ; FE fits F → E+FE011Lock

ϕ2 breaks G+H → G ; HG fits H → G+HG101Lock

ϕ2 breaks B+A → B ; AB fits A → B+AB111Key

ϕ2 breaks D+C → D ; CD fits C → D+CD001Key

ϕ2 breaks F+E → F ; EF fits E → F+EF100Key

ϕ2 breaks H+G → H ; GH fits G → H+GH010Key
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Figure 4: 2D component specification (construction units in
mm), and 2D interaction rules (where red/zero and blue/one
represent magnetic south and north respectively, and ’→’
transition, ’+’ assembly, and ’;’ disassembly).

and 5). The design space is a combination of a shape and
an assembly protocol space. For both 2D and 3D compo-
nents, a key-lock-neutral concept defines the shape space.
A linear 3-magnetic-bit and a planar 5-magnetic-bit encod-
ing scheme define the assembly protocol space for 2D and
3D components respectively. Magnets are placed within the
edges or faces of 2D and 3D components respectively, and
are not flush with a component’s surface. The result of an
air gap allows for adjustable component interactions and se-
lective bonding (Whitesides and Gryzbowski, 2002). Al-
though Miyashita et al. (2009) investigated how component
shape and magnetic bonding affects the self-assembly pro-
cess, they did not consider this morphological information
in the context of staged self-assembly.

Here, lock-to-lock interactions can never occur due to
their shape. This shape characteristic is influential in assign-
ing 3-magnetic-bit and 5-magnetic-bit encodings to keys and
locks. One magnet is placed in each position associated with
a key, and two magnets are placed in each position associ-
ated with a lock. Strong bonding is ensured for key-to-lock
interactions, and weak bonding between key-to-key inter-
actions. The potential occurrence of weak bonding can be
reduced with an appropriate physical temperature setting.

The four pairs of complimentary 3-magnetic-bit encod-
ings can be optimally assigned to keys and locks to reduce
assembly errors, as any key-to-lock error is at worst a one
out of three match. Since this is not above a 50% match,
bonding will not occur. Whereas the six pairs of unique

Shape Breaks RuleFits RuleLabel5-bit

 ϕ2 breaks I+J → I ; J  I fits360 J → I+JI00000Lock

 ϕ2 breaks K+L → K ; L  K fits360 L → K+LK10000Lock

 ϕ2 breaks M+N → M ; N  M fits180 N → M+NM01010Lock

 ϕ2 breaks O+P → O ; P  O fits90 P → O+PO01100Key

 ϕ2 breaks Q+R → Q ; R  Q fits90 R → Q+RQ11000Key

 ϕ2 breaks S+T → S ; T  S fits90 T → S+TS01000Key

 ϕ2 breaks J+I → J ; I  J fits360 I → J+IJ11111Key

 ϕ2 breaks L+K → L ; K  L fits360 K → L+KL01111Key

 ϕ2 breaks N+M → N ; M  N fits180 M → N+MN10101Key

 ϕ2 breaks P+O → P ; O  P fits90 O → P+OP10011Lock

 ϕ2 breaks R+Q → R ; Q  R fits90 Q → R+QR00111Lock

 ϕ2 breaks T+S → T ; S  T fits90 S → S+TT10111Lock
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Figure 5: 3D component specification (construction units in
mm), and 3D interaction rules (where red/zero and blue/one
represent magnetic south and north respectively, and ’→’
transition, ’+’ assembly, and ’;’ disassembly).

complimentary pairs of 5-magnetic-bit encodings (account-
ing for planar rotation of a component’s face) cannot be opti-
mally assigned to keys and locks to reduce assembly errors.
In this case, optimal assignment is considered with respect to
which encodings are included to construct a target structure.
It should be noted that these six encodings encapsulate rota-
tional information for 3D component-to-component interac-
tions, where two pairs encapsulate 360◦, one pair encapsu-
lates 180◦, and three pairs encapsulate 90◦ rotational inter-
actions. The 90◦ encodings have the potential for self-errors
between complementary pairs, i.e. a three out of five match.
A physical temperature to break three out of five matches,
while maintaining five out of five matches, is strived for.

Orbital shakers form the environments for both 2D and 3D
components. 2D components are placed on the surface of a
tray, and a lid is used to prevent component reflections. 3D
components are placed in a jar of mineral oil, to allow com-
ponents to move freely in 3D space, and prevent oxidation
affecting the magnets. The designs for both environments
result from earlier experiments conducted by the authors.
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I II III IV

Figure 6: Four target structures for the experiments.

Experiments and Results
We present four experiments that were conducted to test our
approach to staging the self-assembly process using mor-
phological information. The purpose of these experiments is
to demonstrate, as proof-of-concept, that staging can enable
the self-assembly of closed target structures not otherwise
possible. Closed refers to structures with defined boundaries
(Whitesides and Gryzbowski, 2002). A target structure was
assigned to each experiment (one 2D and three 3D experi-
ments, Fig. 6). Here, the self-assembly process is staged (di-
vided) into two time intervals, where components are only
added to a one-pot-mixture environment. Component phys-
ical features, such as key and lock shapes and magnetic-bit
patterns, are morphological information.

The independent variable is the use of two time intervals.
The dependent variable is the resulting self-assembled struc-
tures. Enough components are supplied to create one 2D
target structure and two 3D structures (due to boundary con-
straints of the environment). Ten trials are run for each ex-
periment. A virtual trial (level two) is evaluated to being
successful if all the potential number of target structures are
achieved. A physical trial (level three) is evaluated to being
successful if at least one target structure is achieved. The
staging strategies and level one rules were designed by the
authors. 2D and 3D experimental procedures and results are
provided in terms of the three-level approach.

Two-Dimensional System
The staging strategy for creating the 2D 3×3 square target
structure is to construct the centre and edges of the square
in the first time interval, and construct the corners of the
square in the second time interval (Fig. 7). In the first time
interval, potential errors between the edge components can
be reduced by appropriate selection of 3-magnetic-bit codes
and the use of lock shapes to assemble to the centre compo-
nent. The morphology of the substructure after the first time
interval has corner features that can reduce assembly errors
with the use of corner components that use only lock as-
sembly shapes. The neutral edges of the corner components
effectively block a corner component from assembling to the
substructure in an improper orientation (Fig.7).

2D Level One Definition of Rule Set for Experiment
Fig.7 provides the component rules. The control group rep-
resents components that were not divided into time intervals

Staged Component Set
Target

Structure

!0 {1 x (D,D,D,D), 4 x (B,-,B,C)}

!1 {4 x (-,A,A,-)}
I

!0 !1

Error Prevention

Figure 7: Staging strategy for target structure I, and error
prevention due to shape and proper 3-magnetic-bit pattern
selection (e.g. avoid magnetic repulsion configuration).

(non-staged). The experimental group used the same com-
ponents, but divides them into two time intervals (staged).
Interaction rules from Fig. 4 were applicable to both groups.

2D Level Two Experimental Setup The components
from Fig.7 were mapped to an abstract representation for
the 2DscTAM. Each component’s shape was a unit square.
The size of the environment was 10×10 units (as a repre-
sentation of width×depth, and the ratio between component
and environment size). A different random seed was used to
initialise the 2DscTAM for each trial.

2D Level Two Experimental Results The staged compo-
nents successfully created one target structure in each of the
ten trials. None of the non-staged components were able to
create one target structure. The unsuccessful non-sategd tri-
als either resulted in a set of substructures (due to edge and
corner components assembling in incorrect orientations), or
the creation of a 3×3 open square. The results at level two
were analysed using Fisher’s Exact Test (one sided) for bi-
nary data (Cox and Snell, 1989). The results are statistically
significant with a p-value of 0.

2D Level Three Experimental Setup A level three trans-
lation was preformed for both the staged and non-staged
components (to observe the physical results of non-staged
components). Components were mapped following Fig.7.

An Eden 333 Polyjet rapid prototyping machine was
used to fabricate the components from Vero Grey
resin. Neodymium (NdFeB) disc magnets (1/16”×1/32”,
diameter×radius; grade N50) were inserted into the com-
ponents. Blue/red paint (north/south) marked the magnets.

The environment size was mapped in accordance with the
base component’s size, to specify the dimensions of the cir-
cular tray environment. The tray was fabricated using a Di-
mensions Elite rapid prototyping machine, using ABS plas-
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tic (sparse-fill option was used to create a rough surface tex-
ture). The outer radius of the tray is 135 mm and the inner
radius is 125 mm, while the outer wall height is 9 mm and
the inner wall height is 6 mm. The tray was mounted to a
Maxi Mix II Vortex Mixer (using a tray mounting bracket,
also fabricated using the Dimensions printer). A tray lid was
cut using a Trotec Speedy 300 Laser Engraver laser cutting
machine, using 2 mm clear acrylic sheet. The tray lid was se-
cured to the tray using polycarbonate screws and wing nuts.

Each physical trial followed seven steps (Bhalla et al.,
2010). (1) Set the speed control on the Maxi Mix II Vortex
mixer to 1,050 rpm. This speed created an appropriate shak-
ing level (environment temperature) to maintain fits rules,
and to mostly break partially matched magnetic codes. (2)
Secure the mixer to a table, using a 3” c-clamp and six hex
nuts (to help secure the c-clamp to the back of the mixer).
(3) Randomly place components on the surface of the tray
(trying to ensure that complementary bonding sites on the
components are not in-line with each other). (4) Secure the
tray lid. (5) Run the mixer for 20 minutes for a non-staged
trial, or for two 10 minute intervals for a staged trial. (6)
Turn the mixer off. (7) Record the state of the system, ob-
serving: the number of target structures created, the number
of matching errors (between conflicting physical informa-
tion, where no fits rule is applicable), and the number of
assembly errors (partial attachment between corresponding
physical information, where a fits rule is applicable).

2D Level Three Experimental Results The level-three
results are provided in Fig. 8, with an example of the end of
each time interval of a successful trial. For both component
groups, no matching and assembly errors were observed in
the ten trials. Only partial structures were observed, and no
open 3×3 squares, were observed at the conclusion of the
non-staged trials. Using Fisher’s Exact Test, this experiment
is statistically significant at the 0.01 level (i.e. there is a 99%
certainty the results are not due to chance).

Three-Dimensional Systems
The three 3D target structures have a three component com-
mon core structure, and vary in the number of periphery
components (increasing from two, three, and four). The
core structure requires two specialised 90◦ bonds, whereas
the perimeter components only require general 360◦ bonds.
As observed by the authors in preliminary 3D experiments,
substructures consisting of at least three components are not
able to assemble together. Given that the likelihood of gen-
eral 360◦ bonds occurring is more likely than specialised
90◦ bonds, the staging strategy for creating the three 3D tar-
get structures is to construct the core substructure in the first
time interval, and construct the periphery substructures in
the second time interval (Fig. 9). The first time interval
leverages the specialised component rotational information.
Lock shapes for the 360◦ bonds are used as part of the mor-

UnsuccessfulSuccessfulGroupTarget Structure

37staged
I

100non-staged

Target Structure I - !0 Target Structure I - !1

Figure 8: Successful target structure I example trial, and the
number of successful/unsuccesful 2D trials.

phology of the components in the first time interval, to re-
duce potential matching errors between specialised and gen-
eral bonds. Furthermore, the resulting morphologies of the
resulting core substructures at the end of the second time
interval consist only of neutral and lock shapes, preventing
assembly between the core substructures.

3D Level One Definition of Rule Set for Experiments
The component rules for the 3D experiments is provided in
Fig. 9. Control groups and experimental groups represent
non-staged and staged (using two time intervals) component
sets respectively. The environment temperature was one.
The interaction rules from Fig. 5 applied to both groups.

3D Level Two Experimental Setup The components
from Fig. 9 were mapped to an abstract representation for
the 3DscTAM. A component’s base shape was a unit cube.
The size of the environment was 4×4×4 units (represent-
ing width×depth×height, and the ratio between component
and environment size). A different random seed was used to
initialise the 3DscTAM for each trial.

3D Level Two Experimental Results The staged compo-
nents, for each experiment, successfully created two target
structures in each of the ten trials. Whereas, the non-sategd
components were not able to create a target structure. As ex-
pected, the unsuccessful non-sateged components resulted in
substructures consisting of three components (favouring as-
semblies with 360◦ bonds) or two components. The results
at level two are statistically significant with a p-value of 0
using Fisher’s Exact Test for binary data.

3D Level Three Experimental Setup As with the 2D ex-
periment, a level-three translation was performed for both
staged and non-staged components (to observe the physi-
cal results of non-staged components). Components were
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Staged Component Set
Target

Structure

!0 {2 x (-,-,O3,-,O1,-), 4 x (-,I1,-,-,P1,-)}

!1 {4 x (J1,-,-,-,-,-)}
II

!0 {2 x (-,Q1,-,Q1,K1,-), 4 x (-,-,-,K1,R1,-)}

!1 {6 x (L1,-,-,-,-,-)}
III

!0 {2 x (T1,-,T4,-,-,-), 4 x (-,-,I1,I1,S1,-)}

!1 {8 x (J1,-,-,-,-,-)}
IV

!0 !1

Figure 9: Staging strategy for target structure III (applicable
to target structures II and IV).

mapped following Fig. 9, and were fabricated using a sim-
ilar procedure as the 2D components (with the addition of
colour paints to represent rotational information, Fig. 5).

500 mL clear glass, wide-mouth jars with rubber lined
lids were used to contain components (91 mm×95 mm;
diameter×height). A Trotec Speedy 300 Laser Engraver was
used to construct the parts, using 3 mm acrylic sheet, for the
jar rack. The rack was assembled using adhesive, screws,
and hex nuts. The jar rack was placed on a New Brunswick
Scientific Excella E1 Platform Shaker. 325 mL of Rogier
Pharma light mineral oil was measured using a graduated
cylinder, and poured into the jars (one for each experiment).

Each physical trial followed six steps. (1) Place three jars
of mineral oil on the jar rack. (2) Randomly place the com-
ponents for each experiment into the appropriate jar. (3) Se-
cure the jar lids. (4) Turn the shaker on by setting the speed
to 32.5 rpm. (5) Run the shaker for 40 minutes for a non-
staged trial, or for two 20 minute intervals for a staged trial.
(6) Record the state of each system, observing: the number
of target structures created, the number of matching errors,
the number of assembly erros, and the number of rotation
errors (between complementary components).

3D Level Three Experimental Results The 3D level-
three results are provided in Fig. 10, along with examples
of the end of each time interval of a successful staged trial.
For each experiment, no matching and assembly errors were
observed in the ten trials. Rotational errors were observed
in each staged experiment (Fig. 11). Using Fisher’s Exact
Test, the first two 3D experiments are statistically significant
at the 0.05 level and the third experiment was statistically
significant at the 0.50 level (i.e. there is a 95% and 50% cer-

UnsuccessfulSuccessfulGroupTarget Structure

64staged
II

100non-staged

55staged
III

100non-staged

91staged
IV

100non-staged

Target Structure IV - !0
Target Structure IV - !1

Target Structure III - !1Target Structure III - !0

Target Structure II - !0
Target Structure II - !1

Figure 10: Successful target structure II, III, and IV example
trials, and the number of successful/unsuccesful 3D trials.

tainty the results are not due to chance). Even though one
successful staged trial was observed with the third 3D ex-
periment, we do not consider the result statistically relevant.

Discussion Four experiments were conducted to demon-
strate our morphological information based staging strategy.
At level two, all of the staged components sets were able
to achieve their respective target structures, whereas none
of the non-staged components were able to. All the staged
component sets, except for the third 3D experiment, were
able to successfully construct their respective target struc-
tures at a statistically significant level (with 99% and 95%
confidence for the 2D and 3D experiments), at level three.

One physical target structure was achieved in the third 3D
experiment, and we observed in the trials a layering effect of
components/substructures that inhibited the self-assembly
of this target structure (IV). As future work, we look to
build neutrally buoyant components to address this issue.
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Figure 11: Rotational errors at the end of each 3D trial (tar-
get structures II blue, III red, and IV green).

We are also investigating the use of higher-order magnetic-
bit codes, additional magnetic-bit patterns, and new methods
for creating a more suitable physical environment tempera-
ture to prevent the occurrence of rotational errors.

An implication of staging is on the self-repairing proper-
ties of a system. Although we observed the 2D 3×3 square
being able to self-repair, this was only within the second
stage. Further research into features that allow for, and the
understanding of the limits to, self-repair between specific
stages is required to continue to further develop our ap-
proach. For example, although salamanders undergo devel-
opment through unique stages, they can regrow lost limbs
by repeating earlier developmental stages (Wolpert, 1998).

Nevertheless, we envision our staging strategy being ap-
plicable to a variety of applications relying on fixed compo-
nents, such as the design of nano and microscale structures,
circuit design, and DNA computing using self-assembly.
Moreover, we envision our staging strategy as an approach
to improve the ability of artificial evolution for the creation
of more complex physical self-assembling systems.

Conclusions
Staging is an essential part of biological development. In
this work we presented a novel approach to staging the self-
assembly process using morphological information. This
work involved creating two new staged self-assembly ana-
lytical tools, the 2DscTAM and the 3DscTAM. Furthermore,
this work showed how the interplay between component
morphological information (shape and magnetic patterns)
can be used to reduce assembly errors and leverage rota-
tional properties by using staging. We presented four proof-
of-concept experiments to demonstrate that our staging strat-
egy is a viable method for enabling the self-assembly of
more complex morphologies not otherwise possible.
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Abstract

In this work the question of whether the introduction of both
transcription errors and cultural transmission, in the form of
learning by imitation, can enable the evolution of behaviours
inaccessible to incremental genetic evolution alone is as-
sessed. To answer this a neural network model using a hybrid
of two different networks was implemented: one capable of
demonstrating reactive qualities, the other controlling delib-
erative goal selecting behaviours. Animats using this model
were evolved in an adaptation of the environment proposed
by Robinson et al. (2007) to solve increasingly difficult tasks.
Simulations were run on populations with and without learn-
ing by imitation to assess the relative success of each strat-
egy, leading to the conclusion that populations with learning
by imitation can successfully demonstrate the most complex
behaviour, which was empirically found to be inaccessible to
non-learning populations.

Introduction
In this paper we present work showing animats in a virtual
environment learning behaviours through imitation that are
inaccessible to incremental genetic evolution alone. Learn-
ing by imitation is often considered to be a mechanism
of social information transfer (Cavalli-Sforza and Feldman,
1981; Whiten and van Schaik, 2007), leading to what may
be described as social or cultural learning. By combining
population learning and individual learning in the same evo-
lutionary system it is possible to make use of both global and
local search: global search through the underlying (multi-
generational) genetic algorithm and local search through in-
dividual (lifetime) learning (Hinton and Nowlan, 1987). It
has been demonstrated by Best (1999) that by using cultural
learning in place of individual learning on a more challeng-
ing version of the Hinton and Nowlan (1987) problem, it
is possible to improve the speed at which a population of
agents discover an adaptive goal. Cultural learning has the
added advantage of allowing individuals to pass on learnt
information to other members of the population, and so pre-
serving extra-genetic information for the next generation.
Beyond its uses in evolutionary optimisation and search, cul-
tural and social learning is also a well known natural phe-
nomenon with various species using social learning mech-

anisms such as imitation, emulation, teaching and the use
of public information to produce adaptive behaviours in dy-
namic and challenging real world environments (Whiten and
van Schaik, 2007; Reader and Biro, 2010).

A number of studies have investigated the effect learning
by imitation has on populations of evolving neural networks
(Best, 1999; Cangelosi et al., 2006; Acerbi and Parisi, 2006;
Acerbi and Nolfi, 2007; Curran and O’Riordan, 2007; Mar-
riott et al., 2010). In much of the literature these imitating
neural networks are referred to as agents, with some, as is
the case in this work, even taking on the role of animats or
autonomous agents in virtual environments (Marriott et al.,
2010). It is the aim of this work to investigate whether learn-
ing by imitation in a population of neural networks enables
behaviours that are deemed to be inaccessible to incremen-
tal genetic evolution, to be learned and maintained. In order
to test our claims an increasingly complex virtual environ-
ment is used in which animats’ behaviours are evaluated. It
is expected that without learning these animats will only be
able to exhibit a limited set of behaviours, whereas animats
learning through imitation should evolve in such a way to
allow access to all categories of behaviour.

Incremental Genetic Evolution

Long-term incremental evolution necessarily uses converged
populations, which can be referred to as species (or quasi
species). In genetic algorithms (GAs) this is referred to
as the Species Adaptation Genetic Algorithm or SAGA ap-
proach (Harvey, 2001). The SAGA approach impacts on
the way populations evolve: recombination will have a far
smaller effect on the motion of the population than in a stan-
dard GA, as each species is already genetically similar, leav-
ing mutation as the primary driving force behind evolution.
Mutation can be substantially effective in spaces percolated
by neutral networks: pathways of level fitness through the
fitness landscape. In this case genotypes can vary while still
producing similar phenotypes and behaviours. When phe-
notypes of higher fitness are found the population converges
onto them. This incremental approach enables species of
animats to discover and converge upon an easily accessible
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solution. However, if there is no neutral or incremental path
between the corresponding basic behaviour and fitter ones,
the population will struggle to move away from these sub-
optimal behaviours. Figure 1 depicts a mock example.

One approach to solving the problem of sub-optimal con-
vergence is to increase the rate at which mutation is applied,
potentially allowing the population to explore more of the
fitness landscape and so discover new fitness peaks. How-
ever, there are problems with this approach: as mutation
rates increase, the evolutionary search strategy begins to re-
semble random search, with larger mutation rates making
it increasingly difficult for the population to maintain solu-
tions. The point at which mutation becomes so large that
favourable structures discovered by evolution are lost more
frequently than they are found is known as the error thresh-
old. Ochoa et al. (1999) and others have demonstrated a
link between error thresholds and optimal mutation rates in
evolutionary algorithms.

Discovering and Maintaining Inaccessible
Solutions: Transcription Errors and Imitation
To solve the issue of sub-optimal population convergence
without crossing the error threshold, noise is often added to
the fitness landscape via the genotype to fitness map. How-
ever, where such noise is in the phenotype to fitness section
of that map, its ability to aid in the transition between peaks
(or more accurately between neutral networks) is limited.
By instead incorporating noise into the genotype to pheno-
type map, as with transcription errors, behaviours inacces-
sible to incremental genetic evolution may be exhibited re-
liably by individuals while leaving the genotype untouched.
It can be useful to view such noise as a type of unguided
individual learning.

In order to maintain successful behaviours in the popu-
lation, some form of extra-genetic learning needs to take
place. The model employed in this work makes use of im-
itation through interactions between teachers and pupils to
facilitate the transmission of learnt behaviours (Cangelosi
et al., 2006; Acerbi and Parisi, 2006; Acerbi and Nolfi, 2007;
Curran and O’Riordan, 2007). As in Curran and O’Riordan
(2007) pupils follow teachers in a mock evaluation on a set
of environments. As both teacher and pupil receive the same
environmental input the teacher’s output may be used as a
target pattern for error backpropagation, reducing the pupil’s
output error compared to that of the teacher. By learning in
this way pupils are able to imitate the behaviours exhibited
by teachers, thus maintaining behaviours in the population
that would have been lost in incremental genetic evolution.

Neuroevolution of Deliberative Behaviours
This work uses populations of neural networks embodied
in animats. The neural network architecture used here is
a hybrid of two different networks: the first controlling the
high level deliberative behaviours of the animat, and the sec-

ond controlling the animat’s reactive capabilities (Robinson
et al., 2007). By making use of both reactive and deliber-
ative mechanisms, neural architectures of this sort are able
to seek long term goals while also reacting to unforeseen
events ultimately enabling the evolution of complex prob-
lem solving abilities. To demonstrate these problem solving
abilities Robinson et al. (2007) developed a complex prob-
lem called the ‘river crossing’ or RC task. The RC task re-
quired animats to find a single reward-giving Resource in a
2D grid-world environment containing a number of obsta-
cles. Alongside Resource objects animats could encounter
Water, Grass, Traps and Stones. Grass objects made up the
majority of the environment and where seen as neutral space
for the animats to move across; Trap objects were imme-
diately lethal, as were Water objects, which were placed in
such a way to resemble an unbroken river cutting the ani-
mat’s path to the Resource. In order to cross the river ani-
mats were required to pick up Stone objects, which could be
carried at no cost to the animat, and place them in the same
cells as Water thus negating their lethality. Once a contin-
uous bridge of Stones over the river had been built animats
could access the Resource. To succeed at the RC task an-
imats were required to evolve with no a priori knowledge
of the world; each new environment was unique and ani-
mats had no concept of co-ordinates, making solutions such
as ‘move five steps to the right’ impossible, instead animats
evolved goals and sub-goals such as ‘go to resource’,‘avoid
traps’ or ‘head to nearest stone’ which then allowed the net-
work to navigate the animat towards these goals. Despite the
RC task being reasonably complex, Robinson et al. (2007)
demonstrated that it could be solved by initially converged
populations of animats using only incremental genetic evo-
lution. To test our hypothesis a more complex version of the
RC task has been developed: the RC+ task.

The RC+ Task
An important aspect of the RC task was that individuals were
evaluated on increasingly difficult environments. In Robin-
son et al. (2007), animats were first shown a map with no
river blocking their path; then a river with a width of one
cell was introduced, followed by a final environment con-
taining a river with a width of two cells. Stone and Trap
objects were of a consistent number throughout all tests giv-
ing animats equal exposure in each environment. The RC+
task makes the task harder in regard to both river width and
exposure to Stone objects. The number of environments an
animat is evaluated on is increased from three to five, with
environments becoming increasingly difficult to solve due to
river width increasing from zero cells to four cells. To add to
the difficulty further, the number of Stone objects gradually
decreases from twenty in the first environment to zero in the
final environment, making each environment more challeng-
ing to the point where the final environment cannot be com-
pleted by building a bridge. In order to make the final envi-
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Fig. 1: A species starting from point X on the above mock fitness landscape would achieve peak A by way of the hill climbing
strategy adopted by incremental genetic evolution (driven primarily by mutation and selection). Gradient-based learning
amongst such a species would ordinarily also be restricted to peak A. The inclusion of both noise in the genotype to
phenotype map and learning by imitation can enable the species to jump across areas of lower fitness to higher peaks
(inaccessible to hill climbing alone), where incremental genetic evolution and learning can resume hill climbing.

ronment solvable two extra objects, Object A and Object B,
are introduced into the environment. Object A and Object B
are rare objects, with only one instance of each found in each
environment. Like Stones, Object A and Object B may be
carried at no cost to the animat and placed upon any square
or object. If an animat happens to place both Object A and
Object B on a square containing Water (notionally forming a
floating raft that carries the animat to the resource), a reward
equal to that of the Resource is received and the animat is
considered to have successfully solved the environment. In
short, an alternate Resource may be constructed out of the
three other objects (Object A, Object B and Water), remov-
ing the need to build bridges but still requiring agents to be
driven towards the Resource when Water is not present. The
RC+ task is impossible to solve with incremental genetic
evolution alone. To solve it, animats are required to engage
with Water, Object A and Object B while still avoiding Traps
and uncovered Water, and to also be able to reach the Re-
source in the absence of Water (the simplest sub-solution to
evolve). The rarity of both Object A and Object B adds to the
difficulty of the RC+ task as animats must now evolve to be
driven to towards Object A and Object B despite potentially
very little exposure during their time in the environment.

The Model
Animat movement is controlled by a hybrid neural network
embodying both reactive and deliberative qualities. This hy-
brid network may be broken down into two network mod-
els: a shunting network and a decision network, with the de-
cision network passing information on to the shunting net-
work which in turn controls the animat’s movement. The

shunting network is not directly exposed to any evolution or
learning. The deliberative network on the other hand is ex-
posed to both evolution and learning, enabling the evolution
and inheritance of animat behaviour.

The Shunting Network
Shunting networks are a specialised form of neural network
making use of what is known as the shunting model (Yang
and Meng, 2000). The inspiration for the shunting model
came from Yang and Meng’s (2000) desire to develop mo-
tion planning systems capable of reacting quickly in real-
time environments, thus allowing robotic agents to exhibit
robust and collision-free motion planning behaviours. In-
stead of directly specifying behaviours, the shunting model
maps network outputs onto environmental outputs (within
an internal map of the environment) which are propagated
across the environment to form an activity landscape. This
activity landscape is used by the agent to control movement
through the environment, by dynamic gradient ascent of the
landscape. In their model, Yang and Meng (2000) demon-
strated a neural network composed of an n-dimensional lat-
tice of neurons, with each neuron representing a possible
state in the system. By using neurons to represent states in
this way it is possible to represent any system which is ca-
pable of being fully described by a set of discrete states.

The environment used for the RC and RC+ tasks is a sim-
ple 2D grid-world consisting of 20× 20 cells, with each cell
representing a position in co-ordinate space. Each position
in the grid-world may be occupied by any number of ob-
jects found in the RC+ environment (Resource, Water, Trap,
Grass, Object A and Object B), allowing the system to be
fully described by a set of discrete states, thus enabling the
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use of the shunting model to direct animat movement across
the RC+ environment and ensuring a simple one-to-one re-
lationship between neurons and geographical locations.

In Yang and Meng (2000), two versions of a transition
function for specifying inter-neuron dynamics were devel-
oped: one which controlled activity saturation in the net-
work and one which did not. Consistent with the findings of
Robinson et al. (2007), we found activity saturation not to be
a problem exhibited by networks in the RC+ task, enabling
the use of the simpler transition function in equation 1.

dxi

dt
= −Axi + Ii +

k∑
j=1

wij [xj ]
+ (1)

Alpha (A) represents the passive decay rate, which deter-
mines the degree to which each neuron’s activity diminishes
towards an idle state. The functions [x]+ is max(0, x). The
connection weight (or synapse strength) wi,j between neu-
rons i and j is the Euclidean distance between cells i and j
within the receptive field. k is the receptive field size and
here is set to 4, corresponding to the four cells orthogonally
surrounding cell i. Iota (I) is equal to E in the case of the
target, and -E for an obstacle, where E is a large integer.

In the case of the RC and RC+ tasks Iota values are limited
to 15, -15 and 0, representing the target resource, an obstacle
and neutral space respectively. The result of using a transi-
tion function with these values are 2D environments with
large peaks at the sites of target states, large troughs in cells
occupied by obstacles, and large amounts of neutral space
through which neuron activity from targets may spread. Us-
ing the shunting model to control animat movement allows
for goals such as ‘head for resource while avoiding traps’ or
‘place carried stones on water’ to be easily achieved.

The Decision Network
The role of the decision network is to set the Iota values
for object states found in the RC and RC+ task. Using the
decision network animats can set the desirability of object
states in relation to their current environmental inputs, al-
lowing them to manipulate the shunting network’s activity
landscape and so combine multiple actions such as ‘pick up
the closest stone’ and ‘place stone on water’ to create com-
plex behaviours.

As in Robinson et al. (2007), the decision network is sim-
ply a feed-forward multi-layer perceptron with one hidden
layer comprising of four hidden units. The input layer is
capable of representing the animat’s current state in the en-
vironment including whether or not the animat is currently
carrying a movable object (Stone, Object A, Object B), with
each movable object having a dedicated carrying input. In-
puts taken by the input layer are single values of 1 or 0,
representing the presence of the object in the same cell as
the animat. These input values are fed through to the hid-
den layer neurons via weighted connections in the range

[-1,1]. At each hidden unit the weighted sum of inputs is
passed through a hyperbolic tangent activation function to
produce hidden layer outputs. In the RC+ task the output
layer is made up of sixty-seven neurons representing the Iota
values of all sixty-four possible environmental states (ex-
cluding Grass objects whose Iota values are always set to
0 and therefore do not need be represented in the decision
network) and a pick-up/put-down output for each non-static
object (Stone, Object A, Object B). At each output neuron
the sum of all weighted connections is passed through a hy-
perbolic tangent activation function with fixed thresholds:
neurons outputting within the range [-0.3:0.3] are set to out-
put 0, while all outputs over 0.3 resolve to 1 and all outputs
below -0.3 resolve to -1.

For outputs representing the pick-up/put-down actions
output values of -1 cause the animat to put down the spec-
ified object they are carrying, values of +1 causing animats
to pick up the movable objects they are currently sharing
a cell with providing the animat is not already carrying an
object of that type. For all other outputs, resolved output
values set the Iota values to be used in the shunting network.
So if an output neuron has a negative output, all objects of
that class found in the environment at that point in time will
have their activations set to -15; for positive outputs to +15.
Any object resulting in an Iota value of 0 will remain neu-
tral, causing their activation values in the shunting network
to be solely based on the propagated activations of other ob-
jects. The resulting environment will contain a number of
peaks of high activity and troughs of low activity, gradually
propagating activity through neighbouring neutral cells.

Figure 2 shows two of the five potential environments an
animat may observe in the RC+ task, and the correspond-
ing activity landscapes given certain outputs from the de-
cision network. The first environment represents the initial
challenge an animat must complete, where only traps stand
in the way of a resource. As can be seen by this environ-
ment’s activity landscape, the Iota value associated with the
resource has been set to be positive resulting activity propa-
gating from the resource over the surrounding neutral space.
The second environment represents the second challenge, to
cross a river before having access to the resource. In this en-
vironment’s case, activation propagation from the resource
has been impeded by the decision network outputting nega-
tive Iota value for Water objects. Negative activity repels an-
imats from objects with negative Iota values; however posi-
tive activation can been seen coming from the Object B ob-
ject, providing a hill-climbing route for the animat to take in
activity space.

Evolution of the Decision Network
To evolve the decision network a steady-state genetic al-
gorithm was used. At each iteration two animats were se-
lected from the surviving population to be evaluated in tour-
nament selection, with the worst performing animat being
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Fig. 2: Two environments with their activity landscapes (given certain outputs from the decision network - see main text).
Animat=yellow, Stones=brown, Resource=green, Object A=black, Object B=red, Traps=crosses, Water=blue.

replaced by the progeny of the better performer. The com-
peting animats are evaluated in five increasingly difficult en-
vironments. If during evaluation an animat fails to complete
an environment, the evaluation is terminated. Fitness is set
to be the number of environments successfully completed by
an animat during evaluation.

An animat’s genotype consists of a set of floating point
values each in the range [-1,1], which are transcribed into the
connection weights in the animat’s decision network. The
genotype and the decision network are stored separately, so
any learning that may take place during an animat’s lifetime
will only affect the decision network: no changes are made
to its genotype after an animat is initially created. New an-
imats are the offspring of two other animats from the cur-
rent population: one tournament winning animat and one
randomly selected animat. The child’s genotype is created
first through recombination of the parents’ genotypes; for
this operation single-point crossover is used with the point
of crossover being a randomly selected point in either par-
ent’s genotype. Each loci in an animat’s genotype represents
exactly the same connection weight as in any other animat’s
genotype, with all genotypes being of length L = 308. Mu-
tation follows recombination; each point has a probability
Pmut= 1/L of having a random value from N(0,0.4) added to
it, with the resulting values being bounded within the range
[-1,1]. Once the genotype has been constructed it is writ-
ten to the new animat’s decision network; this process is

referred to as transcription. During transcription two ran-
domly selected connection weights are overwritten with a
new random value selected from a discrete uniform distri-
bution U(-1,1). The weights now present in the decision
network dictate the animat’s future behaviours within each
environment.

Learning in the Decision Network
Following reproduction new animats are afforded the op-
portunity to learn from a teacher via error-backpropagation.
This method of teacher-pupil backpropagation has been pre-
viously employed by Curran and O’Riordan (2007). How-
ever, the teacher-pupil scenario used in this work differs in a
number of ways. In the learning model used by Curran and
O’Riordan (2007), teachers were selected from the popula-
tion based upon their fitness and then assigned n pupils to
teach. We contend that in nature absolute fitness is very dif-
ficult to assess. To resolve this issue, the current tournament-
winning parent is assigned the role of teacher, with the par-
ent’s most recent progeny assigned the role of pupil.

There are also differences in the way error-
backpropagation is used to teach pupils in this model
compared to that of Curran and O’Riordan (2007). As
with our model, Curran and O’Riordan (2007) allowed
pupils to hitchhike on the back of the teacher during a mock
evaluation, with inputs shared between teacher and pupil
and using the teacher’s output pattern as a target pattern
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for the pupil to learn. The learning method employed by
Curran and O’Riordan (2007) permitted pupils to learn
from the target pattern until the error between child and
parent outputs were minimised to a satisfactory level. In our
model pupils are only presented with the current teacher’s
output once every simulation time step (immediately after
the teacher’s decision network’s inputs, activations and
outputs are updated). If a teacher happens to move through
the environment in such a way that both inputs and outputs
remain the same, the child will be presented with many
opportunities to learn a given target input-output pattern.
However, if the teacher moves around the environment via
many different input combinations, the student will have
the opportunity of potentially witnessing many different
target outputs but at the cost of having very little time
to minimise error. Imitating in this manner enables the
population to retain favourable behaviours not coded for
genetically, whilst not undermining the incremental genetic
evolutionary process.

Experimentation
At each iteration of the model two individuals are taken from
the population to be evaluated on a series of five environ-
ments/maps. All maps have seven Trap objects placed ran-
domly on the map, one reward-giving Resource, one Ob-
ject A, one Object B, and 20 − (5 × riverwidth) Stone
objects. River width varies from an initial width of zero, in-
creasing by one cell per map. During evaluation individuals
must successfully reach the Resource or place Object A and
Object B onto a cell containing Water; any animat failing to
do so within 100 steps or dying by means of a Trap or uncov-
ered Water is not permitted to attempt the next environment.

Fitness in the model is determined to be the number of
maps successfully completed in the current tournament iter-
ation, with individual fitness being set to zero before each
evaluation. The individual achieving the highest fitness is
allowed to reproduce, with the weaker individual being re-
placed by the progeny of the tournament winner and a ran-
domly selected animat. This steady-state approach main-
tains the population at a size of 100 individuals.

After reproduction the child is allowed to learn via error-
backpropagation from its tournament winning parent. The
child follows its parent in a mock evaluation, with the child’s
inputs being set to those of the parent. Learning takes place
for as along as the parent is being evaluated. Once the parent
either fails to complete a map or completes all five environ-
ments, learning is terminated. At each step through the eval-
uation the child attempts, via error-backpropagation with a
learning rate of δ = 1, to learn to imitate the parent’s output
for the current inputs.

Three strategies are used in this model: two without learn-
ing and one with learning. Populations of animats with no
access to learning fall into two categories. The first, known
as Non-Learners(1), having a mutation rate and transcrip-

tion error equal to that use by learning populations. As
populations of Non-Learners(1) have no way of assimilat-
ing transcription errors back into the genotype it may be
seen as giving learning populations, known as Learners, an
unfair advantage. With this in mind a second of category
of non learners, known as Non-Learners(2), are also evalu-
ated. Non-Learners(2) do not have transcription errors, and
instead have a mutation rate equal to that of the original mu-
tation rate plus two transcription errors: Pmut2 = 3/L.

To test the ability of each strategy to exhibit the behaviour
necessary to complete the most difficult map, fifteen popu-
lations of each learning strategy were simulated. Each simu-
lation lasted a maximum of 5,000,000 tournaments. In each
simulation the best individual’s fitness and the mean popu-
lation fitness were recorded at intervals of 500 tournaments.
The maximum fitness an individual could achieve was five,
which directly relates to the successful completion of all five
evaluation environments, the fifth environment being impos-
sible to complete by bridge building and so requiring the
combination of Object A and Object B on Water. For a pop-
ulation to be considered as adequately completing the fifth
map, a fitness of five must have been recorded by the fittest
individual at ten recorded tournaments with at least five of
these tournaments being unbroken by a sub-optimal result.
This ensures that the complex behaviour tested for is not
only found but also maintained by the population.

Results
Table 1 shows results from the fifteen populations of ani-
mats using the Non-Learners(1) strategy: the mean, best and
worst number of tournaments required to solve each map,
across the fifteen populations (runs), and the proportion of
populations that were successful in solving each map. Of the
Non-Learners(1) populations over 90% were able to com-
plete maps 1 to 4 but no population was able to demonstrate
a successful solution to map 5. Populations of animats us-
ing the Non-Learners(2) strategy also demonstrated a high
level of proficiency when completing maps where the bridge
building solution is effective, though with a lower proportion
of populations able to complete map 4 (see table 2). This
may be due to the higher mutations rate used in the Non-
Learners(2) strategy causing the destruction of potentially
beneficial behaviours before they can proliferate through the
population. To complete map 4 animats had to be stricter
(more consistent) in their use of Stone objects. Despite this
behaviour being reachable using incremental genetic evolu-
tion it is within a small area of weight-space, causing it to
be potentially lost with higher mutation rates. Neither non-
learning strategy was able to discover the precise behaviour
necessary to complete map 5, so failures recorded in tables
1 and 2 were not due to a sufficient behaviour being dis-
covered but not maintained: the map 5 solution was simply
never found, empirically demonstrating the inaccessibility
of map 5 to incremental genetic evolution alone.
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Map Mean Best Worst Stdev Success

1 1200 500 3500 996 100%
2 502571 11000 2152500 738090 100%
3 1568000 34000 4429500 1501336 93%
4 1613786 58000 4432500 1506065 93%
5 N/A N/A N/A N/A 0%

Tab. 1: Non-Learners(1): Mean, best, worst number of
tournaments required to solve each map.

Map Mean Best Worst Stdev Success

1 1400 500 3000 784 100%
2 81692 4500 252500 96805 100%
3 1801286 12500 4987000 1502754 93%
4 2193385 41500 4466500 1497156 87%
5 N/A N/A N/A N/A 0%

Tab. 2: Non-Learners(2): Mean, best, worst number of
tournaments required to solve each map.

Table 3 shows results from animats using the Learners’
strategy. Unlike non-learning strategies, Learners are able
to complete map 5 and thus exhibit the complex behaviour
tested for in this work a third of the time, proving the hypoth-
esis that learning by imitation is capable of enabling popu-
lations of animats to discover behaviours found to be inac-
cessible to incremental genetic evolution alone. However,
Learners are seemingly less likely to discover and maintain
solutions to maps 3 and 4 than non-learning animats.

Figure 3 charts the mean fitness of the best performing
population from each learning strategy. From this graph
it can be observed that Learners bypassed the sub-optimal
bridge building solution once the population had (for some
time) been evaluated on maps with rivers. The incremen-
tal nature of the evolution in this model causes the majority
of the population to rapidly converge on the optimal solu-
tion once it has been discovered. Without learning, this op-
timal behaviour cannot be found. In this model incremen-
tal genetic evolution leads to convergence on sub-optimal
solutions in non-learning populations, making it impossible
for the discovery of the optimal behaviour. By combining
learning by imitation and incremental genetic evolution in a

Map Mean Best Worst Stdev Success

1 1533 500 5000 1302 100%
2 512333 9500 2026000 616376 100%
3 2484455 5600 4340500 1395760 73%
4 2458800 88500 4211500 1861794 33%
5 1843200 83500 3851000 1631808 33%

Tab. 3: Learners: Mean, best, worst number of tournaments
required to solve each map.

Fig. 3: Graph showing the mean fitness in the best perform-
ing populations for each learning strategy. Popula-
tions learning by imitation demonstrated the abil-
ity to converge on more complex behaviours, thus
achieving a higher fitness. Neither non-learning
strategy is capable of producing the more complex
behaviour.

model such as the one presented here, it is possible to not
only discover complex behaviours inaccessible to incremen-
tal evolution alone, but also to have rapid convergence to a
population exhibiting and maintaining that behaviour, thus
creating a behavioural tradition or culture (Whiten and van
Schaik, 2007). The results found here are broadly consis-
tent with those of Acerbi and Nolfi (2007), who found that
the combination of individual and social learning in artifi-
cial embodied agents not only allowed for the development
of difficult and costly behaviours, but also provided an adap-
tive advantage over individual learning alone and lead to cu-
mulative cultural evolution.

Conclusions and Future Work
If a learnt behaviour is exhibited and maintained through-
out a population for a number of generations it may ten-
tatively be called a tradition or even a culture. According
to Whiten and van Schaik (2007) traditions are “consistent
habits” that make use of social information transfer. In the
model demonstrated here learning by imitation enables so-
cial information transfer with behaviours being maintained
by converged populations or species giving rise to traditions.
The limited set of behaviours observed in this population
do not however constitute the category of culture, which is
reserved for the maintenance of multiple behaviours by a
species. The incremental nature of the model causes sub-
optimal behaviours to be phased out of the population. Were
greater environmental diversity to be used, it may be possi-
ble to evolve a culture rather than a tradition.

The hypothesis presented here was that the introduction
of both transcription errors and cultural transmission in the
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form of learning by imitation are sufficient to discover and
maintain the most complex behaviour possible in the model,
while incremental genetic evolution alone is not. The results
prove our hypothesis by demonstrating that without learning
by imitation the solution to the final environment is never
found but with imitative learning all behaviours can be dis-
covered, exhibited and maintained.

One drawback to the model used in this work is the lim-
ited set of behaviours available to animats. By using a larger
environment with a greater variety of potential states avail-
able to the animats and evolving the size and structure of
the decision network, it may be possible to demonstrate the
evolution of multiple behaviours leading to the emergence
of a culture. To investigate more complex behavioural de-
velopment and the role of imitative learning in the evolu-
tion of traditions and cultures, it would be beneficial to im-
plement larger and more dynamic environments and allow
for greater evolution in the decision network. A secondary
drawback was the simple vertical social transmission mech-
anism used. The inclusion of intra-generational or oblique
cultural transmission has been shown to be both sufficient
(Cavalli-Sforza and Feldman, 1981) and beneficial (Acerbi
and Parisi, 2006) for the evolution of complex and robust
cultural behaviours. Further investigation and application of
oblique transmission within models such as that presented
here would further benefit our understanding of and ability
to achieve the evolution and maintenance of complex cul-
tural traits.
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Abstract 
Crowdsourcing, a real-life instance of human collective 
intelligence, is a phenomenon that changes the way 
organizations use the Internet to collect ideas, solve complex 
cognitive problems, and build high-quality repositories (e.g., 
Wikipedia) by self-organizing agents around data and 
knowledge. Many recent studies have highlighted the factors 
and the small sets of parameters that play a role when a large 
crowd interacts with an organization. However, no 
comprehensive simulation has yet been developed to 
incorporate all these parameters, investigate Artificial Life 
phenomena such as emergence and self-organization and 
potentially generate predictive power. Based on a presentation 
at ALIFE XII, this paper describes the development of a 
simulator for human crowds performing collective problem 
solving in a Crowdsourcing scenario. It introduces the 
mechanics of a multi-agent system (MAS) by building on 
insights from empirical science in several disciplines. The 
simulator allows running sensitivity analyses of multiple 
parameters as well as simulation of intractable interactions of 
complex networks of irrational agents. In addition, the paper 
provides a review of Crowdsourcing and human collective 
intelligence literature structured from an Alife point-of-view. 

Introduction 

Many researchers in the Artificial Life community are 
researching self-organizing, decentralized systems (e.g., large 
groups of ants or vertebrates such as bisons [collective animal 
intelligence]) that show, in their interactions, a high degree of 
(self-)stability and flexibility. Social scientists are transferring 
these insights to social networks and other interactions 
between humans (for examples, see Krause et al. 2010). 
 A Crowdsourcing scenario provides an excellent setting for 
investigating human collective intelligence, generated through 
networks of interactions among individuals and between 
individuals and the environment. “Crowdsourcing” (Howe 
2008), an instance of collective intelligence (Buecheler et al. 
2010, Robu et al. 2009) emerging from de-centralized actions 
of a community of users, is a phenomenon currently occurring 
all over the world, strongly benefiting from new technologies 
and the development of Web 2.0: In essence, a “seeking” 
entity (e.g., a company or university) seeks the support of an 
apriori unknown and potentially very large group of 
intelligent agents (i.e., humans) by posting its unsolved 
problems on the internet. A simple and famous example is the 

Wiki Foundation (seeker) using internet users (crowd of 
solvers) to produce the world’s largest encyclopedia 
(Wikipedia) with high-quality results (Giles 2005). This can 
either happen directly, as with Wikipedia, or through 
“information brokers”, such as Innocentive.com or 
NineSigma.com that connect seekers and solvers through a 
platform. Small start-up companies as well as large 
established institutions (such as Fortune 500 companies and 
universities or other large organizations like NASA) are 
currently using Crowdsourcing for a variety of purposes.  
(Kittur et al. 2008) describe how user input can substantially 
improve the interaction design and how input after 
development can provide important feedback for continued 
improvement based on investigations on Amazon’s 
“Mechanical Turk”. Some examples where collective human 
intelligence is more useful than mere computational power by 
using “games with a purpose” are given in (von Ahn 2006). 
 The underlying complex dynamics are being intensively 
investigated by researchers from several disciplines, 
sometimes using different names like “Open Innovation” 
(Chesbrough 2003) or “Swarm Intelligence” (Dorigo and 
Stützle 2004, Krause et al. 2010) for slight variations of the 
phenomenon of interest. Recent studies investigate single 
parameters or specific settings of Crowdsourcing (e.g., Sieg et 
al. 2011, Leimeister et al. 2009, Alonso et al. 2008). However, 
so far there has been no comprehensive simulation of the 
complex interactions between agents involved in this scenario.  
 Phenomena relevant in an Artificial Life context such as 
self-organization, stigmergy and especially emergence, are 
very relevant when trying to understand complex dynamics 
between humans in real-life organizational scenarios (Bandte 
2007). The emerging phenomena in organizations are created 
through interpersonal, analytically irreducible factors such as 
spontaneity, informal structures and interactions, ad hoc 
processes and groups as well as informal conventions such as 
norms and similar social patterns. This paper describes the 
underlying dynamics of a complex Crowdsourcing system and 
an implementation in our simulator, based on a framework for 
multi-agent systems (MAS). The simulator uses parameters 
based on empirical studies and integrates a set of essential 
factors and rules of interactions between members of the 
“crowd” and the seeking entities. Hence, this paper also 
provides a structured literature review of Crowdsourcing 
parameters. Due to its modular set-up, the simulator allows for 
the addition of more factors, once understood by scholars, to 
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increase the accuracy of simulation runs and, potentially, its 
predictive power. The large set of rules and unpredictable 
outcomes, such as negotiation results between agents 
(modeled in the MAS), allow the observation and statistical 
evaluation of emergent phenomena. 
In what follows we review the state of the art in 
Crowdsourcing and Open Innovation research and relevant 
multi-agent simulation topics, then explain which parameters 
we are modeling and introduce the simulator before discussing 
first insights, use cases, and potential next steps. 

State of the Art 
We discuss three sections of prior literature: First, the 
application of swarm behavior and problem solving insights 
from biology to Crowdsourcing, then relevant insights from 
management and organization science, often published in the 
context of “Open Innovation”. In the third part, we look at 
theoretical and empirical evidence from other contexts that are 
also important for the creation of this simulator. 

Crowdsourcing, Communities and Group Behavior 
(Krause et al. 2010) describes the advantages and challenges 
of transferring insights from biological studies to human 
social interactions. Similar to swarms, flocks, and herds, 
humans follow certain local rules of interaction in large 
groups. In a Crowdsourcing context, these local rules are 
evolving over time. Initially, chaotic behavior converges into 
social patterns and the crowd members use their local 
knowledge (similar to birds in a flock or fish in a school) to 
interact with other agents and contribute to Crowdsourcing. In 
most cases, the crowd self-organizes without a central body of 
control. Self-organization, as defined by  (Camazine et al. 
2003), states that “the rules specifying interactions among the 
system’s components are executed using only local 
information, without reference to the global pattern”, 
emerging from lower-level components of the system.  
 The crowd is especially good at solving coordination or 
cooperation problems (Surowiecki 2004). (Schelling 1960) 
investigated the reasons for this and found a possible 
explanation in focal points (“Schelling points”), towards 
which human expectations converge, leading to an eventual 
convergence of actions, comparable to John Dewey’s 
“cooperative intelligence”. They usually don’t act for the good 
of the whole crowd, but act according to what’s best for 
themselves (see Surowiecki 2004). This includes behavior that 
is judged highly irrational or short-sighted from an outside 
perspective (see e.g., Simon 1996). Nevertheless, humans can 
coordinate their actions and achieve complex goals that would 
not be achievable by individuals (like writing a high-quality 
encyclopedia or finding a relevant piece of information from 
billions of web-sites1).  
 From a collective intelligence point of view, cognitive 
problems (as often appear in a Crowdsourcing context) are 
even harder to solve than coordination or cooperation 
problems, because they are often very difficult to centrally 
organize for a group solution. The solution approach to such 
                                                             
1 Google’s Pagerank algorithm crowdsources a great deal of collective 
human intelligence to rate the importance of pages by linking to them. 

problems is usually emergent and contains almost no formal 
structuring (see, e.g., ultimatum or common good games).  

Organizations and Open Innovation 
We will use an organizational (more precisely, Open 
Innovation) context for the basis of the simulation to define 
more clearly the environment within which our agents are 
interacting. In this context, Crowdsourcing is often seen as 
innovation-seeking: Organizations create, acquire, and 
integrate diverse knowledge and skills required to develop 
complex innovative technologies. Since knowledge is 
available from the outside (see, e.g., Chesbrough 2003) the 
organizations may benefit from leveraging external 
knowledge. Crowdsourcing is an increasingly popular 
approach for doing that. Not only are seekers and solvers 
involved, but also a wide variety of other, intermediate 
organizations. The acquired capabilities are combined and re-
combined without centralized, detailed managerial guidance – 
again showing a high degree of self-organization. Joel West, 
one of the first researchers to address “Open Innovation”, 
defined it as “using the market rather than internal hierarchies 
to source and commercialize innovations.” 

Other Important Insights 
Two important underlying concepts in Crowdsourcing are 
private information and tacit knowledge, both emphasizing the 
“stickiness” of information (information used in technical 
problem solving is often costly to acquire, transfer, and use in 
a new location, see von Hippel 1994). An important 
prerequisite for the success of Crowdsourcing is to maintain 
the diversity of the crowd members’ knowledge and skills 
throughout the process and to avoid groupthink.  
 
Private information. (von Hayek 1945) observed that 
humans possess a special type of local information that is hard 
to aggregate. Due to such “private information", nearly every 
individual "has some advantage over all others because he 
possesses unique information of which beneficial use might be 
made.” Crowdsourcing brings together and motivates 
individuals to collaborate and produce innovation or solve 
problems based on this private information. 
 
Tacit knowledge. Michael Polanyi coined the term in the 
1950s using “riding a bicycle” as an example of something 
humans are able to do “without quite knowing how”. In a 
Crowdsourcing context, three phenomena can be observed: 
Communication between different experts may lead to new 
developments, which implies that each expert’s knowledge is 
not “tacit”. What Crowdsourcing does is establish new 
correlations between pieces of knowledge acquired by 
individuals. A second phenomenon is knowledge that is not 
“owned” by an individual, or collective tacit knowledge. It is 
neither clear how it can be described nor how it is acquired as 
a “good of the group”. An example of such collective tacit 
knowledge under constant change is human natural language. 
Crowdsourcing not only generates, but potentially also 
maintains collective tacit knowledge. The third phenomenon 
derives from the observation that an individual may have 
knowledge but might not be able to communicate it in a 
formalized way (“riding a bicycle”). Several studies suggest 
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that especially such tacit knowledge and knowledge of 
technique are best conveyed through collaboration (Lee and 
Bozeman 2005), as happens in Crowdsourcing. In summary, 
Crowdsourcing helps locate and productively use these 
different types of tacit knowledge that cannot be found by the 
most sophisticated search engines due to its “tacitness”.  
 The combination of private information and tacit 
knowledge explains why “irrational” individuals can produce 
rational outputs: “Rationality” requires some basic 
assumptions plus logic. In order to apply logic, the 
assumptions need to be stated in one or the other form of a 
proposition. Tacit knowledge can be rational and logical, but 
cannot be stated or codified. Therefore, individual behavior 
may appear irrational to outsiders. Due to the collective 
intelligence unearthed during a Crowdsourcing interaction, 
combining private information (tacit or not) to a solution for a 
complex problem, the seemingly irrational becomes rational 
and productive. This implies, however, that optimal group 
outcomes are hard to achieve because the barrier of perceived 
individual irrationality needs to be overcome. 
 
Expertise, diversity, independence and groupthink.  
(Page 2008) found evidence for the advantage of diversity in 
groups performing complex tasks by running agent-based 
simulations. His surprising insight was that groups with 
diverse agents almost always performed better than groups 
consisting only of expert agents. Herbert Simon (1996) used 
the term “docile” for individuals who tend to accept 
information and advice from the social groups to which they 
belong. He theorized that these individuals have great 
advantage in fitness over those who are not docile. And it is 
not easy to stay independent of a social environment since 
learning is a social process. One can therefore say that 
although the members of a crowd should show a certain level 
of docility by e.g., building on previous solutions (if public), 
the group as a whole should maintain a high diversity of skills 
and private information. On the other hand, the crowd should 
avoid “groupthink”. Irving Janis defined the term in the 1970s 
as follows, based on William H. Whyte’s original 1952 
definition: “A mode of thinking that people engage in when 
they are deeply involved in a cohesive in-group, when the 
members' strivings for unanimity override their motivation to 
realistically appraise alternative courses of action.” On a 
closed Crowdsourcing platform, where solvers cannot see 
other solvers’ solutions (which is often the case when 
monetary premiums are involved) the likelihood of groupthink 
is clearly much smaller. (Surowiecki 2004) identifies stock 
bubbles and crashes as famous examples where all of the 
factors that make crowds smart (independence, diversity, and 
personal opinion) disappear.  
 Synthesizing the above sections, once a problem has been 
formalized and established methodologies exist for its solution 
(and it is well understood what a solution is), a group of 
experts may obtain the “correct” solution. However, as long as 
these methodologies do not exist, no “objective” formulation 
of the problem has been found and/or evaluation criteria for 
solutions are not completely formalized, diversity may beat 
expertise (see discussion and further references in Buecheler 
et al. 2010). Restricting the group of problem solvers to 
experts overlooks the fact that this happens at the price of 
groupthink (acquiring expertise usually includes a certain 

level of docility). Maintaining diversity therefore inhibits the 
very occurrence of groupthink. 

Crowdsourcing in a Nutshell 
This section briefly describes the Crowdsourcing process used 
for our simulator and introduces nomenclature in italics. 
(Muhdi et al. 2010) gives a more detailed description of the 
activities involved. 
 
1. Deliberation: A seeker (an organization2 or individual) 
decides to use external sources to generate ideas or solve a 
specific problem. 
2. Preparation: The seeker often chooses an intermediary 
(information broker), i.e. a website that brings together the 
seeker and the crowd (group of solvers) and usually enters 
into a contract with this information broker. 
3. Execution: The seeker posts a problem on the Internet. The 
solvers self-organize and self-select which of all posted 
problems they would like to work on. The seeker might or 
might not interact with the solvers during this phase. 
4. Assessment: After the execution phase (or perhaps in 
parallel), the submitted ideas are clustered, rated, and the best 
idea is rewarded. In our simulator, one to five ideas (the 
winning solutions) receive the prize premium (if any). 
5. Post-processing: The collected ideas are incorporated into 
the seeking organization and “side effects” (e.g., creative 
spillovers useful elsewhere) are managed (if any). 

Complexity and Focus Trade-off in MAS 
This simulator attempts to optimize the balance between 
complexity and focus. 
 Many simulators for understanding social behavior are 
based on mathematical models using partial differential 
equations (PDEs). Multi-agent system simulations have been 
shown to have certain advantages over these models when 
simulating large groups of agents. This is also true for a 
Crowdsourcing model: PDEs cannot handle diverse 
populations efficiently. Diversity requires particle or agent 
based models for two reasons: PDEs are increasingly difficult 
to solve if the number of variables increases and they cannot 
handle discretization (you either have at least one individual 
knowing about XY in a group, or this knowledge is not there 
at all. There is never half of an expert) or stochastic 
fluctuations as appear in Crowdsourcing. Our simulator is 
built on modules that incorporate empirically shown 
parameters in a Crowdsourcing scenario. Thus, it intrinsically 
simplifies and omits certain properties. However, too much 
simplification can make a model unnecessarily unrealistic and 
uninteresting. The simulator includes an adequate level of 
complexity by incorporating several parameters, while 
focusing on the parameters that give the “simplest 
explanation” for the emerging phenomena. 
                                                             
2 We use “seeker” for any kind of individual or organization (including   
companies and universities). Science is, in many cases, trying to find 
inventions or seek evidence for observed/hypothesized phenomena. The 
processes and paradigms, however, are similar to a large extent.  
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Parameters Used for the Simulator 
In this section, we show parameters allocated to “seekers”, to 
the “problem” and finally to “solvers”. In addition, we list 
some important global parameters used. See Figure 1 for an 
overview of the most important parameters and their 
interdependencies. For a detailed description of the parameter 
representation and spaces please contact the corresponding 
author. 

Seeker Parameters 
The seeker parameters model environmental and internal 
variables for the seeking organization (e.g., a company or 
university).  
 
Degree of revealing and Intellectual Property (IP) regime. 
Depending on the strictness of the IP (or “appropriability”) 
regime (Teece 1986) organizations, especially firms, adopt 
different formal and informal methods (patents, trademarks, 
copyright, time-to-market, trade secrets) to adjust their degree 
of openness. This influences the potential success of the 
problem in Crowdsourcing: the trade-off between openness to 
provide maximum information to the solvers while protecting 
own intellectual property needs to be found.  (Henkel 2006; 
von Hippel and von Krogh 2003) show that openness is not 
automatically a disadvantage. IBM (according to Kazman and 
Chen 2009 the most patent-productive company in the world) 
began making more money from crowdsourced services than 
from all its patent-protected intellectual property (Benkler 
2006). (Dahlander and Gann 2010) has further elaborated on 
this trade-off in an excellent literature review on Open 
Innovation while (Lakhani et al. 2006) has shown the 
importance of openness in a Crowdsourcing context. The 
difficulties of protecting IP in Crowdsourcing have not yet 
been resolved.  
 University researchers tend to be more open (see, e.g., 
David 2003) but since the introduction of the Bayh-Dole Act 
in the US in 1980 and similar legislation in other countries, 
there has been a trend towards more “closed” research. In this 
context, (Heller and Eisenberg 1998) popularized and 
discussed the phrase “tragedy of the anticommons”. 
 
Level of NIH. (Katz and Allen 2007) described the effect of 
the “Not-Invented-Here” (NIH) syndrome,  the “tendency of a 
project group of stable composition to believe it possesses a 
monopoly of knowledge of its field, which leads it to reject 
new ideas from outsiders to the likely detriment of its 
performance”, on R&D project groups. This syndrome is 
clearly relevant in a Crowdsourcing context and it has been 
shown that a lower level of NIH supports successful internal 
and external solution development (Brown and Eisenhardt 
1995). 
 
Absorptive capacity. The term defined in (Cohen and 
Levinthal 1990) refers to the ability of a seeker to recognize 
the value of new, external information, assimilate it, and apply 
it to commercial ends. This parameter is assigned to the 
seeking agents and will rise over time, when the seeker climbs 
the Crowdsourcing learning curve and accumulates prior 
related knowledge (see also Brown and Eisenhardt 1995 for a 

discussion). The basic assumption for both NIH and 
absorptive capacity is that the individuals at the seekers’ 
interfaces and the crowd co-evolve by exogenous influences 
and endogenous self-organization (Mitleton-Kelly 2003).  
 
Historical success rate. This parameter is used to modify the 
“Level of NIH” and “Absorptive Capacity” parameters over 
time. In essence, it shows how far the seeker is on the 
Crowdsourcing learning curve.  
 
Crowdsourcing success. This parameter can only be set as a 
dependent/output variable. It estimates the success of the 
product or patent based on the solution/idea gained in the 
Crowdsourcing process (not incorporating side effects). 
(Howe 2008) found that an InnoCentive.com company's 
average earnings from a successful solution are twenty times 
the fee paid to a solver. The parameter is influenced by the 
solution quality, the level of NIH and the absorptive capacity 
of the seeker. A side remark: The measurement of 
Crowdsourcing success varies widely between different types 
of organizations or businesses. Examples are business 
measures related to finances, employees’ motivation, new 
product revenue, spending in R&D, number of patents, time to 
market, and combinations thereof. The build-up of absorptive 
capacity could in fact already be a goal and measure of 
success for an organization.  

Problem Parameters 
Problem value – intrinsic. Several Crowdsourcing 
interactions do not only target crowds looking for additional 
income, but also solvers working for intrinsic motivation. 
Open source developers, for example, show very different 
motivating factors (see intrinsic motivation factors, below). 
 
Problem value – monetary. Most Crowdsourcing platforms 
assign a prize premium to a problem. Although on many 
platforms there is no limit, the seeker may divide the premium 
from zero up to five “winning” solutions in our simulator, in 
order to constrain simulation complexity (typical is 0 to 10).  
 
Problem field. Every posted problem is assigned a primary 
and (optional) secondary field (or scientific discipline). 
Examples are “molecular biology” or “organization science”. 
For our simulator, we used the fields selectable at 
Innocentive.com (currently the largest Crowdsourcing 
platform). Solvers do not only work successfully on problems 
from their respective fields: (Lakhani et al. 2006) found the 
odds of a solver’s success increased in fields in which they 
had no formal expertise, confirming a network theory insight 
from (Granovetter 1973): The most efficient networks are 
those that link to the broadest range of information,  
 
knowledge, and experience. (Howe 2008) summarizes another 
important insight from Lakhani’s paper: 

A full 75 percent of successful solvers already knew the 
solution to the problem. The solutions to the problems in 
the study – many of which […] had stumped the best 
corporate scientists in the world after years of effort – 
didn't require a breakthrough, or additional brainpower, 

112 ECAL 2011



or a more talented scientist's attention; they just needed a 
diverse enough set of minds to have a go at them.  

 
Complexity of question. This parameter indicates how 
complex a question is and the time investment needed by a 
solver. It also influences how well a solver can understand the 
question and how much time the solver needs to brainstorm a 
potential solution. (Benkler 2006) defines the benefits of 
dividing a problem to decrease its complexity as the “property 
of a project that describes the extent to which it can be broken 
down into smaller [...] modules that can be independently 
produced before they are assembled into a whole. […] While 
creative capacity and judgment are universally distributed in a 
population, available time and attention are not.” (Schenk and 
Guittard 2009) differentiates between routine tasks 
Crowdsourcing and complex tasks Crowdsourcing: “Routine 
tasks Crowdsourcing seeks a number of complementary 
contributions necessary for the construction of data and 
information bases. Complex tasks Crowdsourcing follows a 
diametrically opposed pattern […].”  
 
Time to solve perfectly. This parameter is used in the 
simulation to determine the time a solver would need to solve 
a problem perfectly. However, it is not known to seekers or 
solvers, but only to the simulator. 
 
Diversity of solvers per problem. This parameter combines 
the diversity of solvers (backgrounds, age, etc.) that worked 
on the solved problem. A higher diversity grade will generate 
a better winning solution (see “State of the art”). 

Solver Parameters 
The solver parameters include parameters for the members of 
the crowd and the submitted solutions (if any). 

 In a Crowdsourcing scenario, pedigree, race, gender, age, 
level of expertise and similar are not relevant (on most 
platforms, the participants are anonymous to others). Such 
typical moderating variables in team and sociological studies 
are not relevant to Crowdsourcing success.  
 
Intrinsic motivation factors.  
Successful Crowdsourcing involves satisfying very basic 
needs. (Bartl 2010) writes:  

Drawing on a rich body of motivation research relevant 
motives are curiosity, self efficacy, skill development, 
information seeking, intrinsic playful task, recognition, 
altruism and community support, make friends, personal 
need/dissatisfaction or compensation and monetary 
rewards. 

 
Solution quality.  In the simulator, solution quality is 
influenced by the solver’s skill level, communication skills, 
resources (e.g., laboratory supplies), time available and the 
seeker’s degree of revealing (accuracy and background 
information in problem description). Examples of quality are, 
e.g., enhanced technical performance, lower cost, good 
reliability, contribution to the research question or uniqueness. 
Seekers judging the solutions are regarded as “satisficers” 
(Simon 1996). 
 
Fields of expertise. Every agent has a set of skills in one or 
more fields of expertise, influencing both problem selection 
and solution success potential. However, the solver does not 
necessarily need to have a field of expertise that matches the 
problem field exactly (see explanation of problem field, 
above). A solver with high general skill and creativity levels is 
able to pick problems outside his or her fields of expertise. 
The “skills” parameter includes the solvers’ private 
information, as defined by von Hayek. 

Figure 1 - Overview of simulation parameters described in this paper and their interactions 
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Brainstorming time. Indicates the total time a potential 
solver takes to understand and respond to a posted problem. 
 
Time available. Analogous to computer programs like 
SETI@home that use collective CPU spare cycles for 
supercomputing and hence leverage the power of the network, 
crowd members generally contribute to posted problems 
during their “spare cycles”, their downtime and energy not 
claimed by work or family obligations (Howe 2008), hence 
every simulator agent has a defined time available.  
 
Skill and creativity level. This parameter shows a solver’s 
ability to solve a problem well. With a skill and creativity 
level above a certain threshold, the solver is also able to select 
and work on problems outside the field of expertise. 
 
Communication skills. A solver with a higher (written) 
communication skill will have a greater chance of winning 
since she or he is better able to describe the idea/solution. In 
addition, this parameter positively affects the communication 
with other crowd members (if enabled). 
 
Resources. Comprises all relevant resources (infrastructure, 
tools etc.) except for time and money that an agent has at hand 
and that are relevant for the chosen problem. 
 
Needs. An agent with a need related to a field or type of 
problem more likely picks that problem and, if working on the 
problem successfully (resources, skills, time etc.), has a higher 
likelihood of delivering a superior solution. (Putnam 2000) 
and several others found that social innovation often occurs in 
response to social needs and that market pull (identifying and 
understanding users’ needs) is substantially more important to 
product success than technology push. 

Global Parameters and Further Comments 
For this simulator version, we assume a “closed” 
Crowdsourcing system, i.e., members of the crowd cannot see 
solutions already submitted by other members. 
 
Acquaintances. The set of agents (seekers and solvers) starts 
with a set of agents the agent in question knows from “earlier 
times”. With every Crowdsourcing interaction, the set grows. 
“Old acquaintances” might be forgotten over time.  
 
Goal. Every agent has a “goal”. For seekers, this is usually 
“maximization of Crowdsourcing success”. Solvers have all 
kinds of goals, including maximizing an intrinsic motivation 
factor or monetary income. 
 
Direct communication. A global parameter that toggles 
whether seekers and solvers can directly communicate after 
the solver has picked a problem. The parameter simulates 
anonymity that is ensured on many Crowdsourcing platforms. 
A solution delivered by a solver communicating with the 
seeker increases the chance of winning (better understanding 
of the problem and its circumstances and hence higher quality 
solution). Communication with other crowd members 
decreases the solution quality due to reduced independence 
and diversity. 

 
Whenever a relation is needed between parameters and there 
is no empirical evidence available, we use a “power law” 
according to (Mandelbrot and Hudson 2008) including the 
special case of the “1:10:89” rule: for every 100 people on a 
given site, 1 will create something, 10 will vote on what he or 
she created; the remaining 89 will consume the creation. 
“Super contributors”, between 1% and 2.5% of all solvers, 
depending on the platform, are usually responsible for a large 
share of crowdsourced data and knowledge collections. 

Simulator Set-up 
(Wooldridge 2008) writes: “the steady move away from 
machine-oriented views of programming toward concepts and 
metaphors that more closely reflect the way in which we 
ourselves understand the world” is an ongoing trend. Further, 
he says agent-based solutions are appropriate when “the 
environment is open, or at least highly dynamic, uncertain or 
complex” and “agents are a natural metaphor”. Our highly 
scalable simulator conforms to these prerequisites. 

The Jade Framework Used for the Simulator 
Jade (“Java Agent DEvelopment Framework”) was developed 
in 2000 as “an enabling technology, a middleware for the 
development and run-time execution of peer-to-peer 
applications which are based on the agents paradigm” 
(Bellifemine et al. 2003). 
 Agents, as defined for this kind of multi-agent 
programming, are autonomous, proactive and social peers that 
are provided interoperation capabilities by the framework. 
Jade provides the programmer with the capabilities to create 
agents that are loosely coupled and come with a fully enabled 
asynchronous messaging system between all actors.  
 Further points for selecting Jade over other frameworks 
were its interoperability by being compliant with the FIPA 
(“Foundation for Intelligent Physical Agents,”) specifications, 
its open source license, the large programmer community, the 
amount of documentation available and the great scalability. 

Design 
The simulator models both seekers and solvers involved in a 
typical Crowdsourcing context. The current version does not 
include the potential intermediary as an additional type of 
agent: The Jade Framework provides a “Yellow Pages” agent  
that is used as a “broker” and matches solvers with problems.  
 Solvers are able to search the yellow pages as a directory 
for problems matching their given skills. The seeker and 
solver can then start communicating with each other directly, 
if allowed.  
 After toggling global conditions, users define value ranges 
for the active parameters and choose which variable is the 
dependent variable for this simulation cycle. The user may 
also choose to load own data  (the ranges are then discretized 
by the software) or select from a given set of probability 
distributions.  Figure 2 shows a screenshot. The output 
variables can be aggregated over several cycles and used for 
sensitivity analyses and other (e.g., statistical) evaluations. For 
technical and implementation details please contact the second 
author. 
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Discussion and use cases 
The simulator’s robustness is currently being increased by 
incorporating data from Crowdsourcing in two domains: 
Corporate R&D and basic science as conducted at research 
universities. To this end, we will use data collected in the 
studies presented in (Lakhani et al. 2006) and (Buecheler et al. 
2010). In addition, we have just started a collaboration with 
the largest Swiss Open Innovation site, “atizo.com” to gather 
more data from daily interactions. As the following three use 
cases show, the simulation is benefiting both researchers and 
practitioners: 

Use Case 1: Scientific Inquiry: Analogies to Biology 
Scientists may (and will) use the simulator for confirming 
observations from biology in a complex network of irrational 
human agents. E.g., we hypothesize that solution development 
in open Crowdsourcing systems (as observed, e.g., in 
Mathwork’s Matlab programming contests: Gulley 2004) 
resemble the developments of evolution in the sense that 
phases of regular, gradual evolution alternate with more 
punctuated sequences and stasis. (For a critical discussion see 
e.g., Smith 1988). In addition to these varying speeds, we 
expect to observe other phenomena like mass extinctions, co-
evolution, and growing complexity of the behavior patterns 
and strategies that survive. (Emmeche 1994), (Lindgren 
1992). 

Use Case 2: Scientific Inquiry: Crowdsourcing Dynamics 
The simulator helps achieve three goals that (Axelrod 1997) 
has compiled: 1. Explore/describe: find basic system 
dynamics and qualitative interdependencies as well as 
quantitative correlations between (Crowdsourcing) 
parameters. For example, we hypothesize that the functions 
for resources, needs and fields of expertise have to be 
correlated to best approximate empirical outcomes and 
additionally communication skills need to be correlated with 
acquaintances. 2. Confirm/explain: use the simulator to 
explain agents’ complex behavior and verify or falsify 

assumptions while constantly ameliorating the simulator 
through empirical data. 3. Forecast/predict: consider 
complicated input variables and influencing factors to 
generate predictions, heuristics or narrower solution spaces. 

Use Case 3: Practical Use 
Practitioners from the private sector (as well as scientists 
wishing to use Crowdsourcing as a tool, see Buecheler et al. 
2010) may use the simulator for testing Crowdsourcing 
scenarios, parameter sensitivities and the optimal setting for 
their Crowdsourcing plans. Crowdsourcing consultancies, 
currently being founded all over the world, can use the 
simulator to test real-life settings. This not only helps increase 
effectiveness, but also communicates the value of 
Crowdsourcing and supports increasing the openness of the 
seeking organization. 

Conclusions 
In contrast to simple existing models, the simulator allows the 
user to predict what is needed to achieve optimal 
Crowdsourcing results with the given resources, incorporating 
a large set of potential influences. In addition, the modular and 
extensible way the simulator is built enables the user to 
increase the accuracy and predictive power when scientists 
gain new empirical insights. 

Contributions by Authors 
Most of the theoretical contributions were written by the first, 
third and fourth authors. The simulator design and details are 
mainly contributed by the second author. 
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Abstract

Populations of individuals exist in a wide range of sizes, from
billions of microorganisms to fewer than ten individuals in
some critically endangered species. In any evolutionary sys-
tem, there is significant evolutionary pressure to evolve se-
quences that are both fit and robust; at high mutation rates,
individuals with greater mutational robustness can outcom-
pete those with higher fitness, a concept that has been referred
to as survival-of-the-flattest. Previous studies have not found
a relationship between population size and the mutation rate
that can be tolerated before fitter individuals are outcompeted
by those that have a greater mutational robustness. However,
using a genetic algorithm with a simple two-peak fitness land-
scape, we show that the mutation rates at which the high, nar-
row peak and the lower, broader peak are lost for increasing
population sizes can be approximated by exponential func-
tions. In addition, there is evidence for a continuum of muta-
tion rates representing a transition from survival-of-the-fittest
to survival-of-the-flattest and subsequently to the error catas-
trophe. The effect of population size on the critical mutation
rate is shown to be particularly noticeable in small popula-
tions. This provides new insight into the factors that can af-
fect survival-of-the-flattest in small populations, and has im-
plications for populations under threat of local extinction.

Introduction
Biological population sizes can range from small numbers
of individuals to very large numbers of individuals. For ex-
ample, RNA viruses can reach population sizes of around
1010 in a short amount of time (Comas et al., 2005), whereas
some animal species may exist in populations consisting of
only hundreds or even fewer than ten individuals in some
critically endangered species saved on the brink of extinc-
tion. A population of genomes constantly evolves through
the processes of mutation, recombination (in sexual repro-
duction), selection and genetic drift (Hartl and Clark, 2007).
Population dynamics can be modelled in silico using genetic
algorithms, in which populations of sequences are allowed
to undergo mutation, recombination and selection at speci-
fied rates; studies can be done in a controlled environment
within time-frames not possible in many natural biological
systems, producing results that are comparable both to the-
ory and to experimental results in microorganisms.

In any evolutionary system, including genetic algorithms
and natural biological systems, there is significant evolu-
tionary pressure to evolve sequences that are both fit and
robust (Jones and Soule, 2006). Robustness is defined as
the average effect of a specified perturbation (such as a new
mutation) on the fitness of a specified genotype (Masel and
Trotter, 2010). The more robust a genotype, the smaller the
effect of mutation on fitness; in systems with high levels of
mutation, robustness can reduce the negative effects of dele-
terious mutation. Smaller populations are more susceptible
to loss of fitness through random genetic drift (Comas et al.,
2005; Hartl and Clark, 2007). Therefore it is expected that
population size should influence the size of mutation rate
that can be tolerated before fitter individuals are outcom-
peted by those with a greater mutational robustness.

Mutational Robustness and
Survival-of-the-flattest

The concept of a fitness landscape was introduced by Wright
(1932) and later combined with the notion of sequence space
by Eigen and Schuster (1979). Each sequence in sequence
space has a fitness value, which represents its relative repli-
cation capacity (Domingo and Wain-Hobson, 2009). Fitness
landscapes are sometimes considered to resemble mountain
ranges, with the fittest sequences at the peaks. However,
the concept requires a more careful interpretation in high di-
mensional sequence spaces with low alphabet size, such as
nucleic acids, which have an alphabet size of four (in that
they are sequences consisting of four possible units, A, C, G
and T). For example, the space of N-length binary sequences
is an N-dimensional hypercube rather than a 3-dimensional
Euclidean geometry, and can only be represented as such by
use of a reductive transform between the two spaces. Ex-
ploration of sequence space is done through evolution by
mutation, recombination and selection in accordance to the
fitness landscape. Selection increases the frequencies of the
fittest sequences, while mutation introduces variation, often
at a cost to individual fitness. The balance between these
two forces is referred to as the mutation-selection balance
(Kimura and Maruyama, 1966; Bull et al., 2005). A popula-
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tion in mutation-selection balance will tend to cluster around
the fitness peaks and form what is known as a quasispecies
(Eigen and Schuster, 1979; Bull et al., 2005; Nowak, 2006).

In a landscape with a single fitness peak, a quasispecies
is able to maintain its position surrounding the top of the
peak so long as the mutation rate does not exceed a par-
ticular rate known as the error threshold. Above this thresh-
old, there is an error catastrophe and the population delocal-
izes across sequence space (Tannenbaum and Shakhnovich,
2004; Bull, 2005; Nowak, 2006; Takeuchi and Hogeweg,
2007; Domingo and Wain-Hobson, 2009; Schuster, 2009;
Tejero et al., 2011).

The concept of error threshold was introduced in Eigen et
al. (1988) and later in Nowak and Schuster (1989) based on
the quasispecies equation:

ẋi =
m∑

j=1

xjfjqji − φxi

Here, xi is the frequency of genotype number i, where
i ∈ [1, . . . , αn], α is the alphabet size, n is the length of
sequences,

∑
xi = 1, fj is fitness (selection), φ =

∑
xifi

is the average fitness, and qji is a transition probability (mu-
tation). The derivative in time is denoted ẋ, and there are m
genetic sequences.

Selection and mutation provide two forces (or pressures)
on the population, and they can be combined into one matrix
(wji = fjqji) (see Nowak (2006), p. 35). Selection draws
the population closer to the highest fitness, while mutation
is usually assumed to have deleterious effect due to which
the population drifts away from the highest fitness. Gener-
ally, the population converges to a stable (equilibrium) state
that is defined by an eigenvector of the mutation-selection
matrix (wji). This eigenvector corresponds to the largest
eigenvalue of (wji), which is the average fitness φ.

The idea of an error threshold is based on the existence
of a mutation-selection balance when the effect of mutation
does not exceed that of the selection pressure. The corre-
sponding value of the mutation rate is referred to as the error
threshold, and it is the maximal mutation rate that allows a
population to stay centred ‘around’ the fitness peak.

However, in landscapes with more than one peak, there
may also be one (or more) critical mutation rates at which
the population loses its ability to localize to fitter peaks,
while potentially retaining its ability to remain on lower, flat-
ter peaks (Wilke et al., 2001; Tannenbaum and Shakhnovich,
2004; Comas et al., 2005; Wilke, 2005). This represents
a phase transition from survival-of-the-fittest to survival of
those individuals with greater mutational robustness, a con-
cept referred to as survival-of-the-flattest (Wilke et al., 2001;
Bull et al., 2005; Comas et al., 2005; Wilke, 2005; Sanjuán
et al., 2007; Sardanyés et al., 2008; Tejero et al., 2011). This
concept is based on the idea that at low mutation rates, selec-
tion favours individuals in a quasispecies that reside at peaks

with higher fitness, even if the peaks are steep and narrow,
due to the rarity of mutations that push individuals off the
peaks (Lenski et al., 2006). In contrast, at high mutation
rates, selection favours individuals that reside at peaks less
likely to result in off-peak mutations: individuals located in
flatter regions of the fitness landscape are less likely to suf-
fer large reductions in fitness compared with those that may
be initially fitter but reside in parts of the landscape with
steeper peaks. Individuals that are part of a neutral network
(Kimura, 1983), in that they are surrounded by other indi-
viduals with equivalent fitness, are said to be mutationally
robust (Bull et al., 2005; Bornberg-Bauer and Kramer, 2010;
Wilke, 2001a; Wilke, 2001b); their fitness will be less sensi-
tive to mutation than individuals that are not well connected.

Survival-of-the-flattest has been observed in digital organ-
isms (Wilke et al., 2001; Sardanyés et al., 2008), theoreti-
cally (Wilke, 2001a; Sardanyés et al., 2008), in simulated
RNA evolution (Wilke, 2001b), and in RNA viruses (San-
juán et al., 2007). In addition, evolution of mutational ro-
bustness has been observed in simulated RNA evolution (van
Nimwegan et al., 1999) and in laboratory protein evolution
experiments (Bloom et al., 2007). Both van Nimwegan et
al. (1999) and Bloom et al. (2007) place an emphasis on the
degree of polymorphism in the population, suggesting that
highly polymorphic populations are more likely to spread
across many nodes of a neutral network (each correspond-
ing to a genotype), concentrating at highly connected parts;
individuals at highly connected nodes have greater robust-
ness to mutation, which they pass on to the next generation.
Robustness will evolve in any population where the prod-
uct of the population size and frequency of mutation per se-
quence per generation is sufficiently large (>1). Krakauer
and Plotkin (2002) refer to flat landscapes as redundant, and
steeper landscapes as antiredundant. They suggest that both
in theory and in individual-based stochastic simulations, re-
dundancy increases the mean fitness in small populations as
it masks mutations that arise due to mutational drift. How-
ever, large populations are less affected by drift, and so are
more able to occupy high-fitness peaks in sharp landscapes.

Wilke (2001b) ran simulations with population sizes as
low as 100 and noted “that for very small populations, the
predictive value of the differential equation approach dimin-
ishes”. Later Wilke noted that his results agreed with Comas
et al. (2005) in finding “that population size played only a
minor role in determining the position of the critical muta-
tion rate” (Wilke, 2005), within the context of their experi-
ments. Comas et al. used population sizes as low as 250 and
concluded “that the critical mutation rate was independent
of population size” (Comas et al., 2005) despite the fact that
there did appear to be some correlation for certain cases.

Jones and Soule (2006) determined that the role of ge-
netic robustness in evolution differs significantly depending
on whether it is a generational or steady state genetic algo-
rithm that is being used. In a steady state algorithm, only
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a few individuals are replaced at a time, as opposed to a
generational algorithm which replaces the entire population
at once. Many studies that have confirmed the notion of
survival-of-the-flattest have used generational models, such
as Wilke et al.’s (2001) evolution of digital organisms in
Avida, and Krakauer and Plotkin’s (2002) study of redun-
dancy and antiredundancy (Jones and Soule, 2006). Jones
and Soule suggest that for evolutionary dynamics experi-
ments, the class of algorithm used can have a significant ef-
fect on the observed outcome. They point to steady state
algorithms as being of particular interest to the artificial life
community, as natural evolution resembles the action of a
steady-state-like algorithm: evolution in biological systems
does not usually follow the generational approach of evolv-
ing every individual in the population synchronously.

However, the problem with steady state algorithms is that
they typically allow individuals to survive on fitness peaks
indefinitely. This is not a realistic property when modelling
evolutionary dynamics. A preferable approach is to use a
generational genetic algorithm which retains the key fea-
tures of steady state evolution: fitness rank-based selection
and a degree of asynchronicity. It should be noted that fit-
ness in this sense refers to a score assigned to each individual
based on a given fitness function, as opposed to the biologi-
cal definition of fitness as a measure of replication rate; the
exact fitness values used are unimportant as it is relative fit-
ness that determines which individuals are selected. Rank-
based selection (the assignment of reproductive fitness rates
according to fitness score rank) overcomes the scaling prob-
lems of fitness score proportional selection (the assignment
of reproductive fitness rates in proportion to fitness score), so
creating a general model from a specific fitness score land-
scape such as that in figure 1, while retaining the key prop-
erty that sequences with higher fitness scores have (prob-
abilistically) more offspring than those with lower scores.
This approach also allows for the existence of a critical mu-
tation rate: with a standard steady state algorithm, always
retaining the fittest individual prevents the population from
ever losing the highest current peak.

Simulation Model
An individual sequence consists of a string of characters
drawn from an alphabet of size 4 (which can be thought
of as, for example, A/C/G/T or 0/1/2/3) with a fixed length
of 30. In each step of the algorithm, three individual se-
quences are selected at random from the population. Two
of the three selected individuals are chosen as parents in a
crossover which replaces the third individual with the result-
ing child. The child is then subject to one round of point mu-
tation (to a different base) at a given per-base mutation rate.
The individual to be replaced is decided each time based on
the fitnesses of the three selected individuals: there is an
equally small chance of either of the two fittest of the three
being replaced (25%), and a larger chance of replacing the
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Figure 1: Two-peak fitness landscape, with one narrow peak
of high fitness (peak 0), and one broader, flatter peak of
lower fitness (peak 1).

least fit (50%). This process continues until each individual
in the population has been chosen exactly once; this repre-
sents one generation, and ensures that there is no chance of
any individual avoiding being chosen and so remaining static
in the landscape. The fitness of each individual sequence is
evaluated based on a two-peak fitness landscape with one
narrow peak of high fitness (peak 0), and a broader, flatter
peak with lower fitness (peak 1) (figure 1). Peak 0 has a
maximum fitness score of 15 and a radius (Hamming dis-
tance from top-of-peak to zero fitness score) of 2; peak 1
has a maximum fitness score of 10 and a radius of 5, with
its top chosen as an arbitrary point (fixed throughout evolu-
tion) with a Hamming distance of 10 from the top of peak 0.
Individuals are allowed to move anywhere on the slopes, or
in between the peaks. This is a simple landscape in which
survival-of-the-flattest can occur. The effect of mutation on
fitness is smaller within peak 1 than within peak 0; individu-
als located on peak 1 will have higher mutational robustness
compared with those located on peak 0.

Following the experimental procedure designed by Wilke
et al. (2001) (and used by Comas et al., 2005) we initialized
half of the population of sequences to be on top of the high,
narrow peak, and the other half to be on top of the lower, flat-
ter peak. This procedure prevents initialization bias between
peaks. The simulation was run for 10,000 generations, and
the number of generations it took to first lose each peak was
recorded (where a peak was considered to be lost when there
were no individuals present anywhere in its range). If a peak
was never lost within the 10,000 generations, a value of -
1 was recorded. A range of per-base mutation rates was
tested for a range of population sizes. The simulation was
run 2,000 times for each combination of mutation rate and
population size. The mutation rate by which 95% of the runs
had lost each peak was recorded, where a peak was consid-
ered to have not ever been lost only if there were individuals
remaining on it at the end of the 10,000 generations.
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Population size (m) Observed µ0 Stretched Exponential ε0 Difference δ0 (µ0-ε0) Difference/Stretched Exp. (δ0/ε0)
10 0.150% 0.150% 0.000% 0.1%
20 0.550% 0.554% -0.004% -0.8%
30 0.750% 0.742% 0.008% 1.0%
40 0.850% 0.853% -0.003% -0.4%
50 0.925% 0.926% -0.001% -0.1%
60 0.975% 0.978% -0.003% -0.3%
70 1.025% 1.017% 0.008% 0.8%
80 1.050% 1.046% 0.004% 0.4%
90 1.065% 1.070% -0.005% -0.4%
100 1.080% 1.089% -0.009% -0.8%
200 1.170% 1.172% -0.002% -0.2%
300 1.200% 1.197% 0.003% 0.3%
400 1.210% 1.207% 0.003% 0.2%
500 1.215% 1.212% 0.003% 0.2%
600 1.220% 1.215% 0.005% 0.4%
700 1.225% 1.217% 0.008% 0.7%
800 1.225% 1.218% 0.007% 0.6%
900 1.210% 1.219% -0.009% -0.7%

1000 1.205% 1.219% -0.014% -1.2%

Table 1: Mutation rate µ0 by which 95% of runs lost peak 0.

Results

The results (figure 2, and tables 1 and 2) show that pop-
ulation size affects the size of mutation rate required for
the predominant outcome of the runs to shift from survival-
of-the-fittest to survival-of-the-flattest, and that this is par-
ticularly noticeable in populations with 100 individuals or
less. Similarly, the size of mutation rate required for ap-
proximately 95% of the runs to have lost both peaks also has
a dependence on population size. The results of the simu-
lation can be approximated by a simple exponential func-
tion: y = A − B mC for some values of the parameters
A, B and C, where m is population size. However, they
are more closely fitted by a stretched exponential function:
y = A−B ∗ e−((m/C)D).

As opposed to there being instantaneous transitions from
survival-of-the-fittest to survival-of-the-flattest and to the er-
ror catastrophe, at discrete mutation rates, there appear to be
gradual transitions in which there are shifts in tendency from
the first to the second, and from the second to the third. The
mutation rate corresponding to 95% of the runs having lost
the high, narrow peak (peak 0) within 10,000 generations
marks a point at which the former transition (from survival-
of-the-fittest to survival-of-the-flattest) is essentially com-
plete. This can be considered as a critical mutation rate.
For a population of 100 individuals, this is at a per-base mu-
tation rate of approximately 1.08% (table 1). Figure 3(a)
shows the number of generations taken to lose each peak at
this mutation rate, for each of the 2,000 runs with population
size 100. Just 52% of these runs lost peak 1 within the dura-
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Figure 2: The results of the simulation for both peak 0
(high, narrow peak) and peak 1 (lower, flatter peak) can
be approximated by an exponential function, where y =
A − B ∗ e−((m/C)D)(with m being population size). The
parameters obtained by curve-fitting using a least squares
method were, for peak 0: A = 1.221%, B = 7.001%, C
= 1.440, D = 0.3250 , and for peak 1: A = 2.184%, B =
5.438%, C = 7.721, D = 0.3978.
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Population size (m) Observed µ1 Stretched Exponential ε1 Difference δ1 (µ1-ε1) Difference/Stretched Exp. (δ1/ε1)
10 0.400% 0.389% 0.011% 2.8%
20 0.900% 0.921% -0.021% -2.3%
30 1.200% 1.206% -0.006% -0.5%
40 1.400% 1.390% 0.010% 0.7%
50 1.500% 1.520% -0.020% -1.3%
60 1.600% 1.617% -0.017% -1.0%
70 1.700% 1.692% 0.008% 0.4%
80 1.800% 1.753% 0.047% 2.7%
90 1.825% 1.802% 0.023% 1.3%
100 1.850% 1.843% 0.007% 0.4%
200 2.000% 2.043% -0.043% -2.1%
300 2.100% 2.109% -0.009% -0.4%
400 2.120% 2.140% -0.020% -0.9%
500 2.140% 2.156% -0.016% -0.7%
600 2.160% 2.165% -0.005% -0.2%
700 2.180% 2.171% 0.009% 0.4%
800 2.185% 2.174% 0.011% 0.5%
900 2.190% 2.177% 0.013% 0.6%

1000 2.195% 2.179% 0.016% 0.8%

Table 2: Mutation rate µ1 by which 95% of runs lost peak 1.

tion of the simulation (compared to 95% for peak 0). At this
mutation rate, early loss of peak 0 appears to be a condition
for survival-of-the-flattest. Loss of peak 0 is then followed
by one of two events: either peak 1 is lost relatively quickly
(within 200 generations) or it is maintained for the duration
of the simulation. The fate of the population after loss of
peak 0 is therefore dependent on whether or not it is able to
quickly converge on peak 1. Figure 3(a) shows (at this mu-
tation rate) that when peak 0 is not lost early, the number of
generations taken to lose peak 0 is distributed approximately
evenly up to 10,000 generations.

The mutation rate corresponding to 95% of the runs hav-
ing lost the lower, flatter peak (peak 1) within 10,000 gen-
erations marks a point at which the latter transition (from
survival-of-the-flattest to the error catastrophe) is essentially
complete. This can be considered as another critical muta-
tion rate (or the error threshold). For a population of 100
individuals, this is at a per-base mutation rate of approxi-
mately 1.85% (table 2). Figure 3(b) shows the number of
generations taken to lose each peak at this mutation rate, for
each of the 2,000 runs with population size 100. It is an
apparent reversal of figure 3(a) but with 100% of the runs
having lost peak 0 within 200 generations. The population
has almost entirely lost the ability to localize to either peak.

Discussion
At high mutation rates, individuals with greater mutational
robustness can outcompete those with higher fitness. Pre-
vious studies have not found a relationship between popu-
lation size and the critical mutation rate, at which there is

a phase transition from survival-of-the-fittest to survival-of-
the-flattest (Comas et al., 2005). However, the results of the
current study suggest that population size does have an ef-
fect on the size of mutation rate that can be tolerated before
the population loses the fittest and the flattest peaks, and that
this is particularly noticeable in populations with 100 indi-
viduals or less. As shown in figure 2, the size of mutation
rate at which each peak is lost for increasing population sizes
can be approximated by an exponential function. One pos-
sible reason for this is that small populations are more sus-
ceptible to stochastic variation due to random genetic drift
(Comas et al., 2005; Hartl and Clark, 2007); small popula-
tions with relatively large genomes cannot explore the en-
tire neutral space of the landscape. Consequently, quasis-
pecies formation is difficult, and the fitness peaks may be
more easily lost. The dramatic reduction in critical mutation
rate observed for small populations has implications for lo-
cal extinction events in which there is a significant drop in
population size. Further work will be necessary to apply this
result to populations under threat of local extinction.

The dynamics of finite populations have very different
properties compared to those of infinite populations, for ex-
ample non-zero probability of extinction. The latter can be
a good approximation of the former if the size of popula-
tions is large. However, where a small population size is
fundamental to the issue of concern, as with the relation-
ship established empirically in this paper, and in any work
on extinction events (zero population size), such approxi-
mations break down. This situation is similar to statisti-
cal mechanics, where systems of large numbers of particles
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Figure 3: Transition from survival-of-the-fittest to survival-
of-the-flattest and subsequently to the error catastrophe.
Each point represents the number of generations it took to
lose the high, narrow peak (peak 0) and the number to lose
the lower, flatter peak (peak 1), in a single run of the GA
for population size 100. Where a peak was not lost within
10,000 generations, a value of -1 was assigned for that par-
ticular run of the GA: all points on the negative side of ei-
ther axis should be taken to have a higher value than 10,000.
(a) The mutation rate by which 95% of the runs had lost peak
0 within the duration of the simulation; just 52% of these
runs lost peak 1. This demonstrates that the transition from
survival-of-the-fittest to survival-of-the-flattest is essentially
complete. This can be considered as a critical mutation rate.
(b) The mutation rate by which 95% of the runs had lost
peak 1 within the duration of the simulation; 100% of these
runs lost peak 0. This demonstrates that the transition from
survival-of-the-flattest to the error catastrophe is essentially
complete, with the population having almost entirely lost the
ability to localize to either peak.

are approximated by laws derived for an infinite number of
particles. The relation between the two is asymptotic and
rooted in the law of large numbers. In fact, one can ob-
tain equations for infinite populations from stochastic equa-
tions for finite populations by taking their expected value
with respect to a probability measure on the population sizes
m ∈ {0, 1, . . .}. The dynamics of finite populations can be
described by stochastic differential equations. In particu-
lar, branching processes have been used to study the popu-
lation dynamics of populations with variable (random) finite
size (Jagers, 1975). The dynamics of finite populations have
also been studied using the Moran process (Moran, 1962;
Nowak, 2006). This work establishes an important empir-
ical relationship between population size and critical mu-
tation rate; the development of a corresponding theoretical
model deserves further investigation.

Previous studies have defined the critical mutation rate to
be the midpoint between the highest mutation rate at which
there is survival-of-the-fittest, and the lowest mutation rate
at which there is survival-of-the-flattest (Wilke et al., 2001;
Comas et al., 2005). However, the results of this study
clearly show that there is a transition from survival-of-the-
fittest to survival-of-the-flattest and subsequently to the error
catastrophe (figure 3).

Conclusion
This study investigated whether or not there is a relationship
between population size and the size of mutation rate that
can be tolerated before fitter individuals are outcompeted by
those that have a greater mutational robustness (the critical
mutation rate). The results show that the sizes of mutation
rate at which the high, narrow peak and the lower, flatter
peak are lost for increasing population sizes can be approx-
imated by an exponential function. The effect of population
size on the size of mutation rate that can be tolerated be-
fore the population loses the fittest and the flattest peaks is
particularly noticeable in small populations with 100 indi-
viduals or less. This provides new insight into the factors
that can affect survival-of-the-flattest in small populations,
and has implications for populations under threat of local
extinction. Other factors, such as sequence length and dis-
tance between peaks, may well have a significant influence
on both critical mutation rate and population sizes that can
withstand specific rates of mutation. It will be beneficial to
investigate this in the future, as well as to construct a the-
oretical model (whether based on differential equations or
not) that can replicate the exponential relationship between
critical mutation rate and population size, found here by ex-
periment, for low population sizes.

In addition, there is clear evidence for a continuum of
mutation rates representing a transition from survival-of-the-
fittest to survival-of-the-flattest. This identifies a critical mu-
tation rate by which the population has a 95% likelihood of
losing the higher peak.
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Abstract

Biological populations often exhibit complex and efficient
behaviors, where temporal and spatial couplings at the macro-
scale population level emerge from interactions at the micro-
scale individual level, without any centralized control. This
paper specifically investigates the emergence of behavioral
synchronization and the division of labor in a foraging swarm
of robotic agents. A deterministic model is proposed and used
by each agent to decide whether it goes foraging, based on
local cues about its fellow ants’ behavior. This individual
model, based on the competition of two spiking neurons, re-
sults in a self-organized division of labor at the population
level. Depending on the strength and occurrences of inter-
actions among individuals, the population behavior displays
either an asynchronous, or a synchronous aperiodic, or a syn-
chronous periodic division of labor. Further, the benefits of
synchronized individual behaviors in terms of overall forag-
ing efficiency are highlighted in a 2D spatial simulation.

Introduction
Nature displays fascinating examples of biological popula-
tions that achieve complex tasks without requiring any cen-
tralized control. How to efficiently achieve a distributed and
decentralized control, a key issue for biological and artificial
systems alike, is still far from being entirely elucidated (Ca-
mazine et al., 2001), although the interplay between the in-
dividual, micro-scale level and the population, macro-scale
level has been extensively studied in the literature (see Besh-
ers and Fewell (2001) for a survey).

This paper focuses on behavioral synchronization and the
division of labor in a robotic swarm. On the biological
and ethological side, behavioral synchronization and divi-
sion of labor have been shown to enhance the adaptive value
in various insect species such as spiders (Krafft and Pas-
quet, 1991), collembola (Leinaas, 1983), fireflies (Branham
and Greenfield, 1996) and have also been observed in ants
(Goss and Deneubourg, 1988; Cole, 1991). Experimental
studies devoted to the foraging behavior in ant colonies sug-
gest that synchrony might contribute to a better commu-
nication among agents (Bonabeau et al., 1998b), and sig-
nificantly improves the foraging performance compared to
asynchronous behaviors (Bonabeau et al., 1998a; Delgado

and Solé, 2000). The emergence of synchrony is explained
from both individual factors, e.g. internal individual mecha-
nisms, and local interactions among individuals.

On the artificial and robotic side, the self-organized di-
vision of labor in an ant colony is nothing like easily mas-
tered by a robotic swarm. Notably, in many cases the micro-
scale models proposed in the ethology literature might ex-
ceed the plausible physical or cognitive resources of most
simple agents (e.g. due to the required resources or the
presence of random generators supporting stochastic mod-
els). The swarm robotics framework involves specific lim-
itations; while it considers a large population1, power con-
sumption remains a critical issue, entailing limited commu-
nication and computational abilities. Quite a few authors
have been considering foraging robotic swarms in the last
two decades (see Bayindir and Sahin (2007) for a survey),
proposing hand-crafted architectures (be they bio-inspired
(Labella et al., 2006; Panait and Luke, 2004) or not (Liu
et al., 2007; Hauert et al., 2008)), or using evolutionary com-
putation to optimize the individual decision model (Dorigo
et al., 2005).

In the meanwhile, how to enforce the synchrony of in-
dividual behaviors has seldom be considered. Wischmann
et al. (2006) and Hartbauer and Romer (2007) have inves-
tigated the use of coupled oscillator-based models, respec-
tively considering an energy-foraging and a cleaning task.
Taking inspiration from insect synchronous behavior such
as chorusing male insects, both approaches illustrate how
group synchronization can emerge from local communica-
tions. Trianni and Nolfi (2009) present a thorough study
of swarm synchronization from the perspective of dynamic
systems, notably using Evolutionary Computation to opti-
mize efficient synchronization strategies.

Resuming an earlier work Chevallier et al. (2010), this
paper presents a frugal model aimed at robotic swarm for-
aging, called SpikeAnts. This model, based on the cou-
pling of two spiking neurons with different internal dy-
namics (Gerstner and Kistler, 2002), enables an individual

1Contrasting with early work on multi-robot systems; see
(Parker, 2008) and references therein.
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agent to decide whether it must go foraging based on lo-
cal cues from other agents. Spiking neurons, now a well-
established formalism, are known to display rich temporal
dynamics and synchronization patterns (Paugam-Moisy and
Bohte, 2011). From the individual decisions and interac-
tions within SpikeAnts, synchronous and asynchronous pop-
ulation behaviors are shown to emerge depending on the
range of interactions among the individuals. This paper in-
vestigates the implications and merits of synchronous be-
haviors in terms of overall foraging efficiency, where spa-
tial interactions are modelled through a collision avoidance
mechanism. Synchronous population behavior, decreasing
the chances of collisions, result in more fluid individual tra-
jectories and better foraging returns.

This paper is organized as follows. First, the notion
of “foraging swarm” is specified. For the sake of self-
containedness, the next section sums up the SpikeAnts
model, explaining the spiking neurons used and their cou-
pling. Afterwards, the notions of temporal and spatial cou-
plings of agents’ behaviours in a swarm are discussed. Some
conjectures on the benefits of synchrony are presented. The
experimental setting proposed to study these conjectures is
presented. The last section reports on the experimental re-
sults, discussing the trajectories of the robotic swarm in a
simulated 2D environment. The paper concludes with a dis-
cussion and some perspectives for further research.

Foraging swarm
Basically, the foraging task aims at securing a sufficient
amount of food for the (ant) colony at any time. The forag-
ing activity however is itself energy consuming. Therefore
it would be inappropriate that all individuals in the colony
devote themselves to foraging. Hence the dilemma is: On
the one hand, sufficiently many individuals should devote
themselves to foraging, but no more; On the other hand,
the division of labor between the foraging individuals and
the others has to be enforced without any centralized con-
trol. Although the division of labor might be resolved by
task assignment at the individual level (deciding once for all
whether a given individual is a foraging one), such a fixed
mechanism would hardly account for the famed flexibility
of ant colonies, where the division of labor smoothly adapts
to emergencies.

The approach proposed by Liu et al. (2007) involves a
probabilistic finite state automaton, where each individual
obeys a Markov decision process involving a few states (e.g.,
resting, foraging, grooming). The probabilities of transitions
among states are optimized using evolutionary computation
in order to maximize the overall performance of the swarm.
The efficiency of this approach thus relies on the size of the
swarm, enforcing that the number of individuals in a given
state at any point is close to the desired one due to the law
of large numbers. Notably, it also requires any individual
agent to embed a random generator. Displaying a “truly ran-

dom” decision making process is by no way a basic ability
(human beings, for instance, are known to be poor random
generators).

The SpikeAnts model
The proposed individual model is inspired from both Goss
and Deneubourg (1988) and Huang and Robinson (1999),
where the agent decision results from internal and external
factors, and the external factors reflect the other agents’ be-
havior (social inhibitions).

Foraging and Social Inhibitions in SpikeAnts
Formally, the SpikeAnts model involves three states, respec-
tively called foraging (active), sleeping (inactive) and ob-
serving (activable), with deterministic transitions (Fig. 1).
When in sleeping state, the agent switches to the observing
state after some time ts; when in foraging state, the agent
switches to the sleeping state after some time tf . The agent
decision takes place in observing state, taking some cues
from the agent’ relatives: essentially, if it sees many other
foraging agents (in a sense made precise below) the forag-
ing incentive is low and the agent switches to the sleeping
state2; otherwise, it switches to the foraging state. This
mechanism thus implements social inhibitions, as opposed
to e.g. threshold models where the agent decision is based
on internal thresholds only (Bonabeau et al., 1998a).

ti

spike-based decision

influence

ta

sleeping observing foraging

Figure 1: An agent is described by three states and the state
transitions are indicated with black arrows. An observing
agent decides to forage or not based on local information
sent by neighboring active agents (white arrow).

The competition of two spiking neurons
The agent decision in observing state is made through the
competition of two spiking neurons. A model of spiking
neuron describes the evolution of an internal variable, the
membrane potential; the neuron fires an electrical pulse,
called spike, when this membrane potential reaches a given
threshold. By connecting spiking neurons to each other and

2Note that agents in sleeping state are not necessarily resting
but might achieve other tasks as well; the extension of the current
model to multi-task settings is a research perspective (see Discus-
sion and Conclusions).
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Figure 2: Membrane potentials of active (in dark/red) and
passive (in gray/blue) neurons. The dashed line indicates the
threshold ϑ. Initially sleeping, the agent goes observing at
time 20ms. As the active neuron fires before the passive one,
the agent goes foraging and the active neuron sends spikes
during the whole foraging period, signalling its activity to
other agents. It then switches to sleeping state (from circa
50 to 70ms). A second observing period starts thereafter;
this time the passive neuron fires before the active one. The
agent then switches to sleeping state. At circa 90ms, a third
observing period starts, and the agent switches to foraging
almost immediately.

having them exchange information through spikes, a rich va-
riety of dynamic activation and synchronization patterns can
be obtained.

Formally, an agent is modelled as two spiking neurons, an
active one and a passive one. The agent decision (foraging or
sleeping) depends on whether the active or the passive neu-
ron fires first. Both neurons are respectively inhibited and
activated by the spikes coming from other agents, emitted
when these are foraging.

The passive neuron is implemented as a Leaky Integrate-
and-Fire (LIF) neuron (Gerstner and Kistler, 2002); the ac-
tive one is implemented as a Quadratic Integrate-and-Fire
(QIF) neuron (Hansel and Mato, 2001); both models have
been extensively studied in the literature.

The passive LIF neuron is modelled by a differential equa-
tion, which describes the temporal evolution of a potential
Vp. If Vp exceeds a threshold ϑ, the neuron fires a spike and
is reset to the resting potential V p

reset.

{
dVp

dt = −λ(Vp(t)− Vrest) + Iexc(t), if Vp < ϑ
else fires a spike and Vp is set to V p

reset

(1)

where λ is the relaxation constant. Iexc(t) models instanta-
neous synaptic interactions. The set of presynaptic neurons
is denoted by Pre, such that there exists a communication
channel from every neuron in Pre toward the current neu-
ron. Denoting Traini the spike train of the ith neuron in
Pre,

Iexc(t) = w
∑

i∈Pre

∑
j∈Traini

δ(t− tij), (2)

where w is a synaptic weight, δ(.) is the Dirac distribution
and tij is the firing time of the jth spike from the ith presy-
naptic neuron.

The active QIF neuron is described by the evolution of the
potential Va, compared to the resting potential Vrest and an
internal threshold Vthres. Additionally, it receives an internal
signal Iclock modelling a gap junction connection:

dVa

dt = λ(Va(t)− Vrest)(Va(t)− Vthres)
+Iinh(t) + Iclock(t), if Va < ϑ

else fires a spike and Va is set to V a
reset

. (3)

The choice of this neuron model (Izhikevich, 2007) is mo-
tivated by the bistability of the QIF neuron if the reset thresh-
old is greater than the internal threshold (V a

reset > Vthres).
If V a

reset < Vthres, the membrane potential Va stabilizes on
Vrest when there is no external perturbation, and the neuron
thus exhibits an integrator behavior. When V a

reset > Vthres,
the neuron displays a bursting behavior and fires periodi-
cally.

An Agent Slice of Life
In observing state, the agent decision is thus controlled from
the passive LIF neuron (Eq. (1)), the active QIF neuron (Eq.
(3)) and an internal clock unit. Both spiking neurons receive
the spikes emitted by other neighbor foraging agents (ex-
ternal factors); additionally, the active neuron receives the
Iclock signal emitted by the agent internal clock. The active
neuron is activated by the internal signal, and inhibited by
the external signals, whereas the passive neuron is only ac-
tivated by the external signals. Depending on whether the
active (respectively the passive) neuron fires first, the agent
goes foraging (resp. sleeping).

When the observing agent sees none or few other foraging
agents (i.e. receives no or few spike signals from them), the
internal signal Iclock(t) is not counteracted by any external
inhibitions and the active neuron fires; it wins the competi-
tion and the agent goes foraging (first and third periods in
Fig. 2). When in foraging state, the active neuron is burst-
ing and periodically sends spikes to neighbor agents (which
process them only if they are in observing state). The agent
stays foraging for a time tf and then switches to the sleep-
ing state for a time ts. This switch is triggered by an internal
delay between the clock unit and the active neuron.

If the observing agent perceives many foraging agents, the
passive neuron receives many excitatory external signals and
it fires first (second period in Fig. 2); the agent switches to
sleeping state for a time ts.

Overall, the competition between the passive and active
neurons thus fully determines the observing agent deci-
sion. It is worth noting that the SpikeAnts system is asyn-
chronous3. Its temporal dynamics is highly non-linear; in

3Differential equations are solved by finite differences, with
fixed precision depending on the computational resources.
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Figure 3: SpikeAnts simulation in 2D environment. (a) The arena includes a nest and a food regions (disk); foraging, sleep-
ing and observing agents are respectively indicated with squares, circles and triangles. (b) Proximity zone of an agent. (c)
Communication range ρ.

practice, the number and pace of the spikes received before
making a decision vary from one observing period to an-
other. There is no time limit for the observing state; an agent
remains in observing state until making a decision.

Investigating Temporal and Spatial Couplings
In a first study (Chevallier et al., 2010), the temporal cou-
plings induced by SpikeAnts have been experimentally stud-
ied within an abstract setting, considering each agent as a
node in a random graph with a given connectivity rate. Each
agent had a fixed position and a fixed, sparse, set of neigh-
bors. In particular, no traveling time from the nest to the
food source was accounted for in the foraging activity. Such
an abstract setting however does not account for the fact that
real and artificial agents alike are moving in a spatial envi-
ronment, and can hardly be considered as material points.

A more realistic simulated environment is investigated in
the present paper. This section introduces the experimental
setting and goals.

Spatial interactions
The study considers a large square 2D arena, the dimension
of which is circa 160 times the size of the individual agent.
The arena includes the nest, or sleeping place, and the food
source, or foraging place (Fig. 3(a)). The region centered on
the nest (respectively the source) with radius γ is referred
to as nest (resp. source) region. The region centered on the
nest with radius 2γ is referred to as domestic region (γ= 3%
of the arena size in the experiments).

Each agent moves with a constant speed; its communica-
tion range ρ is constant (Fig. 3(c)). The agent is endowed
with a set of elementary behaviors:

• In observing state, the agent moves inside the domestic
region, with constant speed, except when it sees another
agent, where the collision avoidance behavior is executed
(see below). Foraging agents within its communication

range send excitatory (resp. inhibitory) signals to its pas-
sive (resp. active) neuron.

• Upon the firing of its active neuron, the agent switches to
the foraging state for a given time tf . Whatever its current
position, it goes directly to the food source with constant
speed, except when it sees another agent, where the col-
lision avoidance behavior is executed. When arriving in
the source region, the agent moves inside this region until
the foraging time tf is elapsed.

• When switching from foraging to sleeping state, the agent
goes directly to the nest region with constant speed, ex-
cept when the collision avoidance behavior is executed.
When arriving in the nest region, the agent moves inside
the domestic region until the sleeping time ts (starting at
the end of the foraging period) is elapsed.

• When switching from observing to sleeping state, the
agent stays in the nest region, moving with constant
speed, except when the collision avoidance behavior is
executed.

• The collision avoidance routine is triggered whenever an
obstacle or another agent is located in the proximity zone
of the current agent (Fig. 3(b)). The obstacle side is de-
tected as the side (left or right) with higher average sensor
activation, and the agent rotates in the opposite direction
with a given angle α (α = 5o in the experiments). It goes
straight ahead in the subsequent time steps (unless some
further obstacle enters in its proximity zone, in which case
the collision avoidance is triggered anew). When its prox-
imity zone becomes empty again, the agent rotates back
to its initial direction.

Goal of experiments
The experiments are meant to answer two main questions.
The first one concerns the temporal couplings between the
swarm agents. In the former graph-based setting, several
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behavioral regimes were observed depending on the connec-
tivity of the neighborhood graph (agent sociability), rang-
ing from asynchronous behaviors to synchronous aperiodic
and synchronous periodic. A 2D environment however in-
volves several sources of variability, which might prevent
the swarm from reaching a synchronous behavior. Firstly,
the transitions from observing to foraging states are no
longer instantaneous as agents must travel from the nest to
the source. Secondly, the set of neighbors of each agent
varies as the agent moves in observing state, whereas the
connectivity was fixed in the previous experiments. Lastly,
the agent activity might be perturbed as the collision avoid-
ance routine is executed in priority whenever the agent meets
an obstacle or another agent. The question thus is whether
the regimes observed in the fixed graph-based setting are
still observed in 2D simulations, and whether the transitions
from one regime to another depend on the same design pa-
rameters.

The second question concerns spatial couplings, and the
possible impact of synchronous behavior on the collective
foraging efficiency. Whereas synchronous activity is ubiq-
uitous in many living societies and complex systems, the
benefits of synchrony remain actively debated. On the
one hand, when agents move in a synchronous way as a
flock, the chances of collision expectedly decrease and more
agents might make it to the source. On the other hand, in
asynchronous mode some agents might be deviated from
their route to the source due to repeated collision avoid-
ance (“traffic jams”); but it might also be the case that asyn-
chronous agents better share the collective space and the
frequency of traffic jams decreases. In order to investigate
further the foraging efficiency, two indicators are proposed.
The first one counts the number of agents arriving at the food
source; the second one measures the overall foraging time,
i.e. the overall number of time units spent by agents in the
source region.

Experimental setting
The experimental setting used to answer the above ques-
tions goes as follows. Each agent is simulated as a Khep-
era robot with eight infra-red sensors and a radio commu-
nication module. The communication range ρ is constant,
covering 20% of the arena unless indicated otherwise. Each
foraging agent broadcasts its activity signals to all agents
with distance less than ρ; each observing agent receives the
signals of foraging agents on an individual basis. In other
words, the simulated setting involves no centralized com-
munication among agents.

At the beginning of each simulation, every agent is sleep-
ing and wakes up after some time, independently and uni-
formly drawn in ]0, 2ts[. Each simulation involves 50,000
time steps. All reported results are averaged over 10 inde-
pendent runs for a given parameter setting. As already men-
tioned, the SpikeAnts model is deterministic; the only source

of variation among simulations comes from the swarm ini-
tialization and the uniform agent wake-up times.

Every agent obeys the same SpikeAnts model with same
parameters as in Chevallier et al. (2010). Foraging and
sleeping times are chosen such that their ratio is not an inte-
ger, to avoid spurious synchronization effects: tf = 541 and
ts = 457 time steps. Spiking neurons are simulated using
a clock-driven simulator and Runge-Kutta method for dif-
ferential equation approximations with a small time step of
0.1ms to achieve numerical stability.

Experimental Results
This section reports on the temporal and spatial couplings
observed in the 2D simulation of SpikeAnts.

Emergence of Temporal Self-Organization
The temporal coupling at the population level is displayed
in Fig. 4, reporting the number of active agents vs the simu-
lated time step. Three behavioral regimes emerge depending
on the parameter setting. An asynchronous regime (Fig. 4,
(A)) is observed for low communication ranges; agents in-
dividually and asynchronously decide to go foraging, with
an average number of 30 foraging agents in each time step
out of 100 agents. Another synchronous aperiodic regime
sees the emergence of sub-populations of agents, that syn-
chronously decide to go foraging; still the size of the for-
aging subpopulation varies from one period to another one,
and the foraging subpopulations with same size gather dis-
tinct agents in each period (Fig. 4, (B)). Finally, the syn-
chronous periodic regime involves a few persistent subpop-
ulations (two in Fig. 4, (C)), which alternate and go forag-
ing. The agent trajectories in all three regimes are shown in
Fig. 5, displaying different spatial patterns.

The emergence of these regimes has been explained from
a few SpikeAnts design parameters (Chevallier et al., 2010).
The first factor is the communication range ρ, given as per-
centage of the arena covered when agents broadcast/receive
the foraging signal. For a low ρ, the agent decision is based
on a few local cues; for a high ρ, every agent can reliably
estimate the number of currently foraging agents. The sec-
ond factor is called receptivity and characterizes the strength
of interactions between agents; it is expressed as the ra-
tio between the connection weight w and the sub-threshold
range (depending of the resting potential Vrest and the firing
threshold ϑ):

∣∣∣ w
ϑ−Vrest

∣∣∣. With a high interaction strengths, a
few spikes can trigger the agent decision; small variations in
the received information lead to different decisions. With a
low interaction strength, agent decisions are based on many
signals; the number of spikes needed to reach the threshold
is high and the agent decision thus is more stable.

The transition between all three regimes is made precise
using an entropy indicator defined as follows. Let nt de-
note the number of foraging agents at (simulated) time t,
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Figure 4: Three behavioral regimes emerge in the population: (A) Asynchronous, (B) Synchronous aperiodic and (C) Syn-
chronous periodic. Each graph reports the number of active agents vs the simulated time step.
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Figure 5: Trajectories followed by agents during a representative run, respectively in asynchronous (A), synchronous aperiodic
(B) and synchronous periodic (C) regimes. Darker lines indicated the most often visited paths.

with 0 6 nt 6 M and M = 100 is the overall number
of agents. Let pn denote the percentage of time steps such
that nt = n. The foraging entropy is classically defined as
H = −

∑M
n=0 pn log pn. The phase diagram, reporting the

entropy vs the two control parameters of agent sociability
and receptivity, is displayed in Fig. 6.

The asynchronous regime is characterized by a medium
entropy value (circa 3) as the nt values are tightly dis-
tributed around a mean value. This regime emerges in pop-
ulations with low communication range and high interaction
strength. For a medium communication range and weak
interactions, a synchronous aperiodic activity is observed,
with high entropy (H ≈ 4) as the sub-population sizes vary
from 10 to 80 agents. A stable synchronous periodic regime,
characterized by a low entropy value (H ≈ 1 since the
sub-population sizes are very stable), is observed for a large
communication range and strong interactions. On Fig. 6, the
synchronous periodic regime emerges for a communication
radius which cover nearly all the arena (ρ =80%). Com-
plementary experiments show that for a smaller tf/ts ra-
tio the transition from asynchronous to synchronous regimes
is shifted on the left, and occur for smaller communication
range (ρ= 30%, results omitted for brevity).
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Figure 6: Phase diagram of the temporal coupling: foraging
entropy vs the agent sociability (x axis) and receptivity (y
axis).
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Figure 7: Foraging efficiency defined as the percentage of
foraging agents that arrive in the source region.

Mixed Benefits of Synchronous Foraging
As mentioned earlier on, it was expected that synchronous
regimes would benefit the foraging activity through decreas-
ing the chance of collisions. The foraging efficiency measur-
ing the fraction of foraging agents making it to the source is
displayed in Fig. 7; on average, 80% of the foraging agents
arrive in the source region in synchronous periodic regime,
as opposed to less than 40% in asynchronous regime. The
lower foraging efficiency in asynchronous regime is related
to the “price of anarchy“: more chances of collisions slow
down the agents on their way to the source region, to the
point that the foraging period ends up for most agents be-
fore they even reach the source, and they go back to the nest
with empty hands.

Additional experiments are conducted to examine the sen-
sitivity of the synchrony benefits when increasing the forag-
ing time tf . For larger tf values, all agents eventually ar-
rive at the source sooner or later. It thus comes naturally
to consider the agent traveling time tr. By construction,
tmin 6 tr 6 tmax = tf , where tmin is the minimum time
needed to go from the nest to the source. Let us accord-
ingly define the foraging loss as the excess time wasted in
the travel from the nest to the source, L = tr−tmin

tmax−tmin
. A

contrasted picture then appears (Fig. 8): the foraging loss
is minimum in asynchronous regime (less than 50%), and
it increases when the swarm switches to synchronous ape-
riodic or periodic regimes (up to 65%). Agent paths shown
on Fig. 5 corroborate these results: agents in synchronous
regimes display more spatially distributed trajectories than
in asynchronous regime, thus increasing the traveling time.

This experiment suggests that synchronous foraging en-
tails opposite effects: while less agents arrive at the food
source in asynchronous regime, the overall foraging time re-
mains higher than for synchronous regimes. Additional ex-
periments will examine these mixed effects in more depth.

Discussion and Perspectives
This paper has presented the distributed, decentralized and
deterministic swarm model SpikeAnts, accounting for the
emergence of synchronous behaviors and division of labor in

50 75 100
Communication range (%)

0.025

0.05

0.075

0.1

0.55

0.6

0.65

R
ec

ep
tiv

ity

L

Figure 8: Foraging loss L = tr−tmin

tmax−tmin
, measuring the for-

aging time wasted in the travel from the nest to the source.

a foraging swarm. Depending on the communication range
and interaction strength among agents, the swarm behavior
ranges from an asynchronous regime, where every agent in-
dependently makes its decisions, to a synchronous periodic
regime where two persistent sub-populations alternate and
go foraging.

A most interesting and unexpected experimental result
concerns the mixed effects of synchrony. Quite a few au-
thors have advocated the benefits of synchrony for division
of labor: temporal coactivation of individuals enhance the
information exchange and the cohesion of the population
(Robinson, 1992; Bonabeau et al., 1998b; Delgado and Solé,
2000); synchrony also provides an intrinsic mechanism of
mutual exclusion (Hatcher et al., 1992). In a 2D frame-
work however, agent synchronization entails some spatial
couplings through the collision avoidance mechanism. The
experimental evidence suggests that synchronous flocking
behaviors decrease the chances of collision (and more agents
arrive at the target destination), but increase the traveling
time (and agents have less time to achieve the task when ar-
rived at destination).

Additional experiments will be needed to investigate these
effects, and a first perspective is to implement SpikeAnts on a
physical robotic platform. As already mentioned, SpikeAnts
was designed to comply with limited memory and compu-
tational resources. Along the same lines, SpikeAnts will be
extended to deal with several tasks of diverse priorities (e.g.,
collecting energy and rescuing the swarm robots out of en-
ergy). The question is whether and when the swarm will
demonstrate several sub-populations attending the different
tasks in a synchronous way, and how the division of labor
may take place depending on the experimental setting.

A further question regards how the collective regime will
be modified under external perturbations in the environment,
and how the swarm adapts its response. A yet further stage
will be to consider autonomous and adaptive agents, e.g.
controlling their foraging time or interaction strength de-
pending on their internal state and individual agenda.
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Abstract

We hypothesise that degeneracy in the components of an ar-
tificial chemistry (AChem) facilitates the complexity of the
system as a whole. We introduce definitions of degeneracy
and redundancy, and show how these quantities can be calcu-
lated for the binding system of an AChem.

We present a case study using the AChem Stringmol, in order
to support our hypothesis. We demonstrate that the binding
system in Stringmol has degeneracy and we create a delib-
erately poor variant: ‘sticky-Stringmol’, that has a binding
system with no degeneracy. Comparing sticky-Stringmol to
Stringmol, we note the loss of many simulation artifacts that
have been used as evidence of the complexity of Stringmol,
including: emergent macro-mutations, hypercycles, sweeps
and parasite evasion. These results are evidence that degener-
acy in the components of an AChem facilitates the complexity
of the system as a whole.

Introduction
Degeneracy is the ability of elements that are different, in
some respect, to perform the same role in some, but not all,
situations. Degeneracy is a noticeable property of many bi-
ological systems, and is observable on many scales within
those systems [7] and has been linked to the evolvability
and robustness of these systems [16]. Examples range from
molecular interactions and gene networks [7], the connectiv-
ity of neurons in the brain [13], through to social networks
[15]. Complexity and degeneracy have been strongly linked
[14]. Attempts have been made to describe these concepts
into mathematically meaningful, and consequently unam-
biguous formulae [14][7].

Just as degeneracy can be observed on many scales in na-
ture, so it should be in artificial chemistries (AChems) that
aspire to achieve the levels of complexity that exist in the
natural world. We hypothesise that degeneracy in the com-
ponents of an AChem will facilitate complexity of the sys-
tem as a whole. We introduce measures of degeneracy and
redundancy in terms of an ‘interaction function’ between
two sets. We use binding between two sets of chemicals
in an AChem (defined below) as a concrete example of an
interaction function. We demonstrate that the degeneracy in

the binding system of Stringmol [10] is particularly impor-
tant for the complexity of the AChem as a whole.

When presenting the complexity of an AChem, it is stan-
dard practice to present simulation results and focus on an
artifact that the system has been able to produce as evidence
of the complexity of the AChem. Examples of artifacts in-
clude: the ability to ‘compute’ prime numbers [1]; the gener-
ation of cooperative organisations [9], hypercycles [10] and
autocatalytic sets [12]. However, the complexity available in
current AChems is still well below that of the natural world.

The presentation of simulation artifacts is currently the
only available way to evaluate AChems (see [4]). As such,
two chemistries that produce different types of artifact can
only be compared in a qualitative manner. Progress has been
made on formalising artifacts in chemistries, and automating
the discovery of autocatalytic sets [12] and organisations [5].
However, simulation artifacts can only be measured a pos-
teriori: they can not be determined at design stage. The
degeneracy measure we introduce can be applied at the de-
sign stage to the components of an AChem, thus allowing
sources of complexity to be designed in.

Binding in AChems
In this paper, we focus on degeneracy in the context of bind-
ing in AChems. In the ‘(S,R,A)’ definition of AChems [4],
S is a set of chemicals, R is a set of reactions between the
chemicals and A is the algorithm that applies reactions from
R to chemicals from S. For example, if the chemicals in set
S are integers, then the set R of reactions might contain all
reactions of the form:

a+ b 7→ c if c = a
b is an integer. (1)

This is the prime number generation chemistry [1].
The important point for this discussion is the binding rule:

“if a
b is an integer”. This can be viewed as an “if-then” state-

ment: if the binding rule is true, the reaction may proceed.
The left hand side (LHS) of the reaction, “a + b”, is the if
part of this statement. The right hand side (RHS) of the re-
action, “7→ c”, is the then part. Looking at the chemistries
reviewed in [4], the vast majority have a trivial LHS, where
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the if simply tests if two molecules are presented by the al-
gorithm, A. The only AChems we are aware of with a non-
trivial LHS are Primes [1], AlChemy [9], Stringmol [10],
Molecular Classifier Systems [3] and RBN-world [8].

AlChemy (level 0) had relatively simple binding, which
resulted in the collapse of the system into ’self-replicators’.
In AlChemy (level 1), binds that would result in reactions
that propagate self replicators were restricted. As a result of
the enriched binding rule, AlChemy (level 1) produced more
complex artifacts, including ‘cooperative organisations’ [9].
This example helps support our hypothesis that binding is an
important component of an AChem, and that changes to this
component can change the level of complexity observed in
the system.

Organisation of the Paper
We define degeneracy and redundancy in an unambiguous
manner, and introduce methods to measure these quanti-
ties. We justify introducing a new measure of degeneracy
instead of adopting previously published measures. We use
our measures to analyse the binding system used in String-
mol and demonstrate that the binding system is is capable
of producing degeneracy. We also use these measures to
demonstrate that ubiquitous binding is unable to produce
degeneracy. We use ubiquitous binding to define a deliber-
ately poor Stringmol variant: ‘sticky-Stringmol’. We repli-
cate the experimental procedures of [10] in order to compare
the artifacts of ‘sticky-Stringmol’ and Stringmol. We give an
overview of the previously undetected phenomena of ‘para-
site evasion’ in Stringmol containers. The two mechanisms
by which the container is able to survive a potentially fa-
tal parasite are linked to binding. We also find that sticky-
Sringmol containers are unable to evade a parasite.

Degeneracy and Redundancy
We formally introduce and define redundancy and degener-
acy in abstract terms, and provide a worked example calcu-
lating the redundancy and degeneracy of the binding system
of a fictitious AChem.

In order to make an unambiguous statement of redun-
dancy or degeneracy, one must state three pieces of infor-
mation: Two sets of elements, A and B, that are being com-
pared, and the method of comparison, defined by an ‘inter-
action function’, f : A × B 7→ {0, 1}, stating whether an
element of A and an element of B interact or not.

If we consider an arbitrary element, am of set A, we can
define a subset Bam ⊆ B, in terms of (am, f, B), containing
all the elements of B that am interacts with:

Bam
= {b ∈ B | f(am, b) = 1}. (2)

Elements am and an, are redundant if

R(am, an | f,B)⇔ Bam
= Ban

. (3)

Elements am and an, are degenerate if

D(am, an | f,B)⇔ (Bam
6= Ban

& Bam
∩Ban

6= ∅).
(4)

The definitions in equations 3 and 4 equip us to deal with
questions concerning individual examples such as ‘are a1
and a2 degenerate or redundant in a given context’. The
ability to determine if D(a1, a2|f,B) is true, does not equip
us to answer more general questions, such as what is the
degeneracy of a set in a given context, D(A|f,B).

Degeneracy and redundancy, even when clearly defined
between elements, have a non-trivial interaction within a
set. Consider: sets C,D = {a, b, c, d, f, g}, and some in-
teraction function f that causes the resulting matrix, which
can be viewed as a network, to contain examples of both
degeneracy and redundancy, see figure 1a. Consider also
A,B = {a, b, c, d, e, f, g}, where e is part of a redundant
set with a, see figure 1b. True measures of degeneracy and
redundancy should detect that the redundancy of the set C
is different from the set A. However, is the degeneracy of
set C the same as the degeneracy of set A? If one wishes
to maintain degeneracy of a set and redundancy of the set as
orthogonal concepts, then the answer to this question must
be ‘no’. If one answers ‘yes’, then the concept of the degen-
eracy of a set becomes conflated with the redundancy of the
set. As a result of this conflation, such measures of degener-
acy lose their value, as the results they give may be skewed
by redundancy. This is why we introduce a new measure of
degeneracy, rather than adopting an existing measure. The
key to understanding the relationship between degeneracy
and redundancy, is knowing that it is possible to measure
the redundancy of a set without regard for the degeneracy of
a set, but not the other way around.

It is, however, possible to construct a measure of degen-
eracy of a set that does not suffer from this conflation with
redundancy, keeping the mathematical concepts of degener-
acy and redundancy of sets orthogonal. We introduce such a
measure here. Our method avoids the conflation problem by
accounting for the redundancy of the two sets (in the con-
texts of an interaction function f ) and constructing new sets
that have no redundancy. The set Â is constructed from the
set A (in the context of set B and the interaction function f )
such that the elements â ∈ Â are the redundant sets of A.
We can construct B̂ in a similar manner. Note that it makes
no difference if we construct B̂ in the context of Â or the
context of A. These constructions can take place in any or-
der and all examples of degeneracy that exist in (A,B) are
maintained in (Â, B̂).

Each element â of the reduced set Â is itself a set con-
taining one or more redundant elements from A. It is on
these redundant sets that we base our measure of degener-
acy. If we reconsider the above thought experiment, it can
be seen that the element e will join an existing redundant
set, see figure 1 parts (c) and (d). Consequently it will not
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Figure 1: A network example of interaction between ele-
ments of a set. Two nodes x and y are joined with an edge if
f(x, y) = 1. (a) is an example of an interaction containing
examples of both degeneracy and redundancy by the defi-
nitions given in equations 3 and 4. In (b) the element ‘e’
has been added. The elements a and e form a redundant set
{a, e} as they both bind to elements {a, e, d}. (c) and (d),
show the same relationships as (a) and (b) respectively, but
in terms of redundant sets rather than elements.

affect a measure of degeneracy that is based on the elements
of Â (the redundant sets of the elements of A), instead of the
elements of A.

We follow the definitions of redundancy and degeneracy
for pairs of elements, and define redundancy and degeneracy
for sets. Firstly, we consider an arbitrary element of set Â,
â, and define the subset B̂âm ⊆ B̂. This contains all the
redundant sets of B̂ that â interacts with:

B̂âm
= {b̂ ∈ B̂ | f(âm, b̂) = 1}. (5)

We define the redundancy of the set A, in the context of
(f,B), as the set of sizes of redundant sets of A:

R(A | f,B) = {|â| | â ∈ Â}. (6)

R(A|f,B) takes the form of a set of size |Â|; the elements
of this set are the sizes of the sets â ∈ Â.

We define the degeneracy of the set A in the context of
(f,B):

D(A | f,B) = {|B̂â| | â ∈ Â}. (7)

D(A|f,B) also takes the form of a set of size |Â|; the ele-
ments of this set are the numbers of redundant sets in B̂, that
each element â ∈ Â interacts with.

Worked Example
We define A,B = {a, b, c, d, e, f, g} to be all the chemicals
in our fictitious chemistry. Note that for the purposes of this

example, we do not need to specify the reaction rule, as the
products of reactions do not concern us in this calculation.
We assume the binding rule returns a probability; we can
apply a threshold at zero in order to construct an interaction
function f . The result of the thresholding is shown in figure
2a. As it contains only binary values, it is an interaction ma-
trix and the definitions of degeneracy and redundancy given
in equations 3 and 4 apply (as in figure 1b).

We now construct the redundant sets: In figure 2a the row
a and the row e have the same values, as such they are re-
dundant under the definition given in equation 3. Similarly,
rows b, c and g all have the same values. We can construct
the redundant sets Â = {{a, e}, {b, c, g}, {d}, {f}}; if we
apply the same process to the columns, we obtain the re-
duced matrix shown in figure 2b (as in figure 1d).

The sizes of the redundant sets, shown in the row
labels in figure 2b, make up the redundancy set,
R(A | f,B) = {2, 3, 1, 1}, shown in figure 2c. In order
to quantitatively compare binding systems from different
chemistries of different sizes we scale the redundancy set by
dividing the values in the set by the average redundancy. The
average redundancy is given by the sum of the set sizes di-
vided by the number of sets; in this case (2+3+1+1)/4 = 7/4.
The scaled redundancy set is the redundancy set divided by
the average redundancy, shown in figure 2c.

From the reduced interaction matrix in figure 2b, it is
also possible to calculate the degeneracy set. The degen-
eracy of set A is obtained by summing the respective rows
in the reduced interaction matrix in figure 2b, the result,
D(A | f,B) = {2, 2, 3, 1}, is shown in figure 2d. The
degeneracy of set B would be obtained by summing the
columns. Note that the calculation of degeneracy is not
based on the elements of set A, but is instead based on Â,
the redundant sets of A.

We rescale the degeneracy set by dividing the degeneracy
set by the average degeneracy. The average degeneracy is
calculated by summing all the elements in the interaction
matrix in figure 2b and dividing that by the number of rows,
|Â|. In this case the average degeneracy is 8/4=2. The scaled
degeneracy set is shown in figure 2d.

These scaled sets can be used to compare the spread of re-
dundancy and degeneracy when the systems being compared
are of different sizes. A scatter plot is ideal for such a com-
parison, the rescaled degeneracy and redundancy sets from
the worked example are shown in figure 3. If the systems be-
ing compared are the same size then it is appropriate to used
the unscaled sets, allowing comparison of both the relative
spread and the actual values of redundancy and degeneracy.

Results
We apply our measures of degeneracy and redundancy (de-
fined in equations 6 and 7) to the binding system used in
Stringmol and to ‘ubiquitous binding’ (all molecules bind).
This makes ubiquitous binding a good candidate for testing
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Figure 2: (a): The interaction matrix: {a, b, c, d, e, f, g} are the chemicals of set A, 1 indicating two molecules bind and 0
indicating two molecules do not bind. (b), the reduced matrix: The elements of Â are the redundant sets of A, these sets are
given explicitly as the row and column labels. (c): The redundancy set and scaled redundancy set, for set A. The values of the
redundancy set are the number of elements in row labels of (b). The scaled redundancy set is obtained by dividing the unscaled
set by the average redundancy. (d): The degeneracy set and scaled degeneracy set for set A. The values of the degeneracy set
are the number of ones on each row in the reduced matrix (b). The scaled degeneracy set is obtained by dividing through by the
average degeneracy in Â.

Figure 3: Redundancy and degeneracy scatter plot for set A
in the worked example. Each point in the scatter represents a
redundant set (an element of Â). The position on the redun-
dancy axis is given by the scaled redundancy set shown in
figure 2(c). Similarly, the position of the degeneracy axis is
given by the the scaled degeneracy set shown in figure 2(d).
The redundancy and degeneracy sets are scaled such that the
center of mass of the scatter plot is at (1, 1).

our hypothesis: that a more simplistic approach to binding
will negatively impact the complexity of the artifacts ob-
served in simulations. We apply the methodology of [10]
to sticky-Stringmol and compare our results. We then de-
scribe how mid run parasites are evaded in Stringmol and
how the mechanism for evasion is lost in sticky-Stringmol.

In our general comparison with Stringmol, as well as in
the parasite trial, sticky-Stringmol is effectively the control
experiment. By having a deliberately poor variant of String-

mol, we are able to establish which simulation artifacts are
dependent on the degeneracy of the binding rule.

Measuring degeneracy
The Stringmol alphabet is 33 characters: 7 ‘functional’
characters {$>ˆ?=}%}, and 26 ‘non-functional’ characters
{A−Z}. Functional characters in Stringmol can contribute
towards a bind site, but they contribute half as much as non-
functional characters (for the full details, see [11]). We
present results for the reduced character set: {AB%CD},
containing 1 functional character and 4 non-functional char-
acters, as the calculation for the full character set is in-
tractable. We use the tailored Smith-Waterman algorithm
[11] to calculate the bind strength of all strings of length 6
from this alphabet, and threshold at a Smith-Waterman score
of 0.75 to produce an interaction function.

Degeneracy and redundancy for the set of all strings of
length 6 are shown in figure 4. We also present the de-
generacy and redundancy for the ubiquitous binding system
used in sticky-Stringmol (under the same conditions) on the
same figure, to allow a direct comparison of the properties
of the two binding systems. We argue only that the tailored
Smith-Waterman algorithm is capable of producing degen-
eracy and redundancy, not the specific levels of this which
can be achieved for a string of arbitrary length. For ubiq-
uitous binding, the matrix of interactions is filled with ‘1’
in every element, the result that it is maximally redundant
scales to strings of any length and character set.

Ubiquitous binding has trivial redundancy and no degen-
eracy, which makes the comparison in figure 4 appear un-
necessary. However, this is a simple example of a general
technique that, for a given alphabet, can be used to compare
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Figure 4: Comparison of the properties of the binding sys-
tems of Stringmol and sticky-Stringmol. The comparison
shows the unscaled redundancy and degeneracy sets as the
two systems contain the same number of elements. Each
of the circles is associated with a redundant set. All of
the circles together represent the Stringmol binding system.
Sticky-Stringmol has only one triangle, as all of its elements
form a single redundant set. It can be seen that the String-
mol binding system has a spread of both degeneracy and
redundancy, whereas sticky-Stringmol’s ubiquitous binding
has only trivial redundancy.

two or more binding systems of any level of degeneracy and
redundancy.

Degeneracy Affecting Simulation Artifacts
Stringmol is an AChem that encodes ‘microprograms’ as
strings of characters. We give a brief overview of String-
mol here (for more details, see [11]). Each molecule is
a string of characters that encodes a sequence of instruc-
tions, making use of pointer manipulations. A number of
molecules are initialised in a reaction container. Pairs of
molecules in the container are given an opportunity to re-
act by the physics engine. In a biological system, although
there may be thousands of different species of molecules, we
note that in the majority of possible pairwise combinations,
the number of molecules that each molecule interacts with
is relatively small. As a result, care was taken in the design
of Stringmol to check if two molecules could bind or not
via a rich binding system. We made use of a tailored vari-
ant of the Smith-Waterman string-matching algorithm [11].
The Smith-Waterman algorithm is used in the study of Bi-
ology to compare the similarity of two sequences of DNA.
In Stringmol, the Smith-Waterman based binding algorithm
determines:

• with what probability two molecules bind;

• given that they bind, how the molecules are aligned;

• which molecule is the executing microprogram, and
where its pointers are initialised.

Simulation Artifacts Binding system property
in Stringmol Degeneracy No Degeneracy
Self replication X X
Parasites X X
Random walks X X
Sweeps X ×
Macro-mutations X ×
Hypercycles X ×
Parasite evasion* X ×

Table 1: Comparison of system level properties, used to
evaluate the level of the complexity of an AChem. Degener-
acy denotes the original Stringmol binding system, No De-
generacy denotes the ubiquitous binding system used in the
sticky-Stringmol variant. * ‘Parasite evasion’ was not origi-
nally on the list of Stringmol’s properties published in [10];
we introduce it and present evidence that it occurs in String-
mol, but not in sticky-Stringmol.

In 1000 trials of Stringmol, numerous phenomena were
observed, including the emergence of hypercycles (two mu-
tually dependent molecules), macro-mutations (non-point
based mutations), sweeps (change of dominant replicase,
other than by a random walk) and parasites [10].

The hypothesis is that: by changing the level of degen-
eracy in the binding system of an AChem, we will alter
the simulation artifacts. We investigate this proposed link
by comparing Stringmol and sticky-Stringmol (with thefull
character set). The degeneracy and redundancy of these two
binding systems (for a particular character set) is shown in
figure 4. We repeated the experimental protocol of [10], run-
ning 500 trials of sticky-Stringmol to observe the diversity
that arises from a mono-culture. Table 1 shows an compari-
son of the observed simulation artefacts. Sticky-Stringmol
makes use of ubiquitous binding (no degeneracy), as op-
posed to the Smith-Waterman based binding of Stringmol
(degeneracy).

The instruction set used in sticky-Stringmol is the same
as the instruction used set in Stringmol. This might lead one
to expect they should have computational artifacts of equal
complexity; we find this is not the case, see table 1. These
results show that a naive binding system, such as ubiquitous
binding, can suppress complexity in an AChem. This iden-
tifies binding systems to potentially be an important aspect
in all AChems.

These results indicate that the binding system has a strong
effect of the overall complexity of the system.

Parasite Evasion in Stringmol Containers
Having presented the main results of the paper, we now
present evidence of parasite evasion in Stringmol. For our
purposes: a ‘parasite’ is a molecule that is replicated, but is
unable to replicate other molecules in return. ‘Parasite eva-
sion’ is when the container survives the introduction of a
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Figure 5: The functional regions of the replicase R (upper)
and mutant M (lower). The location of the mutation
is indicated by |. Both strings begin with the sequence
‘OBEQBXUTUDYGRHBBOREOLHHHRLUEUOBLROORE’
which is where the binding regions are located. The
mutation has the effect of breaking the copy loop.

Passive
R M O S

A
ct

iv
e R R M - S

M O O - O
O - - - -
S - - - S

Table 2: Interactions of: the replicase R; parasitic mutant
M; product of the mutant O; the new strain of replicase that
is immune to the parasite S. The body of the table shows the
outcome of the reaction for each possible combination of
active and passive molecules. Where the symbol ‘-’ appears
instead of defined molecular species, it denotes no product
formed.

parasite. We consider the container to have evaded the paea-
site when no parasitic molecules (of that strain) remain in the
container. Parasite evasion was not originally detected and
explained in [10], which is why we now provide an overview
of the phenomena. We outline the two mechanisms by which
Stringmol containers can survive a parastite and demonstrate
that these mechanisms are not available in sticky-Stringmol.

We re-examined previously published Stringmol results
[10] and located examples of mid-run parasites that were
non-fatal to the container. Here, we give details of one such
parasitic molecule and how it interacts with the dominant
replicase. We use this example as the basis of our parasite
evasion scenario. Figure 5 shows the functional region of the
original replicase R and the parasitic mutant M. The para-
site does not implement the loop in the microprogram that
allows characters on the bound molecule to be iteratively
copied. When the parasite M is the executing microprogram,
the product of the reaction is O, a string of length one: ‘O’.

We examined how the Stringmol container survives this
parasite in the original trial [10]. We found a new strain of
replicase arose via a mutation in the binding region of R.
This new strain S is never the executing molecule in reac-
tions with R or M and is thus immune to the parasite, see
table 2. The new strain that averts the death of the container,
S, would have taken over the container via a ‘sweep’, even
in the absence of a parasitic mutant as it is always passive
when reacting with R. In the original trial, both R and M

Trial condition No. Escapes
Stringmol 32
Stringmol no mutation 21
Sticky-Stringmol 0
Sticky-Stringmol no mutation: 0

Table 3: Number of escapes from the parasite scenario out
of a possible 100 for the four trial conditions.

die out relatively quickly and the new strain becomes domi-
nant. Figure 7 shows results of this scenario depicting typi-
cal dynamics of cases where this parasite is fatal and where
the system evolves a resistant strain of replicase. Hence the
container can sometimes evade what is a potentially fatal
parasite.

We investigate the potency of the parasite in Stringmol in
order to demonstrate that the parasite is potentially fatal. We
also repeat this investigation for sticky-Stringmol and note
it is unable to evade the parasite.

Our experimental setup initiates with two string types in
the container: A replicase R and a parasitic mutant M of
which there are 300 and 10 respectively at the start of each
trial. The container is simulated until no molecules remain
or until 0.5 million time steps. In each case we record if the
container survived the parasite. We ran 100 trials for each of
the four experimental conditions: Stringmol with and with-
out mutation; sticky-Stringmol with and without mutation.
The results are presented in table 3.

As we can see from table 3, it is possible for the String-
mol container to evade the parasite without mutation. In the
absence of mutation it appears that the probability of bind-
ing between R and M being 0.66 is sufficient for the para-
site to not to establish itself in the container in some cases,
see figure 8 for typical dynamics. Stringmol (with muta-
tion) is more successful at evading the parasite, see figure 7
for typical dynamics. There are two mechanisms by which
the stringmol container can evade a (potentially fatal) para-
site. One is by having a relatively low probability of binding,
making it hard for new strains to establish themselves in the
container. The second mechanism is the potential to mutate
to a resistant strain of replicase. Looking at the results in
table 3, it would appear that the dominant factor is the 0.66
chance of binding that the replicase, R, has with the parasite
M.

Sticky-Stringmol appears unable to escape this parasite
scenario with or without mutation. The ubiquitous bind-
ing at probability 1 causes the parasite to dominate the con-
tainer every time. See figure 6 for dynamics that are typical
of sticky-Stringmol both with and without mutation. Muta-
tion in sticky-Stringmol offers no refuge from the parasite
molecule. Because the binding is ubiquitous, a parasite is
a parasite to all replicase molecules, rather than a limited
subset of replicase molecules.
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Figure 6: Sticky-Stringmol in the parasite evasion trial. The
replicase, R, starts at the top at t=0. The mutant, M, starts
at t=0 and maintains a low population. The product of the
mutation, O, peaks in the middle of the run. This figure
is representative behaviour of all 200 runs (both with and
without mutation).

These results have a bearing on the main point of the pa-
per, the importance on non-trivial binding, which is that it
is not only which molecules bind to which that is impor-
tant. The probability of binding also plays a role in deter-
mining the system level properties. Reducing the proba-
bility of binding from 1 to 0.66 does not simply cause the
same outcome to happen more slowly. This is a refinement
on our previous comments and highlights a limitation of
our approach to characterizing degeneracy, which requires
a boolean understanding of molecular interactions.

Discussion
Comparing the complexity of the artifacts in sticky-
Stringmol with those of Stringmol, we note a loss of many of
the more complex artifacts and no additional artifacts. These
results demonstrate the importance of binding in AChems.
They also indicate the potential for the complexity of a sys-
tem to be stifled by a single naive component. This leads
us to consider what other components of Stringmol (or any
AChem) can have their levels of degeneracy measured and
increased.

Investigations into the network properties of biological
mutation networks, with an eye to how understanding their
properties may lead to advances in ALife, are already un-
derway [6]. That study makes use of network analysis tech-
niques; our measure of degeneracy could be added to the
array of such techniques. In cases where the sets A and B
are the same, a binary interaction matrix specifies a network.
Network analysis has a concept of ‘structural equivalence’
[15], which is the same as redundancy. The methods of
measuring degeneracy and redundancy we introduce are also
suitable for systems where A 6= B, which means they would
also be applicable in other fields which do not have a natural
mapping to a network, such as the binding of paratopes to
epitopes in the immune system [2].

Much of the confusion regarding redundancy and degen-
eracy stems from the absence of a clear statement of con-
text. A standalone statement of redundancy should take the
form: ‘a1 and a2 are redundant given f , and in the context
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Figure 7: Stringmol (with mutation) in the parasite evasion
trial. In both the upper and lower graphs the seed replicase,
R, starts at the top at t=0. The upper graph shows a typical
example of the dynamics when the parasite is lethal to the
container. The 600 high spike towards the end of the run is
the product of the parasite, O. The parasite, M, peaks at the
same time as O, but to a height of only 200. The lower graph
is an example where mutation gives rise to a new strain of
replicase that is immune to the parasite and takes over the
container. The 600 high spike is the product of the parasite,
O. The parasite is fatal to the seed replicase R; but at the
same time as the parasite and O are spiking, a new replicase
molecule emerges. Typical Stringmol behavior can be seen
for the remainder of the run, with two ‘sweeps’(where the
dominant replicase is replaced by a mutation) occurring.

of B’. Statements of the truncated form: ‘a1 and a2 are re-
dundant’ are ambiguous, relying on the author and reader
to have an identical understanding of both f and B. Un-
der some alternative criteria, f ′ and/or B′, the elements a1
and a2 may well be redundant, degenerate or independent
(Ba1

∩Ba2
= ∅). If an author states both f and B explicitly,

then the context of the redundancy is captured unambigu-
ously. When presented with an ambiguous statement, the
best one can do is assume the statement is true and attempt
to determine in what context(s) this is the case, as this may
give valuable insight.

Conclusion
We have introduced definitions of degeneracy and redun-
dancy that can be applied to individual examples, such as
‘are two elements degenerate or redundant’, in equations 3
and 4. We have also introduced definitions of degeneracy
and redundancy that can be applied when talking about the
levels of these properties within a set, in equations 6 and 7.
Our measures of degeneracy and redundancy of sets have
been defined in such a way that the concept of degeneracy is
not conflated with redundancy.

We applied these measures to the binding system used
in Stringmol [10][11], demonstrating that the binding sys-
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Figure 8: Stringmol without mutation in the parasite evasion
trial. In both the upper and lower graphs the seed replicase,
R, starts at the top at t=0. The upper graph shows a typical
example of the dynamics when the parasite is lethal to the
container. The 600 high spike towards the end of the run
is the product of the parasite, O. The parasite, M, peaks at
the same time as O, but to a height of only 200. The lower
graph is an example of the parasitic mutant decaying out of
the system, leaving the seed replicase, R, unaffected. The
parasite M, and its product O, are present at t=0, but die out
relatively quickly.

tem can produce both degeneracy and redundancy. We hy-
pothesised the importance of a rich binding system to the
complexity of the simulation artifacts Stringmol produces.
We tested our hypothesis by constructing a deliberately poor
Stringmol variant with ubiquitous binding, which we denote
as ‘sticky-Stringmol’. Our measures show ubiquitous bind-
ing has no degeneracy. Our results demonstrated that a rich
binding system facilitates many of the artifacts observed in
Stringmol, including: hypercycles (two mutually dependent
molecules), macro-mutations (non-point based mutations),
sweeps (change of dominant replicase, other than by a ran-
dom walk) [10], as well as parasite evasion. All of these
complex phenomena were lost when we substituted String-
mol’s rich (degenerate) binding system for ubiquitous bind-
ing (no degeneracy).

We identified examples of parasite evasion in the previ-
ously published results of Stringmol [10], which we used
as the basis of a parasite evasion experiment. We com-
pared Stringmol to sticky-Stringmol in this parasite evasion
trial, giving an overview of the mechanisms behind the loss
of parasite evasion and demonstrating that the difference in
binding system was the cause.

Though our hypothesis that ‘degeneracy in the compo-
nents of an AChem facilitates the complexity of the system
as a whole’ has not been proven in general terms, our results
support this hypothesis and demonstrate the importance of
binding systems in AChems.
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Abstract

This paper introduces an algorithm for evolving 3D objects
with a generative encoding that abstracts how biological mor-
phologies are produced. Evolving interesting 3D objects
is useful in many disciplines, including artistic design (e.g.
sculpture), engineering (e.g. robotics, architecture, or prod-
uct design), and biology (e.g. for investigating morphological
evolution). A critical element in evolving 3D objects is the
representation, which strongly influences the types of objects
produced. In 2007 a representation was introduced called
Compositional Pattern Producing Networks (CPPN), which
abstracts how natural phenotypes are generated. To date,
however, the ability of CPPNs to create 3D objects has barely
been explored. Here we present a new way to create 3D
objects with CPPNs. Experiments with both interactive and
target-based evolution demonstrate that CPPNs show poten-
tial in generating interesting, complex, 3D objects. We fur-
ther show that changing the information provided to CPPNs
and the functions allowed in their genomes biases the types of
objects produced. Finally, we validate that the objects transfer
well from simulation to the real-world by printing them with
a 3D printer. Overall, this paper shows that evolving objects
with encodings based on concepts from biological develop-
ment can be a powerful way to evolve complex, interesting
objects, which should be of use in fields as diverse as art, en-
gineering, and biology.

Motivation and Previous Work
The diversity, complexity, and function of natural morpholo-
gies is awe-inspiring. Evolution has created bodies that can
fly, run, and swim with amazing agility. It would be desir-
able to harness the power of evolution to create synthetic
physical designs and morphologies. Doing so would benefit
a variety of fields. For example, artists, architects and engi-
neers could evolve sculptures, buildings, product designs,
and sophisticated robots. Evolution should be especially
helpful in the design of complex objects with many interact-
ing parts made of non-linear materials. In such challenging
problem domains, evolution excels while human intuition
is limited. Being able to evolve sophisticated morpholo-
gies also furthers biological research because it enables the
investigation of how and why certain natural designs were
produced. Evolving 3D objects is thus worthwhile both as a

Figure 1: Examples of evolved objects that were transferred
to reality via a 3D printer.

basic science and for its innumerable potential applications.
This paper describes how 3D shapes can be evolved and then
transferred to reality via 3D printing technology (Figure 1).

Previous research in digital morphological evolution has
typically involved encodings that were either highly biolog-
ically detailed, or highly-abstract with less biological accu-
racy. The former camp frequently simulates the low-level
processes that govern biological development, such as the
diffusing morphogen chemicals and proteins that determine
the identity of embryonic cells (Bongard and Pfeifer 2001,
Eggenberger 1997, Miller 2004). While this approach facil-
itates studying the mechanisms of developmental biology,
the computational cost of simulating chemistry in such de-
tail greatly limits the complexity of the evolved phenotypes.
The most complex forms typically evolved in such systems
are simple geometric patterns (such as three bands) (Miller
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2004) or groups of shapes resembling the earliest stages of
animal development (Eggenberger 1997).

The second camp employs high-level abstractions that en-
able the evolution of more elaborate forms with many parts,
but these abstractions tend not to reflect the way that organ-
isms actually develop (Wolpert and Tickle 2010, Bentley
1996). An example is Lindenmayer Systems (L-Systems),
which iteratively replace symbols in strings with other sym-
bols until a termination criteria is reached (Lindenmayer
1968, Hornby et al. 2003). While L-Systems can repro-
duce a wide variety of organismal shapes, especially those
of branching plants, they do not model plant developmen-
tal processes (Wolpert and Tickle 2010). Another example
is the work of Sims (1994), who evolved morphologies that
resembled some biological creatures, although with an ab-
stract encoding based on parameterized recursion that does
not resemble natural developmental processes (Sims 1994).

A third option is possible, wherein a high-level abstrac-
tion is based on the developmental processes that give rise
to natural forms. An example of this approach is Composi-
tional Pattern Producing Networks (CPPNs) (Stanley 2007),
which are used to evolve 3D objects in this paper and are de-
scribed in Methods. Two groups have previously evolved 3D
objects with CPPNs, although neither conducted an open-
ended exploration of 3D objects. One group evolved CPPN
objects that were composed of variable-sized spheres and
were evaluated on two tasks: falling (Auerbach and Bongard
2010b) or moving rapidly (Auerbach and Bongard 2010a).
Most of the evolved forms resembled clubs. A second group
evolved soft-bodied robots to move quickly (Hiller and Lip-
son 2010). These studies demonstrate that CPPNs can create
functional shapes, but leave open the question of what types
of 3D objects CPPNs can produce with fewer constraints and
without specific objectives.

2D pictures are evolved with CPPNs on picbreeder.org,
where humans perform selection (Secretan et al. 2011). The
complexity and natural appearance of the resulting images
often support claims regarding the legitimacy of CPPNs as
an abstraction of biological development (Stanley 2007). A
demonstration in 3D would significantly strengthen these
claims, however, because the natural world is 3D. It is possi-
ble that CPPNs are unable to frequently make sensible forms
with the added difficulty of another dimension, and when
objects must be one contiguous unit (which aids in trans-
fers to reality). A recent paper by Bánsági Jr et al. (Science
2011) highlights the need to verify that generative encodings
that produce complex patterns in 2D also can do so in 3D.
By evolving CPPN objects in the natural 3D setting, this pa-
per conducts a critical test of the hypothesis that generative
encodings based on geometric abstractions of development
capture some of the complexity-generating power of natu-
ral morphological development. Doing so also provides a
visually intuitive testbed for studying how variants of such
generative encodings behave. It also reveals the utility of

CPPNs as a representation for 3D object design.

Methods
Compositional Pattern Producing Networks
Compositional Pattern Producing Networks (CPPNs) ab-
stract the process of natural development without simulating
the low-level chemical dynamics involved in developmental
biology (Stanley 2007). Cells (and higher-level modules) in
natural organisms often differentiate into their possible types
(e.g. heart or spleen) as a function of where they are situated
in geometric space (Wolpert and Tickle 2010).

Components of natural organisms cannot directly deter-
mine their geometric location, so developmental processes
have evolved to create gradients of chemicals and proteins
called morphogens that organismal components use to figure
out where they are and, thus, what to become (Wolpert and
Tickle 2010). For example, in many animals the anterior-
posterior and dorsal-ventral axes are specified by maternally
provided morphogen gradients. Embryonic genes then con-
struct more complicated geometric patterns of morphogens
as a function of these simpler gradients. Downstream genes
can construct additional pattern as a function of any of the
patterns already created, enabling the production of patterns
of arbitrary complexity (Wolpert and Tickle 2010).

CPPNs abstract this process by allowing similar geomet-
ric patterns to be composed of other geometric patterns, but
represent the patterns mathematically instead of via diffus-
ing morphogens. To replace maternally-provided gradients,
the experimenter provides the initial gradients. Final pat-
terns output by the CPPN determine the attributes of the
phenotypic components at different geometric locations. For
example, two-dimensional pictures could be encoded by it-
eratively passing the coordinates of each pixel on a canvas
(e.g. x = 2, y = 4) to a CPPN genome and having the output
specify the color or shade of each pixel (Figure 2).

Each CPPN is a directed graph in which every node is
itself a single function, such as sine or Gaussian. The na-
ture of the functions can create a wide variety of desirable
properties, such as symmetry (e.g. a Gaussian function) and
repetition (e.g. a sine function) that evolution can exploit.
Because the genome allows functions to be made of other
functions, coordinate frames can be combined. For instance,
a sine function early in the network can create a repeat-
ing theme that, when passed into the symmetrical Gaussian
function, creates a repeating series of symmetrical motifs
(Figure 2). This process abstracts the natural developmental
processes described above (Wolpert and Tickle 2010).

The links that connect and allow information to flow be-
tween nodes in a CPPN have a weight that can magnify or
diminish the values that pass along them. Mutations that
change these weights may, for example, give a stronger in-
fluence to a symmetry-generating part of a network while
diminishing the contribution from another part.
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Figure 2: CPPNs combine mathematical functions to create
regularities, such as symmetries and repeated modules, with
and without variation. Adapted from Stanley (2007).

Variation is produced by mutating or crossing CPPNs.
Mutations can add a node or change weights. The default set
of allowable functions for CPPNs in this paper are sine, sig-
moid, Gaussian, and linear, although we also experimented
with additional functions (see Results). The evolution of
the population of CPPN networks occurs according to the
principles of the NeuroEvolution of Augmenting Topologies
(NEAT) algorithm (Stanley and Miikkulainen 2002).

The NEAT algorithm contains three major compo-
nents (Stanley and Miikkulainen 2002). (1) It starts with
small genomes that encode simple networks and complexi-
fies them via mutations that add nodes and links to the net-
work. This complexification enables the algorithm to evolve
the network topology in addition to its weights. (2) NEAT
preserves diversity via a fitness-sharing mechanism that al-
lows new innovations time to be tuned by evolution before
competing them against more optimized rivals. (3) crossover
utilizes historical information in a way that is effective, yet
avoids the need for expensive topological analysis.

Encoding 3D Objects with CPPNs
To evolve 3D objects, inputs for the x, y, and z dimensions
are provided to a CPPN. Additional gradients can be pro-
vided, which may bias the types of objects produced (see
Results). A workspace (maximum object size) is defined
with a resolution, which determines the number of voxels in
each dimension. In this paper there are 10 voxels in the x and
z dimensions and 20 in the y (vertical) dimension. The x,
y, and z value of each voxel are iteratively input to a CPPN,
and voxels are considered full if the CPPN output is greater
than a threshold (here set to 0.1), otherwise the voxel is con-
sidered empty. The 3D voxel array is then processed by
the surface-smoothing Marching Cubes algorithm (Lorensen
and Cline 1987). A normal is provided for each vertex when
visualizing the objects in OpenGL, a graphics technique that
further smooths the surface. These two smoothing steps en-

able high-resolution CPPN objects to be visualized without
prohibitive computational costs.

This algorithm for encoding 3D objects is a more straight-
forward extension of how CPPNs encode 2D pictures (Stan-
ley 2007, Secretan et al. 2011) than another algorithm for
evolving 3D objects with CPPNs, which included growth
over time and limited shapes to collections of attached
spheres of different sizes (Auerbach and Bongard 2010b;a).

Selection Mechanisms (Fitness Assignment)
We evolve images with interactive evolution and target-
based evolution. During interactive evolution the user (here,
the first author) views N rotating objects (here, 15) and se-
lects a champion, which receives a fitness of 1000. The user
can also reward additional organisms that receive a fitness
of 500. To avoid uninteresting objects, those that are not
chosen, yet have voxel counts between 10% and 90% of
the maximum number possible, are given a fitness of 100.
The remaining objects are given a fitness of 1. For target
evolution, the fitness is the percent of voxels that matched
the target object. To magnify differences in fitness values,
all fitness scores serve as an exponent to a large constant
c = 2000 to produce the final fitness value. The parameters
are identical to a previous work (Clune et al. 2011), except
mutations were allowed to be larger (MutationPower = 2.5).

Results and Discussion
Interactive Evolution
Overall summary We study interactive evolution because
it allows an open-ended exploration of the design space of
objects CPPNs can produce. Additionally, interactive evolu-
tion avoids the greedy nature of target-based evolution, po-
tentially allowing it to access more interesting objects (Sec-
retan et al. 2011, Lehman and Stanley 2008). A drawback
of interactive evolution is that it is subjective, but science
should not abandon such a useful tool simply because it is
subjective. While user preferences bias the types of objects
selected, the encoding has to be able to produce such objects
in the first place in order for them to be selected. Differ-
ent encodings will bias the types of patterns evolved (Clune
et al. 2011), meaning that interactive evolution can inform
us about the biases and expressive power of the encoding.

Figure 3 shows example objects from different gener-
ations during a run of interactive evolution. The geo-
metric patterns become more complex over generations,
which reflects the property of complexification built into
NEAT (Stanley and Miikkulainen 2002).

Figure 4 displays a few of the interesting objects dis-
covered in different runs, some of which had different in-
puts and parameters (described below). It is important to
note that these objects were chosen from a small number of
runs performed by one person, each of which was limited
to tens or perhaps a few hundred generations. It is note-
worthy that such recognizable 3D forms emerge in such a
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Figure 3: Representative objects from different generations
of a single run of interactive evolution. From top to bottom,
rows display individuals from generations 1, 15, and 33.

small sample size. These 3D objects should not be held to
the same standard as pictures from picbreeder.org, where
hundreds of users have published thousands of images af-
ter performing over 150,000 evaluations across hundreds of
generations (Secretan et al. 2011).

The objects in Figure 4 exhibit many properties that are
desirable both for studying morphological evolution and har-
nessing it for engineering or artistic purposes. The objects
are frequently regular, a property which is important in en-
gineering and for evolvability (Lipson 2007, Clune et al.
2011). An important regularity is symmetry, which is ev-
ident with respect to different dimensions in many of the
objects. For example, all of the objects in generation 33
of Figure 3 are highly left-right symmetric, and objects b7
and b8 in Figure 4 exhibit left-right and top-bottom symme-
tries. Another useful regularity is repetition, which occurs
frequently in the evolved objects (e.g. the top-right object in
Figure 3). A further beneficial property is exhibiting regu-
larity with variation (Stanley and Miikkulainen 2003, Lip-
son 2007, Clune et al. 2011). For example, Figure 4b1 has
a motif that appears like an animal head, but is repeated in
different sizes and with other subtle variations. Symmetric
patterns with asymmetric variations can also be observed,
such as in Figure 4a8 and Figure 4b6.

It is important to note that humans often select regular,
symmetrical shapes, which increases their frequency in in-
teractive evolution. That said, biology and engineering also
often reward regularity. Additionally, it has been shown that
when CPPNs generate artificial neural networks that con-
trol robots in target-based evolution, the neural wiring pat-
terns are often regular, including symmetries and repeated
themes (Clune et al. 2011), demonstrating that CPPNs pro-
duce regularities even without humans performing selection.

Most importantly, the evolved objects often look simi-
lar to natural forms or engineered designs, revealing that
CPPNs can produce the types of objects we are interested in
designing and studying with synthetic morphological evolu-
tion. Humans can only select such such familiar forms if an
encoding tends to produce such designs, which has not been
the case for most previous generative encodings. People of-
ten describe Figure 4a2 and 4a3 as faces, 4a4 as a Jack-o’-
lantern face, 4a5 as an animal figurine, 4a6 as an African
statue of a human, 4a7 as a human female stomach, 4a8 as
a human female torso, 4b1 and 4b4 as animals, 4b2 and 4b3
as elephants, 4b5 as a human head and shoulders, 4b6 as a
horned mask, and 4b7 and 4b8 as spaceships. Some also
describe 4b7 as a butterfly. People describe other objects as
interesting art, even though they do not resemble any spe-
cific natural or human design (e.g. Figure 4a1). Such ob-
jects can potentially spark artistic ideas for new forms. The
fact that the shapes consistently evoke human and natural
designs demonstrates the expressive power of the CPPN en-
coding to produce interesting 3D objects.

An additional important property is that the offspring of
the 3D CPPN objects are similar to their parents, but are
varied in interesting ways. Some encodings lack this prop-
erty in that mutations have dramatic effects, rendering most
offspring very different from their parents, which hinders
evolvability (Stanley and Miikkulainen 2003). For exam-
ple, Figure 4b4 is the child of Figure 4b3, and Figure 4b2
is their close relative. All three are consistently described as
animals, yet are interesting variations on the animal theme.
For example, only a single generation of genetic changes
between Figure 4b3 and Figure 4b4 transformed what ap-
pears like an elephant with a trunk into something resem-
bling an elephant with warthog tusks. A different variant of
Figure 4b3 that thickened the trunk can be seen in Figure 1
(center row, left), which is next to a printed copy of Fig-
ure 4b3. Moreover, Figure 4b3, its relative in Figure 1, and
Figure 4b2 all evoke elephants, but they are quite different
objects, suggesting that the CPPN has captured some fun-
damental aspects of the elephant concept that it expresses in
different ways.

Some of the geometric complexity in the genome is not
visible in these 3D phenotypes because a threshold deter-
mines the presence or absence of a voxel. In contrast,
picbreeder pictures have a continuum of outputs in grayscale
and color, which adds to their complexity. Pre-thresholded
geometric information could be useful, however, to make
colored 3D objects, or to have objects with multiple materi-
als (e.g. the soft-robot equivalent of muscle and bone).

Varying CPPN parameters generates different objects
To test whether the types of objects produced could be bi-
ased by the CPPN inputs and parameters, we performed
multiple runs of interactive evolution with varying condi-
tions. We initially provided only x, y, and z values for
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Figure 4: Example objects evolved with CPPNs via interactive evolution.

each voxel. Even with this minimal information, regulari-
ties such as symmetries and repeating themes were common
(Figure 3), which is expected in a generative encoding with
symmetric and repeating genomic functions. The objects in
this setup seemed to require more generations before they
became interesting, and usually did not appear like objects
floating in space, but instead bordered the workspace wall.

We then added the distance from center as an input to the
CPPN, which picbreeder also has (in 2D) (Secretan et al.
2011). This information more frequently created rounded
objects centered in space. Because the distance-from-center
function took the normalized values in each dimension, and
the y (height) dimension was longer, an egg-shaped motif
was common (Figure 5, left three). All of the objects in
Figure 4 have this input. Preliminary experiments with other
inputs also revealed interesting biases in the resulting objects
(not shown), suggesting a rich area of research regarding
how best to bias CPPNs with seed gradients.

To date, no published results explore how patterns dif-
fer when recurrence is allowed in CPPN genomes. We en-
abled recurrence and discovered that the resulting patterns
are qualitatively different in that they tend to include fractal
patterns. For example, branching patterns emerged, such as
an object resembling a tree (Figure 6, left) and another evok-
ing the vascular system (Figure 6, center). Like with fractals,
the complexity is often concentrated at the surface boundary,
producing a jagged surface effect (e.g. Figure 6, right). Ob-
jects with recurrent genomes were much more likely to have
small, separated pieces floating in space.

Another interesting parameter of CPPNs is the set of pos-
sible genomic node functions. No research published to
date has tested different function sets on the same problem
to understand how CPPN patterns are affected by this pa-

Figure 5: Objects evolved with a distance-from-center in-
put (left three), which frequently featured egg-shape motifs,
and objects evolved with an expanded set of genome func-
tions (right three). The rightmost two images show different
angles of the same object. Facets in the right three objects
result from a close zoom and because, for illustration, nor-
mals are provided for facets instead of vertices.

rameter. Visual domains such as 3D objects are a helpful
place to start such explorations because of the intuition they
provide. We added a square, cosine, and sign-preserving
square root function and performed additional runs. Objects
in these runs tend to be more complex in earlier generations,
and seem to involve both rounded and sharp edges. Fig-
ure 4b7 and the rightmost three in Figure 5 are example ob-
jects evolved with this expanded genomic node function set.

Target-based Evolution
A second way to explore the capabilities of CPPNs is to
challenge them to produce a target object. Knowing how
CPPNs perform in 3D in target-based evolution is helpful
for numerous reasons. Initially, it serves as a preliminary test
of how CPPNs might perform on more open-ended, yet still
target-based problems, such as evolving robot morphologies
to perform certain tasks (e.g. locomotion). Additionally, bi-
ologists would benefit if they could repeatedly evolve var-
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Figure 6: Example objects with recurrent genomes.

ious morphologies to study whether certain developmental
strategies for constructing 3D geometric patterns arise fre-
quently. Finally, target evolution allows an artist or engineer
to explore objects that are similar to a target object, yet dif-
fer in interesting ways (similar to how Figure 4b4 and Fig-
ure 4b2 result from slight permutations to the genome of
Figure 4b3). Finally, target-based evolution is much faster,
enabling an exploration the effects of different parameter
settings, which can inform interactive evolution.

The target object for this paper is shown in Figure 8a. It
consists of four partially-overlapping spheres, with the outer
two halved by workspace bounding box. This target has
round shapes that are different from the egg-shaped motif fa-
cilitated by the distance-from-center input, providing a test
of whether such a related input improves performance. Each
treatment has 20 runs with a population of 150 for 1000 gen-
erations, unless otherwise specified.

The baseline treatment featured only x, y, and z inputs
and the default set of genome functions. The best perform-
ing object in each run captures the long cylindrical shape of
the target, but most attempts at rounded edges are imperfect
combinations of straight-line functions. All runs except one
failed to carve much material away between the spheres. An
average of 90.8% (± 0.003 SE) of voxels are matched (Fig-
ure 7), but the target object is not identifiable until about
≥ 93% of voxels are matched. As such, the small differ-
ences in fitness between the treatments in Figure 7 represent
substantial differences in whether the target object is rec-
ognizable. Interestingly, one outlier run in this treatment
performed much better than the rest (with 94.6% of voxels
correct). It features rectangular approximations of spheres
(Figure 8b). The lack of round shapes in this treatment cor-
roborates the previous subjective observation from interac-
tive evolution that CPPNs can struggle to evolve and exploit
round gradients when they are not provided as inputs.

To test if seeding CPPNs with spherical gradients makes
it easier to match this rounded target, we added distance to
the center as an input. The CPPNs in the previous treatment

could have evolved to calculate this same information, but
that may have been difficult. Surprisingly, this information
significantly lowered performance to 90.0% (± 0.002 SE,
p = 0.013, Mann-Whitney test, Figure 7). However, the
evolved objects all have smooth, round forms (Figure 8c-d),
confirming that providing different seed gradients can bias
the types of evolved objects. While this might be expected
in early generations, it is interesting that the gradients pro-
vided have noticeable effects after a thousand generations.
This result is in line with a previous paper that found that
the information input into CPPNs can bias the resulting phe-
notypes (Clune et al. 2009). We include this input in the re-
maining treatments in this paper because it facilitates round
surfaces, even though it hurt performance in this experiment.

Because interactive evolution features smaller population
sizes, it is worthwhile to study how this difference affects
the search for 3D objects. Additionally, since NEAT com-
plexifies genomes over evolutionary time, having more gen-
erations may improve the search by accessing genomes with
more hidden nodes. We investigate these issues by decreas-
ing the population size from 150 to 15 and increasing the
number of generations tenfold to 104, which keeps the num-
ber of evaluated objects the same. This change significantly
improves performance to 91.8% (± 0.003 SE, p < 0.001,
Mann-Whitney test, Figure 7), suggesting that the small
population sizes in interactive evolution do not hurt, and
may actually benefit, morphological evolution with NEAT-
based encodings. The evolved objects tend to have more
space carved out between the spheres (Figure 8e-f).

A fundamental evolutionary parameter that can greatly af-
fect evolvability is the mutation rate. We varied the major
sources of mutation in NEAT by altering the rate at which
genomic links are added, removed, and mutated, as well
as the rate at which genomic nodes are added. Increas-
ing the node addition rate significantly boosted performance
(p < 0.001, Mann-Whitney test, Figure 7) to 91.5% (±
0.003 SE). Changing the other mutation rate parameters did

Figure 7: Means of the best-performing individuals for
target-based evolution. See text for variance.
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Figure 8: Target-based evolution objects.

not improve performance (data not shown).
Because a smaller population with more generations was

beneficial, and because a higher mutation rate was benefi-
cial, we tested whether both changes together would out-
perform either alone. The combination did improve per-
formance to 92.0% (Figure 7), but the difference was not
significant (p > 0.05, Mann-Whitney test). We also found
that the expanded genome function set (described previ-
ously) improved performed to 93.0%, which was significant
(p = 0.022, Mann-Whitney test). As before, the objects
in this treatment seemed to combine rounded surfaces with
sharper edges: while most were smooth (e.g. Figure 8g-h), a
few had rough patches on their surface, including Figure 8i.
Adding recurrent genomic connections to this treatment did
not significantly affect performance (93.3%, p > 0.05).

Overall, the target-based evolution experiments reveal
that evolving CPPNs can roughy match a target object.
While a high percentage of voxels were matched, the degree
to which the evolved objects qualitatively resemble the tar-
get is subjective and debatable. The most important contri-
bution of these experiments is to better understand the way
in which target-based evolution is biased by different pa-
rameters. These results are preliminary, however, until more
tests can be conducted with additional targets.

It is also interesting that many of the evolved objects look
designed for a purpose. For example, many of the objects
in Figure 8 seem like functional and aesthetically attrac-
tive objects carved on a lathe, such as legs from tables and
chairs or posts from banisters and railings. One reason this
is surprising is because it could have been the case that the
greedy nature of target-based evolution would have gained
improvements by iteratively adding small patches of vox-
els that match a subset of the overall space. Such a patch-
work solution would not look as regular and smooth as the
objects that actually evolved, suggesting that CPPNs are bi-

ased away from such a piecemeal strategy. Previous work
has shown that CPPNs have difficulty making exceptions
to regular patterns when evolving neural networks (Clune
et al. 2011), which could explain why the target object in
this study was not matched one patch at a time. Such a bias
toward regularity may simultaneously explain the smooth-
ness of the evolved objects and why matching the final few
percent of voxels is so difficult.

Artists and engineers may actually benefit from the fact
that the evolved objects share some properties of the target,
but are different in interesting ways. This means that a de-
signer can provide a seed object as a target, and a series of
objects can automatically be generated that are aesthetically
interesting variations on that seed concept (Figure 8).

Transferring Objects to the Physical World
Advances in 3D printing technologies make it possible to
transfer evolved objects into the physical world, which may
help artists and engineers benefit from this technology. To
test whether CPPN objects maintained their appearance and
structural integrity in reality we printed them on a Con-
nex500 3D printer. The objects look similar to their sim-
ulated counterparts and are structurally sound (Figure 1).
One difference is that non-contiguous pieces (e.g. the top
of Figure6, left) are not held in place in the physical
world without additional scaffolding. By printing in a semi-
transparent material, we also discovered that none of the
objects have visible hollow areas embedded within them,
although CPPNs can create such negative spaces. While
the gap between simulated and physical objects was not ex-
pected to be large for static objects, it is helpful to have ver-
ified the fidelity of the transfer.

Conclusions and Future Work
This paper introduces an algorithm for evolving 3D objects
with the CPPN generative encoding, which is a computa-
tionally efficient abstraction of biological development. We
conducted both interactive and target-based evolution to ex-
plore the ability of CPPNs to create complex objects, espe-
cially those that resemble natural and engineered designs.

A small, preliminary exploration of the design space of
3D CPPN objects unearthed a diversity of objects that evoke
natural and engineered forms. Many of the objects featured
regularities such as symmetry and repetition, with and with-
out variation. Such properties are important for engineer-
ing and evolvability (Lipson 2007, Clune et al. 2011), and
suggest that CPPNs are a promising encoding for evolving
useful and aesthetically pleasing objects. To extend this re-
search we are creating a website like picbreeder.org (Secre-
tan et al. 2011) where users can collaboratively evolve 3D
objects online, which will provide a much larger exploration
of the potential of this technology. It will also overcome the
need for any individual to perform all of the evaluations in a
lineage and thus allow more complex objects to evolve.
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Experiments with target-based evolution on one target re-
vealed how the inputs and parameters of CPPNs can influ-
ence the types of objects they evolve. The evolved objects
roughly resemble the target, but do not match it precisely.
While the evolved objects share some properties of the tar-
get, they also differ from it in interesting ways. This prop-
erty could help artists and engineers by providing 3D de-
signs that are variations on a seed concept. All of these con-
clusions are tentative, however, since experiments were only
conducted with one target. Future work is necessary to de-
termine whether these observations generalize.

While there are many useful applications for evolving
static, single-material 3D objects, this technology is also a
stepping stone to evolving objects that can move and that
have multiple materials. In future work we will evolve such
soft-bodied robots in simulation and transfer them to the
physical world. Doing so will enable us to harness the power
of evolution and developmental biology to begin to create
synthetic creatures that have some of the exciting properties
of their natural counterparts.
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Abstract

Kin selection theory predicts that evolution favors altruist
genes that are more accurate in targeting altruism only to
copies of themselves. We support this prediction by compet-
ing multiple altruist-targeting mechanisms that vary in accu-
racy in determining if a recipient carries a copy of the altruist
gene. We compete altruism-targeting mechanisms that make
energy donations based on (1) kinship (kin targeting), (2) ge-
netic similarity at a level greater than expected for kin (simi-
larity targeting), and (3) perfect knowledge of the presence of
an altruist gene (Green Beard targeting). Natural selection fa-
vored the most accurate targeting mechanism available, once
altruism levels were accounted for (Fig. 1). Our investiga-
tions also revealed that the Green Beard mechanism, origi-
nally invented as a hypothetical example of a perfectly ac-
curate, cheater-proof system and subsequently discovered in
nature, is in fact vulnerable to cheaters. Such cheaters prevent
Green Beard targeting from outcompeting kin and similarity
targeting (Fig. 1c). The reason is because Green Beard altru-
ists donate to organisms that have Green Beards and make at
least one Green Beard donation. There is thus an evolutionary
pressure to donate only once, thereby qualifying to receive
Green Beard donations while paying as little as possible. By
increasing the number of donations necessary to qualify to re-
ceive Green Beard donations (T ), we showed that organisms
evolved to donate just above this threshold (Fig. 2). Green
Beard targeting could only take advantage of its increased
accuracy and outcompete kin and similarity targeting when
we artificially set T to a high number, such as 100 (Fig. 1d).
These results raise the question of how kin and similarity tar-
geting differ from Green Beard targeting in being able to raise
altruism levels despite the presence of cheaters. The answer
is that they have built-in mechanisms that keep cheaters at
bay (Fig. 3). We propose that Green Beard targeting can be
augmented with a similar defense against cheaters if muta-
tions that change the altruism level also change the marker
(e.g., beard color), such that beard color reliably indicates the
altruism level. This Identical Beard Color mechanism raises
its altruism level automatically and outcompetes kin and sim-
ilarity targeting due to better accuracy (Fig. 1e). Overall, our
results confirm that natural selection favors altruist genes that
are increasingly accurate in targeting altruism to only their
copies. Our work also emphasizes that the concept of tar-
geting accuracy must include both the presence of an altruist
gene and the level of altruism it produces.

∗Published in Proc. Royal Society, 2011, 278(1706): 666-674.
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Figure 1: Evolved altruism levels for different targeting
mechanisms. Plotted is the average number of donations
made by last-generation organisms in 50 trials (+/- one stan-
dard error, often too small to distinguish). The maximum
number of donations is capped at 100. (a) Targeting altruism
based on kinship was selected for over two controls (target-
ing altruism at random, and a neutral instruction). (b) Tar-
geting altruism based on high genetic similarity was favored
over targeting based on kinship. (c) Selection did not fa-
vor targeting altruism via a Green Beard mechanism (with a
threshold of 1) over kin and similarity targeting. (d) Selec-
tion favored a Green Beard mechanism with a threshold of
100 (the maximum number of donations allowed) over kin
and similarity targeting. (e) Selection favors Identical Beard
Color targeting over kin and similarity targeting.
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Figure 3: How kin and similarity targeting can evolve persistently high altruism levels. A thought experiment illustration
showing how (a) kin-based altruism naturally thwarts kin-cheaters and (b) enables enduring increases in altruism levels. (a-i)
Consider a group of related organisms that are altruistic to each other (blue and light-blue). One organism may mutate to be
less altruistic, becoming a kin-cheater (red), but since only its closest relatives (light-blue) will consider it kin, only they will
be altruistic toward it. (a-ii) The kin-cheater will tend to supplant its kin because it receives more donations from them than it
gives. (a-iii) Once the kin-cheater has replaced those that considered it kin, the kin-cheater is left receiving donations only from
other kin-cheaters. This group (red) will have a lower altruism level than their distant kin (blue) and will come to be replaced by
them. (b-i) Now consider an organism (orange) that mutates to have a higher level of altruism than its ancestors (blue). Initially,
it will be selected against because it gives more donations to those that it considers kin (pink) than it receives from them. (b-ii)
If the less-altruistic kin of the higher-level altruist are killed off by drift, then the higher-level altruist and its offspring (orange)
will have a competitive advantage over their distant ancestors (blue). (b-iii) While chance is required to start the process, once
it has occurred there will be selection for the higher level of altruism. There are additional factors that complicate all of these
fitness comparisons, but for clarity we have sketched these scenarios only in broad strokes.
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Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on
Rugged Fitness Landscapes∗

Jeff Clune1,2, Dusan Misevic3, Charles Ofria1, Richard E. Lenski1, Santiago F. Elena2, and Rafael Sanjuán2

1. Michigan State University 2. Universidad Politecnica de València. 3. ETH Zurich
jclune@msu.edu

Abstract

The rate of mutation is central to evolution. Mutations are
required for adaptation, yet most mutations with phenotypic
effects are deleterious. As a consequence, the mutation rate
that maximizes adaptation will be some intermediate value.
This abstract summarizes a previous publication in which
we used Avida, a well-studied artificial life platform, to in-
vestigate the ability of natural selection to adjust and opti-
mize mutation rates. Our initial experiments occurred in a
previously studied environment with a complex fitness land-
scape (Lenski et al. Nature, 423, 2003) where Avidians were
rewarded for performing any of nine logic tasks. We as-
sessed the optimal mutation rate by empirically determining
which unchanging mutation rate produced the highest rate
of adaptation. Then, we allowed mutation rates to evolve
and we evaluated their proximity to the optimum. Although
we chose conditions favorable for mutation rate optimiza-
tion (asexual organisms not yet adapted to a new environ-
ment), the evolved rates were invariably far below the op-
timum across a wide range of experimental parameter set-
tings (Fig. 1). We hypothesized that the reason mutation
rates evolved to be suboptimal was the ruggedness of fitness
landscapes. To test this hypothesis, we created a simplified
‘counting ones’ (a.k.a. ‘onemax’) landscape without any fit-
ness valleys and found that, in such conditions, populations
evolved near-optimal mutation rates (Fig. 2, top row). In
contrast, once moderate fitness valleys were added to this
simple landscape, the ability of evolving populations to find
the optimal mutation rate was lost (Fig. 2, bottom two rows).
Additional experiments revealed that lowering the rate at
which mutation rates evolved did not preclude the evolu-
tion of suboptimal mutation rates (see original manuscript).
We conclude that rugged fitness landscapes can prevent the
evolution of mutation rates that are optimal for long-term
adaptation because of the short-term costs of traversing fit-
ness valleys. This finding has important implications for
evolutionary research in both biological and computational
realms.

∗Published in PLoS Computational Biology, 2008, 4(9).

Figure 1: Evolutionary trajectories for fitness and mutation
rate on a complex fitness landscape reveal that evolved mu-
tation rates are lower and produce less adaptation (lower fit-
ness values) than a certain (long-term optimal) non-evolving
rate. (A) Evolution of average (over 50 runs) log-fitness ±1
s.e.m. for treatments with the genomic mutation rate fixed
at the empirically determined optimum rate Uopt = 4.641
(black) and for treatments with variable, evolving genomic
mutation rates starting at either 10 (red) or 10−3 (blue). (B)
Evolution of average log genomic mutation rate ±1 s.e.m.
for treatments with variable, evolving mutation rates starting
at either 10 (red) or 10−3 (blue). The black line indicates the
mutation rate that had produced the highest average fitness
for that time point.
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Figure 2: Evolution of mutation rates on simple fitness landscapes with different ruggedness. Here, fitness depended solely on
the match between the environment and the number of a key instruction that organisms had in their genomes. In season A (left
column) the key instruction was deleterious while it was beneficial in season B (center column). Rugged fitness landscapes
with maladaptive valleys (rows 2-4) were introduced by setting the fitness of organisms with intermediate numbers of the key
instruction to the minimum fitness level of one. The right-most column shows the results of evolution experiments under each
of these selective regimes. Final fitness is shown as a function of genomic mutation rate for both static and dynamic mutation
rates. The solid black line represents the average of the mean fitness across 10 runs for each of 100 different static mutation
rates ranging from U = 0.01 to 1 in increments of 0.01. The two colored points represent the mean fitness and mutation rate,
both averaged over 50 runs where the mutation rate freely evolved, with initial rates of U = 1 (red) or 10−5 (blue). Mutation
rate and fitness values were time-averaged over the last 10 of 50 environmental changes. Owing to very similar final values,
despite the very large initial differences, the individual colored points are indistinguishable in the first two rows, and error bars
are not visible. The arrows indicate where mutation rates began and ended, on average, for the dynamic-rate experiments.
Although the optimal mutation rate increases as a function of valley size (note the right-shift in the dashed line from top to
bottom), the evolved mutation rates in fact decrease as a function of valley size (note the left-shift of the blue and red points
from top to bottom).
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Recovering Hidden Swarm Parameters Using a Simulated “Robofish”

Richard Coates1 and Simon Hickinbotham1

1YCCSA, Department of Computer Science, University of York, Heslington, York YO10 5GH, UK
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Abstract

Swarming is behaviour which emerges from the action of in-
dividual agents. Models of swarm behaviour impose fixed
model parameters on the agents comprising the swarm. This
paper evaluates the possibility of extracting the parameters of
a swarm model from the swarm. This can be achieved by
evolving the parameters of a single agent that interacts with
the swarm. The approach was inspired by work on so-called
“robofish” by Faria et al. If we assume that the collective
dynamics of wild animals can be modelled, it would be de-
sirable to recover the dynamics of the model via interaction
with them. We demonstrate that it is possible to recover the
parameters of a shoaling model used by a swarm. We present
an evaluation of this approach, using a genetic algorithm to
drive the learning process. The experiments also reveal in-
formation about the effects of varying the parameters of the
model on the emergent swarm dynamics.

Introduction
In nature many animals travel in flocks, shoals, swarms and
other large groups. Several models have been proposed
to replicate this phenomena (Aoki, 1982; Reynolds, 1987;
Couzin et al., 2002). In each of these models, individuals
follow local rules which produce the swarm as an emergent
phenomenon. However little work has been done to find out
the validity of these models and how accurately they map
to behaviour in real-world swarms. In this paper we ex-
plore this possibility by investigating whether an agent can
recover the parameters of a swarm by monitoring its inter-
actions with the rest of the swarm. We test an evolutionary
approach to this learning problem. If the evolved behaviour
of the agent and swarm is identical then the models used
by them are functionally equivalent. This novel approach
was inspired by the work of Faria et al. (2010), in which
a robotic fish (or robofish) interacts with a shoal of stickle-
backs Gasterosteus aculeatus L. We refer to the shoal of fish
with which the robofish interacts as the modelfish in the rest
of this paper, since it is presumed that the shoal is following
a model of behaviour which the researcher is trying to dis-
cover. This paper extends the work presented in (Coates and
Hickinbotham, 2011).

It is only possible to determine whether model parameters
can be learned in this way if the parameters of the swarm
are known. Accordingly, we test the approach in simulation,
where a swarm of modelfish follow a pre-specified model.
In addition, the fitness function which is used to evolve the
robofish model only makes use of observations about the
emergent behaviour of the swarm. In other words, the model
parameters are “hidden” from the evolutionary algorithm.

Aoki (1982) described one of the first attempts to accu-
rately model the behaviour of fish. The bahaviour of each
fish is determined by the position of its neighbors. The space
around the fish is divided into zones of perception relative
to the position and oritentation of the fish. Each zone has
a corresponding behaviour linked to it, commonly called a
compulsion. The presence of fish in a particular zone in-
creases the conribution of the compulsion to the behaviour
of the fish in the next discrete time step. In Aoki’s model,
the fish’s area of perception is split into three radii. Behind
the fish there is also a “blind spot”, the contents of which do
not contribute to the fish’s behaviour. Nearest the fish is the
zone of repulsion, then comes the zone of orientation and
finally the zone of attraction. Aoki’s model only takes into
account up to four neighboring fish in the zone of percep-
tion. These are selected randomly (with a greater chance of
choosing those in front) and have a diminishing effect of the
movement of the fish. If no neighbours are found in the zone
of perception, the fish will try and move towards any it can
see, no matter the distance. The neighbours it finds (and the
zones they appear in) change the mean and standard varia-
tion of a Gaussian model which governs the update of the
heading of the fish.

Swarm simulations were originally developed to study the
behaviour of real animals. They were used to provide in-
sights into possible reasons for why swarms behave as they
do and how changing the simulations parameters affects the
resulting behaviour. Since then they have found uses in com-
puter graphics (Reynolds, 1987), as well as in searching data
(Kennedy and Eberhart, 1995). Reynolds (1987) developed
one of the best known swarm models, designed not necessar-
ily to be authentic but to give aesthetically pleasing move-

153ECAL 2011



Con
fid

en
tia

l

Figure 1: The three zones of the 2D Couzin model. The ori-
entation of the fish is shown by a bold arrow (centre). The
blind spot is shown as a shaded area. The widths of the
zones of Attraction (ZOA), Orientation (ZOO) and Repul-
sion (ZOR) are indicated by arrows. Note that the position
of the outer zones relative to the fish are dependent upon the
widths of the inner zones.

ment for animation purposes. It consists of a single zone
of perception within which a “boid” is able to detect others.
It’s movement is also governed by three compulsions with
regards to the neighbours it can see, the urge to move to-
wards a neighbour, away from them or in the same direction
as them. These compulsions are combined with the position
and heading of the neighbours to provide a new heading for
the boid.

The Couzin model shares much with Aoki’s model. It
retains the three zones and their effect on the heading of
the fish. However like Reynolds’ model fish outside of the
range of perception have no effect at all. In addition, in a
single time step, only one of the zones ever has an influence
on the behaviour of the fish. The zone of repulsion (ZOR)
takes precedence over the other two compulsions. If a neigh-
bour is found in this zone then the other two are ignored and
the fish will just try and swim away from neighbours in the
ZOR. If no fish are found in the ZOR then only the fish in
the zone of orientation (ZOO) are considered in the update
of the heading. Modelfish in the zone of attraction (ZOA)
are only considered if the ZOR and ZOO are empty. We
note here the similarity of this configuration with Brooks’
subsumption architecture (Brooks, 1999).

The above swarming systems seem very different but they
have the same foundations: they are built on simple rules,
and the complex behaviour they exhibit is a by product of
these, not explicitly stated by them; they involve extensive
interaction between individual members of the swarm using
observed information about the other individuals; and the
behaviour is highly dependent on the parameters used.

Genetic algorithms (GAs) use emulations of evolution in
order to solve computational problems which may be diffi-
cult to solve using more conventional techniques Goldberg
(1989). The main components are a genome which speci-
fiees how the individual is represented in the algorithm, a
phenotype which is how the genotype maps onto real world
attributes, a fitness function which states how good each in-
dividual is and functions to perform mutation and crossover

to produce offspring. Crossover focuses the search on good
values by taking two parents and recombining their genomes
to create a child; mutation adds a random element to the chil-
dren which increases variety in the population.

Some work has been done to use genetic algorithms to
modify the behaviour of swarms. Conley (2005) used a ge-
netic algorithm to tune a particle swarm optimisation (PSO)
search. Geoboids (Macgill and Openshaw, 1998) was the
basis of this work, where the swarm moves over a landscape
looking for clusters of points, returning the locations of all
the clusters it thinks it has found. Conley used a hierarchi-
cal fitness function and tournament selection to avoid having
to assign each individual an absolute fitness value. Instead,
two individuals are compared using a series of criteria, if
one wins out on a test then the function stops otherwise the
next test is carried out. The tests compare: the number of
clusters found; the ratio of distinct clusters to total clusters;
the number of dead boids (those which are in empty regions
of the dataset when the algorithm finishes); the number of
comparisons made (adjusted for the size of the flock) and
finally the amount of the dataset searched.

Kwong and Jacob (2003) used genetic algorithms to
change many parameters used by a swarm in order to induce
“desirable behaviour”, that is swarms which moved in a cer-
tain way. They had no automatic fitness function to guide
the GA and instead assigned a fitness to each swarm created
by the GA by eye, based upon observing its behaviour as
it ran. This type of fitness measure could easily be adapted
for our work, but it is prone to human error when the dif-
ferences between individuals are subtle (although some re-
search has been done on methods to improve this (Khemka
et al., 2009)).

(Stoops et al., 2010) examined the rules that swarms ad-
here to by using data mining and rule classification algo-
rithms. A basic experiment into this issue involved running
a swarm simulation based on Reynolds’ boids and recording
data related to the individual’s movement (the time, posi-
tion, heading, speed and separation and detection radii). A
rule classifier was run on this data to create a series of po-
tential rules. These were then tested by running the boids
again but with these rules instead of the defaults. This run
was compared to the original and used to modify the rules.

Methodology
The experiments we report here used a two-dimensional ver-
sion of the Couzin model (Couzin et al., 2002; Wood and
Ackland, 2007) of shoaling behaviour as the basis of simu-
lated fish movement. Like many of the other proposed mod-
els it establishes zones of perception around each fish (see
figure 1). The location of neighbours within these zones
governs the fish’s future movement (being attracted to neigh-
bours in the ZOA, oriented with neighbours in the ZOO, and
repelled by those in the ZOR). Our experiments were de-
signed to determine whether it was possible to learn the pa-
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rameters of a swarm of modelfish running a known model by
adding an agent (robofish) to it and monitoring its behaviour
relative to the modelfish. As the robofish behaviour is spec-
ified via the same underlying model as the swarm, it follows
that if the correct parameters for the robofish model can be
set appropriately then its behaviour should be indistinguish-
able from that of the modelfish. The parameters used by
each robofish were encoded in the chromosome of a genetic
algorithm. The GA requires a fitness function to evaluate
the robofish after a run, which will summarise the robofish’s
interaction with the modelfish into a single numerical value.
The aim of the fitness function is to accurately represent how
similar the behaviour of the robofish is to the modelfish. We
hypothesised that this should allow the GA to converge on
the parameters used by the modelfish, under the central as-
sumption in this work that similar parameters alone will al-
low a robofish to exhibit behaviour identical to a modelfish.

The motivation for the design of our fitness function was
to determine if the robofish was interacting with the mod-
elfish or travelling the arena independently. Accordingly,
the experiments used the average Euclidean distance from
the robofish to each of the modelfish as the fitness function.
This strategy is based on two assumptions: (1), that similar,
but not identical behaviour will allow the robofish to interact
with the swarm (smooth fitness landscape); (2) that only one
configuration of the swarm model will induce this behaviour
(no local optima). It is clear that the fitness function needs
to be appropriate to the learning task at hand – the parame-
ters of the model are assumed to be impossible to estimate
directly, so we can only use the emergent behaviour of the
modelfish swarm as the basis for our fitness function. Since
this is such an important issue, we took steps to evaluate the
fitness measure with respect to the model parameters in the
GA.

Experiments
A single robofish was used in each simulation to ensure that
the robofish’s behaviour was determined only by its inter-
nal model and interaction with the modelfish. If more were
used there would be potential for the robofish to interact
each other and produce behaviour that was not programmed
into the modelfish. In these experiments the only parameters
to be changed are the sizes of the three zone widths ZOA,
ZOR and ZOO. These were chosen as they control the main
aspects of the fish’s behaviour.

The parameters used by the model fish in the swarm
was set throughout the experiments with parameters used
in Wood’s original experiment (Wood and Ackland, 2007)
(see table 1). This seemed to give an aesthetically realistic
swarm whose behaviour often transitioned between differ-
ent types (Kwong and Jacob, 2003). This would prevent the
evolution of robofish who could only swim like the others in
certain swarm configurations. With the robofish sharing the
same model as the modelfish, the chance of this happening

Parameter Value
ZOR 1
ZOO 12
ZOA 13
Velocity 2.25
Blind spot 90◦

World size 240
Number of modelfish 99
Number of robofish 1
Warmup time 5000
Sample time 5000
Samples 100
Mutation rate 5%
Crossover rate 90%

Table 1: Default values used throughout the experiments

is small. Not much can be done about this before the exper-
iments are run as the behaviour created by adding a robofish
to the swarm was unknown a priori.

A problem with using these parameters is the repulsion
radius ZOR=1. Since setting it to 0 effectively removes this
type of perception for the robofish, it is only possible to test
what happens when the robofish’s ZOR is either larger than
the modelfish’s or absent (the radius is an integer value).
This does place a limitation on the conclusions that can
be drawn from the experiments but to change these values
would require additional experimentation to find other con-
figurations which produce similar behaviour in the swarm.

The arena dimensions were also the same size as in
Wood’s experiment: a square 240x240. This means that
each modelfish can percieve around 3.7% of the world. For
all the experiments in this section the number of fish in each
trial (inclusive of the robofish) was set to 100. Preliminary
experiments indicated that smaller numbers of fish had a ten-
dency to form multiple groups which either never coalesce
into a single swarm or do so only after a very long time in-
terval. It also appears that it is easier for modelfish in a small
swarm to escape a group altogether and swim by themselves.

To avoid any bias in the initialisation process, the swarm
was run for 5000 time steps before 5000 time steps of mon-
itored behaviour. Here the state of the system was sampled
every 50 time steps. This regime reflects the dynamic na-
ture of swarms and reduces the risk of rare, unrepresentative
states distorting the fitness estimation. A robofish has to per-
form well for the entire run to obtain a good fitness score. A
robofish which “loses” the swarm or keeps its distance at
times will score poorly. In addition, each configuration was
performed 5 times to further reduce the effect of the vari-
ability in runs on the analysis. This means that each robofish
configuration was sampled a total of 500 times.
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Figure 2: Effect on fitness of changes in widths of (a) Zone
of Attraction, (b) Zone of Orientation, and (c) Zone of Re-
pulsion for the robofish. The vertical red line on each plot
indicates the target width value used by the modelfish.

Fitness of zone widths

Our first experiment explored the effect of changing the
value of individual zone widths on the fitness of the robofish.
The position of the zones relative to the fish are interde-
pendent, as shown in figure 1. Changing one of the widths
whilst keeping the other two fixed gives us a clearer under-
standing of the contribution of the zone width to the emer-
gent shoal dynamics.

Each of the three zone widths were changed from zero

(a) (b) (c)

Figure 3: Robofish movement (a) at time t with a ZOO, (b)
at time t without a ZOO, and (c) at time t+1 without a ZOO.
In both cases, the robofish maintains contact with the swarm.

(eliminating the behaviour completely) to 25 (roughly dou-
ble the modelfish values for ZOO and ZOA) in intervals of
1 to examine how the fitness varies around the values for the
parameters actually used by the other fish. The tests were
then extended using values from 30 to 75 (roughly six times
the modelfish value) in intervals of 5 to explore more dis-
similar configurations. Each configuration was tested over
50 trials to allow an accurate representation of the fitness of
that value. Figure 2 shows the results of these experiments.

Zone of Attraction From figure 2(a) it appears that vary-
ing the ZOA has very little effect on the fitness of the
robofish. However, when there is no ZOA (i.e. the width
= 0), the average distance to the swarm is high, with large
variance. The lack of any compulsion to swim towards
other fish leads to the robofish being lost from the modelfish
swarm. If the ZOA is present, no matter what the size, the
robofish performs very well with a low average distance to
the modelfish. It would be expected that a high ZOA would
allow the robofish to find the swarm more easily if it became
separated from the group, but the plot indicates that even a
small ZOA with a width of 1 is effective in maintaining the
robofish’s contact with the swarm. This suggests that the
ZOA has a role in limiting the chance of escape from the
swarm, rather than directing behaviour to seek the swarm
when swimming alone. Where a ZOA is present in a trial,
the swarm has usually formed and contains the robofish by
the time fitness measurements commence.

Fish in our model move at 2.25 units per time step. A fish
on the margins of the swarm might only have contact with
the swarm at the very perimeter of its zone of orientation.
There is a small chance that this contact would be lost, and
the fish might then escape the swarm if there was no zone
of attraction at all. However a very small ZOA would be
sufficient to induce the fish to move back towards the swarm
should this occur, since those fish which were in the ZOO
of the fish in the previous time-step will either still be in the
ZOO or have moved to the ZOA – it is very unlikely that
they will be completely out of range.

Note also that our fitness measure only samples the posi-
tion of the robofish after a period of 5000 time steps. If we
began to measure fitness from the initialisation period, we
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Stage 1 2 3 4 5

Figure 4: Effects of an individual’s large ZOO on shoaling interactions. Stage 1 - The robofish is at the head of the shoal. Stage
2 - The large ZOO allows the Robofish to pull ahead. Stage 3 - The swarm is entirely in the Robofish’s ZOA but the robofish
cannot be seen by the swarm. Stage 4 - The robofish swims back towards the shoal. Stage 5 - The robofish has rejoins the shoal

may see the effects of varying the ZOA during the process
of swarm formation.

Zone of Orientation As shown in figure 2(b), the ZOO
has a much clearer effect on the fitness of the robofish. At
low values for ZOO the robofish performs very well. It
is possible that the interplay between ZOA and ZOO (de-
scribed above) is the reason for this. The behaviour is illus-
trated in figure 3, where the arrow indicates the movement
vector for the robofish in the next time step. In the model at
time step t+ 1 the ZOA allows the fish to move towards its
neighbours, ZOO in the same direction of them. If ZOO is
disabled the ZOA will still move towards where the neigh-
bours are which is the same as moving in the direction they
were facing at time t. As the time steps in the simulation
are very small and the velocities of the fish small compared
to their range of perception (a fish can move a maximum
of 2.25 units per time step whereas its radius of perception
(ZOA + ZOO + ZOR) is 26 units) the difference between
moving towards the heading of the neighbours at time t and
t+ 1 is very small resulting in almost identical behaviour.

The mean distance between the robofish and the model
fish increases when the robofish ZOO width rises above the
ZOO width of the model fish. Between 14 and 19 a slow
phase change occurs from a fairly uniform fitness to a more
variable, but generally less fit behaviour afterwards. We sug-
gest that this phase change is a by-product of the behaviour
a larger ZOO induces. We hypothesise the following be-
haviour pattern, illustrated in figure 4. The fish in the swarm
constantly change relative position in the swarm as they
move, due to the stochastic element of the Couzin model.
Each fish therefore spends some of the time at the front of
the swarm. When the robofish is at the front of the swarm,
a situation arises in which the modelfish are in the ZOO of
the robofish. At the same time, the robofish is in the ZOA of
some of the modelfish, but since other modelfish are in the
ZOO of these modelfish, the position of the robofish is ig-
nored by the shoal (stages 1-3 of figure 4). The robofish then
changes behaviour, and swims toward the swarm (stages 4-
5 of figure 4). As the width of the ZOO increases, there is

an increasing likelihood that the robofish will not success-
fully rejoin the swarm, since it will be further away from
the swarm, and the swarm is more likely to have changed
direction.

An increase in the robofish’s ZOO increases the distance
away from the swarm that it can travel before heading back
and allows the robofish to lead again at a point further from
the swarm (at lower ZOO values it will rejoin instead). Both
these tendencies cause the average distance from the other
fish to increase as shown on the graph in figure 2(b). How-
ever this does not directly explain the increased variation
seen as the ZOO increases. The variation is due to the
robofish losing the swarm. The conditions for this seem to
be when the robofish has left the sight of the swarm but both
the swarm and robofish are moving in almost the same di-
rection. A small deviation from these parallel headings can
place members of the swarm within the robofish’s ZOA in a
single time step, resulting in a situation where the robofish
follows the swarm but does not influence it. As the ZOO
of the robofish increases, the chance of this happening in-
creases, and small changes in direction cause the robofish
to lose sight of the swarm more often. We also postulate
an increase in the ability of the robofish to find the swarm
again (due to the increased area of the world the robofish
can now see). Overall then, as the chances of losing the
swarm increase so does the chance of the robofish finding
it again, resulting in a lower jump in penalty for losing the
swarm. The highest numbers tested show the range of scores
decrease again whilst the mean climbs further. At this point
the robofish constantly loses the swarm, resulting in uniform
but unfit behaviour.

Zone of Repulsion As shown in figure 2(c), the ZOR
width seems to have a much stronger and simpler effect on
fitness than the other two variables. Simply put, the larger
the ZOR the further away the robofish is from the others
in the swarm. Although the upwards trend is visible from
the start, a phase transition of the kind seen with ZOO is
shown from around 3 to 7. Once again this is where the
robofish starts to lose the swarm on an increasing number
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Figure 5: Distribution of fitness at end of 50 generations of
20 trials of the GA. Column ’M’ indicates the distribution of
fitness for the modelfish

of runs, showing increasing variance in the mean distance to
the shoal fish.

Evolving the model parameters
The previous section demonstrated a relationship between
changes in the individual model widths and mean distance
to the shoal fish. In this section, we show how a genetic
algorithm can be used to find combinations of widths for the
ZOA, ZOO and ZOR that minimises the mean distance to
the swarm.

We maintained a population of 20 robofish models per
generation throughout the trial. This was a compromise be-
tween having a large population size (which could explore
a sizable portion of the solution space) and minimising the
computation time. This is important as each genome must
be tested independently since we can only have one robofish
evaluation per swarm, meaning that the genetic algorithm
will run very slowly. Each robofish configuration was eval-
uated 5 times.

It was not our intention to evaluate a new configuration
of a genetic algorithm. Accordingly, we implemented our
genetic algorithm using PyEvolve (Butterfield et al., 2004).
Crossover was set to 90%, and mutation (occurring with a
5% chance) changed the Zone widths following a Gaussian
distribution with variance of 5% of the current value. The
genetic algorithm was run for 50 generations. This was re-
peated 20 times to estimate the consistency of convergence.

The robofish’s genome consisted of the widths of the three
zones which were to be modified; the ZOA, ZOO and ZOR.
These were stored as integers.

The three zone widths were initialised with random in-
tegers in the range [0,75]. The Pyevolve default tournament
selection method was chosen to select fit individuals for sub-
sequent generations.

Figure 5 shows the final distribution of mean distance to
swarm fish for the robofish population in the final generation
of the 20 runs of the genetic algorithm. The mean distance
to shoal fish for robofish with the same width values as the

model fish is shown in the column marked ’M’. It can be
seen that trials 3, 5, 6, 10, 14 and 18 have not fully con-
verged, but the other fourteen trials show that the genetic
algorithm has successfully reduced the mean distance to the
swarm fish, as specified by the fitness function. Those trials
which did not converge were composed of a mixture of in-
dividual models with a combination of low and high mean
distances to the modelfish, indicating that it is likely that the
runs would eventually converge to low average mean dis-
tances across the population if allowed to run for longer.

Note that the mean distance to shoal fish was higher in the
control robofish ’M’ that used the model zone widths. This
reveals an issue with the fitness function - it was designed to
evolve a fish that interacted with the shoal, but there is noth-
ing in the fitness function to induce the evolved robofish to
mimic the behaviour of the model fish. This is why the mean
distance is reduced to a minimum, rather than converging on
the value that the modelfish parameters generate.

To further illustrate the effect of the fitness function, fig-
ure 6 illustrates the change of fitness of the robofish config-
urations for trial 19, along with corresponding distributions
of the three zone widths. In this trial, the genetic algorithm
is effective at reducing the mean distance to the swarm. The
target widths for the ZOA, ZOO and ZOR are shown as a
red line on the bottom three figures.

The width of the ZOA shows the biggest difference be-
tween the evolved value and the model value. This is not
surprising for two reasons. Firstly, as shown in figure 2(a),
the ZOA has little effect on the mean distance to shoal, so it
is free to vary. What might explain the drift of ZOA width
to such a large value? We assert that a large ZOA is use-
ful in allowing the robofish to find the swarm reliably. If
the robofish has not found the swarm by t = 5, 000, then
its chance of being selected for the next generation will be
reduced.

Both the ZOO and ZOR widths are much more similar to
the model values. We claim that the value of the model ZOO
is learned effectively by the GA. The ZOR tends to converge
to a value of zero, compared with the model value of one.
This is a small error, but the consistency of the error leads
us to conclude that this value allows the robofish to have
a lower mean distance to the modelfish than the modelfish
have to each other.

Finally, we note that the ZOO+ZOR widths for the
evolved robofish are almost identical to those for the mod-
elfish. This implies that the outer radius of the ZOO, as spec-
ified by ZOO+ZOR is a critical parameter in determining the
mean distance to other fish.

Conclusions
The work presented here has started to explore the ability of
genetic algorithms to extract important parameters related to
a swarm’s behaviour. It is only the start of what is possible
in this field. Many more aspects can be explored in relation
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Figure 6: Run 19 of the GA. Plots from top to bottom: Fit-
ness; Convergence to ZOA; Convergence to ZOO; Conver-
gence to ZOR

to the goal of estimating swarm behaviour models via the
interaction of configurable agents with swarm agents.

It is well known that the interactions between the zones of
behaviour in the Couzin shoaling model lead to an emergent
swarm. In this paper, we have investigated ways of recov-
ering the underlying model parameters of the swarm indi-
rectly, via the interactions of an individual with the swarm.
The long-term goal of this work is to fit models to observa-
tions of shoaling of wild animals. Our initial trials, varying
only one of the zone widths whilst holding the others con-
stant, revealed the following observations:

• A ZOA is needed to produce a swarm (i.e. the ZOA width
must be greater than zero), but the size of the ZOA makes
no difference once the swarm is formed.

• The larger the ZOO the wider the swarm distribution,
since individuals can influence the direction of the swarm
whilst remaining relatively widely dispersed.

• The ZOR is not necessary for a swarm to evolve. It merely
controls the minimum distance between model fish. How-
ever, in physically embodied experiments (using robots
or fish), it is clear that a ZOR is necessary to reduce the
chance of collisions.

The average Euclidean distance to the modelfish was used
as the fitness function, which proved effective in evolving
individuals which were similar to the modelfish in their be-
haviour, and had similar values for ZOO and ZOR. The main
reason for the difference in these parameters was the sim-
plicity of the fitness measure, which only used the distances
between the robofish and the modelfish and made no refer-
ence to the distance of modelfish to each other. If this tech-
nique were to be used with real fish, it would be possible
to do this using computer vision techniques, although issues
with sampling time might arise.

We suggest that if the measure was changed to use the
distance the modelfish are from each other as the target dis-
tance rather than simply trying to minimise the mean dis-
tance to modelfish, then a more accurate estimation of ZOO
and ZOR could be expected. This formulation would pe-
nalise robofish that swim too closely to the modelfish as well
as those which swim too far away from them. In addition,
the ZOA was not well estimated in the framework we de-
vised, but we suggest that this too could be addressed by
basing a fitness measure that included the period of shoal
formation, rather than basing fitness solely on measures of
the swarm after it has formed. Other measures such as the
spatial point process measure C (Getis and Boots, 1978),
which compares an individuals distance to its nearest neigh-
bours against a set of randomly determined points in the
world space, could also prove to be effective in developing
a fitness function that could recover the model parameters.

In addition to a more sophisticated fitness function, other
work could focus on exploring the model more fully. The
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results gathered from these experiments could vary greatly
depending upon the number of robofish used, the time at
which the robofish are introduced (whether a swarm has al-
ready formed at that point) or the total size of the swarm.
These variables would change the interactions between fish
and robofish in different ways, potentially producing wildly
divergent emergent effects. The results obtained by these
experiments would allow swarming behaviour to be under-
stood more fully, potentially providing valuable insights into
the way swarm models are designed and configured.

Another clear area of further work is to look into whether
this process can be applied to different models of swarming
behaviour. There is little reason to suspect it would fail with
the similar models from Aoki and Reynolds (although if this
were the case it would raise interesting questions about the
nature of these models and the extent of their differences),
but adapting it to work on more varied models such as ants,
termite mounds or wasp nests may prove more challenging
and explore the process of extracting parameters more fully
(as well as exploring the individual models being tested).

Of course if these methods are ever used on real life
swarms it is unlikely that they will correspond exactly to the
models proposed so far. By incorporating the ability for the
algorithm to modify the model itself (rather than just the pa-
rameters of the model), the process could become far more
robust at finding an accurate model of behaviour. This could
be done by either switching from a genetic algorithm to ge-
netic programming or by changing to genome representa-
tion which allows the model to be altered (such as chang-
ing the meaning of zones and limiting the number of neigh-
bours looked amongst others). The increase in flexibility
this would produce would allow the process to be applied to
far more problems, perhaps allowing novel swarm models to
emerge via genetic processes.
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Abstract

Division of labour, or specialization, is common in many
types of insect colonies. It emerges in some of these so-
cieties as a result of age polyethism, whereby the division
of labour is tied to the age of the individuals. One known
method that explains this is social inhibition. Individuals
release pheromones when they interact with other agents.
The strength of their pheromones is tied to their age. These
pheromones inhibit the desire of other agents to perform the
same task. Using social inhibition, individual agents can be
allocated among the available tasks to be performed related
to the colony. We apply a variation of this approach to the
problem domain where agents can divide their time among
multiple tasks. While age is not a factor, agents differ in their
skill at performing each task. We create a weight-allocated
social inhibition approach whereby more skilled agents in-
hibit the desire of less skilled agents to perform a task. We
are able to see that this approach drives agents toward tasks
where they have comparative advantages. This leads to an in-
crease in the division of labour within the population. While
inspired by social insects, this approach is easily applicable
to agents in other domains.

Introduction
Specialization is where individuals produce goods and ser-
vices beyond local or personal need, depending upon other
individuals to supply other needed goods. There are many
varying definitions of specialization, with most taken from
the archaelogical, biological and economic fields. One def-
inition from archaeology is that specialization is “the pro-
duction of substancial quantities of goods and services well
beyond local or personal need, and whose production is gen-
erally organized, standardized and carried out by persons
freed in part from subsistence pursuits” (Arnold and Munns,
1994). By choosing to specialize, specialists must obtain
some or all of their subsistence goods through exchange with
others (Evans, 1978). There are varying levels of specializa-
tion, ranging from being able to sustain oneself, while simul-
taneously producing goods for the consumption of others, to
complete dependency upon exchange with others for subsis-
tence goods. Dependence upon others for subsistence was
viewed by Childe as the essence of economic specialization
(Childe, 1951).

Specialization allows individuals to maximize their pro-
ductivity by exploiting their environment (Murciano, 1997),
and occurs because entities belong to a community of mu-
tual interest, cooperating to serve that mutual self-interest
(Spencer et al., 1998). Specialization may be assigned, as
in caste systems, or chosen by an individual driven by vary-
ing means, including genetic, social and economic. Another
term for specialization is division of labour, which is defined
by Hollbloder as “...when individuals can be turned into spe-
cialized working machines, an intricate division of labour
can be achieved and a complicated social organization be-
comes attainable even with relatively simple repertory of in-
dividual behaviour” (Hölldobler and Wilson, 1990).

There are both internal and external factors that influence
an individual’s choice of specialization (Beshers and Fewell,
2001). Internal factors include genetic, neural, hormonal
and experience elements. External factors include economic
factors such as demand (stimulus) and social influences (Ju-
lian, 1999; O’Donnell, 1996; Robinson et al., 1989). It
seems that no single behavioural model may fully explain
division of labour in complex systems (Traniello and Rosen-
gaus, 1997). Different models and approaches have different
assumptions, which makes it particularly difficult to com-
pare the effects of factors across different approaches.

The study of specialization is important to several fields.
For instance, archaeologists study specialization to under-
stand the changes in societies as a result of the emergence
of specialization. It also gives insight into why individuals
would choose to produce certain goods over others. From
the biological perspective, specialization helps to explain the
behaviour of biological creatures such as ants, wasps and
bees (Larsen, 2001; Page et al., 1998; O’Donnell, 1996),
which have been empirically shown to specialize based on
tasks. Economically, specialization is studied to understand
its effect upon a society’s economy. It further serves to study
how a market may grow or contract based on the specializa-
tions present, as these specializations lead to increases in
the productivity of market systems (Murciano, 1997). Al-
lyn Abbot Young points out that a productive individual in-
creases the supply of certain commodities, while simultane-
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ously increasing the demand for others (Young, 1928). In
spite of its role in economics and biology, little is known of
the origins and causes of specialization and exchange (Beau-
dreau, 2003).

In this paper we focus on the social approaches to arti-
ficial agent specialization. Here we define an agent as an
autonomous social party that can perform several tasks with
varying levels of skill. Being social, these parties can also be
influenced by their peers across their social networks. It is
our hypothesis that competition will drive agents to allocate
more of their resources to produce goods with which they
possess a comparative advantage in relation to their competi-
tors. As the primary differentiator of efficiency in our model
is skill, it can be assumed that more skilled agents will have
a comparative advantage over their less skilled competition.
In this individual based model, these self-interested agents
will be influenced towards performing tasks that will maxi-
mize their own productivity. We believe this approach will
lead to significant increases in the overall level of special-
ization within an agent population. In the next section we
introduce the social inhibition model from which this work
is primarily inspired. We then describe our generic model
that uses weight-based allocations. Finally, an experimental
setup is presented and discussed with concluding remarks.

Social Inhibition
There are several social models for the emergence of agent
specialization. One such method is social inhibition, which
implies that as agents choose their specialization, they no-
tify other agents that they have done so, reducing their de-
sire to also choose this specialization. To put that idea in
economic terms would be that choosing a specialization re-
duces the demand (stimulus) for that specialization. So-
cial inhibition aims to explain concepts such as temporal
polyethism, which is division of labour based on age, as a re-
sult of the interaction between behavioural development and
the inhibitory effects of other workers (Huang and Robin-
son, 1992; Naug and Gadagkar, 1999; Beshers and Fewell,
2001). Temporal polyethism can also be explained experien-
tially, as older agents would have more experience, and thus
more knowledge upon which to base their actions (Ravary
et al., 2007). This model is more concerned with the physi-
ology of workers and their interactions. Initially, the model
took the form of an activator-inhibitor approach, whereby
all agents would eventually mature to perform specific tasks,
but inhibitors from current performers of these tasks would
slow their activation.

Naug and Gadagkar presented a social inhibition model
that aimed to explain the age polyethism in wasp species
(Naug and Gadagkar, 1999). Their model was in turn based
on the verbal model of Huang and Robinson (Huang and
Robinson, 1992). In Naug and Gadagkar’s model, each
agent has two pods: one that increases its own preference
for a task, and another that inhibits the preferences of agents

it interacts with for the same task. Their model claimed that
individual specialization is emergent from the increase in ac-
tivator due to age, as well as the amount of inhibitors ex-
changed when agents interact. The model assumes that all
agents possess the same preference and skill level for task
performance, which makes it difficult to adapt to situations
such as those we aim to address.

The effect of competition on task specialization was ex-
amined in (Merkle and Middendorf, 2004). Competition
was shown to lead to the occurence of specialists as an emer-
gent phenomenon dependent on the size of colonies. Their
model was based on a genetic preference model though,
whereas our model is based on social interactions. They also
studied differing demands for tasks, something which we do
not explore here.

Another social interaction model was explored in (Gor-
don and Trainor, 1992). Agents had an active and inactive
state for the four tasks in the model. The agents communi-
cate with each other, giving them some idea of how many
other agents are performing the same task. These interac-
tions between agents is designed such that the system will
trend toward a stable set-point where there is a balance of
active and inactive agents for each task. Like the above men-
tioned models, they also assume that agents do not possess
an innate preference or skill for tasks.

A non-social model that is also relevant is (Lavezzi,
2003). Lavezzi’s model shows that the amount of specializa-
tion and level of per capita output depends on competition,
agent connectivity, agent thresholds, and initial conditions
such as number of agents and their connectivity. An agent’s
potential to choose a specialization is limited by the amount
of other agents performing the same task, as well as the stim-
ulus level for that task. Agents of course have to know about
the level of competition, or be directly aware of the chang-
ing stimulus levels. In either of these two situations, agents
are required to have excess knowledge of their economic en-
vironment. While non-social, we have found that a lot of the
effects claimed by Lavezzi are also evident in our model.

The existing social models have several other shortcom-
ings, several of which we look to address. In these models,
agents are only able to perform one task per unit of time.
In our model, we aim to deal with situations where agents
can divide their time among several tasks. Take for example
something like human agents, such as those found in (Kohler
et al., 2007), who have several tasks to perform in each year
such as farming, hunting, getting water and getting wood.

In the social inhibition model, which is aimed at age based
specialization, the social influence of other agents do not di-
rectly determine the specializations that others will choose.
Tasks must first be ranked in a way related to age, then
agents are ranked by fit for those tasks. After that, agents
are then assigned based on the number of workers needed
for that task. We think that while this may be appropriate
in insect colonies, it makes the model difficult to adjust to
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agent populations where tasks may not have priorities. In
our model, we assume no priority among tasks.

Approach
Our approach is not aimed at system optimization, whereby
the system itself tries to be the most productive possible. In-
stead, agents should be able to emerge the specializations
that they are most suited for in their given environment. We
assume the existence of a set of tasks T. Each element t in T
is a task that can be performed by an agent. Each agent has
a level of skill associated with each task. The skill level may
be static, or it may be determined by the agent’s previous
success at performing the task. This allows for skill levels
that may correspond with fitness functions in evolutionary
algorithms. This skill level is quantifiable, comparable and
monotonic, such that ska(t) > skb(t) means that agent a is
more skilled than agent b at performing task t. All agents
assume they can perform the task perfectly. The level of
skill is then reflected in the amount of inhibition that agent
then releases when they interact with others. Agents are thus
able to determine their true relative skill level through inter-
actions with other agents. The strength of inhibition, which
we refer to as the influence rate, depends on each agent.

In our test simulations, we assume that all agents have
the same level of influence. This is not required, and it is
quite possible for different levels to make sense in a domain.
For instance, we can create the effect of age polyethism if
we were to have the influence rate grow with age. In that
case, to create task prioritization, we can have the level of
influence vary by task as well. In addition to skill, agents
have to divide their time among tasks. They therefore need
to track their allocations, which they do internally. Note that
while we refer to time, that is simply one idea of a resource.
This model does not require the resource to be time, but it
can by money, food, or any other divisible resource. The
simulation is composed of a set of interacting agents within a
social network that can all perform the same tasks at varying
skill levels.

Problem Description
Given agent Ag, the set of tasks available to Ag TAg and
a resource RAg , how does an agent allocate its RAg among
each task t in TAg? So, Σxi= S(RAg), where i is each task
in TAg , S(RAg) refers to the amount of the resource RAg

available, and xirefers to a fraction of S(RAg). The problem
also involves the following conditions: The problem is con-
tinuous over a period of iterations, S(RAg) changes between
iterations and xi is allowed to change over iterations.

Weight-based model for resource allocation among
tasks
For each agent Ag, we propose a set ALLOC, where
ei∈ALLOC ⇒there is a task i in TAg and ei represents the

weight allocated to task i. Task weights in ALLOC are rel-
ative, therefore for a given task i and a resource to be allo-
cated RAg , the amount of RAg to be allocated to task i is:

ei
S(ALLOC) x S(RAg), where S(ALLOC) is the sum of all el-
ements in ALLOC. We make no assumptions about the ini-
tialization of the weights in ALLOC; they can be randomly
assigned, or initialized by some other method. A task having
a weight of 0 will result in the task being allocated none of
RAg . For simplicity, we will assume R refers to time for the
rest of this paper. We also normalize the weights in ALLOC
such that S(ALLOC) is always equal to 1.

Model outline
Agents influence other agents when they interact. In some
networks, such as kin network, it can be assumed that they
interact with all their neighbours in each time step. The
amount of influence is dependent on skill level. The higher
the skill level, the higher the level of influence. When an
agent interacts with another, it positively reinforces its own
behaviour, while also inhibiting the other agent. The amount
of self-reinforcement is the same amount that it inhibits the
other agents. After all agents have interacted, the agent sub-
tracts the level of inhibition it has received from the level of
activation it has provided itself. The agent also self-activates
itself, such that an agent that does not interact with any other
agents will still change its behaviour. These effects result in
the change of the allocation levels for the agent.

Agent Properties
Agent Attributes
Each agent has the following attributes:

• An allocation set ALLOC = { ti <- [0,1]}, for all tasks i ∈
T, where ti is the fraction of time the agent will spend on
task i.

• A skill set SKILL = { si <- [0,1]}, for all tasks i ∈ T,
where si is the skill of the agent at performing the task i.
If an agent cannot perform a task p, then the value of sp
would be 0. The skill level for a task may be dynamic and
updated regularly. The skill value as a function must be
monotonic though, such that if agent Ag1 has si 0.5 and
agent Ag2 has si 0.7, then we can say that Ag2 is better
than Ag1 at performing task i.

• A set PODS = { pi }, for all tasks i ∈ T, where pi is a
3-tuple (A, SA, I). In this 3-tuple for task i, A represents
the activator store for the agent, SA is the level of self-
activation, and I is the inhibitor store for the agent. The
agent will increase the weight of the associated task when
A+SA > 0, and decrease it when A+SA < 0.

The idea behind self-activation is the inclination of an agent
to perform more of the task at which they are best. This
value should be large enough that it will allow an isolated

163ECAL 2011



agent to specialize over a long period of time, but it should
also be small enough that it doesn’t overwhelm the social
pressure created by stronger competitors.

Agent Inhibition
The level of inhibition I in an agent’s pod for a task i is
determined by several factors:

• The skill level of the agent at performing task i.

• The size of the agent’s social neighbourhood.

• The influence rate, IR = (0, 1], which is a parameter that
determines the strength of an agent’s influence. This pa-
rameter can be universal, or variable for each agent. It is
also possible that the influence rate can be different for
each task. We can re-create the effect of polyethism if we
were to make IR dependent upon the age of an agent.

Agent interaction
When agents Ag1 and Ag2 interact, for each task t ∈ T, we
obtain the values in Ag1’s pod pt for task t, and Ag2’s pod pt
for task t. The value in Ag1’s A will be decreased by Ag2’s
I and vice versa. Each agent will also increase its own A by
its I. This method allows agents to influence each other only
when they interact.

Since agents both exchange inhibition, and inhibition
level is tied to skill and influence level, the more skillful and
influencial agent would have a greater effect on a neighbour
than a less skillful and influential competitor. While the in-
fluence of the “better” agent would be stronger, the weaker
agent would still inhibit the stronger one. It is also possi-
ble for agents to be considered to interact on every iteration,
in which case agents would inhibit all others in their neigh-
bourhood. It should be noted that the level of self-activation
plays no role when agents interact.

Agent Attribute Updates
During each time period, agents will have performed their
tasks based on their allocation weights (ALLOC). If the skill
set is dynamic, then it would be updated based on the results
of task performance. The influence rate of each agent would
also need to be updated. If agents have different influence
rates for each task, then the updates would need to be applied
for each task.

Agents will then update their allocations based on each
task pod. Given a normalized allocation ti for a task i, and a
pod (a, s, x) for the same task i, then ti will be updated as:

ti = ti + a + s. That means that the amount of self-
activator s will be added to the activator a, and the sum
of that added to the current weight. If an agent was over-
all more skilled at a task than the other agents it interacted
with, then its actiavator level a should increase. If it is less
skilled overall, then the level should decrease, resulting in a
negative value for a. After all task weights are updated for

an agent, the values are again normalized, resulting in the
sum of all weights in the agent’s ALLOC being 1.

Experiments and Results
To measure the level of specialization within a population,
we use a measure developed in (Gorelick et al., 2004). The
measure quantifies the degree to which agents in a popula-
tion are specialized. We have each agent record their task al-
location amounts. These amounts are then stored in an nxm
matrix, with n being the number of agents and m the number
of tasks. We then normalize this matrix such that the sum of
all cells is 1. The mutual information and Shannon entropy
index (Shannon, 1948) are then calculated for the distribu-
tion of individuals across tasks. Finally, dividing the mutual
information score by the shannon entropy score will provide
a value between 0 and 1. A score of 0 indicates a population
with no specialization, while a score of 1 indicates a fully
specialized population (Gorelick et al., 2004).

We test our method across several parameter types. These
are: the type of network, the number of tasks, the number
of agents, and the influence rate. We test with two network
types, small-world networks and random networks. Small-
world networks (Milgram, 1967) are networks whereby
most nodes are connected by a small degree of separation,
with the existence of a power-law structure among many
nodes. Two famous examples of a small-world network are
the ’6-degrees of separation’ phenomenon found within the
US population (Milgram, 1967) and a similar phenomenon
among many sites on the World-Wide Web (Bu and Towsley,
2002). With random networks, each node will just be ran-
domly connected with another node. We use the same
amount of total edges in both network types, dependent upon
the number of agents.

We tested for 2, 4, 10 and 20 tasks. Most studies involve
2 to 5 possible tasks (Waibel et al., 2006), while some insect
colonies have anywhere from 20 to 40 specializations (Besh-
ers and Fewell, 2001). Although we could have tested for
more possible tasks, we observed that 20 would be sufficient
to demonstrate the process. As for the number of agents, we
tested smaller groups of 10, 50 and 100 agents, as well as
larger groups involving 500 and 1000 agents. Each agent
acts after the previous step for all others, meaning that all
agents operate in the same time step. Tasks are all assumed
to take the same amount of time to perform. We tested with
a variety of influence rates, these being 0.05, 0.1, 0.25 and
0.5. The influence rate was the same for all agents during
each run. We used a constant self-activation rate of 0.05. All
agents also have the same capacity for task performance, that
is to say the same amount of time available to be allocated.
We ran each combination of parameters 10 times.

Each agent would be created with random task alloca-
tions. Thus for each available task, the agent would assign a
percentage of their time to be spent on that task. As the met-
ric developed in (Gorelick et al., 2004) is dependent upon
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these task allocations, different populations of agents would
necessarily have different initial levels of specialization. As
such, it is not possible to compare the initial and ending spe-
cialization levels across runs within the same network type,
even with the same parameter settings. The initial popula-
tions would be the same for different network types when
all other parameters are the same. Considering these condi-
tions, we measure the change in the level of specialization
over a run. In the tables given, rows represent the number of
tasks and columns represent the number of agents. Tables 1
through 4 illustrate a representative sample of our overall re-
sults. They report the average division of labour (DOL) and
standard deviation with influence rates (IR) of 0.05 and 0.5
for both small-world and random networks. The DOL val-
ues are average multiples (DOL at beginning of run / DOL
at end of run) of the initial level of population specializa-
tion over the 10 runs for each parameter combination. Thus
a value of 3.3 indicates that there was a 230% increase in
the level of specialization. For brevity, the results of other
influence rates are not shown.

The level of specialization increased in all 1600 runs that
we simulated. In our small-world networks, the average re-
sult was a multiple 3.2 over the initial values, with a stan-
dard deviation of 0.75. With our random networks, the av-
erage result was a multiple of 3.9, with a standard devia-
tion of 0.97. We believe that the higher increase in our ran-
dom networks is due to the higher average number of con-
nections between agents. In small-world networks, several
agents have a lot of neighbours while most have only a few.
As agents are influenced by interacting with others, having
more interactions result in each agent moving toward its op-
timal state faster. This suggests that increasing the level of
connectivity between agents will result in more pronounced
increases in specialization.

Our results may be depressed by the emergence of equi-
librium states within our populations. This is the case when
adding more iterations will not result in any increase in the
population’s level of specialization. This emergence of equi-
librium states is not surprising though as it is predicted in
(Young, 1928). As the initial level of specialization is ran-
domly between 0 and 1, it is the case that a population with
a high initial level of specialization would not have much
room for improvement. We would not expect to see a state of
equilibrium if we had used a dynamic society, as new births,
deaths, and other state changes would keep the situation in a
state of flux (Lavezzi, 2003).

We noticed that in many cases agents would not become
fully specialized. This may be in spite of the fact that they
may be significantly better at a particular task than all com-
petitors. This is because they would still have some pres-
sure to perform other secondary tasks where they may still
have some advantage. This became more pronounced as the
number of tasks increase. In such cases, agents may possess
comparative advantages in multiple tasks, and thus the moti-

vation to increase their allocation in both. As the allocation
system is weighted, the increases in both weights offset each
other.

While we did notice that in most cases increasing the level
of influence would also result in a higher level of specializa-
tion, this does not occur in all cases. In our simulations, the
level of specialization would decline in many cases when
going from an influence rate of 0.25 to one of 0.5. Because
of the different initial populations and specialization levels,
we are unable to study the effect of changing agent and task
amounts.

Conclusion and future work
In this paper we presented a new social inhibition model
for the emergence of specialization in agent societies. We
showed that this model is able to significantly increase the
level of specialization in a random population. While several
current models deal with domains where agents can only
perform one task at a time, our model deals with having
agents that have to allocate their time among several tasks.
We have shown that when agents are differentiated by skill
level, competition and social inhibition can be used to in-
crease division of labour. We found that our agents will in-
crease their allocation of time among tasks for which they
possess a comparative advantage over their neighbours. This
follows a well established law of economics. Surprisingly,
we also found that using our weight based approach, agents
will not necessarily specialize on the task they are most effi-
cient at. This is because the change in allocations for multi-
ple tasks may offset each other. The result seems supported
by real world experience, where we have yet to see a modern
nation completely specialize on one product. Our model is
created in a way that makes it applicable to many domains.

We intentionally kept several parameters abstract because
we would like to keep the approach general. Many of the
parameters used can be changed to accomodate different do-
mains. We also didn’t state how it is that agents interact
for the same reason. Interaction could be either broadcast,
exchanged through the environment, or exchanged through
message passing. The meaning of the social network and its
connections is also left open intentionally, such that it could
represent a wide range of topics, such as a topographical
neighbourhood, or even a collaboration network.

We currently do not account for different levels of re-
source availability. We would like to investigate what
changes if any the model would need to work under those
conditions. In addition, we assume that demand is always
equal to the amount of a resource produced. It would be
a good idea to investigate different levels of demand either
globally or locally for each task. We would also like to see
how the model performs under dynamic environmental con-
ditions. We would like to apply the model in concrete do-
mains such as human society simulations, or even social in-
sect simulations. We believe that this model can encompass
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10 50 100 500 1000
2 3.3 ± 1.24 2.48 ± 0.41 2.43 ± 0.29 2.28 ± 0.16 2.28 ± 0.10
4 3.46 ± 0.95 2.86 ± 0.28 2.54 ± 0.24 2.53 ± 0.08 2.48 ± 0.12
10 3.07 ± 0.65 2.73 ± 0.31 2.64 ± 0.11 2.69 ± 0.07 2.71 ± 0.06
20 3.36 ± 0.42 3.08 ± 0.29 2.9 ± 0.26 2.92 ± 0.12 2.88 ± 0.08

Table 1: Average DOL multiple and standard deviation with IR = 0.05 in small-world networks.

10 50 100 500 1000
2 3.82 ± 2.11 2.76 ± 0.36 2.69 ± 0.35 2.48 ± 0.16 2.53 ± 0.11
4 4.39 ± 1.46 3.4 ± 0.43 3.15 ± 0.18 3.09 ± 0.06 3.03 ± 0.15
10 3.74 ± 0.80 3.4 ± 0.47 3.35 ± 0.16 3.43 ± 0.09 3.45 ± 0.06
20 4.54 ± 1.06 3.53 ± 0.35 3.73 ± 0.32 3.72 ± 0.14 3.72 ± 0.11

Table 2: Average DOL multiple and standard deviation with IR = 0.5 in small-world networks.

several of the currently existing social interaction models,
including the social inhibition model which inspires it. We
didn’t think it appropriate to compare our approach to the
social inhibition approach here though because they have
different assumptions.
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Abstract

In the framework of Agent-Based Complex Systems we ex-
amine dynamics that lead individuals towards spatial segre-
gation. Such systems are constituted of numerous entities,
among which local interactions create global patterns which
cannot be easily related to the properties of the constituent
entities. In the 70’s, Thomas C. Schelling showed that an im-
portant spatial segregation phenomenon may emerge at the
global level, if it is based upon local preferences. Moreover,
segregation may occur, even if it does not correspond to agent
preferences. In real life preferences regarding segregation are
influenced by individual contexts as well as social norms; in
this paper we will propose a model which describes the dy-
namic evolution of individuals tolerance. We will introduce
heterogeneity in agents’ preferences and allow them to evolve
over time. We will show that it is possible to dynamically get
a distribution of tolerance over the agents with a low average
and in the same time to deeply limit global aggregation. As
the Schelling’s model showed that individual tolerance can
nevertheless induce global aggregation, this paper takes the
opposite view showing that intolerant agents can avoid seg-
regation in some extent.

Introduction
In his article Schelling (1971), Thomas Schelling developed
a model of segregation and analysed how a simple prefer-
ence not be a part of a minority in one’s neighbourhood,
without necessarily favouring dominance of one’s own type,
can generate small micro-shocks which have drastic conse-
quences at the macro level. Aggregation happens through
a chain reaction, even though the agents do not wish such
an extreme situation. Agents interact only locally with their
neighbours: every one agrees to stay in a neighbourhood
with individuals that have the opposite type, only if there are
enough individuals with the same type in the vicinity. This
proportion is fixed by a threshold, denoted by the tolerance
ratio.

More generally, the ’micromotives and macrobehaviour’
problematic asks the question of the compliance between
local micro-motives and the resulting macro-behaviour. To-
day, as problems become more and more complex, this prob-
lematic is more relevant than ever. In the fields of sociology,

economics, ecology, energy, ..., each one has many a priori
on the global consequence of his own actions. Most often, a
person thinks in good faith that his action will produce faith-
ful results for the community. For example, one can think
that:

(a) intolerant behaviour lead to high segregation

(b) tolerant behaviour lead to low segregation

Let i (resp. ī) stands for individual intolerance (resp.
tolerance) and S for a high level of global aggrega-
tion/segregation. Hypothesis (a) and (b) can be reformu-
lated by the micro to macro link [i → S] and [̄i → S̄]. The
Schelling’s model provides first an example for the expected
case [i→ S]; but, as it shows that tolerance can nonetheless
induce a significant level of segregation, it provides also an
example for the paradoxical link [̄i → S] where the macro-
outcome is intuitively inconsistent with the preferences of
the agents who generate it.

This paper shows that macro-segregation can be deeply
limited despite the presence of intolerant agents; thus, it pro-
vides an example for the dual case [i → S̄]. In the model
we propose, each agent has his own threshold of tolerance.
At each time, for each agent, the tolerance is adapted using
some meta-rules. As a consequence, the emergent state of
the ’world’ results from a spatio-temporal adaptive dynam-
ics. The scientific question addressed in this work is an evo-
lution of the Schelling Model, which consists in considering
an adaptive micro level of tolerance and analysing its impact
on the segregation phenomenon observed at the macro level.

This article is organized as follows. In section 2, we pro-
pose a generic model of satisfaction. Section 3 shows the
global behaviour of models using the simple Eulogy to Flee-
ing rule. Section 4 examines the effects of introducing adap-
tive tolerance thresholds on the nature of frontier between
patterns. Section 5 proposes the new model which allows to
conciliate local intolerance and a low level of segregation.
Finally, future works are listed and conclusions are drawn.
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A generic model of satisfaction
The Schelling’s checkerboard model of residential segrega-
tion has become one of the most cited and studied models in
many domains as economics, sociology, complex systems
science,... Pancs and Vriend (2003), Zhang (2004), Gerhold
et al. (2008), Banos (2009). It is also one of the predecessor
of agent-based computer models Rosser (1999). Taking in-
spiration from this model, we define a more generic model
of satisfaction (GMS).

The GMS is similar to a 2-D cellular automata model: the
’world’ includes numerous agents embedded on a toroidal
grid. For each agent, the perception is centered on his lo-
cal neighbourhood only, where the neighbourhood is consti-
tuted of the nearest cells surrounding him. We note di(t)
the social degree of the agent ai at time t, that is the num-
ber of agents in its neighbourhood. Since some locations
remain empty, the size of the neighbourhood is the maxi-
mum number of neighbours an agent can have. There are
two types of agents and each agent has its own type. Dur-
ing a run the agent’s type cannot change. The satisfaction
of one agent is relative to the type of the agents in its own
neighbourhood. For convenience we will denote by a color,
yellow and green, the two possible types. Y (resp. G) repre-
sents the set of agents in the yellow type (resp. green type).
Thus, the number of agents is (#Y + #G) and at the global
level, the basic hypothesis is (#Y = #G). At each time t,
for each agent ai, si(t) (resp. oi(t)) represents the number
of neighbours with the same type (resp. opposite type), so
si + oi = di.

From Thresholding to Satisfaction
For each agent ai, we assume that there is some quantity
measured by the variable Qi in the range [0, 1] which de-
pends on si and oi. At each time t, the value requiredQi(t)
is a number in the range [0, 1] which denotes the threshold
under which the agent is satisfied according to Qi(t). We
define the local boolean indicator satisfied as:

satisfiedi(t) = (Qi(t) ≤ requiredQi(t)) (1)

Finally, we define the global indicator satisfactionRatio in
the range [0, 1] as:

satisfactionRatio(t) =
#{satisfiedi(t) = true}

#Y + #G
(2)

This is the ratio of satisfied agents at time t; if it is equal to
1, then all the agents are satisfied at time t.

Local rule
Once the static description of the model is specified, one
must add rules that govern the dynamics of agents’ move-
ment. At each time, the motives of each agent are driven
by its own satisfaction: an unsatisfied agent is motivated to

move away to one vacant location. The gap between micro-
motives and macro-behaviours is due to overlapping neigh-
bourhoods: an agent who moves according to its own inter-
est affects not only the neighbourhood it leaves and the one
it arrives in, but also affects, in the long run, all the agents.
In GMS we do not fix how an agent moves; this will be
specified later when the model will be instantiated. One can
only say that there are many ways for an unsatisfied agent to
move to a vacant place.

An index to measure the degree of aggregation
To have some insight into the aggregation level, it is neces-
sary to measure the global aggregate over the world. We
reformulate measures proposed by Schelling, Carrington
and Goffette-Nagot Schelling (1971), Carrington and Troske
(1997), Goffette-Nagot et al. (2009). First, we define a
global measure of similarity as:

s(t) =
1

#Y + #G

∑
i

(1−Qi(t)) (3)

Then, we define the aggregateIndex by

aggregateIndex =


s−srand

1−srand
if s ≥ srand

s−srand

srand
else

(4)

where srand is the expected value of the measure s im-
plied by a random allocation of the agents in the world. A
null value for this index corresponds to an average random
configuration. The maximum value of 1 corresponds to a
configuration with two homogeneous patterns only.

The Schelling’s model of segregation
The Schelling’s model of segregation is a particular case for
the generic model of satisfaction. In the following we are
going to indicate its specificities.

How to compute satisfaction? In the Schelling model the
quantity Qi(t) takes into account the proportion of neigh-
bours of the opposite type; it is computed as the ratio be-
tween the number of neighbours having the opposite type
and the social degree.

Qi(t) =

{
oi(t)
di(t)

if di(t) 6= 0
0 else

(5)

For example, if a yellow agent ai has three yellow neigh-
bours and two green neighbours, Qi = 2

5 . If there are no
neighbours for the agent (i.e. if di = 0), Qi = 0. If all
neighbours have the same type (i.e. if oi = 0 and si 6= 0),
Qi = 0. If all the neighbours are in the opposite type (i.e. if
si = 0 and oi 6= 0), Qi = 1. As the initial spatial config-
uration is randomly chosen, the initial distribution of Qi is
binomial.

169ECAL 2011



Table 1: Ratio between the number of neighbours of oppo-
site type to the social degree: Qi = oi

oi+si

Coloured values: agent ai, will be satisfied if Qi is under the
tolerance threshold 0.37

@
@@s

o
0 1 2 3 4 5 6 7 8

0 0 1 1 1 1 1 1 1 1
1 0 .500 .666 .750 .800 .833 .857 .875
2 0 .333 .500 .600 .666 .714 .750
3 0 .250 .400 .500 .571 .625
4 0 .200 .333 .428 .500
5 0 .166 .285 .375
6 0 .142 .250
7 0 .125
8 0

In this model, all the agents have the same threshold of
tolerance: it is a constant value (noted tolerance) which is
fixed before the run. So, at each time t, for each agent ai,
equation 1 becomes:

satisfiedi(t) = (Qi(t) ≤ tolerance) (6)

The agents are said tolerant if the tolerance is greater than
0.5 (0.5 ≤ tolerance) and intolerant otherwise. We use the
Moore neighbourhood commonly employed in agent-based
models. So the neighbours of an agent are those living in
the eight nearest cells surrounding him and the degree di

is a number between 0 and 8. For instance, if the toler-
ance threshold is 0.37, one particular agent ai, at time t,
will be satisfied if Qi(t) is under this value; this happens in
the following eighteen cases: (oi = 0), (si = 2, oi = 1),
(si = 3, oi = 1), (si = 4, oi = 1), (si = 5, oi = 1),
(si = 6, oi = 1), (si = 7, oi = 1), (si = 4, oi = 2),
(si = 5, oi = 2) and (si = 6, oi = 2) (see the coloured val-
ues on table 1). More, if there are exactly eight neighbours,
i.e. di = 8, (see table 1, the diagonal line) such a tolerance
means that the agents are intolerant and cannot suffer more
than two opposite neighbours.

How do unsatisfied agents move away ? In standard
Schelling’s models agents move only to satisfy their own
interest. This requires that agents must be able to access dis-
tant information in order to determine whether or not it will
be satisfied in a new vacant cell. This kind of behaviour is
characteristic among economical agents that seek to maxi-
mize their gain. Nonetheless such a behaviour come out of
the idea of agents acting approximately rational, rather eco-
nomically rational in terms of utility and breaks down the
principle of locality (see Brownlee (2007)).

Global behaviour Regarding the micro-macro problem-
atic, the Schelling model provides examples for the two

cases: [i → S] and [̄i → S] where i (resp. ī) stands for
individual intolerance (resp. tolerance) and S stands for a
high degree of global segregation. While the first case is the
intuitive situation where micro-intolerance induces macro-
segregation, the second case is more surprising as it shows
that tolerant behaviours can nonetheless induce a global seg-
regation.

The Schelling Model with the Eulogy to
Fleeing rule

In standard Schelling’s models agents aspire to satisfy their
interests in the new places they move in. In this section, we
rather assume a reaction from agent without real cognitive
abilities expressed by the simple Eulogy to Fleeing rule (EF
rule).

The Eulogy to Fleeing rule
The Eulogy to Fleeing rule is agreeing with the definition
of the term satisficing proposed by Herbert A. Simon Simon
(1956). ”Satisficing describes the selection of a good enough
solution, the selection of a decision that meets a minimum
threshold or aspiration level, the selection of which occurs
in the context of incomplete information or limited compu-
tation” Brownlee (2007).

The EF rule is defined as follows: for each unsatisfied
agent, a cell is randomly chosen ’all over the world’ and
the agent moves to this cell if and only if it is vacant. So
the agents may move at random towards a new location ac-
cording to their preferences by allowing utility-increasing or
utility-decreasing actions. Moves do generate new satisfied
or unsatisfied agents by a chain reaction until an equilibrium
is reached. At a time t, if all the agents are satisfied, the
EF rule has no effect and then such a configuration is a fixed
point for the dynamics.

This simple rule is more in the spirit of the complex sys-
tem paradigm, and, as locally there is no seeking for im-
mediate benefits, it is interesting to know its global conse-
quences. Although it is easy to build some particular cases
where the EF rule does not converge, in the following sim-
ulations this rule leads the system towards an equilibrium.
Let’s note that although similar rules based on a random
choice of vacant locations are already proposed (Edmonds
and Hales (2005), Izquierdo et al. (2009)), they do not look
completely identical to the EF rule. In particular, with the
EF rule, an unsatisfied agent may stay in place for a while if
the randomly chosen locations are occupied.

Simulation and results
In this paper, all the simulations are realized in the Net-
Logo1 multiagent programmable modeling environment
Pham (2004), Wilensky (1999). For each simulation, the
agent’s features are updated in an asynchronous way and

1http://ccl.northwestern.edu/netlogo/
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the global geographic parameters are fixed. The world is a
square of locations horizontally and vertically wrapped. An
agent with type ’yellow’ (resp. green) is represented by a
yellow (resp. green) square. A black square represents a va-
cant location. A simulation stops at convergence, when all
the agents become satisfied.

The world is a grid-square composed of 10000 locations.
This size is a good compromise between the necessity to
have a large value to avoid small space effects and the con-
venience to have a small value to achieve short computation
time. There are 1000 vacant locations, knowing that the den-
sity rate is 90% and 4500 agents in each type. We imposed
a random initial configuration: in the cases studied below,
the value of srand is indistinguishable from 0.5; thus initial
configuration induces an aggregateIndex closed to 0.

We conducted two types of experiment: in the first one, all
the agents are intolerant and in the second they are tolerant.

Intolerant agents For this first experiment the tolerance is
set to 0.37 (see table 1); so all the agents are intolerant. We
can see in figure 1 the result of the agents spatio-temporal
evolution at the end of a representative run: after 1150 steps
all the agents are satisfied (i.e. satisfactionRatio = 1),
the mean Qi over the whole population (noted Q) is 0.024
and the aggregateIndex is 0.957. From 100 indepen-
dent runs we obtain, a mean of 0.952 (0.0041)2 for the
aggregateIndex and 0.024 (0.0022) respectively for Q.
We can observe the emergence of large spatial homogeneous
patterns. Moreover the borderland between the patterns is
almost build with every vacant location (black square). So
patterns are isolated by a no-man’s-land of vacant cells.

Tolerant agents Here, the goal is to show that segrega-
tion occurs even if no agent strictly prefers this. We set the
tolerance to 0.63 (see table 1), so all the individuals are tol-
erant. In particular, if an agent has exactly eight neighbours,
it can bear up to five opposite agents in its vicinity. Figure
2 gives an example of the evolution of the agents’ locations
during a representative run. At the end, after 228 steps, all
the agents are satisfied, the mean Qi over the whole pop-
ulation is 0.229 and the aggregateIndex is 0.548. From
100 independent runs we obtain, a mean of 0.53 (0.0119) for
the aggregateIndex and 0.233 (0.0094) respectively for Q.
While spatial segregation is not an attribute of the rational
individuals’s behaviour, we can observe the emergence of
many segregationist patterns, although they have a smaller
size that in the previous case (see figure 1). More, vacant
locations are scarce on borderline because with a high toler-
ance level vacant cells are not requisite to delimit segrega-
tionist patterns.

2standard deviation is shown in ()

Figure 1: The Eulogy of Fleeing rule: tolerance = 0.37
View at convergence (ticks = 1150): Q = 0.024

aggregateIndex = 0.957

Discussion

In this section, we have shown that in spite of the use of
a more simple and realistic local rule, the model produces
a comparable global behaviour than the classical Schelling
model.

We have shown that both intolerant and tolerant local be-
haviours lead to the satisfaction of all the agents with the
emergence of global segregationist patterns. Moreover, the
gap between the tolerance and the mean Qi over the whole
population is surprisingly large at the end of a run. In this
way complex dynamics build much more liveable configu-
rations than necessary. With intolerant agents, vacant places
are required to form the frontiers and insulate agents in ho-
mogeneous patterns. In the next section, we propose to
modify the model in order to insulate segregationist patterns
without using vacant locations mainly.

From no-man’s-land to mediator-land

Most often, in real life some individuals are tolerant whereas
others are intolerant. In a model, there are two ways to take
into account this fact: either fixing a distribution for the
tolerance, or dynamically evolving tolerance to ’converge’
toward a particular distribution. The first solution requires
not only to choose one distribution: uniform, normal, pois-
son,. . . but also to fix its parameters: mean and standard de-
viation.
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Figure 2: The Eulogy of Fleeing rule: tolerance = 0.63
View at convergence (ticks = 228): Q = 0.229

aggregateIndex = 0.548

Adaptive local rule

As we have no a priori on a target level of tolerance, we
choose to start from an intolerant configuration and to ap-
ply a local rule to gradually increase the tolerance. For in-
stance, when a person is immersed in an unknown world,
his first attempt will be to meet people which look like him;
so initially, certainly with many apriority, such a person is
gregarious or intolerant. Then, if his requirement is too high
relatively to the environment, it will be difficult for him to
find a fitting place; therefore a natural tendency will be to
gradually reduce his stress by decreasing his gregariousness
and/or increasing his tolerance.

In this new instance of the GMS, each agent has its own
tolerance threshold. Furthermore, each individual threshold
may vary over time. So, for each agent ai, at each time t,
the satisfied indicator (see equation 1) becomes:

satisfiedi(t) = (Qi(t) ≤ tolerancei(t)) (7)

Initially, the tolerance of each agent is set to a very small
value, therefore an agent is at first radically intolerant and so
will be unsatisfied. At each time, for each unsatisfied agent,
a cell is randomly chosen ’all over the world’ in order to
move in if it is vacant, otherwise, i.e. if the cell is already
occupied, the agent stays put and adapts its own tolerance to
the context by increasing its value with a small increment.

Simulation and results
For each agent, the tolerance is initialised to 0.001 and we
chose a small increment of 0.003. We can see on figure 3 the
spatio-temporal evolution of the agents at the end of a rep-
resentative run. After 663 steps all the agents are satisfied;
the mean tolerance over the population is 0.365, the mean
Qi over the population is 0.049 and the aggregateIndex
is 0.892. Even if dynamics are more complex than in
Schelling’s model, we can observe the emergence of spa-
tial homogeneous patterns yet. On 100 runs we obtain, a
mean of 0.919 (0.0120) for the aggregateIndex and 0.360
(0.0047) respectively for the mean tolerance. So, on aver-
age, dynamics lead agents to remain intolerant and a high
segregation emerges at the global level; once again this is an
example for the case [i→ S].

Figure 3: Dynamic tolerance
View at convergence (ticks = 663):

aggregateIndex = 0.892 mean tolerance = 0.365

We can observe that the frontier between homogeneous
patterns is constituted both by vacant cells (black square)
and by the most tolerant agents (white circle), i.e. agents
with tolerance ≥ 0.39; therefore, for a significant part,
homogeneous regions are isolated by places for mediation
where opposite agents may co-exist. We can note that there
are also tolerant agents outside the mediator-land; this corre-
sponds to scoria3 in some areas where former conflicts have
led to the local hegemony of one of the two types; thus data
collected from the own tolerance of the agents allow to learn

3Scoria is the dross that remains after the smelting of metal
from an ore
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more about the past of the system.

Discussion
A first result is that dynamics leads the mean tolerance to-
ward a relatively weak value (0.36); as a consequence, when
all the agents become satisfied, they remain on average in-
tolerant. The second result is that segregation is still high
(0.919). The third result is that in a world where agents are
on average intolerant there are some tolerant agents which
play a crucial role in the spatial distribution. This can serve
as a clue to extend the model toward more mosaic-like struc-
ture. Type-mix would be favoured by the existence of se-
cluded agents amidst individuals having an opposite type. In
the present model, this is impossible because agents are not
tolerant enough to endure such a situation: we have to en-
hance the dynamics to allow tolerance to reach high values.
On the contrary, the presence of scoria shows that one agent
with high tolerance may be useful in a moment at a place
then becomes superfluous later in the same location; so de-
crease the tolerance of satisfied agents may help to avoid
such ’frozen region’. All this suggest us to manage two an-
tagonist dynamics: increasing and decreasing the tolerance;
so, we expect to significantly lower the level of segregation
while maintaining a weak mean tolerance.

How to avoid high segregation ?
In this last section the goal is to respond to the question:
How intolerant agents can become satisfied without the
emergence of macro segregation?

In the new model we propose, there are two antagonist
dynamics, the first one increases the tolerance of unsatisfied
agents, whereas the second decreases the tolerance of satis-
fied agents. Initially, the agents have a weak tolerance and
are thus radically intolerant and unsatisfied.

• An unsatisfied agent, can either move to a vacant place
or else simply increase its tolerance (for details, see the
previous section).

• Conversely, for a satisfied agent ai, if the difference delta
between its tolerancei and the value of Qi in the place it
lives in is too high, its tolerance decreases.

In real life, when a person is no longer confronted with dis-
tressing circumstance, his ability to cope later in such a sit-
uation is reduced. This phenomenon can be explained by a
mechanism of forgetfulness. In the model, an agent is satis-
fied if it is not faced to a large enough number of opposite
agents. If over time such a lack of confrontation persists,
then the agent gradually reduces his threshold of tolerance.

Parameter space exploration
There are two main parameters that control the dynamics of
tolerance: the amount of increment inc and decrement dec.

First we conduct a parameter space exploration in order to
chose suitable values for the simulation.

In the context of complex systems, most often there are
several parameters which together determine the global dy-
namics. In order to choose values for the parameters used
in the simulations, we have first conducted an exploration
of the parameter space. The objective to minimize both the
mean tolerance and the global aggregateIndex is difficult
because when the first one decreases, the second increases
and conversely. Therefore, we conduct a tradeoff-analysis to
identify compromise for which the two criteria are mutually
satisfied in a Pareto-optimal sense. This is a typical multi-
objective optimisation problem where the optimal solutions
correspond to a set of compromises expresses by a Pareto
front Dyer et al. (1992), Belton and Stewart (2002). In prac-
tice, the Pareto front is proposed to a human decision-maker
who then chooses a solution according to his expertise.

For all the tests we perform, the parameter delta is set to
0.1. We focus our effort on areas that lead to interesting re-
gions where convergence occurs with low tolerance and low
segregation: each test corresponds to one couple (inc, dec)
in the range [0.025, 0.040] × [0, 0.030]. There are 60 tests
and, for each one, results are averaged over 100 runs. Each
data point of the scatter plot (see figure 4) corresponds to a
couple (inc, dec) and represents both the aggregateIndex
(y-value) and the mean tolerance (x-value) obtained when
all the agents are satisfied. We can observe that heightening
the parameter dec (while inc remains constant) pushes the
point solution to the left toward the Pareto front. Conversely,
lowering the parameter inc (while dec is constant) moves
up the point solution on one front. This analysis leads us to
choose a particular point on the Pareto-front that represents
a good compromise between both intolerance and low seg-
regation. To conduct the following simulations, we choose
the point corresponding to the parameter values inc = 0.029
and dec = 0.017 (See the arrow on figure 4).

Results
Initially, all the tolerances are set to 0.1. We can ob-
serve on figure 5 the spatial configuration at the end of
a representative run when all the agents are satisfied: af-
ter 513 steps, the mean Qi over the population is 0.306,
the mean tolerance over the population is 0.369 and
the aggregateIndex is 0.383. On 100 runs, we obtain
on average an aggregateIndex of 0.388 (0.0110) and a
mean tolerance of 0.370 (0.0048). The value for the
aggregateIndex (0.388) has to be compared with the ones
obtained with the two previous models (0.957 and 0.919)

The frontier between homogeneous patterns is constituted
by the most tolerant agents and there is no scoria inside the
patterns. One observes that homogeneous areas are infil-
trated by many secluded individuals: there are some niches
which co-exist within a cohort of unlike agents; this is pos-
sible only because loners are very tolerant. In contrast with
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Figure 4: Parameter space analysis
Tolerance vs. Segregation

the previous models, vacant locations don’t play any role
in isolating individuals from each other. The most impor-
tant feature of this model is that it prevents intolerant agents
from high segregation. As the Schelling’s model provided
an example for the case [̄i → S], this model exemplify the
[i→ S̄] micro-macro link.

Conclusion and future work
In this article, we have proposed to extend the Schelling’s
model considering that every individual has its own toler-
ance level. In a first step we have proposed a simple way
to locally manage the tolerance; all that gives rise to the
emergence of a new kind of border and inner scoria both
made up of the most tolerant agents. In a second stage, we
have introduced new dynamics that consists of combining
two antagonist strengths. As a result of this confrontation,
the agents are able to reach an equilibrium where they all are
satisfied, rather intolerant, but where the aggregation level
remains low. As, at our knowledge, there is no prior work
on this topic, this result is a significant challenge to the anal-
ysis conducted by Schelling: it shows that one can avoid
segregation if the tolerance level is adaptive, which is in our
opinion a better assumption.

In future work, we will revisit those results by consid-
ering situations closer to reality. Beyond a simple world of
agents embedded on an homogeneous toroidal-grid, we have
to consider different types of network as for example neigh-
bourhoods defined from a scale-free network. We have ob-
served the emergence of very different type of frontiers: no-
man’s-land, mediator-land or in some extend mixing; thus,

Figure 5: Intolerant agents avoid global segregation
View at convergence (ticks = 513): mean

tolerance = 0.369, aggregateIndex = 0.383

it might be interesting to study for a border, its composition,
its spatial distribution, its volume, porosity, permeability,...
and so to better understand its function: place of exchange
and/or medium to isolate.
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Abstract

Although in the last few decades a variety of theoretical tools
have been developed to better understand living organisms,
their impact on experimental research has been rather lim-
ited. A common element between these theories is the idea
of metabolic closure, i.e., the systems that produce all their
metabolites and catalysts. In spite of an increasing consensus
on the relevance of closure, a formal and operative definition
has remained elusive. In this paper we revisit RAF sets and
chemical organization theory and show how these two theo-
ries overlap and could help bring forth real world results. We
also state a theorem ensuring the presence of a cycle of in-
terdependent catalysts for RAF sets and conjecture that these
cycles give stability to the network. This conjecture is illus-
trated and supported by computer simulations. Unavoidably,
our viewpoint introduces the notion of fluxes and thus a tem-
poral dimension to the purely algebraic model of RAF sets.
The results of this work show that the incorporation of clo-
sure, topological and dynamical tools altogether is a promis-
ing path for a deeper understanding of living systems.

Introduction
In the last thirty years there have been many efforts directed
to develop theories to understand biological systems in terms
of metabolic closure or, equivalently, systems that produce
and maintain themselves. Two crucial models that defini-
tively put metabolic closure at the very center of biological
organization are: Autopoiesis, formulated by Maturana and
Varela (Maturana and Varela, 1980), and Rosen’s (M,R) Sys-
tems (Rosen, 1958). But these two theoretical studies and
similar theories (like the Chemoton or Autocatalytic sets),
although very clarifying in basic aspects, have not yet pro-
duced technical results that illuminate the daily life of bench
biologists involved in experimental research.

In the past (Jaramillo et al., 2010) we have emphasized
that a little known formalism called RAF sets (Hordijk and
Steel, 2004) is a particularly suited technical tool to under-
stand closure in general and autocatalytic sets in particu-
lar. Here we study the relation between RAF sets and the
chemical organization theory (COT), which is a theory that

‡All authors contributed equally

adds to the dynamical aspects by introducing the notion of
metabolic fluxes to the purely algebraic vision of RAF sets,
an idea deeply embedded in basic metabolic engineering.
This is accomplished by expressing the kinetic behaviour
of the components (molecules) in terms of a stoichiometric
matrix, which then leads directly to the concepts of rates and
fluxes, introducing the temporal dimension. This approach
can be used to expand the original RAF sets theory, which
we consider to be highly valuable for biology, but unfortu-
nately too algebraic to be of use, in particular lacking a way
to describe the time behaviour of the systems, which is of
most importance in the direction of a more realistic biologi-
cal context.

Here we will show how notions from chemical kinetics
can be fused with RAF sets to search for closure in metabolic
networks. Although the results presented here seems, ini-
tially, as a mere technicalities without theoretical relevance,
they open new research paths as we adjoint highly theoreti-
cal notions (RAF set and the metabolic closure) with an ac-
cepted used tool to understand metabolism in steady state.
In particular we show the logical relation between COT and
RAF sets.

RAF sets and COT in a Nutshell
We now give a brief introduction to the work of Hordijk and
Steel (2004), who came up with a formal framework to study
a autocatalytic systems. Their main aim appears to have
been to develop algorithms with which autocatalytic systems
in Kaufmann’s sense (1993) could be described and found
computationally. They have produced a powerful approach
that can be used to analyze a wide variety of systems. Their
formalism is based on the following two important sets: X
is the set of molecules involved in metabolism (i.e. metabo-
lites, catalysts or external input material, termed food set in
the formalism), and R is the set of reactions that define the
metabolic network. Each reaction r is represented as a tuple
(A,B), where A,B ⊂ X , A ∩ B = ∅, A are the reactants
and B the products of reaction r.

Further, to formalize the notion of catalysis, a specific set
C (called the set of “catalyzations” by Hordijk and Steel)
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is introduced. Each catalyzation c is a tuple (x, r), where
x ∈ X is the catalyst and r ∈ R is the reaction catalyzed by
x. Additionally, the subset of molecules that are used but are
not produced by metabolism is called food and denoted by
F . Thus, a catalytic reaction system over a food source F
is composed by a triplet L = (X,R, C) which defines the
universe of molecules (X), the reactions occurring among
these molecules (R) and the identity of the catalyst involved
in each reaction (C). Note that this already provides, al-
though at a very simple level, a way to refer to a system, and
distinguish the inner and outer components and the transfor-
mations that the components undergo.

The following additional functions are defined: ρ(r) = A
and π(r) = B, which return the reactants and the prod-
ucts of any given reaction r, respectively, and the funcion
supp(r) = ρ(r) ∪ π(r). With the help of these elementary
functions, the same notion can be extended to a set of re-
actions R′ as ρ(R′) =

⋃
r∈R′ ρ(r), where R′ ⊆ R. This

definition captures the conglomerate of molecules that par-
ticipate as reactants for a set of reactions. A similar def-
inition holds for π(R′), the products of a subset of reac-
tions. With these ideas we can define the closure of a subset
X ′ ⊆ X relative to R′ ⊆ R (clR′(X ′)) as the set of reach-
able molecules that can be synthesized by starting from X ′

and iteratively applying all the reactions in R′. Note that
this definition is of most importance, as it follows that a set
of molecules which is closed (i.e. it is equal to its closure)
under a set of reactions will not generate any new molecule
and thus, conserves its identity. This operation captures the
central idea of metabolic closure, which is fundamental for
achieving organizational invariance in autopoietic systems.
A catalytic reaction system is reflexively autocatalytic if for
each r ∈ R there is an x ∈ supp(R) such that (x, r) ∈ C.
In other words, every catalyst must be a reactant or product
of a reaction in the same system. The system is F -generated
if every reactant is either produced by the system or incor-
porated as a food item (i.e. formally ρ(R) ⊆ F ∪ π(R)).
A system that is reflexively autocatalytic and F -generated is
called a RAF set (see figure 1).

RAF sets can be understood informally as an interdepen-
dent set of biochemical reactions where all of the metabo-
lites, with the exception of the so-called food set, are pro-
duced by the collection of reactions R. This self generation,
a defining feature of autopoietic and (M,R) systems, is the
core of metabolic closure. Thus, RAF sets, autopoietic and
(M,R) systems overlap to a great extent; positioning RAF
sets as an operative theory to metabolic closure. The ad-
vantage of RAF set formalism is that it is precise enough to
be coded in well defined algorithms that exploit its intrinsic
recursiveness. To check if a given collection of biochemi-
cal reactions is indeed a RAF set, Hordijk and Steel (2004)
developed algorithms aimed to analyze the interdependence
between a given catalyst and its production pathway.

The chemical organization theory, initially developed by

Dittrich and Di Fenizio (2007), deals with chemical reaction
networks. In what is called static analysis, the part of this
theory that is concerned with the topology of the system,
molecules and reactions are defined in a very similar way as
in RAF sets. Most notably, both theories share the definition
of the closure operator. But while COT makes no explicit
mention to catalysts and therefore distances itself from bio-
logical systems in which this concept is fundamental, it does
incorporate tools to study the dynamical behaviour of chem-
ical reaction networks, thus provides a connection between
the structure of a system and the dynamical aspects of it.
This is acomplished by first expressing the system in terms
of the stoichiometric matrix and associated differential equa-
tions.

In COT, it is useful to recognize systems fulfilling certain
properties, such as closure. For example, a system is self-
sustained if it is able to generate every molecule that is used
up. When this topological consideration is transported to
the time domain, we can define mass-maintaining systems.
A system is said to be mass-maintaining when:

1. All reactions that can be fired by the molecules in the sys-
tem occur at some positive rate

2. Reactions whose reactants are missing from the system do
not occur

3. There is a combination of reaction rates such that all
molecules increase or maintain their concentration.

A system which is both closed and mass-maintaining is
called an organization. Organizations are interesting as they
resemble very closely autopoietic systems. Also, organiza-
tions are a the center of many theorems in COT. This the-
ory and RAF sets deal with closure. While one makes no
distinction between catalysts and metabolites, the other one
lacks the notion of time, which are essential elements of liv-
ing systems. In the next paragraph we will show an relation
between these two theories.

Kinetics in RAF sets
If a theory is to have impact on real biochemical world, it
must deal with the notions of that domain, thus, to gain a full
understanding of closure we must complement the purely al-
gebraic nature of RAF sets with ideas taken from Metabolic
Control Analysis (MCA), a field generated to understand
and measure fluxes in biochemical systems which is of com-
mon use in the field of metabolic engineering.

Current MCA is a quantitative theory that does not con-
sider closure, as catalysts (i.e. enzymes) are placed in the
network, but the reactions generating them are not taken
into account. By putting the quantitative aspects of MCA
and applying them to RAF sets, side by side, we can gain
insight in how to study closure quantitatively. All the theo-
ries of metabolic closure (Autopoiesis, (M,R) systems, Au-
tocatalytic sets, etc) are essentially algebraic or conceptual

177ECAL 2011



Figure 1: A simple example of a RAF set. Food elements
F are incorporated into the system and generate metabolites
M , which are transformed into two different catalysts sets:
a) Tin which regulates the inflow of F and C2 which cat-
alyzes its generation and b) Tout which regulates the outflow
of waste metabolitesW and C1 who catalyzes its formation.
In addition, C1 and C2 catalyze the formation and destruc-
tion of the transporter catalysts (Tout and Tin, respectively),
and also they mediate the generation and consumption of
each other, forming the Reflexive Autocatalytic core of the
system. Finally, growth is regulated by modulating the in-
flow of F and the outflow of W . We want to highlight the
loop defined by metabolites M which turn into C2 who reg-
ulates the formation of C1 starting from M , a reaction regu-
lated by C2.

models centered on connectivity but not in dynamics. To go
further in our understanding we must include the time course
evolution of the concentrations inside the system.

Fortunately, the formalism of Reder (1988) that uses the
stoichiometric matrix and the matrixDxv to study rates, can
be applied almost verbatim to analyze if a RAF set will grow
or disappear. The great advantage of applying MCA for-
malisms is that we can quantitatively study how a system
with metabolic closure can grow or disappear.

RAF sets are sets of coupled biochemical reactions with
the attribute that the catalytic dependences between reac-
tions and their catalysts are explicitly given. As said, RAF
sets demand that almost all the molecules that conform a
system can eventually be generated, directly or indirectly,
from certain food materials and that all catalysts are pro-
duced by the system.

The transformation part of a RAF set can be represented
by the formalism of the stoichiometric matrix, a well known
tool extensively used in fields like MCA and Systems Biol-
ogy in which every reaction is written as a column and every
metabolite is refered to as a row. For example, the matrix N
of the system described in figure 1 would be as following:

N =


1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 1 1 1 −1
0 1 0 0 0 −1 0 0 0
0 0 1 0 0 0 −1 0 0
0 0 0 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 0


By using the column representation of reactions, it is con-

venient to define the addition of reactions as a standard ad-
dition operation of vectors. This operation expresses the oc-
curence of both reactions as a single net reaction.

Note that the catalytic part lies outside the stoichiometric
matrix and cannot be deduced from it. But, in an idea that
can be traced back at least to Reder (1988), the catalytic
part can be represented by a matrix Dxv (also known as the
Jacobian of the system) that contains all partial derivatives
relating every reaction with every metabolite (or catalyst) in
the system. Thus, the catalysts for a given reaction can be
discovered by ranking the partial derivatives of the rate of
this reaction respective to all metabolites (molecules) in the
system. For example, the Jacobian matrixDxv of the system
described in figure 1 would be:

Dxv =



∂Mv1 0 0 0 ∂Tin
v1 0

∂Mv2 0 ∂C1
v2 ∂C2

v2 0 0
∂Mv3 0 ∂C1

v3 ∂C2
v3 0 0

∂Mv4 0 ∂C1v4 0 ∂Tinv4 0
∂Mv5 0 0 ∂C2v5 0 ∂Toutv5

0 ∂W v6 ∂C1
v6 ∂C2

v6 0 0
0 ∂W v7 ∂C1

v7 ∂C2
v7 0 0

0 ∂W v8 0 ∂C2
v8 ∂Tin

v8 0
0 ∂W v9 0 ∂C2v9 0 0
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Every RAF set can then be described by two matrices; N ,
that shows the network connectivity, and Dxv, that quanti-
fies catalizations.

The necessity of using the Dxv matrix to analyze RAF
sets lies in the fact that autocatalysis is a phenomenon that
does not depend only on connectivity. As it has been show
recently by Plasson et al. (2010) and Piedrafita et al. (2010),
the stability of an autocatalytic set depends on the relative
rate of some reactions. Thus, two systems with identical
connectivities but with different kinetics for some reactions
can have vastly different behaviors.

As stated above, another theory concerned with formaliz-
ing biological organization is COT, a theoretical framework
also centered in the idea of closure differing from RAF as
the idea of catalyzation, perhaps the hallmark of RAF sets,
is not considered. On the other hand COT brings an idea,
the importance of fluxes in a network, that are not consid-
ered in RAF sets which is a purely algebraic approach to the
description of biological organization. Thus an important
question arises: can these two models be related? Can they
support each other, in the sense of across fields fertilization?
In the next section we clarify some relations between these
two models.

An observation needed at the very beginning is that anal-
ysis using RAF sets and COT belong to two very different
viewpoints as crucial elements in one theory are totally ab-
sent in the other. Thus as organizations (in the sense of
COT) require that the overall flux across a relevant subset
of reactions is maintained (thus avoiding the disappearance
of crucial metabolites that, if absent, will produce network
collapse). A mirror like situation can be stated with respect
catalyzations, a cornerstone idea in RAF sets, and (surpris-
ingly) an idea that is absent from COT. Thus we should ex-
pect that if a system is a RAF set it is not immediate that it
is also an organization. Only in some especial conditions we
should be able to find how these ideas can be concurrently
applied.

A hidden relation between RAF sets and COT
A further dissection of RAF sets shows that, although fluxes
and reaction rates initially seem to be absent from this
model, kinetic ideas do exist just below the surface. In effect
we propose two lemmas and a theorem that will bring new
light to the problem of comparing both approaches:

Lemma 1 If a catalytic reaction system L = (X,R, C) is
F-generated, then for all metabolites x(including catalysts)
produced by any reaction r ∈ R, x ∈ supp(R) there is a
positive linear combination of reactions r̄x =

∑
i αiri such

that the metabolite x belongs to the products of the reaction
r̄x, x ∈ π(r0) and the reactants of r̄x belong to the Food
set, i. e., ρ(r0)) ⊆ F .

Proof: Considering the algorithm used to find the closure
of L (Hordijk and Steel, 2004), let W = F . Then add

the products of reactions R0 = {r ∈ R|ρ(r) ⊆ W} to
W . Adding all reactions in R0 gives a global net reaction
r̄0 that consumes metabolites from the Food set F only and
produces each metabolite in W . If this process is repeated,
considering W = F ∪ π(R0), it is possible to build the set
R1 that contains all reactions that have their reactants in W ,
but excluding the reactions from R0. Adding all reactions
in R1 we obtain a new reaction r̄′1 that requires metabolites
from W only and produces any metabolite in π(R1). To
obtain the fact that this last reaction uses only metabolites
from the Food source, let r̄1 = αr̄0 + r̄′1,where α is the
most negative stoichiometric coefficient of the reaction r̄′1.
This procedure takes enough metabolites from F to generate
π(R1). If we repeat this algorithm until it is not possible to
find new metabolites, we will have generated clR(F ) = W .
If the system is F-generated, according to Hordijk and Steel
(2004), we have that clR(F ) = F ∪ supp(R). We have
shown that for every metabolite x ∈ clR(F ) a composite re-
action exists which generates it consuming food items only,
in fact it is one of the ri.

Lemma 2 If a catalytic reaction system L = (X,R, C) is
F-generated, there is a strict positive linear combination of
reactions r̂ =

∑
i αiri with αi > 0 such that all metabolites

are products of this reaction, i. e., r̂ is a strictly positive
vector.

Proof: From Lemma 1 it follows that for each metabo-
lite mj there is a positive linear combination of reactions
r̄mj

=
∑

i αi,jri such that this metabolite is produced ex-
clusively from the Food set. This linear combination r̄mj

is
the resultant net reaction associated with the path of reac-
tions j that generate each metabolite mj . If for all metabo-
lites we add their generating reactions r̄sum =

∑
i αiri with

αi =
∑

j αi,j , we have from the Lemma 1 that r̄sum is
stricly positive. We must note that not all reactions will be
used. We refer to these reactions generally as rs, having
αs = 0 in rsum for those reactions. If we consider the sum
of this reactions rnot =

∑
s rs, it will consume metabolites.

To maintain r̂ positive and still fire these non-essential re-
action (this will be needed later), we set r̂ = βrsum + rnot
with β sufficiently large. Then we can construct a strictly
positive linear combination r̂ = βrsum + rnot =

∑
i ᾱiri

with:

ᾱi =

{
1 if ri ∈ {rs}
βαi if ri /∈ {rs}

note ᾱi > 0

and all the metabolites are product of this reaction r0.
These lemmas, framed completely in the language of

RAF sets, could be interpreted as mere technical results
about RAF sets. In essence they state that every metabo-
lite can be generated from the food set and makes explicit
the overall reaction producing each, non-food, metabolite.
But every time we use a stoichiometric matrix N we are im-
plying a given kinetics because of the necessary equation
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relating N to the change of concentrations: N · v = dX/dt,
where v is the vector of rates. Thus the requirement, in COT,
that (dX/dt ≥ 0) can be phrased as a condition on the com-
ponents of v. These lemmas show how some (not all) Orga-
nizations could be RAF sets, and it is interestingly that they
are proved by using notions of linear algebra. Also note that
the positive linear combination predicted by the lemmas ex-
plicitely shows how to combine individual reactions in any
RAF set to attain mass-maintenance.

Once we have established this link we can a little bit fur-
ther and search for deeper connections. The next theorem
continues to exploit matrix N to sketch how some RA sets
are F-generated using the stoichiometric matrix N .

Theorem 1 If a catalytic reaction system is F-generated,
then there is a strictly positive rate vector v, such that
N · v = dX/dt is also stricly positive, where N is the stoi-
chiometric matrix of the system.

Proof: We note that the operationN ·v = dX/dt is equiv-
alently mathematical to make a linear combination of reac-
tions r =

∑
j αjrj if we consider each reaction as a column

and αj as the velocity of reaction rj . From Lemma 2, if
we take the reaction r0 and choose vj = ᾱj (normalizing
time units), therefore a v exists with components vj > 0 as-
sociated to a flux vector dX/dt that satisfies dXi/dt > 0,
equivalent to the column representation of r0 with all of their
components also positive.

Corollary 1 If a catalytic reaction system is F-generated,
then it is also an organization.

Proof: An F-generated system is, by definition, closed
and as theorem 2 shows, it also satisfies the property of
mass-maintenance. Thus, it is an organization.

This theorem explains the existing relations between Or-
ganizations, F-generated sets, RA sets and RAF (see fig-
ure 2). Essentially, we have proved that all F-generated sets
are organizations and a subset of them are also reflexive au-
tocatalytic. This subset is the RAF sets. Theorem 1 is a
simple one that has the virtue of illuminating how these two
theoretical frameworks are related to each other.

This result is important because some new technical the-
orems have being obtained by Dittrich’s group, for example,
on how to detect organizations among real metabolic net-
works (Centler et al., 2010, 2008). Thus, our theorem shows
that these new tools, developed to find organizaions, could
be also used to search for RAF sets.

In addition, we will make a definition to the sets that are
organizations and RA at the same time.

Definition 1 If a cataliytic reaction system is Reflexive Au-
tocatalytic and an Organization, then it is a Reflexive Auto-
catalytic Organization, RAO.

These sets are reaction systems that can be sustained, but
not necessarily can be generated from a food set F exclu-
sively. We have shown that all F-generated sets are orga-

Figure 2: Venn’s diagram depicting the logical relations be-
tween RA, RAF, and F-generated sets and organizations un-
der COT’s definition. All RAF sets are organizations, but
whether all organizations are F-generated is an ambiguous
matter.

Figure 3: A: A chain of dependent catalyzations. B: A cat-
alyzation loop

nizations, but the converse result (all organizations are F-
generated sets) is more difficult to handle. We propose two
different approaches: First, if one decides that the Food set
corresponds only to the molecules generated from the empty
set (in COTs phrasing of reactions), then it is clear that there
are organizations which are not F-generated. On the other
hand, for any organization it is always possible (due to the
closure property) to find a suitable set (generally not unique)
F such that the corresponding F-generated set is equal to the
given organization. Thus, the extend to which organizations
and F-generated sets overlap depends on which approach
one takes to express COT systems in terms of RAF sets.

The Loop Theorem
As most theories on biological organization are centered in
the notion of closure (Letelier et al., 2011), RAF sets formal-
ism give a succinct and useful description of closure. First,
we shall consider a chain of catalyzations in which a prod-
uct from one reaction catalyzes another reaction in the chain
(figure 3A). If eventually a product catalyzes an earlier step
(figure 3B), we have a catalyzation loop. As we shall see, in
a RAO it is always possible to find such a catalyzation loop
if the catalysts are not part of the food set. This condition
seems natural for systems with metabolic closure.

Considering this definition we propose:
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Theorem 2 If all catalysts in a RAO are generated by the
system, then there is at least one catalyzation loop.

Proof: In such a RAO every catalyst must be generated by
a reaction, which in turn must be catalyzed too. In this sense,
the production of every catalyst is directly dependent on an-
other and indirectly dependent on a sequence of catalysts.
The number of catalysts is finite therefore, at some point a
catalyst must depend indirectly on itself, thus, forming at
least one catalyzation loop. Note that not every catalyst is
part of a loop as it is allowed that some catalysts may cat-
alyze reactions which yield no catalysts as products, yet the
system as a whole must have at least one catalyzation loop.
Note that in case of direct autocatalysis, the loop is trivial.
Also, whether there is more than one catalyzation loop is a
question that must be addressed in each particular case.

An unsuspected consequence of the loop theorem is that
some of the catalysts inside the catalyzation loop must have
a dual catalytic role, that is enzymes that catalyze at least
the creation of other two enzymes, if not happen the trivial
case of all enzymes catalyze the creation of another one en-
zyme. This is interesting, as one modern re-interpretation
of Rosen’s results about how living systems avoid infinite
regress is by having enzymes with dual functions (Letelier
et al., 2006). Thus, this systemic result (i.e. existence of
moonlighting enzymes) can be achieved by two different
methods.

This theorem is a basic result that follows directly from
the basic definitions of RAOs, but it shows an important
property that needs to be underlined: the catalyzation loops
(one or more) inside a RAO may be considered as its auto-
catalytic core and, functionally, there is a difference between
the catalysts of the loop and the ones outside it.

We conjecture that the functional segregation hinted has
important consequences. In effect, to confer stability to the
core the catalysts outside it control the inflow and outflow
of matter to and from the core. Thus, the net flow of matter
inside it must be controlled, as a large flow would gener-
ate an exponential runaway and a small one would extin-
guish some core components, destroying its organization.
Keeping this balance between in and outflow will be seen
as homeostatic regulation. In summary, we conjecture that
the catalyzation loop confers long term stability to the net-
work. The analytical proof of this result seems difficult, but
we did computer simulations in small (toy-like) systems and
using mass-action kinetics, expresed for reactions:

s1 + s2 + ...
c1−→ p1 + p2 + ...

c2−→ q1 + q2 + ...

By the formula:

d[pk]

dt
= k1[c1]

∏
i

[si]− k2[c2]
∏
j

[pj ]

Figure 4 shows one example for the temporal evolution
of the concentrations of molecules for the RAF system of

Figure 4: Temporal evolution of RAF toy system (see fig-
ure 1). The system reaches a steady state in which all con-
centrations are different from 0.

Figure 5: Temporal evolution of a non-RAF system. Al-
though the concentrations of the catalysts C1 and C2 were
fixed, the system decays until its components disappear.

figure 1. We can see that a steady state is achieved. In fig-
ure 5 we simulated a similar system but without the reactions
that generate or destroy the catalysts C1 or C2, removing the
catalization loop and making the system a non-RAF set. In
this last case the concentrations of many components decay
to zero, stopping the network dinamics.

We also did the bifurcation analysis by varying rate con-
stants kin and kout corresponding to the reactions r1 : φ →
M and r9 : W → φ respectively . For the RAF set, al-
most every combination of parameters kin and kout leads
to a steady state, except at the border where kin = 0 or
kout = 0 and some regions close to these.

On the other hand, the non-RAF set has no stable points
for most values of kin and kout. This puts in evidence the
relevance of the autocatalytic core, so that the growth of one
part of the system encompasses the rest and grows harmoni-
cally and coherently between the inflow and outflow of mat-
ter.

Growth and Homeostasis in Autopoietic
Systems

Any increase in the concentration of a loop catalyst will
translate into an increased concentration of every other cata-
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Figure 6: Bifurcation diagram of the RAF set in figure 1,
for variables kin and kout. A similar diagram for a non-
RAF system has no stable region. (cyan dots=stable, black
Xs=unstable).

lyst in the loop, which would consequently lead to a further
increment of the first one, exhibiting an apparent autocat-
alytic behavior. At the same time, this loop must be con-
nected to side branches that lead to the production of cata-
lysts that are not directly related to autocatalysis, but with
the obtention and processing of the food sources that sus-
tain it. An interesting type of branches are the ones that
lead to the regulation of the enzymes that control the in and
outfluxes, because they are supposed to regulate the whole
metabolisms growth rate by coordinating these fluxes. This
fact shows us the importance of the topology, because every
enzyme must be whether part of a loop or a branch of it, thus,
a change in an enzyme concentration which is part of the
loop will have repercussions in the whole systems growth,
as it also affects the enzymes that regulate the fluxes. Thus,
the RAF sets may help to understand the dynamics of the
homeostatic process. This is not mutually exclusive with
the fact that an increase in the concentration of an enzyme
outside the loop may have a direct repercussion on global
growth.

The loop theorem has an important application for au-
topoietic systems, that can be defined as self-encapsulated
RAF sets. For an autopoietic system (that according to the
above theorem must contain at least one autocatalytic loop)
to be stable in time, there must be a fine balance between the
generation and destruction of molecules. But there must also
be a balance respective to control its volume in order to keep
the concentrations unaltered. Thus, the organization (à?la
Autopoiesis) of a RAF set must be under a precise homeo-
static control, as growth must be promoted, but in the context
of compensating for the volume increase without suffering
the consequences of autocatalytic growth. Thus, in a first

approach, we must allow for a system to grow in terms of
the net amount of molecules, but not in concentration. This
implies that volume must be under active control and that al-
lowing the system to grow would not be a contradiction with
homeostatic principles.

Discussion and Conclusion
As we have previously stated (Jaramillo et al., 2010) we con-
clude again that RAF sets formalism is particularly suited to
study closure. Of course many aspects of metabolic closure
escape this theory (the operator of organizational invariance
β of (M,R) systems is a prime example), but this framework
provides a solid starting point. The loop theorem proved
here, which is a property shared by RAOs, Autopoietic and
(M,R) systems is a good example of its power.

Another important point of the present study is to apply
the analysis of COT to RAF sets. As it is usual in theoretical
biology, the different frameworks generated to explain liv-
ing organization exist in closed universes without dialogue
between competing theories. Here, we partially break this
isolation by showing how organizations à la COT contain
all RAF sets, but not all RA sets. This inclusion, although
obvious and expected from a theoretical viewpoint, is not
easy to prove. We have developed demonstrations using ar-
guments from linear algebra, instead of the set theory ar-
guments favored in RAF. The most unexpected result is the
uncovering of chemical kinetics arguments in RAF sets. In
effect, RAF sets appear to be a purely algebraic entity, with-
out considerations for time nor kinetics; but as soon as their
stoichiometric matrix is expressed, the kinetic arguments of
COT are made obvious. Thus our lemmas and theorems
show deep relations between the pure algebraic formulation
of RAF sets with the dynamics of organizations in COT. Per-
haps this same reasoning could be also be applied to (M,R)
systems. Taken together, the results shown here show the
value of putting all the different notions of metabolic clo-
sure under a common analytical umbrella.

COT has already produced an interesting number of re-
sults on the dynamics of reaction networks, in particular re-
garding to the long-term temporal behaviour and stability
of these systems (Dittrich and Di Fenizio, 2007). An inter-
esting result from this theory, which complements the loop
theorem presented here, is the decomposition theorem for
organizations (Veloz et al., 2011). This theorem states that,
under certain conditions, it is possible to split a system into
subsystems whose dynamic behaviour are weakly coupled.
Thus, an open question is to investigate how our loop the-
orem, which seems to indicate that systems cannot be seg-
mented, is compatible with such uncoupling of subsystems.
In effect a catalyzation loop might constitute the minimum
decomposable unit.

We presented the conjecture that systems with at least one
catalyzation loop are more stable than similar systems with-
out such loops. This is a powerful result that will unavoid-
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ably demand tools from MCA, the most elaborate theory
about fluxes in biochemical networks, to be proven or re-
futed.

In summary, our efforts show that closure is a conceptual
key to understand biological organization, as an example we
have come close to use closure as an argument to prove one
theorem (loop theorem), which we believe is a valuable con-
ceptual step and a fertile direction for theoretical biology.
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Abstract 
Simple artificial agents representing more or less elaborated 
Braitenberg vehicles, usually adopt an egocentric view. One 
example is Walknet, a biologically inspired neural network 
controlling hexapod walking. Here we show how such a 
controller can be expanded to be able to interpret observed 
behaviours that are performed by other individuals, i.e. the 
system shows properties of a mirror system. This allows to 
further expand the network to become an “allocentric” system 
that might implement subjective feelings which could be 
attributed to other individuals, i.e. the system implements a 
Theory of Mind. As a last expansion we introduce a two-body 
model, or we-model, which may allow for mutualism. 
Application of we-models allows for what often has been called 
the third person’s view. The different steps proposed can be 
interpreted as corresponding to an evolutionary development. 

Introduction 
Artificial agents being based on natural creatures may usually 
be characterized as to hold an ‘egocentric’ view: in such 
agents, the sensory input is related to the own body 
representing the center of the agent’s world. Correspondingly, 
motor output activities are based on the own geometrical—
and possibly mental—position. Here we attempt to introduce a 
way how the controller of such an autonomous agent may be 
changed to allow the agent to ‘put itself into the partner’s 
shoes’, in other words to allow for theory of mind (ToM), and 
to show empathy. A further goal is to develop a (neuronal) 
control structure that may form the basis of mutualism, i.e. the 
faculty to cooperate with a partner using shared goals 
(Tomasello, 2009). Such a control structure may serve as a 
quantitatively defined hypothesis and may as such help to 
understand the underlying mechanisms of the corresponding 
biological system. 
When attempting to simulate higher mental functions as are 
specific memory systems, attention, cognition or 
consciousness, for example, authors do, in general, not apply a 
whole-systems approach, but instead consider specific 
networks suited to represent the specific function of interest. 
Therefore, in many cases, it remains open how these specific 
networks may be embedded into the complete system, i.e. 
how the different networks are switched on or off and how 
these local networks receive input from and provide output for 
the complete system. To avoid this problem, we take a whole-
systems approach. We investigate such phenomena under the 

condition that these networks are embedded into an 
autonomously behaving agent, i.e. an agent equipped with a 
body characterised by many parallel and serially arranged 
degrees of freedom and a control network containing a set of 
preexisting reactive behaviours. 
Schilling and Cruse (submitted) have proposed a network that 
has been worked out in more detail and called reaCog (this 
work is based on the reactive control system Walknet (Dürr et 
al., 2004) and the cognitive extensions have been introduced 
in Cruse and Schilling (2010)). This network is able to control 
a hexapod system by applying a structure consisting of two 
levels. The lower level is endowed with properties that 
correspond to insect-type behaviours (as are walking, 
climbing and navigation), about which already detailed 
knowledge is available (Dürr et al. 2004, Bläsing 2006, 
Wehner 2008). This level is based on a reactive, or behaviour-
based, architecture, i.e. a collection of local, in general 
recurrent, neural networks (RNN). The second level of reaCog 
concerns an expansion allowing for the introduction of 
cognitive abilities as explained below. Generally, the 
architecture of our system is not based on the idea to consist 
of one holistic RNN, but represents a localist approach the 
advantages of which are convincingly advocated by Cooper 
and Shallice (2006).  
When starting with an insect-like body and insect-inspired 
behaviour-based networks we do not imply that insects were 
endowed with higher cognitive functions as are 
metacognition, ToM or consciousness, although already in 
insects a number of astonishing properties can be found which 
by some authors are called cognitive (e.g. application of 
concepts like symmetry, sameness or protocounting, see 
Menzel et al., 2007). However, we assume that any cognitive 
system is strongly relying on such reactive—or behaviour-
based—structures. Different to a reactive system, a cognitive 
system in the strict sense should be able to exploit stored 
information independent of the context in which this 
information has been acquired. This means, a cognitive 
system should be able to combine existing memory elements 
in a new way and use these new combinations for controlling 
behaviour and planning ahead. As we have shown by having 
developed reaCog, only a limited number of expansions are 
required to reach such a cognitive level (Cruse and Schilling 
2010; Schilling and Cruse, submitted). The most important 
expansion concerns the introduction of a ‘manipulable’ body 
model. In order to be able to plan ahead, this internal model of 
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the own body (plus some aspects of the world, e.g. an 
obstacle) is required to internally simulate different 
behaviours in order to test whether this specific behaviour is 
suited to cope with an actual problem. The second expansion 
concerns an attention system. This system consists of two 
layers, a spreading activation layer (SAL) and a winner-take-
all layer (WTA). This two-layer network enables the agent to 
select a specific behavioural element, which is normally not 
activated in the actual context. Via internal simulation, the 
system can then test whether this newly selected behavioural 
element is suited to solve the problem at hand, a procedure 
that has been termed “probehandeln” following Freud (1911). 
New behaviours found by this procedure and that, by means 
of the simulation and the subsequent behavioural test, prove to 
be adaptive will be stored in the long-term memory, thereby 
enriching the behaviour-based architecture. As for a well 
designed reactive system new problems may occur only 
rarely, reaCog can be regarded a reactive system that exploits 
its cognitive properties only for short periods of time required 
to solve a problem at hand. 
Based on the ideas of Narayanan (Narayanan, 1997 and 
Feldman and Narayanan, 2004) and Steels (1995, 2003) we 
have further designed a simple expansion of reaCog that 
allows connecting behavioural elements of this system with so 
called word nets (RNNs representing an individual verbal 
expression, e.g. “leg”, or “swing”) that carry the 
corresponding meaning (Cruse, 2010). Therefore, the symbols 
are grounded (Steels, 2003) allowing the agent to ‘understand’ 
the meaning of such a word when given to the agent.  
Like most other autonomous systems, reaCog holds an 
“egocentric” view. The agent might be able to recognize and 
represent objects. We further assume that the agent can also 
recognize, as a specific kind of object, a conspecific (see 
Steels and Spranger, 2008 and Spranger et al., 2009 for 
solutions). In addition we assume that the agent can attribute 
properties to the object or the partner (e.g. a face, a spatial 
position). All these expansions, however, do not enable the 
agent to “put himself into the partner’s shoes”. In other words, 

the agent is not able to realize that the partner may see the 
agent himself as having a property (e.g. a position). Thus, in 
this network there is no possibility to represent the change of 
roles (“If I were him”). In other words, the capability to have 
a ToM is lacking. A classical procedure for testing whether an 
agent allows for the ability of ToM is the so called Sally-Anne 
task. Two subjects are shown that a candy lying on the table is 
hidden under a black cover. Then one subject, Sally, has to 
leave the room whilst the candy is now hidden under the white 
cover, as observed by Anne. After Sally has come back, Anne 
is asked under which cover Sally will probably search for the 
candy. If Anne points to the black cover, she is assumed to 
have ToM, but not, if she points to the white cover where the 
candy really is placed.  
The network reaCog even less shows the ability to perform 
mutualistic behaviour (Tomasello, 2009), i.e. to develop 
shared goals and to try to follow them, even when the 
individual agent may receive no specific advantage. A simple 
example is when two individuals are trying to carry a load, for 
instance a table through an environment containing obstacles. 
In the reminder we show how reaCog can be expanded to 
endow the agent with these capabilities. To be in a position to 
explain the structures and their properties in an easily 
understandable way, we illustrate the expansions of reaCog by 
attempting to maintain the number of neuronal units as small 
as possible. In this way we hope to provide a functional 
understanding of how systems able to develop a ToM and 
later a structure allowing for mutualism may have arisen from 
an egocentric system. The different steps introduced might 
represent a hypothetical evolutionary sequence. 

The Model 
To simplify the description, we will focus on a small section 
of reaCog as illustrated in Fig. 1. Basically, the network 
consists of sensorimotor networks, or memory elements, 
connected with motivation units. In the figures, the networks 
are indicated by rectangles with verbal descriptors. Motivation 
units (depicted as circles) can adopt an activation value within 
the interval [0,1]. In the figures, activated units are marked as 
red circles, inactive ones are shown as black circles. Two of 
these motivation units may either be connected via (mutual) 
inhibition or via (mutual) excitation, or not be connected at 
all. Groups of excitatorily connected units stabilize each other. 
I.e. when one unit of such a group is activated, all the 
members of that group will become activated, too, except for 
those units that are connected via mutual inhibition. These 
inhibitory connections form a local winner-take-all (WTA) net 
with the consequence that only one of these units will stay 
active over some iterations. Two such motivation units 
represent the state Awake and the state Sleep, respectively. In 
the awake state, several sensory or motor elements are 
activated. These elements may form different contextual 
groups. Here we focus on two such groups. One group refers 
to external objects, in this case a conspecific (“partner”), 
represented by the memory elements “face” and “position”, 
which stand for the visual appearance and spatial location of 
the partner to be recognized by the corresponding networks. 
Together with the unit Partner these motivation units form an 
excitatory network. The elements of the second group refer to 
the agent. The agent can select between a number of actions 

 
 
Fig. 1. An egocentric network represents the situation “Ego 
grasp candy”. The figure shows a section of the network 
reaCog (Schilling and Cruse, subm.). Local networks are 
symbolized by rectangles and names. Motivation units are 
shown by circles (connection to the corresponding network 
see Fig. 4). Active motivation units are marked by red 
colour. Arrows represent excitatory connections, T-shaped 
connections are inhibitory. Visual and proprioceptive input 
is marked by the half-circles, left side. Acoustic input 
representing words is shown by italic letters at the right side. 
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(in Fig. 1 “push” and “grasp”), the motivation units of which 
are connected via mutual inhibition (connections with T-
shaped endings). The agent is also assumed to recognize an 
object, a candy lying on the table. Fig. 1 shows a memory 
element representing the position of the candy (pos.candy) 
relative to the agent. The agent may also be equipped with a 
network representing the experience of pain, which is 
connected to any specific body position, but this faculty will 
only be explained later. The motivation unit connecting the 
agent-related elements has been called Ego unit in the figures. 
To avoid a possible misunderstanding, it should be made clear 
that this name represents only a technical term and should not 
be understood as to mean that the agent has any kind of self-
knowledge. As mentioned, the system may also be equipped 
with word nets that allow to recognize verbal statements as 
“grasp” or “candy” or “partner” which, if stimulated, activate 
the corresponding sensorimotor networks (in the figures these 
inputs are indicated by the terms given in italic; the word nets 
themselves are not shown). 
Of course, any partner, if being equipped with a 
corresponding network, may likewise recognize our agent, 
but, as mentioned, the agent does not know this. 
The behaviour-based—or sensorimotor—RNNs indicated by 
rectangles in the figures might be realized as simple 
associators connecting a sensory input with a motor output 
(Dürr et al., 2004; Cruse and Wehner, 2011) and may function 
as an implicit body model, that can be used to control the 
behaviour by computing the inverse kinematics. Alternatively, 
as conceptualized in reaCog (Cruse and Schilling, 2010; 
Schilling, 2011; Schilling and Cruse, subm.), sensorimotor 
RNNs may be connected to an explicit body model. In this 
case, the network is equipped with a switch that allows to turn 
on or off the motor output to either control the behaviour or 
instead to activate only the body model and in this way 
simulate the behaviour. In the latter case, the system may be 
termed to imagine this behaviour. 
To realize the motivation units and RNN units we use the so 
called Input Compensation (IC) units, type suppression units 
(Kühn et al. 2007, Makarov et al. 2008), first, because a 
simple learning algorithm is available to train such networks. 
Secondly, because such networks maintain the input 
activation as long as the input is provided, but, if trained to 
hold a static attractor, also after the input is switched off. A 
motivation unit that is connected to a behaviour-based RNN, 
controls the output of its network by multiplying the output by 
its activation value (see below, Fig. 5). In this way, a 
motivation unit when activated may be called to ‘open’ the 
corresponding network (representing a top-down influence). 
As will be mentioned below, sensorimotor networks may also 
be used to respond to sensory input. In this case, the network 
showing the best fit to the actual sensory input (or the smallest 
error) will activate its motivation unit (this bottom-up 
influence is not depicted in Fig. 5). In the simulation proposed 
here, only the motivation unit network has been studied (for 
an explicit simulation of such a network see Cruse and 
Wehner, 2011). 
Phenomenal aspect: Before we continue to describe the 
property of the network in more detail, a fundamental, and 
unsolved problem has to be addressed. When trying to 
understand a cognitive system the question arises how a 
neuronal system representing a physical structure is able to 

allow for the faculty to experience subjective feelings, an 
example is feeling pain. This subjective or phenomenal aspect 
is relevant for (at least some) living systems. What is the 
problem? We can easily think of neuronal structures that, 
activated by nociceptors, for example, may produce chemical 
substances or activate specific behaviours (e.g. withdrawal or 
speech acts), i.e. form a series of causally connected physical 
states. But there is no concrete idea how (and why) the fact 
that these (or some of these) physical activities are 
accompanied by the feeling of pain, i.e. the subjective aspect, 
may be reified. The problem of understanding the relation 
between the physical aspect and the phenomenal aspect has 
eventually been termed the ‘hard problem’ (Chalmers, 1996) 
and will not attempted to be solved here. In order to be 
nevertheless able to use terms describing (or at least 
associated with) subjective feelings when discussing the 
properties of our network, we make the following assumption. 
An RNN as used here can adopt attractor states that are 
reached when the network has been given enough time for 
relaxation. In mathematical terms the attractor state can be 
defined as the so-called harmony value of the net reaching a 
maximum value. Following Cruse (1999, 2003) we assume 
that the activation of such a network is accompanied by 
subjective experience (or a phenomenal aspect) if the 
harmony value of the net has reached a given threshold, in 
other words, if the net has sufficiently well approached its 
attractor state. This hypothesis does of course not represent a 
solution of the hard problem, but nonetheless provides a way 
to operationalise the problem. Its function in this context is to 
allow us using terms associated with subjective or 
phenomenal aspects when describing states of our physical 
network. Using this hypothesis we are in a position to bridge 
the ‘explanatory gap’ on a descriptive level. If other 
mechanisms underlying the phenomenal aspect were found, 
they could replace our hypothesis without, as we believe, 
influencing the rest of the arguments. 

The functioning of the network – an example 
The agent equipped with reaCog, the, for our discussion, 
relevant part of which is depicted in Fig. 1, is able to show the 
following simple behaviour. If we assume that elements 
“grasp” and “pos.candy” are activated by an external verbal 
command as indicated by thin arrows (in the figures marked 
by italic letters, e.g. Fig. 1 grasp, candy), this input will 
activate the motivation units grasp and pos.candy. The former 
will open the behaviour represented in the RNN grasp and 
activate the unit Ego. Further, the unit pos.candy when 
activated will open the RNN allowing to recognize the spatial 
position of the candy. The grasp network receives input from 
the pos.candy network that provides the information to the 
grasp network concerning the goal for the movement to be 
performed. Therefore, the movement can now be executed. As 
an alternative to verbally given input, the agent, after having 
registered the candy, may decide to perform a grasp 
movement, the decision being determined by its internal state 
requiring a network not shown in the figures. In the following 
examples we will however use verbal input only, because this 
simplifies explanation of the concepts proposed. As illustrated 
in Fig. 1, at the same time the agent may be able to represent a 
partner, characterized by its face and its position. 
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Mirror systems 
How may this network be changed to allow for ToM and 
mutualism? Several changes are proposed as will be 
illustrated in consecutive steps depicted in Figs. 2, 3 and 4.  
A body model, apart from being used to control movement by 
calculating the inverse kinematics (Fig. 1), can also be used 
for a different purpose. When observing somebody else 
performing a grasp or a push movement, the visual input can 
be given to the body model which then can be used to 
simulate, or “internally copy”, the observed behaviour (e.g. 
“grasp”) following the “simulation theory” (e.g. Jeannerod, 
2006 & 1999, Gallese & Lakoff, 2005). This application of 
the body model is suited to minimize errors when interpreting 
the (underspecified) visual input (e.g. Schilling, 2011). To 
symbolize this ability, in Fig. 2 the net ‘grasp’ is also 
equipped with sensory (visual) input. By application of a 
specific RNN forming a holistic system as has been proposed 
by Cruse and Schilling (2010) and Schilling (2011), one and 
the same body model is exploited for both purposes as are 
motor control and interpretation of sensory input. If a grasping 
movement is observed, the body model activates the element 
‘grasp’. To allow the representation of the partner performing 
a grasping movement, too, we need another expansion, 
namely the introduction of connections between the unit 
representing the partner with (some of) the behavioural 
elements that, in the egocentric system (Fig. 1), are only 

connected with the Ego Unit. In our example this refers to 
element ‘grasp’ (see Fig. 2, dashed line). In addition, Unit Ego 
and unit Partner have to be connected via mutual inhibition 
(Fig. 2). This means that either unit Ego or unit Partner can be 
activated at a given moment in time. 
With this network we can represent two situations: (i) if, as 
depicted in Fig. 2a, units Ego, grasp and pos.candy are 
coactivated, the network represents the agent to grasp the 
candy or to imagine such a grasping movement (the 
representation of this situation is already possible for the 
network shown in Fig. 1). (ii) However, the agent can also 
record a grasping movement of the partner. In this case, the 
sensorimotor element ‘grasp’ is activated together with the 
unit Partner, whereas unit Ego is inhibited. In Fig. 2b this 
situation is illustrated by motivation unit Partner shown in red 
and unit Ego in black. In both situations the neurons of the 
element grasp are activated. Such an architecture has 
eventually be termed to apply ‘shared circuits’ and strongly 
reminds of properties characterizing mirror neurons. 
Therefore, application of such shared circuits has been 
described as ‘mirroring’ (Keysers and Gazzola, 2011). Units 
of the grasp net represent to movement and its goal, and thus 
correspond to represent a motor act as attributed to mirror 
neurons (Rizzolatti and Luppino 2001). However, the goal in 
both cases (Fig. 2a, 2b) is represented as being viewed by the 
agent, not as being represented by the partner. 

a) 
      

 
 
b) 
      

 
 
Fig. 2. An egocentric network representing the situation 
“Ego grasp candy” (a) and the situation “Partner is seen as 
grasping a candy” (b). The sensorimotor element “grasp” 
provides motor output and receives sensory (e.g. visual) 
input. Its units show properties corresponding to those of 
mirror neurons as it represents a circuit shared between the 
Ego and the partner units. See Fig. 1 for further explanation. 
 

a) 
      

 
 
b) 
     

 
 
Fig. 3. A network being able to represent an egocentric view 
(a, situation “Ego grasp candy”) and the view as seen by the 
partner (b, situation “Partner grasp candy”), thus allowing 
for ToM. For further explanations see Fig: 1 and text.  
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Theory of Mind 
Therefore, both circuits, as depicted in Fig. 1 and Fig. 2a,b 
still represent egocentric systems. We will now proceed 
allowing the agent to be able to simulate the behaviour and the 
internal view, including the sensory experience, of the partner, 
a property that has been characterized as ToM. To this end, 
we will present a simple simulation of the Sally-Anne task 
mentioned above. To be able to represent some aspects of the 
memory of the partner required for this task, in our network 
the unit Partner is given a connection to memory elements 
representing the position of the candy as viewed by the 
partner (Fig. 3, dashed line). Now imagine that subject Anne 
is either equipped with a network as depicted in Fig. 2 or in 
Fig. 3. Application of a system shown in Fig. 2 means that the 
agent (Anne) has only one representation of the candy’s 
position, the one seen last. Therefore only this, correct, 
position can be activated and the partner is imagined to grasp 
the correct position as observed in children younger than 
about four years. The child is not taking into account the 
position the partner assumes. In contrast in a system as 
presented in Fig. 3a, there is a difference in thinking of 
oneself grasping the candy or the partner doing it. When the 
agent imagines itself to grasp the candy, it would grasp to the 
correct and known position. If asked to simulate the internal 
state of the partner, as is required in the case of the Sally-
Anne test, (Fig. 3b), the position connected to the partner 
Sally will be used and the agent would rightfully deduct that 
the partners grasp would be directed towards this position 
which is wrong, but this fact is not known by the partner. 
Therefore, the network shown in Fig. 3 allows for ToM, in 
contrast to the network shown in Fig. 2. The critical difference 
between both networks is that the network shown in Fig. 3 
contains a separate representation of (a part of) the partner’s 
memory. Ishida et al. (2010) describe mirror neurons that are 
able to represent this property. 

Feeling pain  
To illustrate another, more difficult case, let us come back to a 
push movement being directed to a partner. This case is more 
complex because roles can be interchanged in this scenario as 
the partner could also push the agent. To simulate this 
situation, the Ego network has correspondingly to be equipped 
with an element containing its spatial position, called 
“pos.Ego” in Fig. 4 (to simplify the figure, elements “grasp” 
and pos.candy are omitted in this and the later figures). 
In the following, two possible situations are considered,  
(1) the agent pushing the partner (“Ego push Partner”) and  
(2) the partner pushing the agent (“Partner push Ego”). In 
these situations the agent may act as an actor (corresponding 
to a grammatical subject in an active phrase) or as a patient 
(corresponding to a grammatical object in an active phrase). 
Therefore, instead of having one unit for each individual as in 
the networks explained above, we introduce now two units to 
represent each individual, the agent and the partner. The 
corresponding subject units and object units are arranged 
under the column “subject” and “object” (Fig. 4a,b) and are 
connected via mutual inhibition. 
To represent a verbally given situation like “Ego push 
Partner” in the network, some way is required to define roles. 
Here we assume that the item given first in time functions as 

subject, the second as verb, and the third as object. The 
network shown in Fig. 4a,b maps the temporal order into the 
neuronal structure. Beginning with situation (1) input Ego is 
given first and is immediately followed by push. This leads to 
an activation of the unit Push and the Ego-subject unit (Fig. 
4a, red) and an inhibition of both the Ego-object unit and the 
Partner-subject unit. Ego-subject unit is activated rather than 
the Ego-object unit because only the former is supported by 
activation of the unit Push. Later, both partner units will be 
activated via input “partner”. As the Partner-subject unit is 
already inhibited, the Partner-object unit will win, in turn 
activating its position unit (Fig. 4a, red). Thus, all units 
required to represent situation (1)—the agent performs a push 
directed to the partner position—are active. In this way, this 
network can represent the egocentric view as was already 
possible for the networks shown in Figs. 1 and 2.1 
                                                             
1 If the situation is not given by verbal input, but for example by visual 
observation, the roles of the different items actor, action and patient may 

a) 
      

 
 
b) 
     

 
 
Fig. 4. A network allowing for ToM, being able to represent 
an egocentric view (a, situation “Ego push Partner”) and the 
view as seen by the partner (b, situation “Partner push 
Ego”). Units for individuals (agent, partner) can be 
represented by an ‘object unit’ or a ‘subject unit’, as 
indicated in the top line. Sensorimotor, or procedural, 
networks can be found under the heading ‘procd.’, action 
units under ‘verb’. For further explanation see Fig. 1 and 
text. 
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The same network can however correspondingly represent 
situation (2) “Partner push Ego”. To this end, the partner 
units, now representing the actor, are first activated together 
with Push, whereas in a later step unit Ego is activated. In a 
corresponding way, at the end Partner-subject unit, unit Push, 
as well as Ego-object unit and Ego-position unit remain active 
(Fig. 4b). 
If the agent is confronted with the latter situation “Partner 
push Ego” for the first time, it may suffer from a painful 
feeling, which will then be associated with being pushed. The 
network whose activation is accompanied by the subjective 
experience of pain (Fig. 4, box ‘push,pain’), is integrated into 
the push network in the following way. The pain network is 
activated when the controlled position of the tip of the arm 
reaches the goal position, the pain being associated with the 
goal position. 
To illustrate how the networks push and pain and the input 
from the position network are connected, in Fig. 5 a minimal 
version of this subnetwork is depicted in more detail. The 
network altogether consists of five IC units plus one 
motivation unit. The push network contains three units, one 
representing position of the end-effector of the arm 
characterized by one dimension, x, the (constant) velocity of 
the end-effector, vel, and a unit diff representing the 
difference between the actual position x and the target 
position pos. Unit diff has a nonlinear activation function 
                                                                                                     
be internally represented by different salience values provided by 
neuronal systems able to detect these different roles. 

providing an output of 1 in a small interval around an 
activation value of zero, and providing a zero output 
otherwise. In all three cases, one unit suffices to represent the 
corresponding values as we focus on a one-dimensional 
example.2 Furthermore, there is an RNN, consisting of one 
unit that when activated represents a painful state (pain). Unit 
pain is activated as soon as the end-effector meets the target 
position (diff = 0). We will not deal with the question how 
these weights are learned. 
If—after this network has been installed and the situation (1) 
“Ego push Partner” is activated (either as active behaviour or 
only as imagined, i.e. simulated, behaviour)—the position of 
the partner will be associated with the feeling of pain (arrow 
highlighted in blue in Fig. 4a). In this way, our agent can 
simulate and thereby experience the experience of the partner 
without confusion between the two individuals. This means 
that the agent shows the ability being endowed with empathy 
(following the definition of Decety and Jackson, 2004: 
“Empathy accounts for the [...] subjective experience of 
similarity between the feelings expressed by self and others 
without loosing sight of whose feelings belong to whom”). 
Coming back again to the second situation (Fig. 4b), “Partner 
push Ego”, the agent can simulate the view of the partner 
being an actor. Now the position of the agent is provided to 
the push network (in Fig. 4b depicted by a blue arrow). 
Therefore the network of the agent can simulate that the agent 
himself is receiving a push and experiencing a painful feeling. 
Thus, the simulated partner can now be experienced as to 
experience the pain. 
Taken together, the agent equipped with a network as shown 
in Figs. 3, 4 can experience an egocentric view as was already 
possible for the networks shown in Fig. 1 or 2 (see Figs. 3a 
and 4a). In addition, the agent is able to ‘put himself into the 
shoes of the partner’ in two ways: the agent can try to 
understand the view of its partner onto objects (Fig. 3) or onto 
itself (Fig. 3b and 4b), i.e. “seeing himself with the eyes of the 
conspecific” (ToM), and can experience the experience of the 
partner (Fig. 4a) by simulating the feeling of the partner. The 
simulation of the partner is of course based on the innate and 
learned structures underlying his own ability to feel. 

Mutualism 
A further evolutionary as well as developmental step that, 
according to Tomasello (2009) is unique for humans, is 
described by the term mutualism. Mutualism concerns the 
property of an agent to cooperate with another agent in such a 
way that both individuals perform—possibly different—
actions by which a common goal should be reached and where 
both individuals will profit. A simple case is to carry a heavy 
load (e.g. to move a table around obstacles). A formally 
related task has to be solved by a hexapod walker where the 
legs are considered to be driven by independent controllers, 
but the legs being mechanically coupled via the body and the 
ground. For this problem two different solutions have been 
proposed. One solution possibly realized by insects exploits 
the mechanical coupling of the legs applying an extremely 
                                                             
2 Note that we reduce these networks to a minimum size in order to better 
explain the essential aspects. Of course, each network could be expanded 
to consist of a large number of units without touching the basic statements 
made here. 

 
 
Fig. 5. A recurrent network using five IC units that shows in 
more detail the sensorimotor element termed “push, pain” in 
Fig. 5. The uppermost three units represent a simple (one-
dimensional) form of the push controller (vel: velocity of the 
end-effector, x: position of the end-effector, also used as 
motor output, diff: spatial difference between actual position 
and goal position, the latter represented by unit “pos”. The 
recurrent network “pain”, consisting of one unit, when 
activated long enough represents the neuronal substrate for 
feeling pain. The unit diff possess a nonlinear activation 
function that allows to activate the pain network when the 
activation of the unit diff has approached a value of about 
zero. The activation of the complete network is controlled 
by a motivation unit (red circle). 
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decentralized control structure (Schmitz et al., 2008). As an in 
our context more interesting alternative, Cruse and Schilling 
(2010) and Schilling (2011) proposed the application of an 
internal model that allows to simulate the legs plus their 
mechanical coupling through the world. Using this model 
each leg controller provides commands to its leg in such a 
way that each individual leg supports the common goal, 
namely moving the body forward. Applying this example to 
our problem of considering two independent agents able to 
behave mutualistically, the controller of each agent should 
correspondingly possess a model not only of itself, but also of 
the partner and the relevant environmental conditions. 
Together, these three elements form a ‘supermodel’. In 
analogy to Tomasello’s terminology, this model might also be 
called a “we-model”. Application of this supermodel can 
correspondingly be used for probehandeln, i.e. imagined 
behaviour, in order to reach a common goal. Indeed, 
Tomasello argued that the ability to have a we-mode is a 
prerequisite for developing a common goal. 
What are the requirements for such a we-model to be 
implemented? First, the ability has to be given that actions of 
both the agent and the partner can be simulated independently 
and simultaneously. This means that it does not suffice to 
have only one body model that can be used to either simulate 
the Ego or the partner as was the case for the ‘shared-circuits’ 
networks shown above (Figs. 2, 3, 4). Rather, both motivation 
units, Ego and Partner, require access to separate behavioural 
elements (e.g. push) and a body model each. In Fig. 6, as in 
Figs. 2, 3, 4, the body model is not shown explicitly, but is 
graphically embedded in the push network. Both body models 
have to be connected via a model simulating (part of) the 
world to represent the actual situation, in our example the 
table to be carried. Furthermore, to activate the we-model, the 
mutual inhibition between both motivation units Ego and 
Partner has to be suppressed (Fig. 6). A suppression is also 
necessary for the connection between the motivation unit 
Partner and the push model which in the networks shown in 
Figs. 3, 4 is necessary because the latter is shared between the 

Ego and the Partner network. Therefore, the we-model is 
activated by an input termed shared intention in Fig. 6. 
Tomasello has already considered shared intention a crucial 
property for a system showing mutualism. If this mode has 
been adopted, the we-model can be used to search for a 
solution to a given problem, for example moving the table. 
This search, of course, takes into account actual sensory 
information, e.g. position of the table relative to both 
individuals, movement of the other individual and possibly 
verbal information. 

Discussion 
In our earlier work, we proposed a network that is able to 
control behaviour (walking, climbing, navigation) using a 
behaviour-based architecture and that has been expanded to 
show a fundamental cognitive ability, namely to be able to 
plan ahead. Here we propose several expansions of this 
network, reaCog. As these expansions follow the basic 
structure of reaCog, they can easily be implemented in the 
reaCog architecture. Using a typical section of reaCog, as an 
example, we start with an egocentric system (Fig. 1) that 
contains a body model, but is not able of mirroring. In the first 
step, we introduce a new connection that allows the egocentric 
system to apply a mirror system, i.e. to interpret behaviours 
observed when being performed by other individuals (Fig. 2). 
However, application of shared circuits alone does not appear 
sufficient to allow for the representation of how the world is 
represented by others, i.e., to allow the network shown in Fig. 
2 to solve the Sally-Anne task. The latter is however possible 
for the networks developed in the next step (Figs. 3 and 4), 
which in addition contain a representation of parts of the 
partner’s memory. The latter concerns the position of an 
object, the candy in the example shown in Fig. 3 or the 
position of the partner (Fig. 4). In the latter example, (Figs. 4, 
5), we explain in more detail how this system might 
implement subjective feelings which could be attributed to 
other individuals. Both networks are able to apply ToM. The 
architecture shown in Fig. 4 is still based on the application of 
shared circuits as the push/pain network can be connected to 
either the unit Ego or the unit Partner. Separation into subject 
units and object units is required to represent the different 
roles the agents have to play in this paradigm. In contrast to 
the egocentric systems (Figs. 1, 2), the systems depicted in 
Figs. 3 and 4 may be called allocentric.  
Fig. 6 shows what additional connections may be required to 
allow for mutualism. Here two body models can be activated 
simultaneously and the connections allowing for sharing 
circuits are inhibited. Application of such a we-model is 
suited to allow for what often has been called the third 
person’s view. The step from a network as shown in Fig. 4 to 
that presented in Fig. 6 appears to correspond to an idea 
proposed by Keysers and Gazzola (2011) who draw a 
distinction between application of shared circuits, used for 
mirroring to understand the partner at a lower, intuitive, non-
cognitive level, and another system involving different brain 
areas when subjects are asked to reflect on others. According 
to Keysers and Gazzola, both mechanisms are activated 
according to the abstraction level of the actual task. Such a 
two-body model appears also to be helpful to explain a 
number of experimental results reviewed by Sebanz et al. 

 
 
Fig. 6. A network allowing for the control of mutualistic 
behaviour. If input “shared intention” is activated, the 
(excitatory and inhibitory) connections between the 
subnetworks representing the agent (Ego) and the partner 
are interrupted. Therefore, both subnetworks can be used 
simultaneously to simulate actions that pursue a common 
goal. For further explanations see text and Fig. 1. 
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(2006) and Vesper et al. (2010) which show that subjects 
require shared representations of tasks including the 
simulation of the expected behaviour of confederates. 
It might be tempting to speculate that the existence of these 
two body models might form the basis of some illusory own-
body perceptions where, due to specific neuronal deficits, 
subjects can experience two body representations and self-
identification refers either to the physical body (Autoscopy), 
to the illusory body (Out-of-Body experiences) or to both 
either simultaneously or in alternation (Heautoscopy) as 
described by Blanke and Metzinger (2009). In our system 
such illusions may result if accidentally both body models are 
connected to the unit Ego, a connection not depicted in Fig. 6. 
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Abstract

This paper explores temporal and spatial dynamics of a popu-
lation of Genetic Regulatory Networks (GRN). In order to so,
a GRN model is spatially distributed to solve a multi-cellular
Artificial Embryogeny problem, and Evolutionary Computa-
tion is used to optimize the developmental sequences. An
in-depth analysis is provided and show that such a popula-
tion of GRN display strong spatial synchronization as well
as various kind of behavioral patterns, ranging from smooth
diffusion to abrupt transition patterns.

Introduction
Widely studied in Biology, Gene Regulatory Networks
(GRN) have drawn in recent years a growing attention from
the field of Artificial Life and Evolutionary Computation.
Indeed, GRN are known to display rich dynamics and have
been both experimentally studied through simplified mod-
els (Jakobi, 1995; Banzhaf, 2003) as well as applied to
control optimization problems such as the well-known in-
verted pole balancing problem (Nicolau et al., 2010) and
foraging agents (Joachimczak and Wróbel, 2010). In these
recent works, evolving artificial GRN have always been
shown to be competitive with the state-of-the-art neuro-
evolution techniques, possibly because of rich internal dy-
namics. However, while temporal dynamics within a single
GRN have already been studied Banzhaf (2003), the spatial
dynamics resulting from coupling of several GRNs remains
to be explored.

The core motivation in this paper is to describe and study
such temporal and spatial dynamics of a population of
GRN in the context of a spatial computation problem. The
methodology followed relies on Evolutionary Computation
to provide optimization tools so as to fine tune the GRN pa-
rameters and structure for solving a typical multi-cellular ar-
tificial embryogeny problem. In this setup, the GRNs act as a
decision model that is spatially distributed over a set of cells
that interact on a local basis such that the whole organism
converges towards a global state that is the closest possible
to a pre-defined target state (e.g. a particular pattern).

Rather than performance on target matching, we study the
emerging spatial and temporal dynamics during the course

of the developmental process from the initial state to the end
of development. Experimental investigations show that gene
expressions are indeed strongly synchronized among GRNs,
and display several behavioral patterns from smooth diffu-
sion to abrupt transitions.

In the following, a review of existing artificial GRN mod-
els is provided. Then, the GRN model originaly proposed by
Banzhaf (2003) is introduced as well as the developmental
model used in this study. The combination of both models
is described, and experimental investigations are conducted
on the spatial and temporal dynamics of GRN. The paper
concludes with a discussion and sketches future directions.

Background on artificial regulatory networks
Many current developmental models rely on an Artificial
GRN to simulate cell differentiation. These systems are
more or less inspired by gene regulation systems of living
systems. In living systems, organisms’ cells have several
functions. They are described in the organism genome and
their expressions are controlled by the regulatory network
(Davidson, 2006). Cells use external signals from their en-
vironment to activate or inhibit the transcription of genes
into mRNA (messenger RiboNucleic Acid), the copy of the
daughter cell’s DNA (DeoxyriboNucleic Acid). Cells col-
lect external signals through protein sensors localized on the
cell membrane. Then, gene expression within a cell deter-
mines its behavior.

Eggenberger (1997) was one of the first to use a regula-
tory network to generate a 3-D organisms able to move in its
environment by modifying its morphology. Reil (1999) pro-
posed a biologically plausible model, with a genome defined
as a vector of numbers. In this model, each gene starts with a
particular sequence (0101), named the “promoter”. Then, a
graph visualisation is used to observe gene activations and
inhibitions over time with randomly generated networks.
Observations revealed the existence of several patterns such
as gene activation sequencing, chaotic expressions or cyclic
expressions. The author also pointed out that the system was
able to display pattern self-repairing after random genome
deteriorations. Banzhaf (2003) also described an artificial
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GRN model strongly inspired by real-world gene regulation.
This model will be detailed in the next section.

Starting from these two seminal models, various ex-
tensions and variations have been explored, for address-
ing various concerns and applications. Several works ad-
dressed Artificial Embryogeny problems with models of
GRN ranging from cellular automaton modeling (Chavoya
and Duthen, 2008) to stripped-down version of GRN com-
bined with complex developmental systems (Knabe et al.,
2008; Joachimczak and Wróbel, 2008; Doursat, 2008).
Some works have also addressed control problems: using
GRN as a control function to map a virtual robot’s sensory
inputs to its motor actuator values. This has been applied
in various setup, from foraging agents (Joachimczak and
Wróbel, 2010) to pole balancing (Nicolau et al., 2010).

Few case studies have been done to explain how regu-
latory networks can solve these problems. Schramm et al.
(2010) studies the impact of the evolutionary process on the
network itself. Other papers of the literature such as Mjol-
sness et al. (1991) or Thomas et al. (1995) propose an analy-
sis of the regulatory network dynamics in a biological point
of view. However, few papers deal with the analysis of such
dynamics on artificial regulatory networks, which could be
usefull if we want to use effectively the computational abil-
ities of these models. The aim of this paper is to show the
gene expression temporal answer of a regulatory network to
solve a spatial problem. For this purpose, we use Banzhaf’s
GRN (Banzhaf, 2003) and its extension to a computational
model presented in (Nicolau et al., 2010). The next section
describes this model.

The gene regulatory network
The model

In this work, we consider the artificial Gene Regulatory Net-
work (GRN) introduced by Banzhaf (2003). In this model,
the network is coded into the genome as a sequence of 32-bit
strings (termed sites). Each gene in the genome is marked
by a particular sequence named the “promoter”. When a
promoter is detected, the next five sites represent a gene se-
quence that codes for a protein to be produced. Each site
codes for a different molecule of the protein. The concen-
tration of this protein will determine the expression level of
the corresponding gene.

To determine the protein’s concentration and thus the
gene expression level, two sites, coded upstream of the
promoter, enhance and inhibit the protein production. The
dynamics of enhancer signal ei and inhibiter signal hi of a
protein i are given by the following equations:

ei =
1

N

N∑
j=1

cj expβ(u
+
j
−u+

max) (1)

hi =
1

N

N∑
j=1

cj expβ(u
−
j
−u−

max) (2)

where N is the total number of proteins, cj is the concen-
tration of the protein j, β is a scaling factor, u+j (resp. u−j )
is the matching degree of the enhancer (resp. inhibiter) site
with the protein j and u+max (resp. u−max) is maximum en-
hancer’s (resp. inhibiter’s) matching degree observed in the
whole genome. The matching degree u+j (resp. u−j ) consists
in counting the number of “1” resulting from the applica-
tion of a XOR operation to the protein j and the enhancer
(resp. inhibiter) pattern. The exponential function increases
the impact of high value of gene expression and filter low
values.

Finally, the concentration of produced protein pi follows
the differential equation dci/dt = δ(ei − hi)ci − Φ(1.0),
where δ is a scaling factor and Φ(1.0) constrains the sum of
all concentration equals to 1.0.

Extension to a computational model
Originally, Banzhaf’s artificial GRN is limited to study in-
ternal network dynamics. In order to use this model as a
control function, Nicolau et al. (2010) proposed an exten-
sion by adding inputs and outputs to the regulatory network.
This extension is detailed in the following.

Inputs Input values are coded with integers that will cor-
respond to existing proteins. These input proteins can be in-
volved in the regulatory process in two different ways: with
their signatures to be considered during the matching pro-
cess (in equations of ei and hi) or with their input value to
modify the differential equation dci/dt of protein concentra-
tions. Here, the second solution has been chosen as it allows
a better resolution with regard to a continuous domain of the
problem addressed in this paper.

Outputs In order to produce outputs in the regulatory net-
works, genes are separated into classes: transcription fac-
tors TF-genes and product proteins P-genes. Whereas TF-
genes play the roles of regulatory proteins as in the origi-
nal Banzhaf’s model, P-genes are only regulated but do not
regulate other proteins: their expression levels provide the
desired output signals. These two kinds of genes are iden-
tified by introducing two new promoters, whose signatures
are chosen so that their probability of occurence is equiva-
lent and their matching as low as possible.

In the following, the regulatory network is used to pro-
duce cell differentiation, expressed by a cell coloration,
while the developmental model described in the next section
is responsible for the generation of the shape.

The developmental model
The Generative Developmental System (GDS) Cell2Organ
is composed of three layers of simulation: a chemical layer,
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a hydrodynamic layer and a physical layer. These three lay-
ers can be enabled or disabled according to the needs of the
experimentation. In the scope of this work, only the chem-
ical layer is considered and will be described. More details
about the developmental model are given in (Cussat-Blanc
et al., 2008, 2010b,a).

The environment, implemented as a 2-D toroidal grid,
contains several kinds of substrates. They spread within
the grid, minimizing the variation of substrate quantities be-
tween two neighboring points. These substrates can spread
on the grid at different speeds. Substrates can interact to-
gether in order to simulate a simplified chemical reaction.
Only cells can trigger substrate transformations and collect
or consume the energy of the transformation.

Cells act in the environment. Each cell contains sensors
and has different abilities (or actions). An action has a ener-
getic cost for the cell that will trigger it. An action selection
system allows the cell to select the best action to perform at
any moment of the simulation. This system is based on a set
of rules precondition→action (priority). It uses data given
by sensors to select the best action to perform.

Division is a particular action that can performed if three
conditions are respected. First, the cell must have at least
one free neighbor to create the new cell. Secondly, the cell
must have enough vital energy to perform the division (this
required level is defined a priori). Finally, during the envi-
ronment modeling, additional conditions can be added. A
new cell created after division is totally independent and in-
teracts with the environment. During the division, the GRN
is executed in order to determintate the cell’s color accord-
ing to the morphogen quantity observed by the cell.

This model has been applied to shape generation (assem-
bly of cells) in (Cussat-Blanc et al., 2008): a simple con-
trol function is evolutionary optimized to control cells so
that it is possible to produce target shapes at the level of the
organism within an environment with pre-positionned mor-
phogens. In the current work, the control function consid-
ered is the extended Banzhaf’s GRN model, coupled with
an Evolution Strategies optimizer. Coupling the two models
(GRN and developmental) is described in the next section.

Coupling of the GRN and the GDS
Precomputation of the cell differentiation
Different morphogen gradients are added to position cells in
the environment. These morphogens are dedicated to dif-
ferentiation. The configuration of these gradients will be
described precisely for each experiment.

The cell differentiation is represented in the developmen-
tal model by a cell coloration. The concentration in mor-
phogens measured by the cell in the environment defines
the inputs of the regulatory network. These concentration
are scaled to the range [0.0, 0.3] in order not to overload the
production of other regulatory proteins (the sum of all con-
centrations is normalized in the range [0.0, 1.0]). To obtain

the cell coloration, each cell executes the regulatory network
during its division stage. Only one color can be expressed.
Therefore, the maximum of the expression level of all genes
is taken after a stabilization of the network (chosen empir-
ically after 1000 time steps of the regulatory network evo-
lution). This gene expression will finally give the cell color
during the development of the organism.

Because the cell can be positioned in a coordinate system
and the morphogen gradients are prepositioned, the differ-
entiation mechanism can be precomputed before the devel-
opment stage. In other words, the problem can be translated
to the search of an integer matrix. Each value of the ma-
trix corresponds to the color of the corresponding cell in the
chemical environment (1 for white, 2 for red and 3 for blue).
The same regulatory network is independently executed at
each point of the matrix with the morphogen concentrations
that corresponds in the chemical environment. The regula-
tory network is used to generate a differentiation matrix that
correspond to the desired pattern (also translated to an inte-
ger matrix). The developmental model then determines cell
coloration using this differentiation matrix during the organ-
ism growth. During temporal development, this matrix thus
simplifies computation within the model as cell differentia-
tion can be directly set at cell creation. This is justified in the
present context as pre-computing morphogen diffusion is a
sub-problem that may not be critical for studying the already
rich GRN dynamics.

Evolutionary algorithm
A classical (250+250) evolution strategy (ES) evolves a pop-
ulation of regulatory networks coded by the binary string
previously presented. The (250+250) evolution strategy
consists in producing 250 offsprings from 250 parents and
chosing the 250 best genomes to form the next population.
The fitness function that evaluates each genome consists of
counting the number of cells that do not match the desire
pattern (wrong cell coloration). The evolution strategy is
launched for 100 generation to minimize the quadratic error.
In the following, the error is computed as the difference for
each pixels between the image generated by the organism
(cell differentiation determines pixel color) and the target
image.

Genome modifications are only regulated by a common
bit-flip mutation operator. The mutation rate is set to 2% at
the begining of the run and adapted by the 1/5 rule of evolu-
tion strategies (Rechenberg, 1994): (1) the mutation rate is
doubled when the rate of successful mutation is higher than
20%; (2) the mutation rate is divided by two when the rate
of successful mutation is lower than 20%; (3) the mutation
rate is doubled when the number of gene mutations in the
population is less than 250 by generation.

The regulatory network’s genome is randomly initial-
izated. It is then duplicated 9 times with a mutation rate
of 2% in order to increase the appearance probability of reg-
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Figure 1: The genes of the genome are classified into three
sub-parts: blue, white and red genes. The final expression
value of each color is given by the highest value of the cor-
responding genes.

ulation sites. However, only three genes are necessary to
code the thre needed colors (blue, white and red cell colors).
The duplication of the genome implies a strong possibility to
have more than the three needed genes coded in the genome.
As described on figure 1, the genome is divided in three sub-
part. Each part codes for a specific color: blue, white and
red. The highest gene expression value in one of the three
sub-parts of the genome is taken as the expression value of
the corresponding color.

Each differentiation matrix is developed only one time be-
cause the problem is deterministic. In other words, a regu-
latory network will always generate the same differentiation
matrix and thus the same cellular pattern.

Figure 2 presents the convergence curves of the evolution
strategy applied to our two problems of flag development
presented in the next section. We can observe a stepwise
evolution due to the only use of mutation. Moreover, even if
the algorithm is set for 100 generations, it converges much
faster (approx. 30 generations).

0 350

50

0 350

250

Figure 2: Convergence of the ES applied to a 45 cells French
flag (left) and a 213 cell Japanese flag (right). X-axis repre-
sents the generation and the ordinate the min, mean and max
fitness values (number of errors) for each generation.

Experiments
Benchmark: the French flag problem
In recent years, the French flag problem has become a classi-
cal benchmark for evolutionary computation. Introduced by
Wolpert at the end of the 1960s (Wolpert, 1968), it consists
in developing a French flag pattern starting from a single
cell in the centre. This pattern is composed of three colored
strips (blue, white and red). The French flag problem has
various point of interests. In this paper, it is relevant as a
spatial problem as it can highlight the differentiation capac-
ities of a GRN-controlled developmental model: the color
changes in the flag can easily be interpretated as a functional
switch of the cell.

This benchmark has been addressed using various ap-
proaches. Lindenmayer (1971) used it to point out the
capacity of his L-Systems to generate predefined shapes.
Miller (2003) used a cartesian genetic programming ap-
proach and addressed self-repairing issues. Bowers (2005)
used a embryogenic developmental model to produce a
French flag. (Devert, 2009) addressed this problem with
various methods based on using the NEAT neuro-evolution
method (Stanley, 2004), Jaeger’s Echo State Networks
(Jaeger, 2001) and a reaction-diffusion model baring resem-
blance with the original Miller’s model.

This benchmark became quite famous in the Artificial
GRN community as it can be used it to show gene expres-
sions of cells (Banzhaf, 2003; Knabe et al., 2008; Joachim-
czak and Wróbel, 2008). The major difference with previous
work is that our contribution emphasizes the analysis on in-
ternal dynamics rather than focusing on pure performance
and generalization. To this end, the problem is briefly de-
scribed and experimental results are analysed, with a partic-
ular emphasis on internal dynamics of GRN as well as the
spatial resolution of the problem in terms of gene expres-
sions.

Relationship between spatiality and temporality
Two different target shapes are considered: a French flag
(three vertical strips) and a Japanese flag (white background
with a red centered circle), each with its specific properties
regarding the possible impact of morphogen gradients on the
GRN expression levels.

The French flag In this problem, two morphogen gradi-
ents are positioned horizontally and vertically. They allow
a precise positioning of the cells in the environment on the
x-axis and y-axis. However, the target flag is developed in
the diagonal of the environment. It implies an adaptation of
the regulatory network to utilize both morphogens.

The regulatory network is trained on a 9x5 flag (45 cells).
The target flag is composed of 3 strips of the same size: a
blue in the bottom left of the environment, a white in the
center and a red in the top right part. Figure 3 shows the
obtained result. The resulting image perfectly matches with
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Figure 4: Variation of the gene expression levels over time for each cell of the organism. The curves correspond to the regulatory
network activity of each cell of the French flag. The coordinate and the color of the cell are given by the title of each curve. We
can observe a strong link between the delay of expression of appropriate gene and the distance to the color shift: the longer the
distance to the color shift point, the faster the gene expression.
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Figure 3: Development of the French flag

the target flag. To study the spatialization of the regulatory
network, we extract all the curves of the color expression
level over time of the regulatory network expressed in each
45 cell of the organism. These curves are presented in figure
4. The top left curve matches with the left corner blue cell
of the organism in figure 3.

All these curves represent the variation of the three gene
expression levels (blue, white and red) on the y-axis (scaled
between 0 and 1) during the one thousand time steps of reg-
ulatory network’s evolution. In the top left part of the figure,
both morphogen orientations are represented according to
the organism orientation.

It is interesting to notice the progressive softening of the
blue curve in all curves and, at the opposite, the progressive
increasing of the two other curves (red and white are almost
overlapped). On the one hand, the transition between the
blue curve and the white/red curves is very visible. On the
other hand, the transition between white and red is hugely
more smoothy. Both curves are very close all the time, ex-
cept in the 5 top left curves. This exception is certainly due
to a strong regulation shift in the regulatory network.

More relevant, the temporality of the color expression
shifts is very observable. Considering only the blue and the
white strips, the expression of the blue color is visible later
and later in the regulatory network as the cell is closer to the
white area.

The blue/white shift disappears from the curve when the
cell must be white but we can assume by interpolation of the
curves that the shift happens later. The same phenomenon is
also present between the white and the red strips, as pointed
out by the R/W black arrows. It exhibits the strong link be-
tween the temporality of the gene expression and the spatial-

ity of the problem provided by the morphogen gradients.
Figure 5 presents the extraction of the regulatory network

of the best evolved candidate. The nodes represent two
groups of genes: the regulation genes named G1 to G39 and
the product genes (that will produce the color of the cell)
named P1 to P99. The size of each node is proportional to
its number of links. The architecture of this network is inter-
esting to observe. First, almost all the genes are used. Only
two genes (G23 and G33) are not linked to the regulatory
network. It shows the total use of the genome and the com-
plexity of the network extracted. Secondly, six genes (G5,
G14, G16, G27, G28 and G38) are interfacing the regulatory
network and all product genes except P2, which is directly
linked to the regulatory network. The interface has not been
coded in the network. It only emerged thanks to the evolu-
tionary process. Lastly, in the regulatory area, three genes
(G4, G25 and G26) play a central role and they are strongly
connected to the rest of the regulatory area. This regula-
tory area is very complex with a lot of links between all the
nodes. This complexity is due to the necessity to exploit
both gradients (horizontal and vertical).

The Japanese flag In order to investigate the indepen-
dence of the coordinate system to the temporality answer
of the regulatory network, development of a japanese flag in
a radial coordinate system is studied. The goal is thus to de-
velop into an image with a red circle in the center of a white
13x9 rectangular shape (a total of 213 cells). The same three
genes have been kept in order to establish the capacity of the
GRN to switch off a particular gene.

G23

G33

Products

Unused 
genes

Regulatory
area

Interface
genes

Interface
genes

Figure 5: Gene regulatory network extracted from the best
genome of the French flag with a threshold value of 19. G-
genes represent regulation genes and P-genes represent the
products of the regulatory network (a color expression).
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Figure 6: Gene expression level curves of 5 cells of the Japanese flag’s central line. The curves’ legends indicate the coordinate
and the color of the cell that correspond to the gene expression.

As previously, only 15 generations is required to obtain a
near-perfect flag (with only 3 pixels wrong). Figure 7 illus-
trates the flag obtained.

As for the previously presented French flag, all the curves
of the gene regulation have been extracted in order to study
the link between the temporality of the regulation and the
spacialization of the problem. Figure 6 shows the curves of
gene expression levels of five cells of central line: 3 whites
cells and 2 red.

We can observe that all the expression levels are very
close (y-axis is zoomed on the interval [0, 0.4]). The blue
gene is also very strongly expressed even if not needed in
this flag. Its inhibition by the regulatory network is correctly
made but seems to be very weak. The same link between the
temporality and the distance to the shift is also observable as
on the French flag: the closer the colors shift, the later the
gene expression levels shift. The same behavior is observ-
able elsewhere on the flag and each transition stage can be
obtained by rotation.

Conclusions and Perspectives
The goal of this work was to investigate the use of Artifi-
cial GRN in the context of a spatial problem. We combined
Banzhaf’s GRN model to our own developmental model
Cell2Organ, and experimental studies have been conducted
on variations of the multi-cellular flag problem, a well-
known benchmark in Artificial Embryogeny. Results from

Figure 7: Development of a Japanese flag with a radial gra-
dient.

the experiments confirm the strong link between the tempo-
rality of the gene expressions in the regulatory network and
spatial parameters of the problem. Indeed, change in the cell
differentiation process among the organism is correlated by
significant shifting in the GRN dynamics. The temporal as-
pect observed here also raises numerous question regarding
the ability of a population of GRN to actually generate some
desired behaviors. How many steps does it take to produce
a correct output? What is the expressivity of such a system,
in particular, how many basin of attractions can be encoded
within one GRN template? Is it possible to have, depending
on the context at hand, either a fast or a smooth shift between
two regimes? These questions are of particular interest to
explore further GRN-based control optimization problems
(Joachimczak and Wróbel, 2010; Nicolau et al., 2010).

The complexity of the regulatory network obtained was
also somewhat surprising and raises the question as to the
evolvability of such a representation. The regulatory net-
work needed a large number of P-genes (not restrained in
these experiments) in order to find a solution to the prob-
lem. This may be a symptom of code bloat, a well-known
problem of uncontrolled growth in variable length represen-
tations and definitely requires further studies, with possible
investigations with respect to penalizing bloat without un-
dermining the model’s performance.

Lastly, spatial problems addressed here are relevant for
this kind of detailed study, but have limited applications in
the current form. However, the field of applications is large
and examples from Biology give a good indications on the
variety of problems to be addressed: cell differentiation into
neurones, development of muscular cell, tissues, etc. In the
context of computer modelling, understanding the intrinsic
properties of GRN may be relevant in a variety of prob-
lems requiring complex temporal and spatial interactions.
Indeed, because of their structure, regulatory networks could
be more suitable for continuous problems than other behav-
ior controlers such as artificial neural networks or classifier
systems.
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Abstract
In  what  ways  can  artificial  life  contribute  to  the  scientific 
exploration of cognitive, affective and social processes? In what 
sense  can synthetic models be relevant for the advancement of 
behavioral and cognitive sciences?  This article  addresses these 
questions  by  way  of  a  case  study  —  an  interdisciplinary 
cooperation between developmental robotics and developmental 
psychology in the exploration of attachment bonds. Its main aim 
is to show how the synthetic study of cognition, as well as the 
synthetic study of life, can find in autopoietic cognitive biology 
more than a theory useful to inspire the synthetic modelling of 
the processes under inquiry. We argue that autopoiesis offers, not 
only  to  artificial  life,  but  also  to  the  behavioural  and  social 
sciences, an epistemological framework able to generate general 
criteria of relevance for synthetic models of living and cognitive 
processes.  By  “criteria  of  relevance”  we  mean  criteria  (a) 
valuable for the three main branches of artificial life (soft, hard, 
and wet) and (b) useful for determining the significance of the 
models each branch produces for the scientific exploration of life 
and cognition. On the basis of these criteria and their application 
to  the  case  study  presented,  this  article  defines  a  range  of 
different ways that synthetic, and particularly autopoiesis-based 
models, can be relevant to the inquiries of biological, behavioural 
and cognitive sciences.

Introduction
In his seminal article of 1989, Christopher Langton introduces 
the  “synthetic  approach”  (SA) as  the methodology proper  to 
artificial  life  (AL) — to “put  living things together”,  “rather 
than  take  [them]  apart”  (Langton  1989,  p.40).  The 
methodological  agenda that he proposes extends the focus of 
biological research to what is missing in the analytic approach 
traditionally applied to living systems. However, the plan does 
not merely consist  in extending the focus from individual  to 
relational components’ properties; from matter to organization; 
from centralised mechanisms to distributed dynamics of  self-
organization,  as  scheduled  by  other  20th century  biological 
research  programs.  Distinctively,  AL’s  SA  further  aims  to 
enlarge  biology’s  perspective  from  terrestrial  to  alternative 
“made  by  man”  forms  of  life,  and  to  actually  include  in 
biological heuristics, besides the question “how does it work?”, 
the  question  “why  this  and  not  that?”  The  intent  is  to 
investigate the essential principles of life, and to deal with the 
main issues about life, by attempting to “recreate” living things 
and their phenomenology. In other words: building artificially 
embodied  and  situated  models  of  living  systems  and 

phenomena  in  order  to  explore,  through  experimental 
manipulation,  aspects of life usually not accessible in natural 
systems and scenarios.
This  foundational  methodological  plan  still  unifies  the  three 
main  branches  of  AL developed  over  the  last  two  decades, 
since “soft”,  “hard”, and “wet” AL (Bedau, 2003, p. 505), in 
spite of their divergent methods, all continue to refer to the SA 
as  their  basic  methodology,  and  tend  to  agree  in  its 
characterisation.  In  addition,  all  of  them  emphasise  the 
genuinely scientific aspiration of this methodology, as opposed 
to  the  mainly  technological  purposes  of  other  research 
programs  within  computer  science,  robotics  and  synthetic 
biology. Moreover, they tend to attribute to this methodology 
the same heuristic features,1 which, very schematically, can be 
listed as follows: 
(a)  The  programmatic  inversion  of  the  established  order 
between analysis of behaviour and construction of models — 
the  SA  directing  researchers  to  first  embed  their  basic 
hypothesis on life and cognition in working artificial systems, 
then examine the behaviours they produce.
(b)  The  theoretical  hypothesis  that  distinguishes  between 
organisation  and  physical-chemical  realisation  of  living  and 
cognitive  systems,  and  claims  that  these  systems  and  their 
phenomenology can be recreated by implementing the former in 
new  physical  media  i.e.  artificial  “embodiments”  and 
“embeddedments”.
(c)  The  emergentist  framework  which  grounds  living  and 
cognitive behaviours not within the systems displaying them, 
but in the interplay between three basic organisational levels of 
life  and  cognition:  the  systems,  their  elemental  components, 
and the environment(s) with which the systems interact. 
(d) The correlated production of simple and generative models 
of living and cognitive systems, that is, models able to generate 
complex  and  unexpected  behaviours  through  rather  simple 
internal mechanisms. The latter models are designed to create 
complexity, not by themselves, but by participating in systems-
components-environment(s) interactive dynamics.
Over  the  last  few years considerable work has been done to 
extend  the  applicability  of  the  SA  within  the  domain  of 
cognition (e.g. Pfeifer and Scheier 2000; Lungarella et al. 2003; 
Bedau  2003;  Cañamero  2005;  Dawson  2004;  Froese  and 
Ziemke  2009).  These  developments  pertain  to  cognitive 

1 Cf.  e.g.  Luisi  2010,  Pfeifer  and  Scheier  2000;  Dawson  2002,  2004; 
Damiano and Cañamero 2010.
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processes  lato  sensu (i.e.  including  affective  and  social 
processes)2 and re-propose, in new terms, the epistemological 
question of how relevant this methodology is for the scientific 
study of natural complex behaviours. 
At the origin of AL, this issue was mainly focused on living 
processes; as Langton put it, “the notion of studying biology via 
the  study of  patently non-biological  things  is  an idea  that  is 
hard  for  the  traditional  biological  community  to  accept” 
(Langton 1989,  p.  52).  Today this  has significantly changed. 
Contemporary academic biological departments integrate areas 
of  research  such  as  bio-computation  or  chemical  synthetic 
biology. This expresses the wide acceptance, within biology, of 
interdisciplinary collaboration grounded in SA. The SA is also 
being widely applied to the study of cognitive processes within 
communities  such as behaviour-based robotics  and embodied 
artificial  intelligence  and  artificial  life.  The  situation  is  still 
different for the study of affective processes, where embodied 
synthetic models are still a minority. The application of the SA 
to  this  area  is,  to  a  large  extent,  hindered  by  the  lack  of 
principled  reflection  regarding  a  number  of  unanswered 
epistemological questions, and this constitute an obstacle to the 
integration of the SA among the explorative practices accepted 
by the scientific community as sources of valuable insights for 
cognitive and behavioural sciences. These include, for example, 
questions  such  as:  in  what  sense  can systems endowed with 
artificial  “embodiments”  and  “embeddedments”  generate 
effective  models of  natural  cognitive,  affective,  and/or social 
processes? In which ways and in what sense can the synthetic 
study of these processes provide significant advancements with 
respect to other models? Which are the criteria that permit to 
define  the relevance of  synthetic  models  for  the inquiries of 
cognitive and behavioural sciences?
This article addresses these questions with the intent of taking a 
first step towards providing epistemological groundings to the 
application of the SA to the affective (and more generally other 
cognitive and behavioural) sciences. More concretely, our aim 
is twofold: (1) to define an epistemological framework (that is, 
a  set  of  principles  of  knowledge)  able  to  ground  SA  as  a 
relevant  methodology  that  also  encompasses  affective 
processes,  in  addition  to  other  biological  and  cognitive 
processes  already studied  by embodied  AI and  artificial  life; 
and  (2)  to  derive  from  this  framework  a  set  of  criteria  of 
relevance for the synthetic modelling of all these processes, that 
is, criteria (i) valuable for all three main branches of AL (soft, 
hard, and wet AL) and (ii) able to define the relevance of their 
models for the scientific exploration of natural living affective 
and cognitive phenomena. This article pursues these objectives 
not  through  general  and  speculative  dissertation,  but  by 
discussing a concrete case study: an interdisciplinary model of 
the development of attachment (and more generally affective) 
bonds in the area of developmental robotics.
Through  the  presentation  of  this  case  study,  Section  1 
introduces the epistemological issue we intend to face, as well 
as the epistemological approach we adopt. Section 2 describes 
in  detail  two principles of  knowledge that  we propose as an 
epistemological  framework able  to  ground the  application  of 
the  SA to  affective  processes.  These  principles  are extracted 
from autopoietic biology founded by Humberto Maturana and 
Francisco Varela in the 70s (Maturana and Varela 1987). It is 
2 Cf.  e.g.  Nunez  and  Freeman  1999. In  this  article,  when  we refer  to 
cognitive processes, we always refer to them lato sensu.

worth noticing that our use of autopoiesis is different from the 
usual  one.  We do  not  don’t  refer  to  Maturana  and  Varela’s 
theory of  life  and cognition,  as  is  often done in  AL, to  take 
inspiration  for  producing  specific  models  of  living  and 
cognitive processes. Instead, we refer to Maturana and Varela’s 
theory  of  scientific  knowledge,  and  draw  on  some  of  its 
elements. This is in order to provide the synthetic study of life 
and  the  synthetic  study  of  cognition  with  a  shared 
epistemological framework, able to offer them common criteria 
of  relevance  for  the  models  they produce.  In  Section  3  we 
formulate and discuss the meaning of these criteria. In Section 
4  we  apply  them  to  the  developmental  robotics  model  of 
attachment  bonds,  and  discuss  its  contribution  to 
developmental psychology. In section 5 we present the range of 
different  forms  of  relevance  that  synthetic  models  can  have 
with regard to biological, cognitive and behavioural sciences.

1. An interdisciplinary exploration of attachment bonds 
Developmental robotics is a relatively recent area of research, 
located  at  the  intersection  of  robotics  and  developmental 
sciences,  within which the SA plays a crucial role.  This area 
uses  studies  from  developmental  sciences  not  simply  to 
construct  “more  autonomous,  adaptable  and  sociable  robotic 
systems” (Lungarella  et  al.  2003),  but  also  to  gain  a  deeper 
understanding  of  developmental  processes.  One  of  the 
programmatic  goals  of  developmental  robotics  is  to  employ 
robots  as  tools  to  investigate,  test  and  possibly  further 
elaborate, in an interdisciplinary way, theories of development 
proposed by these sciences (Pfeifer and Scheier 1999, Pfeifer 
2002,  Sporns  2003,  Cañamero  2005).  This  expresses  the 
originality  of  this  emerging  area,  which  intends  to  use 
developmental  theories not only for engineering purposes (to 
create better adaptive robotic systems), but also for genuinely 
scientific  purposes,  through  the  extension  of  the  SA  to 
cognitive developmental processes lato sensu.
Within  this  framework,  our  research  on  the  development  of 
attachment  bonds  provides  a  good  example  of  research  that 
intends to explicitly address these two goals (Cañamero  et al. 
2006), and this for the following main reasons.
Firstly, this kind of inquiry allows researchers to face one of the 
central issues that need to be successfully addressed to advance 
in the development of social  robotics,  that  is,  how to design 
robots  that  could  learn from us,  be accepted  by us as  social 
partners,  and  be  able  to  adapt  to  our  ever-changing  social 
environments.  The  developmental  approach  deals  with  this 
issue on the basis of the idea that the most successful example 
of  adaptation  into  our  social  and  technological  environment, 
without much prior knowledge, is given by infants. Following 
this  approach,  researchers  have,  for  example,  successfully 
managed to design robots that use algorithms to learn and adapt 
to new sensorimotor pairings (Berthouze and Lungarella 2004; 
Blanchard and Cañamero 2005; Andry et al. 2009; Hiolle et al. 
2007).  Other contributors have focused more closely on how 
developmental  psychology  describes  infant  development, 
investigating how infants explore and discover new features of 
the  environment,  particularly  through  drives  like  curiosity 
(Oudeyer  et  al.  2007)  and seeking wellbeing through affect-
driven  interactions  with  objects  and  people  (Blanchard  and 
Cañamero 2005, 2006; Cañamero et al. 2006). Indeed, the latter 
contributions  are addressing the issue of how positive affect, 
such  as  providing  comfort,  can  promote  an  efficient  and 
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consistent learning experience, depending on the environment 
and especially the behaviour of the social partner.
Developmental  robotics  research  on  attachment  bonds  arose 
within  this  context,  and,  in  accordance  with  the  general 
orientation  of  the  area,  has  a  second  goal:  it  also  aims  at 
contributing to the advancement of developmental psychology 
through the  design  of  adaptive  social  robots  modelled  using 
scenarios, parameters and metrics that are also relevant to, and 
used by developmental comparative psychologists for, the study 
of  attachment  bonds  in  (human  and  non-human  primate) 
infants.  This  modelling  approach  gives  rise  to  robots  that 
behave and interact with humans in ways that are comparable to 
young  infants  (in  the  specific  variables  of  the  phenomenon 
under investigation),  and therefore could be used as tools  to 
investigate  and  possibly  further  develop  theoretical  models 
about attachment bonds.
In  the  reminder  of  this  section  we  briefly  summarize  the 
developmental robotics research on attachment bonds that we 
undertook  within  the  Feelix  Growing  Project 
(http://www.feelix-growing.org/)  in  collaboration  with 
developmental  and  comparative  psychologists,3 and  are 
continuing within the ALIZ-E Project (http://www.aliz-e.org/). 
This  work  focuses  on  the  mechanisms  underlying  the 
establishment and development of attachment bonds in the first 
two  years  of  age,  which  has  implications  for  all  phases  of 
affective development. As this paper is directed to introduce the 
epistemological  issues  related  to  the  extension  of  SA  to 
cognitive  development,  we do not provide here the technical 
details presented in other articles; for technical details, we refer 
the reader, for example, to (Cañamero et al. 2006; Hiolle et al. 
2006, 2007; Hiolle and Cañamero 2007).

1.1 Development of attachment bonds
Human infants grow and discover their new environment most 
often accompanied by (or not far from) their mothers or primary 
caregivers. The skills they learn, and the objects and agents they 
encounter,  are  surely  presented  and  assimilated  within  their 
cognitive and emotional experience with the constant help and 
assistance  of  these  adult  human  beings  alongside  them. 
Attachment  was  originally  defined  (Bowlby  1969)  as  the 
affective tie between the infant and its primary caregiver which 
offers security and comfort when needed. In the last decades, 
developmental  psychology has been trying to  study how this 
affective tie influences cognitive and affective development of 
young children. This research has produced critical and revised 
versions of Bowlby’s theory, which point out the complexity of 
attachment  processes,  as  well  as  the  dynamical  and  inter-
individual character of the “dyad” child-caretaker (e.g. Tronick 
2007; Keller 2008). They tend to describe this dyad as an inter-
individual system whose components are involved in a dynamic 
co-determination which shapes the way the child interacts with 
his/her (social)  environment,  and re-shapes the way in which 
the  care-giver(s)  interact  with  the  child.  These  critical 
developments  strongly  converge  with  the  SA’s  assumption 
about the generation of complex behaviours,4 and constitute the 
body of work that we took inspiration from. The remainder of 

3 Within the FEELIX GROWING project we worked in collaboration with 
Kim Bard and Jacqueline Nadel.
4 Cf. the Introduction of this paper, point (d) and (Damiano and Cañamero 
2009).

this  section  briefly  introduces  the  properties  of  attachment 
bonds we used and the robot model we produced.

1.2 Attachment bonds in infants
One  of  the  main  roles  of  attachment  bonds  is  to  provide 
mechanisms that permit to regulate (“negative”) affective state, 
and  particularly  arousal,  setting  the  grounds  for  the 
development of emotion regulation later in life.  We therefore 
focused  on  arousal  and  its  regulation  in  our  model.  This 
essential  variable  was  designed  to  relate  to  the  notion  of 
excitement  as  defined  in  (Sroufe  1996),  which,  in  the  early 
months of life, is neither a positive nor a negative emotion or 
affect,  but refers to the level of internal activity and external 
stimulations  experienced by the infant.  A high and sustained 
level would  be too demanding and challenging,  while a low 
level  would  not  give  rise  to  fruitful  behaviour.  Thus, 
maintaining  a  good  level  of  this  variable  is  desirable.  This 
internal  variable  is  close  to  the  concept  of  arousal  (Berlyne 
1960),  relating  to  the  theory  of  optimal  arousal,  and  the 
inverted U-shape hypothesis (Anderson 1990), where mammals 
try to maintain on average their arousal at a middle level where 
their  physiology  is  optimal.  In  our  investigation  of  infant 
development, the notion of arousal is very appropriate, as it is 
used  in  developmental  psychology  to  assess  emotional 
intelligence  in  newborns and its  development  (Brazelton and 
Nugent 1995). However, the notion of arousal is often used as a 
dimension of  the two or sometimes  three dimensions  usually 
adopted in models based on the circumflex model of emotions 
(Russel 1980), such as in (Breazeal and Scassellati  2002). In 
this kind of model, arousal is an orthogonal dimension to the 
valence of percepts and behaviours, and the model offers a one-
to-one  mapping  from  a  two  dimensional  vector  from  the 
arousal/valence  space  to  a  predefined  emotion.  In  our  work, 
however, we do not use the notion of arousal in the same way 
as these models. Instead, we see arousal as a variable related to 
internal  activity,  in  terms  of  learning  experience,  which  is 
implicitly  tied  to  external  perceptions,  some  being  more 
stimulating  then  others,  according  to  familiarity  and 
complexity.
The robotics model that we designed is based on the notion of 
arousal,  which we associated with the learning experience of 
the  robot  and  how  stimulating  or  familiar  the  experienced 
environment is — namely, the current sensorimotor state.  To 
this  end,  our  model  asseses whether  the  current  percepts  are 
being  correctly  memorised  and  recalled,  and  this  directly 
influences  the  arousal  level  of  the  robot:  novelty  increases 
arousal,  familiarity  decreases  it.  The  robot  does  not  have 
explicit  drives  or  motivations  beyond  exploring  the 
environment,  and  its  behaviour  is  a  function  of  the  level  of 
arousal. The human, playing the role of a “caregiver”, also has 
an impact on the arousal of the robot, in accordance with the 
secure base paradigm: the arousal level is decreased when the 
human provides comfort to the robot,  either via direct tactile 
contact  or  by  being  present  on  its  visual  field.  This  robot-
caregiver  system  is  a  dynamical  system  that  present  the 
essential  elements  needed  to  reflect  and  test  the  hypothesis 
concerning the attachment bonds and caregiving influences on 
it:  unfamiliar  events  and  stimuli  increase  the  arousal  and 
provoke distress, and the attachment figure can then relieve this 
distress with comfort. Whenever the arousal is low, the infant-
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robot would keep exploring its environment as long as there are 
unknown features, in order to further its learning experience.

1.3 Robot Model
The robotic  system is  based on a few simple  hypotheses,  as 
stated above. Firstly, the robot’s only “motivation” is to learn 
the  features  it  can  perceive  in  its  environment.  The level  of 
aroual of the robot is calculated as a function of the familiarity 
and novelty of these features. The arousal rises when the robot 
is  stimulated,  and  decreases  when  the  attachment  figure 
provides comfort visually or via tactile contact. When the level 
of arousal is low, the robot will seek stimulation and carry on 
exploring. The learning system of the robot uses two different 
well-known neural networks, a Kohonen Map (Kohonen 1997) 
and  a  Hopfield-like  associative  memory (Davey and  Adams 
2004, Hopfield 1982). The arousal level depends directly on the 
variation  of  the  weights  of  the  Kohonen  Map,  and  on  the 
accuracy of the associative memory. Indeed, a high variation of 
the  weights  is  consequential  of  the  robot  discovering  new 
features, and a mismatch between the output of the associative 
memory  and  the  current  perception  is  proportional  to  the 
novelty  thereof.  The  arousal  level  is  calculated  as  the 
exponential  average  of  these  two  contributions  over  a 
predefined  time  window.  When  the  caregiver  touches  the 
sensors on the back of  the robot,  the arousal  level decreases 
exponentially  and  faster  than  it  could  increase  whilst  being 
over-stimulated. According to the arousal level and predefined 
thresholds, the robot behaves as follows. When the level is in a 
medium range, the robot remains still and attends to the current 
stimuli.  Finally, when the level is high, due to too many and 
familiar  stimuli,  the  robot  is  "distressed"  and  it  will  seek 
comfort from its caregiver.
Using  this  robot  model,  we  undertook  a  series  of  studies 
focused  on  studying different  aspects  of  the  development  of 
attachment bonds with one or more human caregivers..  These 
studies  rest  on  the  interdisciplinary  design  of  experimental 
scenarios, with the aim to provide insight and feedback to all 
the different disciplines involved. Several crucial aspects of the 
development  of  attachment  bonds  were under  inquiry.  These 
included the development of different attachment profiles; the 
influence of these different profiles on exploratory behaviors; 
the  role  of  attachment  bonds  in  the  development  of 
sensorimotor associations; and the development of attachment 
bonds in the presence of multiple caregivers (Cañamero et al., 
2003; Hiolle et al. 2006, 2007; Hiolle and Cañamero, 2007).

1.4 The epistemological issue
The relevance of  these  studies  for the construction of  robots 
able to develop their skills and behaviours dependently on the 
interactions  with  their  users  is  quite  evident.  However, 
considering  the  level  of  abstraction  and  simplification 
characterising  the  robotic  architecture  described  above,  the 
restricted possibilities of interaction of the “baby” robot with its 
human  partner(s)  and  environment,  the  limited  aspects  of 
development  of  attachment  bonds  taken  into  account  by the 
robot model, can we say that these studies are able to produce 
relevant feedback for human developmental  psychology? Are 
there ways and conditions in which this “baby” robot can be 
fruitfully  used  to  model  and  explore  attachment 
phenomenology in humans?

If we refer to the widespread, and in our opinion incorrect, idea 
that a model system should “represent” the target system in all 
its aspects and behaviours, we have to answer in the negative. 
This  notion,  grounded  in  the  classical  “representationalist” 
scientific  epistemology  is  also  strongly  questioned  by  the 
epistemological  debate  about  synthetic  modelling. The  latter 
points out not only that necessarily scientific modelling fails in 
representing everything about target systems, but also that this 
is not its main goal. The basic purpose of scientific modelling is 
not to replicate the target system, but to investigate what are its 
relevant features. As in the case of synthetic modelling, the goal 
is to embed, in a model system, the scientific hypotheses about 
these features, and to test these hypotheses.
This argument  has  been proposed by both  representationalist 
and non-representationalist epistemological approaches to AL. 
While  the  former  use  it  to  propose  weak  versions  of  the 
classical  idea  that  scientific  representation  should  be  an 
exhaustive reflection of nature (e.g. Webb 2001), the latter use 
this argument to express the thesis that representationalism is 
not  an  appropriate  epistemology for  AL (e.g.  Riegler  1992). 
According to the latter view, representationalist epistemological 
notions,  based  on  the  ideal  of  a  science  exploring  objects 
independent  from  the  observer,  cannot  orient  the  scientific 
practice  grounded  in  the  SA.  Indeed,  this  methodology 
promotes a form of scientific knowledge which actively creates, 
and  does  not  passively  reflect,  the  phenomena  explored.  It 
refers to an observer who is the constructor, and not the old-
fashion  representationalist  “spectator”,  of  the  systems  he 
investigates. Moreover, the SA discards the representationalist 
dichotomy subjective/objective, as it proposes a way of doing 
science  in  which  facts  converge  with  artefacts,  discovery 
corresponds  to  invention,  objective  evidence is  not  separable 
from  subjective  construction,  and spontaneous manifestations 
of nature can be explored in the behaviour of artificial systems. 
As  we showed  in  detail  elsewhere  (Damiano  and  Cañamero 
2010),  these  remarks  tend  to  lead  non-representationalist 
approaches  to  AL  that  take  inspiration  from  constructivist 
theories of scientific knowledge. These characterise science, in 
all  its  forms,  as  an  activity  of  construction  of  objects  of 
research (cf. e.g. Glasersfeld, 1995), and therefore propose to 
science epistemological  notions  and  principles  of  knowledge 
which can be considered particularly appropriate for grounding, 
and supporting the scientific practice grounded in, the SA.
Our  approach  to  the  epistemological  grounding  of  the  SA 
belongs to this non-represationalist orientation. To address the 
issue  of  the  relevance  of  synthetic  models,  like  the  robotic 
model  presented  above,  for  the  inquiries  of  cognitive  and 
behavioural  sciences,  we  choose  to  refer  to  autopoietic  
epistemology (Maturana and Varela 1987). This is one of the 
best expressions of the constructivist  epistemology developed 
across  AL’s  scientific  genealogy  (Damiano  and  Cañamero 
2010), and, as  we argue, can provide shared groundings and 
common criteria of relevance to the synthetic study of life as 
well  as  to  the  synthetic  study of  affect  and  more  generally 
cognition.

2. Grounding the SA in autopoietic biology
The connection between autopoietic  cognitive biology and AL 
is strong. As already mentioned, Maturana and Varela provided 
more  than  an  emergentist  theory of  life  and  an  emergentist 
theory of cognition which are useful to inspire the production 
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of synthetic models of biological and cognitive processes. As 
often neglected (even by AL researchers who take inspiration 
from  these  theories),  Maturana  and  Varela  elaborated  an 
explicit  constructivist  theory  of  scientific  knowledge,  which 
proposes the SA as the proper methodology to investigate both 
life  and  cognition,  at  the  theoretical  level  as  well  as  the 
experimental  one.  This  autopoietic  version  of  the  SA, 
formulated more than a decade before the Langtonian one, is 
based  on  epistemological  notions  and  principles  which  give 
expression  to  the  intuition  at  the  basis  of  Langton’s  AL 
program, and, in this sense, can be considered as appropriate 
epistemological groundings for AL’s SA, both in the domain of 
life and in that of cognition. 
On the basis of these considerations, we saw in Maturana and 
Varela’s  production  a  source  of  epistemological  elements 
useful  to  provide  a  shared  epistemological  framework to  the 
synthetic study of life and that of cognition. In particular, we 
extracted from autopoiesis two principles which, as we try to 
show  in  the  remainder  of  this  section,  are  particularly 
significant with regard to this goal. Below we summarize these 
(well-known, to a large part of the AL community) principles, 
to make the paper self-contained and help readers who might 
not be totally familiar with this approach.

2.1 Principle 1: Explaining = Constructing
The  first  principle  proposes  an  operational  definition  of 
scientific  explanation,  according  to  which  explaining  a 
phenomenon  amounts  to  proposing  a  mechanism  able  to 
produce  it (cf.  e.g.  Maturana  and  Varela  1987,  chapter  1). 
Visibly, the aim of this postulate is to extend the classic view of 
scientific  explanation.  It  juxtaposes  the  traditional  notion 
“explaining  =  predicting”  to  a  constructivist  one,  which, 
proposing  the  equation  “explaining  =  constructing”,  can  be 
applied  to  systems  exceeding  scientific  capabilities  of 
calculation and prevision. Requiring models able not to predict, 
but  to  generate the  natural  processes  under  inquiry,  the 
principle  locates  the  focus  of  scientific  explanation  not  on 
actual,  but  on  possible behaviours  of  the  systems  explored. 
That is, it grounds a category of scientific descriptions which is 
particularly appropriate for living and cognitive systems, since 
the kind of characterization it proposes cannot be affected by 
these  systems  unpredictability.  AL’s  SA  can  be  legitimately 
included  within  this  category,  for  it  presents  the  basic 
distinctive features characterizing the paradigmatic constructive 
description of nature grounded by autopoiesis in this principle. 
In  particular,  it  shares  the  distinctive  features  of  the  main 
example of constructive explanation provided by Maturana and 
Varela,  namely,  the  autopoietic  explanation  of  life.  Very 
schematically:  raison d’être (the natural phenomena it intends 
to  describe  are  untreatable  through  the  classical  predictive 
modelling),  epistemological  grounding  (the  constructivist 
postulate according to which knowing scientifically means to 
build  objects  of  research),  heuristic  gender  (operational 
characterizations of the natural processes explored), procedure 
(definition  of  a  generator  for  the  phenomenology  to  be 
described, and exploration of the phenomenology it produces), 
and, finally, the appellation “synthetic”.
In  Maturana  and  Varela’s  literature,  the  introduction  of  this 
kind  of  scientific  characterization  is  described as  implying a 
long series of shifts in classical scientific epistemology, which 
produce a new emphasis  not only on  construction instead of 

representation,  on  generation instead  of  prediction,  on 
possibility instead of actuality, but also on synthesis instead of 
analysis. Indeed, in Maturana and Varela’s production, the term 
synthesis defines the methodological orientation of autopoietic 
biology’s theoretical program, just like, in Langton’s literature, 
it defines the methodological orientation of AL’s program.
On  the  basis  of  its  principle  of  scientific  explanation, 
autopoietic  biology  plans  to  formulate  a  procedurally  new 
definition of life, which, instead of listing the main features of 
living  systems,  specifies  a  dynamical  mechanism  able  to 
produce their  phenomenology.  Maturana and Varela  call  this 
kind  of  definition  “synthetic”,  to  distinguish  it  from  the 
traditional “analytic” definitions of life presenting detailed lists 
of properties. The condition that this synthetic definition has to 
satisfy to  be considered an appropriate explanation  of  life  is 
expressed  in  terms  of  its  theoretical  productivity.  The 
mechanism  that  it  specifies  has  to  show  the  capability  of 
creating,  from  a  set  of  elemental  components,  an  entire 
biological  domain.  That  is,  it  has  to  manifest  the  ability  of 
generating, by the dynamical coordination of a set of elements, 
a  minimal  cellular  system  with  its  characteristic 
phenomenology. That is: not only cellular self-production, but, 
through this, also reproduction and evolution, to the extent to 
be  able  of  producing,  step  by  step,  a  differentiated  living 
domain, as complex and populated as the terrestrial one.
This  is  the  kind  of  scientific  modelling  of  the  living  that 
Langton’s characterization of AL intends to implement too, not 
at the level of a purely theoretical construction, but at that of an 
empirical  one:  the  synthesis  of  “any  and  all  biological 
phenomena,  from viral  self-assembly to  the  evolution  of  the 
entire biosphere”, without restriction to carbon-chain chemistry. 
As in the case of Maturana and Varela, Langton’s program is 
that of a constructive and universal biology, which converges 
with autopoietic biology not only on the basic epistemological 
principle of scientific explanation, but also on the principle of 
biology’s universalisation. “Life is (…) a result of organization 
of  matter,  rather  than  something  that  inheres  in  the  matter 
itself” (Langton 1989, p. 53).

2.2 Principle 2: Organization ≠ Structure
The second autopoietic principle we consider pertinent for the 
epistemological grounding of the SA is a theoretical postulate 
with a significant epistemological value. Its basic content is the 
distinction between two notions — organization and structure. 
Simplifying the original autopoietic formulation (Maturana and 
Varela  1987,  chapter  2),  we  can  put  it  as  follows:  the 
organization of a living system is its relational frame, that is, 
the network of relations which define the system as a unity of 
components;  the  structure of  a  living  system  is  its 
materialization,  given  by  the  actual  components  and  their 
interconnections. 
This  distinction  is  not  a  theoretical  novelty  introduced  by 
Maturana  and  Varela.  A  first  complete  formulation  can  be 
attributed to Jean Piaget (1967, chapter 4), who proposed this 
conceptual  distinction  as  the  theoretical  key to  comprehend 
biological  systems  as  dynamical,  since  it  corresponds  to  the 
distinction between the invariant and the variant aspects of their 
dynamics.  Piaget  remarked  that  living  systems  can  be 
considered dynamical systems endowed with a peculiarity: all 
their  elementary  components  permanently  change,  while 
systems, as relational unities  of components,  remain. This, as 
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Piaget pointed out, can be affirmed at both the ontogenetic and 
the phylogenetic levels. The relational unity remains unchanged 
not  only  in  the  permanent  flux  of  physical-chemical 
components typical of biological organisms, but also during the 
ontogenetic  transformations  which  can  make a  living system 
unrecognisable  from one  observation  to  the  next.  Moreover, 
this  relational  unity  is  transmitted  through  reproduction  and 
remains  unchanged  generation  after  generation.  Indeed,  this 
relational unity is the invariant of the biological dynamics and 
therefore the lowest common denominator  of  living systems. 
Distinguishing  this  invariant  relational  frame  from  the 
changeable materializations of living systems, and determining 
its configuration, amounts to isolating an element which can be 
used to define the class of biological systems.
These remarks point  out the epistemological  relevance of the 
distinction between organization and structure, which is at least 
two-fold. Firstly, this distinction allows biological research to 
hypothesize  a defined  mechanism for  living dynamics  (i.e.  a 
mechanism  creating  organizational  invariance  through 
permanent  structural  variation),  and  therefore  opens  the 
possibility of  a  constructive  explanation  of  life.  Secondly,  it 
generates significant insights  about the SA’s relevance to the 
study of  natural  living and cognitive  processes,  as  it  implies 
that:  (a)  in  principle  the  materialization  (structure)  of  living 
systems can be manifold;  (b) artificial  systems displaying the 
same  organisation  as  living  systems,  and  realising  it  in  a 
different structure, have to be considered as belonging to the 
class of living systems.5

Thus,  the  autopoietic  distinction  between  organisation  and 
structure offers a theoretical  ground to the thesis  — “the big 
claim” — through which Langton expresses AL’s aspiration: “a 
properly organized set of artificial primitives carrying out the 
same  functional  roles  as  the  bio-molecules  in  natural  living 
systems will support a process that will be ‘alive’ in the same 
way  that  natural  organisms  are  alive.  AL  will  therefore  be 
genuine life — it will simply be made of different stuff than the 
life that has evolved here on Earth.” (Langton 1989, p. 69)

2.3 Autopoiesis and the extension of the SA to the domain of  
cognition
Autopoietic  biology  does  not  limit  itself  to  formulating 
principles  that  support  Langton’s  initial  AL program. It  also 
supports the extension of this program to cognitive processes. 
The intent of “naturalising cognition” led Maturana and Varela 
to  identify  living  systems  as  cognitive  systems,  since  their 
general process of self-production (i.e. autopoiesis) corresponds 
to a permanent process of interaction with the environment and 
other systems (structural coupling) that allows living systems to 
survive. The conceptualisation of this process as a process of 
cognition is at the basis of the cognitive biology that Maturana 
and Varela developed as an extension of  their theory of life, 
fathering  the  nascent  “embodied  cognitive  science”  (Clark 
1999).According to this view, the phenomenology that has to 
be  produced  by  the  autopoietic  synthetic  definition  of  life 
includes not only all the biological,  but also all the cognitive 
5 The thesis of the multiple material realization of organization implies a 
convergence between autopoiesis and functionalism. There is no room here 
for a  detailed comparison.  However it  is  worth noticing that  autopoiesis 
and  functionalism  have  different  views  about  the  implications  of  this 
thesis.  For  example,  autopoiesis,  differently  from  functionalism, 
emphasizes the dependence of cognition on the agent’s embodiment. 

phenomenology lato sensu (Maturana and Varela 1987). In this 
sense, the autopoietic principle of the constructive explanation 
and  the  autopoietic  distinction  between  organisation  and 
structure offer a grounding framework not only to the synthetic 
study of life, but also to the synthetic study of cognition  lato  
sensu.

3. Two criteria of relevance for the SA
The  two  autopoietic  principles  presented  above  can  be 
transformed  into  two  criteria  for  use  in  determining  the 
relevance of the SA’s implementations to the study of life and 
cognition. 

3.1  –  “Explaining  =  Constructing”:  phenomenological  
relevance 6

From  the  principle  of  scientific  explanation  extracted  from 
autopoietic biology’s production (P1: To explain scientifically  
is to provide a mechanism able to produce the phenomenology  
to  be  explained)  can  be  derived  a  criterion  of 
“phenomenological relevance” for synthetic models of natural 
living and cognitive phenomena, according to which:
(C1) A synthetic model is relevant at a phenomenological level  
if  it  provides  a  mechanism  which  produces  (according  to  
explicit parameters) the same phenomenology as the living or  
cognitive phenomenology under inquiry.
The  appellation  “phenomenological  relevance”  expresses  the 
fact  that  this  criterion  requires  only  a  relation  of  identity 
(defined  by explicit  parameters) between the  phenomenology 
produced synthetically and the  natural  phenomenology under 
inquiry. This means that (C1) does not impose any constraints 
on  the  biological  plausibility of  the  synthetic  mechanism by 
which  the  phenomenology  under  exploration  is  produced. 
Therefore, if (C1) is not correlated to a criterion which requires 
the  biological  plausibility  of  synthetic  models,  and  specifies 
what this plausibility consists of, then (C1) cannot warrant that 
these models offer a biologically plausible explanation of the 
target  processes,  and  that  they  do  not  simply  imitate  the 
phenomenology under inquiry.
However,  from  autopoietic  biology  we  can also  extract  a 
principle  to  differentiate  phenomenologically relevant models 
on the basis of their respective operational explanatory powers 
–  that  is,  on  the  basis  of  their  capability  of  providing  an 
operational explanation of the phenomena under inquiry. This 
principle,  belonging  to  the  autopoietic  theory  of  scientific 
explanation  (Maturana  and  Varela  1987,  chapter1;  Maturana 
1988), associates the operational explanatory power of a model 
to  its  “progressive”  character,  that  is,  its  capability  of 
producing,  besides  the  phenomenology  under  inquiry,  also 
other phenomena belonging to the same domain.7 In this sense, 
autopoietic  epistemology provides a principle  of  evolution  to 
the phenomenologically relevant synthetic modeling of living 
and cognitive processes, which can orient the choice between 
different  models  referred  to  the  same  phenomenological 
domain.  That is, on the basis of the quantity of supplementary 
phenomena, that they are able to produce, these models can be 
considered  more  or  less  progressive  (that  is,  more  or  less 
operationally explanatory) than another models. 

6 Here the adjective ‘phenomenological’ has the meaning of ‘relative to the 
phenomenology under inquiry’.
7 We use the term ‘progressive’ in accordance with Lakatosian philosophy. 
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According to this principle,  we have to distinguish  two basic 
kinds  of  phenomenologically  relevant  models.  They  can  be 
respectively defined as follows: 
(1) minimal phenomenological models, which produce only the 
phenomenology under  inquiry,  and therefore have a minimal 
operational explanatory power;
(2) progressive  phenomenological  models,  which  produce, 
besides  the  phenomenology under  inquiry,  other  phenomena 
belonging  to  the  same  domain,  and  have  an  operational 
explanatory  power  proportioned  to  the  quantity  of 
supplementary phenomena produced.
Evolution towards better phenomenologically relevant models 
corresponds  to  evolution  towards  models  endowed  with  a 
higher  operational  explanatory  power,  but  not  necessarily 
towards biologically plausible models. Indeed, even if a greater 
operational explanatory power could be considered as a clue of 
greater  biological  plausibility,  this  last  remains  uncertain  in 
absence  of  a  criterion  which  specifies  what  this  plausibility 
consists of. A synthetic progressive model, in itself,  could be 
useful  for  the  traditional  scientific  exploration  of  living  and 
cognitive processes as it could offer not a biologically plausible 
explanation of these processes, but a source of inspiration for 
the production of hypotheses about the mechanisms underlying 
them. 

3.2 “Organization ≠ Structure”: relevance in the strong sense
As  pointed  out  before,  the  autopoietic  distinction  between 
organization  and  structure  implies  that  (P2.i)  All  living  and 
cognitive  systems  share  the  same  organisation,  but  not  
necessarily  the  same  structure,  and  therefore  that  (P2.ii)  
Artificial  systems which display a different structure,  but the  
same organisation as living and cognitive systems, have to be  
considered legitimately belonging to the class of living systems.  
Thus,  the  autopoietic  distinction  between  organization  and 
structure produces a criterion of relevance for synthetic models 
of  living  and  cognitive  systems.  In  fact,  in  accordance  with 
(P2.ii), the former can be considered strong models of the latter 
if  they share  the  same organisation,  since,  in  this  case,  they 
constitute  specimens of  the  class  of  living  and  cognitive 
systems.
We can refer to this criterion as to a criterion of organisational  
relevance,  which  warrants  the  biological  plausibility  of 
synthetic  models.  Associated  to  the  criterion  of 
phenomenological  relevance,  it  produces  the  criterion  of 
“relevance in the strong sense”:
(C2)  Synthetic  models  are  relevant  in  the  strong  sense  if,  
besides  providing  mechanisms  which  generate  the  
phenomenology under inquiry  (phenomenological  relevance),  
they present (according to some explicit theory of living and/or  
cognitive  organisation)  the  same  organisation  as  living  and 
cognitive systems.
Satisfying  this  criterion  is  indeed  a  hard  challenge  for  AL, 
which,  of  course,  always has to  be faced  referencing one or 
more theories of biological and/or cognitive organisation, and 
always  in  an  approximate  way due to  the  intrinsic  limits  of 
these  theories,  the  varieties  of  their  interpretations,  and  the 
limited  possibilities  of  their  implementation.  In  this  sense, 
relevance in the proper sense has to be considered for artificial 
life more a regulative ideal than a concretely attainable goal.

4. Interactive phenomenological relevance

If  attachment  phenomenology is  defined as the closed set  of 
phenomena  normally  used  to  exemplify  it  (e.g.  seeking  the 
proximity of  the  caregiver,  developing  stress  in  situation  of 
separation  and  developing  different  attachment  profiles 
depending on caregiver behaviour), then the robot model can be 
considered to (roughly) satisfy (C1). But, as far as we tested it, 
this model does not have a progressive character, and cannot be 
considered biologically plausible according to (C2). Therefore 
we are led to attribute it a minimal phenomenological relevance 
with  regard  to  attachment  behaviours,  and  to  consider  it  as 
simply imitating them.
However the robot model does more than this when the system 
under consideration is the human-robot interacting dyad. Using 
this  model  in  experiments  involving  humans  in  the  role  of 
caregivers,  the resulting evidence suggests  that  it  has further 
scientific  potential,  related  not  to  its  operational  explanatory 
power  or  its  biological  plausibility,  but  to  its  capability  of 
dynamically interacting with human agents. In fact, the “baby” 
robot appears able to engage humans in  interactive dynamics 
which  can  be  of  scientific  interest  for  the  developmental 
psychology inquiry on attachment bonds (Hiolle  et al.  2008). 
That is, it offers to developmental psychology the possibility of 
experimentally manipulating and exploring, in  human agents, 
aspects of the attachment phenomenology that can be difficulty 
accessible in the classical psychological scenarios of research. 
An  example  of  these  processes  can  be  found  in  human 
caregivers’ reactions to different attachment profiles. This is an 
aspect  of  the  attachment  phenomenology that  developmental 
psychology  could  study  through  robot  models  like  the  one 
presented  above,  as  emerged  from  our  interdisciplinary 
exploration of attachment bonds.
These  remarks  lead  us  to  introduce  a  new kind  of  minimal 
phenomenological model. These can be defined as  interactive  
phenomenological models: models able to synthetically produce 
the phenomenology under inquiry, and, through the expression 
of  this  phenomenology,  to  engage  natural  biological  and/or 
cognitive systems in interactive dynamics which (according to 
some  explicit  parameter)  prove  interesting  for  the  scientific 
exploration  of  the  natural  phenomenology under  inquiry.8 As 
such,  this  kind  of  minimal  phenomenological  model  can 
concretely contribute to biological,  behavioural and cognitive 
science’s inquiries on natural living and/or cognitive processes, 
as  synthetic  tools  that,  through their  capability of  interacting 
with natural  living and/or cognitive  systems,  can support  the 
experimental manipulation and investigation of their processes.

5. Conclusions
This article  proposes a constructivist  solution  to  the issue of 
providing epistemological groundings for the application of the 
SA to affective and social processes. This solution consists of 
an  epistemological  framework  extracted  by  autopoietic 
epistemology, able to provide to both the synthetic study of life 
and the synthetic study of cognition with (1) shared grounding 
principles of knowledge, and (2) shared general criteria useful 
to define the relevance of (soft,  hard, and wetware) synthetic 

8 Soft  AL’s production  is  rich of examples of virtual  agents  interacting 
with human agents, and able to engage them in interactive dynamics which 
could be interesting from a scientific point of view. Examples of synthetic 
systems able to interact with natural systems are emerging also in wet AL 
(cfr. e.g. Kaneda et al. 2009 about interactions between synthetic models of 
minimal cells and cultured cells).
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models for the exploration of life and cognition. We showed 
how these criteria open a space of relevance for the synthetic 
modelling of life and cognition defined by two extremes. The 
“lower”  extreme  is  minimal  phenomenological  relevance, 
which characterises models  that,  by reproducing synthetically 
the natural phenomenology under inquiry, offer an operational 
explanation of these process, but, as they do not have biological 
plausibility, have to be considered synthetic imitations of them. 
The  “upper”  extreme,  which  has  to  be  considered  more  a 
regulative  ideal,  than  a  concretely  attainable  goal,  is  (2) 
relevance  in  the  strong  sense. It  characterises  models  that 
reproduce  synthetically  the  natural  phenomenology  under 
inquiry,  and,  as  they display the  same organisation  as  living 
and/or cognitive systems, can be considered to belong to the 
class of living and/or cognitive systems. We argued that, within 
this space, AL can produce two kinds of synthetic models that 
could  be of  interest  for  its  interdisciplinary cooperation  with 
biological, behavioural and cognitive science. The first is given 
by models  characterised  by a  progressive  phenomenological  
relevance,  that  is,  the  capability  of  producing  not  only  the 
phenomenology  under  inquiry,  but  also  other  phenomena 
belonging to the same domain. These models have a significant 
operational  explanatory  power,  and,  dependent  on  their 
biological  plausibility,  can  prove  useful  for  biological, 
behavioural or cognitive sciences as a source of inspiration for 
the definition of the mechanism underlying the phenomenology 
under  inquiry.  The  second  kind  is  given  by  models 
characterised by a an  interactive phenomenological relevance, 
that is, the capability of producing synthetically the phenomena 
under inquiry, and, through this,  engaging natural systems in 
interactive  dynamics  that  prove  useful  to  experimentally 
investigate,  in  natural  systems,  at  least  some  aspects  of  the 
phenomenology under inquiry. 
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Abstract

The mutation networks observed in biological systems have
the properties of small-world networks. These properties
of short average path length and high transitivity confer a
favourable exploration of mutation space. Any evolvable
string-based ALife system (for example stringmol, typoge-
netics, Tierra, or Avida) uses a substitution network either
implicitly or explicitly. Current ALife simulations use either
regular or random mutations schemes. We have previously
discussed the requirement for small-world substitution net-
works for ALife simulations. In this paper, we explore the
effects of rewiring the stringmol mutation lattice on the evo-
lution of a self-replicating molecule.

Introduction
Mutation is an essential component of any evolvable system,
allowing it to explore its fitness landscape and therefore to
evolve. The evolutionary dynamics of a system are thus crit-
ically dependent upon its mutation strategy.

Amino acid substitution matrices (Dayhoff et al., 1978;
Henikoff and Henikoff, 1992) give an indication of the like-
lihood of observing an amino acid substitution in homol-
ogous proteins. Ideally, a substitution matrix should al-
low any token to mutate to any other token relatively easily
(thus allowing a rapid exploration of the fitness landscape);
whilst simultaneously favouring mutations to tokens of sim-
ilar function (thus minimising the chance of deleterious mu-
tations). Networks that exhibit these properties of short av-
erage path length and high clustering coefficient were de-
scribed by Watts and Strogatz (Watts and Strogatz, 1998).
We have previously demonstrated that biological mutation
networks exhibit these small-world properties (Droop and
Hickinbotham, 2011).

Although biological mutation networks exhibit small-
world properties, ALife simulation mutation schemes do
not. The typogenetics (Gwak and Wee, 2007) and
Avida (Johnson and Wilke, 2004) systems use essen-
tially random mutation schemes. By contrast, the string-
mol (Hickinbotham et al., 2010a,b) and Tierra (Ray, 1991)
systems use regular mutation networks. Figure 1 shows the
mutation lattices used by the stringmol and Tierra systems.
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Figure 1: The mutation networks used by the stringmol and
Tierra ALife simulations. The stringmol lattice shown here
has k = 4.

The stringmol mutation network is constructed as a com-
plete lattice with each node connected to its k nearest neigh-
bours (in this case k = 4). The Tierra network is based
upon binary bit flip operations: each opcode can flip a sin-
gle binary digit. Any mutation scheme can be represented
by a graph where possible substitutions between tokens are
represented as edges. The Tierra opcode lattice in figure 1
shows that although the neighbours for each opcode were
carefully chosen to allow ‘sensible’ mutations, the mutation
network topology is nonetheless regular.

To test this idea, we implemented a small-world muta-
tion network topology for the stringmol system using the
rewiring scheme devised by Watts and Strogatz (Watts and
Strogatz, 1998). Here, we present the findings from this
study, and discuss the effects of different mutation models
upon the stringmol system.

Methods
Multiple networks were created for the stringmol system us-
ing the Watts and Strogatz (1998) rewiring model as de-
scribed previously (Droop and Hickinbotham, 2011). The
stringmol regular mutation lattice with k = 4 was used
to perform all analyses. The mutation rate is fixed for
all trials. Four different rewiring probabilities (preg = 0,
psmall = 0.1, pmid = 0.3 and prand = 1) were used when cre-
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ating networks. The preg network is the same regular lattice
as used previously in stringmol. The psmall and pmid net-
works fall within in the small-world region for networks of
this size (Droop and Hickinbotham, 2011). The prand net-
work is completely random. 100 rewiring replicates were
created for psmall, pmid and prand; whilst only a single trial of
preg was performed (as there is only one possible network).
For each replicate experiment, the stringmol simulation run
for a maximum of 1.2× 109 time steps with 300 trials.

Summary statistics were collected for each trial. Four
statistics were used to describe each individual trial. The
life time is the total number of time steps over which the
trial survives. The epoch count is the number of epochs (de-
fined as a continuous period of time in which a particular
string species is the most common). The epoch length is the
length of each epoch. The edit distance is a measure of the
mutational distance that the trial has been able to cover. The
edit distance is calculated as the Smith-Waterman alignment
score between the initial string and the dominant string (only
counting strings greater than 10 letters, thus ignoring short
‘pathogenic’ strings) for the last epoch of length ≥ 50000,
normalised to the length of the string.

Results

Box plots (McGill et al., 1978) of the results for the sum-
mary statistics outlined above are given in figure 2. The
trend across figures 2A, B and C is consistent: the more ran-
dom the mutation network, the shorter the simulation life
time and fewer (shorter) epochs are present. The reduction
in life time indicates that large amounts of energy are wasted
in the simulation (presumably on harmful mutations). Sim-
ilarly, the reduction in the epoch count indicates that fewer
successful species are created during the trial. Figure 2D,
however, shows that the mutational distance covered by the
runs increases with increasing randomness in the mutation
networks: this demonstrates that although shorter, the runs
with more random mutation schemes can produce more var-
ied successful species.

Summary & Conclusion

Taken together, the results shown here suggest that the op-
timal mutation strategy for the stringmol system is neither
at preg or prand; rather somewhere in between: in the small-
world rewiring region. This work provides an experimental
validation of the argument presented previously (Droop and
Hickinbotham, 2011).
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Figure 2: Box plots of four summary statistics for each ex-
periment. Each plot is drawn using a logarithmic y-axis (val-
ues omitted for clarity). 1, 2 and 3 stars represent t-test p-
values of ≤ 0.05, 0.005 and 0.0005 respectively.
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Abstract

An essential feature of autonomous adaptive agency is that a
system behaves according to an intrinsic norm. In this paper,
we illustrate and clarify this notion of “behavior according to
an intrinsic norm” with a minimalistic model of agency. We
present a minimal metabolic system whose auto-catalytic dy-
namics define a viability region for different concentrations of
available resource or ‘food’ molecules. We initially consider
the availability of food as a control parameter for metabolic
dynamics. A bifurcation diagram shows that for fixed val-
ues of available food, there exists a viability region. This re-
gion has an non-zero stable equilibrium and a lower bound-
ary that takes the form of an unstable equilibrium—below
which, the tendency of the system is towards “death”, a sta-
ble equilibrium with a zero concentration of metabolites. We
define the viability region as that in which the system tends
toward the “living” stable-equilibrium. Outside of this re-
gion, in the precarious region, the system may live for some
time but will eventually die if the food concentration does
not change. With a precise definition of system-determined
death, living, precarious and viable regions we move on to
reconsider the available concentration of resources ([F ]), not
as a free parameter of the system but as modulated by organis-
mic behaviour. By coupling the metabolism to a behavioural
mechanism, we simulate a stochastic, up-resource gradient
climbing behaviour. As a result, the effect of behaviour on
the viability space can be mapped and quantified. This lets
us move closer to defining adaptive action more precisely as
that course of behaviour whose effect is in accordance with
an intrinsic normative field.

Introduction
The way in which living systems (from bacteria to humans)
actively regulate their relationship with their environments
strongly contrasts with inanimate objects. This agency is
widespread in nature and it continues to capture the atten-
tion of philosophers, theoretical biologists, psychologists
and roboticist alike, for it has proven to be a difficult prop-
erty to define, model or synthesise.

The notion of agency often carries with it closely re-
lated and traditionally problematic notions such as normativ-
ity, adaptivity, individuality, teleology, intentionality, goal-
directedness or free-will. Artificial life modelling tech-
niques are well suited to provide a bottom-up approach ca-

pable of conceptually clarifying the systemic character of
the properties associated with agency, its origins and nature.

After reviewing a wide variety of definitions and uses of
the term ‘agency’ ranging from biology to robotics, Baran-
diaran et al. (2009) define agency as follows:

“an agent is an autonomous organization capable of
adaptively regulating its coupling with the environment
according to the norms established by its own viability
conditions.” (p.376)

In this paper we attempt to make more explicit what is meant
by the expression “according to the norms established by its
own viability conditions”. Similar expressions have been
used by Di Paolo (2005); Barandiaran and Moreno (2008);
Skewes and Hooker (2009) but no model has yet been devel-
oped to illustrate and describe in detail the meaning of this
expression (and others closely associated with it). The goal
of this paper is to make progress in this direction using a
minimalist model that can help understand and scientifically
articulate a formal and quantitative definition of agency. To
this end, we present a model that exemplifies the key con-
cepts of “normative behaviour” in the context of agency. To
further contextualize the model and its interpretation, in the
next section we introduce the conceptual (i. e. philosophical)
and theoretical problem and two contemporary approaches
to it. We then introduce the design specifications of the
model and analyze its dynamics and their interpretation in
terms of normativity, precariousness, adaptivity and viabil-
ity.

Autonomous agency and normativity: some
dynamic requirements

The issue of natural agency and norms is attracting increas-
ing attention (Frankfurt, 1978; Burge, 2009; Di Paolo, 2005;
Skewes and Hooker, 2009; Barandiaran et al., 2009; Silber-
stein and Chemero, 2011) and Artificial Life is very well
suited to make some conceptual progress on key aspects of
agency and its origins. In fact, minimal models of agency
have been a recurring topic in the field (from protocellular
models to robotics).
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Figure 1: Classical picture of a Viability region defined for
two essential variables (food and water), outside the region
the system will die. Viable trajectories are those that remain
within the boundaries of the viability region. Model gener-
ally focus on designing a control system that generates the
appropriate trajectories inside the viability region but the re-
gion itself is given (e. g. arbitrarilly designed or experimen-
tally determined).

Arguably, minimal forms of agency (like chemotaxis) en-
capsulate some of the most important properties of “higher”
levels of agency (such as human agency). One such prop-
erty is normativity: i. e. the dimension of behaviour in
which value comes into play—in which actions are good
or bad, adaptive or maladaptive, appropriate or inappro-
priate(Christensen and Bickhard, 2002; Barandiaran and
Moreno, 2008; Burge, 2009). While artificial systems can
be judged to operate in relation to norms, these norms have
(thus far) always been defined by the designer of the artifi-
cial system or interpreted by an external observer or user. In
other words, what is good or bad functioning for a robot, a
car or a coffee machine has been a matter of the design spec-
ifications which are largely independent of the structure and
organization of the artifact. This is unlike biological organ-
isms that respond to norms that are more closely related to
the organization of the organism itself and what is (or is not)
conducive to its ongoing operation.

Philosophers and scientists have tried to justify this nor-
mative dimension of natural agency in two ways. The most
popular is the evolutionary (Millikan, 1989) approach in
which a behaviour is considered to be normative or adaptive
if it has been selected by evolution. In this view adaptation is
ultimately a result of natural selection and it is only as a re-
sult of a process of selection that a character or process (e. g.
a pattern of behaviour) can be said to be adaptive or mal-
adaptive. This evolutionary approach to etiology, faces nu-
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Figure 2: The viability boundary is an unstable equilibrium
between living and dead states.

merous problems. One of them is how to categorise the first
instance of a particular adaptive (i. e. norm following) be-
haviour? If a norm depends on an evolutionary selective his-
tory, then the first case of a “norm following” behaviour does
not qualify as norm-following until it has been selected. This
is clearly unsatisfactory. A criteria that is independent from
history and is instead grounded on the very organization of
the system and its ongoing dynamics seems better suited—
indeed required—if we are to derive a consistent definition
of adaptivity and normative behavior. This is precisely the
motivation underlying the main alternative approach to nor-
mativity and adaptation. The organizational approach (as it
might be called) puts at its center the idea of autonomy; from
the Greek autos = self, and nomos = norm (Varela, 1979;
Ruiz-Mirazo and Moreno, 2004; Di Paolo, 2004; Kauffman
and Clayton, 2006). Although the origins of this approach
can be traced back to the works of Aristotle and Kant (his
Critique of Judgement), it was through the relatively mod-
ern development of theoretical biology and the physics and
chemistry of far-from-equilibrium systems that it entered the
scientific discourse. The contemporary conception of the or-
ganisational approach contends that norms are to be found as
conditions of viability of the system, sometimes depicted in
adaptive behaviour literature as a viability region (see Fig-
ure 1) or discussed as ‘viability constraints’ (Ashby, 1952;
McFarland, 1999; Aubin et al., 2011). A closely related
term is that of precariousness (Jonas, 1966, 1968; Weber
and Varela, 2002; Di Paolo, 2005; Barandiaran et al., 2009),
related, but not identical to the notion of “being far from
thermodynamic equilibrium” when the system is a chemical
or metabolic system (Ruiz-Mirazo and Moreno, 2004). The
idea is that natural agents are organisms (i.e. living systems)
that stand always in precarious conditions: if they don’t ac-
tively regulate their interaction with their environment (e.g.
find food or a lower temperature) they will perish, since they
exist in a continuous need of thermodynamic exchange with
their environment. This precariousness is meant to form the
basis of the normative character of behaviour: the system
must actively seek to compensate its inherently decaying or-
ganization.

In a key paper where the theory of autonomy (in particu-

211ECAL 2011



lar the autopoietic tradition) is complemented and expanded
with Ashby’s framework for adaptive behaviour, Di Paolo
(2005) defined adaptivity (in relation to agency) as:

“a system’s capacity, in some circumstances, to reg-
ulate its states and its relation to the environment with
the result that, if the states are sufficiently close to the
boundary of viability, 1. tendencies are distinguished
and acted upon depending on whether the states will
approach or recede from the boundary and, as a conse-
quence, 2. tendencies of the first kind are moved closer
to or transformed into tendencies of the second and so
future states are prevented from reaching the boundary
with an outward velocity.”

Di Paolo’s definition of adaptive agency could be explic-
itly modelled and formalized. However, most of the mod-
els that have been developed with similar approaches have
failed to address two blind spots: (1) viability boundaries
appear as given or defined from without and the models fo-
cus on how to shape adaptive dynamics to maintain the tra-
jectories of essential variables within those boundaries; (2)
as a consequence, the relationship between the organismic
dynamics that define the boundaries and the dynamics that
control adaptive behaviour remain decoupled. In previous
work (Egbert et al., 2009, 2010b) we have explored the rela-
tions between the viability boundary determining metabolic
dynamics and the dynamics that drive organismic behaviour
A further problem remained however: although the bound-
aries of viability were directly linked to the modelled sys-
tem, they were only defined by the system in a relatively
trivial way. The boundaries of our models and similar ef-
forts by others (see e. g. Ruiz-Mirazo and Mavelli, 2008)
were the result of rough physical magnitudes: disappear-
ance of the protocell due to complete lack of catalysts or
bursting disintegration of the protocell marked by the upper
limit of the tension of the membrane. The boundaries were
not emergent from interactions between system processes in
the holistic system-interdependent manner that characterizes
integrity and systemic identity in real organism. In our pre-
vious models viability boundaries equated to absence of the
system (i. e. total disintegration or zero quantity of its con-
stituent elements). But, in natural systems, the limits of via-
bility do not map with the physical disintegration of a system
(Figure 2A), but rather with the loss of the capacity of the
system to sustain itself. To lose viability is not to disappear
altogether but to cross a much more subtle boundary after
which the maintenance of life becomes impossible (Figure
2B). This boundary is the result of the dynamic organization
of the system and, as we shall see, it defines a norm that
behavioural patterns need to satisfy in order to be adaptive.

In this paper we model a minimal protocell-like sys-
tem whose metabolic dynamics define an emergent viability
boundary. For fixed concentrations of available resources,
we can plot a bifurcation diagram of the chemodynamics
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Figure 3: A) The influences of the forward and backwards
flow of the autocatalytic reaction and degradation upon the
concentration ofA. B) The combined influence of the chem-
ical reactions and degradation upon the concentration of A
given a fixed concentration of [F ] = 1.4.

that indicates the intrinsic boundaries of viability of the sys-
tem. Different viability regions can be identified and the
adaptive norms of the system clearly defined and quantified.

We then couple a gradient climbing behavioural mech-
anism to the metabolic dynamics. We show that in this
metabolism-behaviour coupled system, the behaviour of the
system can be directly mapped into the viability space of
the simulated agent and it is possible to explicitly show and
quantify how the system is adaptive for and by itself.

Model
Minimal metabolism
The metabolic organisation of self-production is one of the
most fundamental properties of living systems and has been
studied as such by many (Kauffman and Farmer, 1986;
Kauffman, 2003; Varela, 1979; Ruiz-Mirazo and Moreno,
2004). In creating and maintaining themselves, living sys-
tems define their own viability constraints—the necessary
and sufficient conditions for their continued existence. Thus,
for the present work, metabolism is particularly relevant be-
cause it captures precisely what we wish to study. In its min-
imal and essential form it suffices to model metabolism as
the self-production of a chemical network through the trans-
formation (by the network) of available resources into con-
stituents of the network. In previous work (Egbert et al.,
2010a,b, 2009) we have modelled these kinds of systems in
more detail, but here we abstract the system into two cat-
egories of components that we use to approximate a more
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Figure 4: The system is has a single stability at [A] = 0.0
for low concentrations of F . At [F ] ≈ 1.1 the system bifur-
cates, and for concentrations of F greater than this value, the
system has two stable equilibria—the “living stable equilib-
rium” (where [A] > 0.0) and “dead” (where [A] = 0.0) and
one unstable equilibrium, the viability boundary.

complicated metabolic system. These categories are ‘food’
or resource reactant(s) ‘F ’ and metabolites, i. e. members of
the autocatalytic set, ‘A’. Note that this approximation can
be read as a higher order description of a more complicated
system where A might capture an order parameter of a com-
plex network of reactions among multiple molecules. In fact
a recent and more complex model by Piedrafita et al. (2010)
can be taken as dynamically similar to the present one, al-
though it has a higher number of metabolites and catalysts
and addresses other theoretically relevant properties (such as
catalytic closure—which despite its relevance for the overall
project of defining life and agency we have decided to leave
aside for the specific purpose of the present paper).

We approximate the global dynamics of a more complex
network according to the following reaction in which two
members of the autocatalytic set interact with F to produce
a third member of the autocatalytic set.

2A+ F ↔ 3A

Note that the arrow is bidirectional, meaning that the reac-
tion can occur in either direction, as is the case for all chem-
ical reactions. A rate constant is associated with each di-
rection (forward and backward) of the reaction kb = 0.45,
kf = 1.0. In addition to this autocatalytic reaction, A is
subject to degradation into lower energy chemicals that are
assumed to have no subsequent effect on the the reaction and

are therefore not modelled. The combined influence of the
forward and backward autocatalytic chemical reaction and
the degradation are simulated by the following differential
equation in which the degradation constant kd = 1.0.

˙[A] =
−kb[A]3

6
+
kf [F ][A]

2

2
− kd[A]

Metabolism-based chemotaxis

To study how behaviour can be sensitive to the viability
boundary, we couple the metabolism to a simple stochastic
gradient-climbing behavioural mechanism known as “run or
tumble”. The run and tumble behaviour is inspired by the
behaviour observed in Escherichia coli and other bacteria,
that achieve chemotaxis through probabilistic modulation of
two behaviours, “running” where the organism moves in a
roughly straight line and “tumbling” where the organism
chooses a new orientation at random. The mechanism mod-
elled here is a form of metabolism-based-chemotaxis, mean-
ing that no specific sensor nor chemical pathway is required
to modulate behaviour; instead metabolism itself affects the
behavioural probabilities so as to modulate the probability
of tumbling (see Egbert et al., 2010b).

We have employed this coupling of metabolism and be-
haviour in previous papers to study the adaptability that such
a coupling provides (Egbert et al., 2010b) and the possibil-
ity that an interaction between metabolism, behaviour and
evolution can facilitate adaptive evolution of populations of
protocells (Egbert et al., 2010a, 2011). Here we study how
such a behavioural mechanism influences trajectories along
the viability space.

In this case, the simulation of metabolism-based be-
haviour works as follows. The agent is considered to always
be in a default state of running (moving in a straight line)
ẋ = kcos(α), ẏ = ksin(α). Tumbling occurs probabilisti-
cally with a likelihood that is modulated by the change in the
concentration of A. If, since the previous iteration, [A] has
decreased, the organism will tumble—i. e. a new orientation
will be chosen from a flat distribution (α = rnd[0..2π]).
Otherwise, the agent will continue running. A tumble in-
hibits any further tumbling for 5 iterations.

This particular form of metabolism-based run tumble
mechanism is a highly simplified approximation of the
“derivative” method used by E. coli and that simulated
in (Egbert et al., 2010a, 2011) that compares the current
metabolic rate to its rate a few moments previous. A de-
crease in metabolic rate indicates a worsening situation and
increases the chance of a reorientation of the organism. In
this way, the organism performs a simple but highly effective
and surprisingly adaptive (Egbert et al., 2010b) behavioural
strategy that can be captured by the anthropocentrism “If
things are going well, I’ll keep going in this direction that
I’ve been heading, otherwise, I’ll go somewhere else.”
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Figure 5: Paths taken by a successful chemotactic agent (top plots) and an unsuccessful agent (bottom plots). The left plots
indicate the path of the agents in space plotted against [A]. The surface at the bottom of the image indicates the concentration
of F in the environment. The right images show the path taken by the agents through viability space (see Figure 4). Initial
oscillations around the viability boundary are eventually replaced by a trend up to the “living stable” equilibrium, thanks to the
chemotactic motion.

Simulation results: metabolic and behavioural
dynamics

Metabolic dynamics: bifurcation line as viability
boundary
We first consider the metabolic system independently of be-
haviour and study its dynamic for fixed concentrations of F .
Intuitively, it is clear that with no food, [F ] = 0, the sys-
tem should be unable to maintain itself in the face of degra-
dation. This is also the case for low concentrations of F .
As we start to increase [F ] however, the combined effect of
its progressive disintegration and the forward and backward
metabolic reactions ofA leads to a bistable dynamic regime.
The dynamic tendency of the three reactions and their com-
bined effect for a fixed value of [F ] = 1.4 can be seen in

Figure 3A. It is clear from Figure 3B that this system has
two stable equilibria, “death” at [A] = 0.0 and “living sta-
ble” at [A] ≈ 7.5, with an unstable equilibrium, the viability
boundary at [A] ≈ 1.8.

Analysis of the metabolic dynamics for different, fixed
values of [F ] gives us the bifurcation diagram in Figure 4.
For [F ] > 1.1, there is enough food to maintain a non-
zero concentration of A. In this area of the parameter space,
the system has two stable equilibria: “living stable” (where
A > 0.0) and “dead” (where [A] = 0.0) and one unsta-
ble equilibrium, the viability boundary (the dashed line in
Figure 4). Below the viability boundary, the system tends
towards the “dead” equilibrium.
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Figure 6: A summary of the regions of viability space: liv-
ing, death, viable and precarious. See main text for further
explanation.

Chemotactic behaviour
Figure 5 shows the trajectories of two different agents us-
ing the metabolism-based mechanism. The left-hand figures
shows motion in space plotted against [A], the concentra-
tion of the autocatalyst. The right-hand figure shows the
trajectory of the agent in “viability space” i. e. the same
space as shown in the bifurcation diagram in Figure 4. The
top images are for an agent that succeeded at performing
chemotaxis. The lower images are the same, but for an agent
that has had “bad luck” and the stochastic gradient climbing
mechanism has failed.

Model interpretation and discussion: Agency,
precariousness, norms and adaptivity

This simple model suffices to satisfy a minimal requirement
of normative behaviour, in that it generates a viability space
where, living, viable, precarious, irreversible-terminal and
death regions can be clearly identified. These are high-
lighted in Figure 6. The “dead region” can be clearly seen
as the zero concentration of the required metabolites (a com-
plete disintegration of the system) . A viable region is identi-
fied where, given a fixed supply of resources, the system will
maintain itself, growing or shrinking until it reaches the “liv-
ing stable” equilibrium. The arrows indicate the tendency
of metabolic dynamics for different regions of the viability
space. The viable region can be precisely defined for a range
of the parameter [F ] and a range of initial conditions [A] as
the subregion of the living space where for each point the
evolution of the system will tend toward the stable living
equilibrium. The unstable equilibrium at the bottom of the

Copyright 2011, Matthew Egbert, Xabier Barandiaran
Licensed under Creative Commons Attribution 3.0 Unported

(http://creativecommons.org/licenses/by/3.0)

Figure 7: The idea of the ‘normative field’ in the precari-
ous region – the effects of behaviour as efforts to move the
system into the region of viability.

viable region defines a lower boundary of viability below
which, the system tends toward death. For small values of
[A] and [F ] we can distinguish a precarious region (medium
grey area in Figure 6), where the system is still alive but will
tend to die if the parametric condition [F ] is kept constant,
but could still recover if [F ] is appropriately modulated. Un-
derneath the precarious region a terminal-irreversible region
can also be distinguished (dark grey area in Figure 6). If [A]
falls in this region the system will be “alive” for some time,
but will irreversibly die (given a certain limit of [F ] increase,
defined e. g. by diffusion).

We can now introduce the notion of a normative vector
field defined by the minimal constant increase of [F ] that
is required at each point of the precarious region in order to
move the state of the system into the viable region before the
system reaches the terminal-irreversible region. Figure 7 is
meant to illustrate this field: if the values of [F ] and [A] are
low (bottom-left side of the figure) the required increase of
[F ] is very big since the tendency of [A] will soon push the
system to the terminal-irreversible region. If the concentra-
tion of F is low but there is a lot of A the required constant
increase in [F ] is low because the system has sufficient time
to reach the viability boundary before the tendency to die
becomes irreversible. Since [F ] can be modulated by be-
haviour (provided that the environment displays a gradient
of [F ]) a sense of normative agency can be precisely defined
for every state of the system in the precarious region: the
amount of increase of [F ] that behaviour should achieve to
compensate for its precariousness, that is the required move-
ment in space that increases available [F ] in accordance with
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Figure 8: The effect of agency, idealised in this figure, but
also seen in Figure 5. See main text for further explanation.

the normative field. Note that the system can fail to meet
the norm, i. e. to adapt, for a variety of causes (e. g. be-
cause there is not enough [F ] in the environment, because
it cannot move sufficiently fast or does not manage to move
up the gradient —like the case of the experiment shown in
Figure 5-bottom). And yet the action can be said to be in
accordance with the norm if it positively correlates with the
normative field.

Agency can thus be clearly defined as the behavioural
modulation that positively correlates with the normative
field (which shall, given the appropriate environmental con-
ditions, bring the system to its viable region). Figure 8 illus-
trates this point. To further illustrate this idea we examined
an agent with a “perfect” gradient climbing mechanism that
always moves directly up-gradient with a constant velocity.
(Removing stochasticity from the behaviour in the model
makes some of the dynamics easier to visualize.) Figure
9 plots one such “perfect gradient climber” with the same
initial values of [A] but different distances from the peak of
F gradient. We can see how the agent repeatedly moves
from the precarious region back into the viability region, ex-
cept for very low values of [F ] for which the system, despite
its behavioural modulation of [F ] fails to reach the viabil-
ity region and perishes – as the behavioural mechanism is
insufficient to compensate.

Conclusions
To conclude, we state that for autonomous agency (that is
agency in relation to self-generated norms) to take place the
overall global constitutive dynamics of the system (its self-
maintaining organizational dynamics) should at least (that
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Figure 9: Trajectories of the system in the viability space as
a function of its gradient climbing behaviour. Solid lines
indicate trajectories that lead to the living stable equilib-
rium, dotted trajectories (despite behavioural influence) tend
to death.

is minimally) display an intrinsic topology with a viabil-
ity boundary (with the form of a bifurcation) that defines
a precarious region where behaviour can compensate for a
death-ward tendency. Arguably, it is only in relation to the
intrinsically determined normative field that behaviour can
be properly be identified as adaptive and constitute a clear
instance of natural normative agency.

The present model benefits from its low dimensionality in
that it is easier to understand, but is also suffers, perhaps,
from being over simplified in that there is really only two
ways that the system can vary. Real organisms are of course
much more complex and would display a multi-dimensional
normative field and viability boundaries or surfaces. We are
working on a more detailed model of a system similar to
that described here in which the metabolism and behavioural
mechanisms are more explicitly modelled (using more reac-
tants and reactions). This will allow us to explore a greater
variety of perturbations to system “health” as well as ways
for the system to be sensitive (and therefore responsive) to
its own viability. Another expansion of this work that we are
considering is the quantification of a normative vector field
and the formalization of the notion of positive correlation
with it.
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Abstract

This paper describes research in which we model social inter-
actions between artificial agents using real robots. We show
that variations that arise from embodiment allow certain be-
haviours, those that are more robust to the processes of em-
bodied imitation, to emerge and evolve during multiple cycles
of imitation. We test 3 memory strategies: no memory, lim-
ited memory and unlimited memory, and experimental results
appear to show that with limited memory, those behaviours
are more likely to become dominant within the robots’ col-
lective memory.

Introduction
Social learning, which enables individuals to learn from
each other, is a powerful mechanism in social animals, in-
cluding humans. An important form of social learning is
imitation, in which an individual observes and replicates an-
other’s actions. Imitation has been widely studied both by
biologists and psychologists; biological research on imita-
tion mostly focusses on its adaptive value for the organism,
whereas psychologists are largely interested in the function
of imitation and the mechanisms in which it plays a part
(Zentall, 2001). There is continuing debate on the defini-
tion of imitation and whether it is unique to humans but
what is not in doubt is that imitation clearly serves an im-
portant role in the development of social cognition in hu-
mans. For example, Dautenhahn et al reported that human
babies are born with the ability to imitate a wide range of
behaviours, including mouth opening and tongue protrusion
(Dautenhahn et al., 2003). Meltzoff and Moore (Meltzoff
and Moore, 1992) stated that human infants use imitation
to enrich their understanding of people and their activities.
Through imitation, humans are able to become part of a very
complex social environment: human society. Imitation has
also been seen as an important facet of cultural transmission;
Dawkins argued (Dawkins, 1976) that imitation is a prereq-
uisite for the evolution of culture, as it allows transmission
of behaviours, with variation, between individuals.

The study of imitation in robotics has received cross-
disciplinary attention in recent years. In the context of

robotics research, Bakker and Kuniyoshi (Bakker and Ku-
niyoshi, 1996) defined imitation thus: “Imitation takes place
when an agent learns a behaviour from observing the execu-
tion of that behaviour by a teacher”. This definition hints at
how imitation is implemented and is used in most robotics
research. Skill acquisition by human or robot demonstration
has been widely investigated ((Scassellati, 1999); (Mataric,
2000)). This approach holds the promise that we may be
able to overcome the necessity to program every behaviour
a robot may need to perform, as the robot can learn new
behaviours through observing demonstrations of those be-
haviours. However, as stated above, as well as support-
ing skill transmission between individuals, in human soci-
ety, imitation has a social dimension, allowing individuals
to become part of a social community. Alissandrakis et al.
(Alissandrakis et al., 2004) stated that imitation may serve
as a stepping stone towards the development of social cog-
nition in artificial agents as it can form social integration
with other artificial agents or with humans. Imitation re-
search in robotics might also usefully address the question
of how culture emerges and evolves as a novel property in
groups of social animals. In (Winfield and Erbas, 2011) we
introduce embodied imitation as a method for modelling the
emergence of behavioural ‘traditions’ in social agents.

There has been some work examining the social dimen-
sion of imitation in robotics. Steels and Kaplan (Steels and
Kaplan, 2001) stated that social learning can play a crucial
role in initiating a humanoid robot into a linguistic culture.
He used methods such as initiating open-ended dialogues
among humans and robotic agents, in which social learning
could be embedded. Billard (Billard, 1999) claimed that im-
itation can be used to enhance autonomous robots’ learning
of communication skills. The sharing of a similar perceptual
context between the imitator and demonstrator can create the
necessary social context in which language can develop. Bil-
lard devised some experiments in which robotic agents were
able to learn a proto-language by using imitation to match
their environmental perceptions with observed actions. In
this paper, we aim to show that by sharing a similar percep-
tual context, agents involved in multiple cycles of imitation
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can – in a sense – agree on the structure of the information
that can best be transferred by imitation (that is, what can be
imitated). Multiple robots are programmed to observe and
imitate each other’s movement patterns and the imitated be-
haviours undergo multiple cycles of copying, in which they
mutate because of noise and uncertainties in the real robots’
sensors and actuators. We observe that some movement pat-
terns, which can be imitated with high fidelity, emerge and
evolve in the group of real robots.

Alisandrakis et al. (Alissandrakis et al., 2004) developed
the ALICE architecture (Action Learning via Imitation be-
tween Corresponding Embodiments) to address the problem
of imitation between dissimilar embodiments. They exam-
ined the rules of synchronisation, looseness of perceptual
matching and proprioceptive matching in a series of exper-
iments in which robotic arms with variably-sized and num-
bered joints imitate each other. They showed that patterns
can be transmitted between simulated robotic arms and vari-
ations occur during these replications because of hetero-
geneities between the arms. They argue that these variations
provide the evolutionary substrate for culture, as new be-
havioural patterns may emerge and be transferred between
agents. In this paper, we describe a series of experiments
in which real robots observe and imitate each other’s move-
ment patterns. We show that even in an homogeneous group
of real robots, variations occur during the imitation pro-
cess that allow certain behavioural patterns to emerge and
evolve during multiple cycles of imitation. These evolved
behaviours can be copied with higher fidelity, as they are
more robust to uncertainties in the real robots’ sensors and
actuators.

Imitation in Robots
As stated above, we have used real robots to model the so-
cial interactions between agents. The motivation for using
real robots rather than simulated agents or biological social
entities for modelling is:

• Real robots, with their less than perfect perception and ac-
tuators, provide natural variations in the imitation process
which allow new behaviours to emerge and evolve. Using
simulated agents in a simulated environment, we would
have to control the degree and types of heterogeneities
and noise, but this may preclude any emergent processes
that are a part of imitation; the level of emergence in a
simulated environment would be limited to the level of
variance that is artificially introduced.

• Data about the imitative activity, including the internal
data and calculations of the robots, can easily be extracted
and examined. This would not be the case if biological so-
cial entities (for example, people or monkeys) were used.

• The implementation of imitation on real hardware makes
clear how theoretical assumptions and hypotheses regard-
ing imitation can be operationalised.

Figure 1: A Linux-extended e-puck robot. The robots are
fitted with coloured skirts, to enable them to ‘see’ each other.
The yellow hat on top of the robot provides a matrix of pins
holding unique patterns of reflective markers that allow the
tracking system to identify and track each robot.

Hardware Setup

The artificial agents used to model social interactions are
e-puckminiature robots (Mondada et al., 2009), 7 cm in di-
ameter and 5 cm in height. They are equipped with 2 stepper
motors, two wheels of 41 mm diameter, 8 proximity sensors,
a CMOS image sensor, an accelerometer, a microphone, a
speaker and a ring of coloured LEDs. Their on-board bat-
tery provides 3 hours of autonomy. The robots are enhanced
with a Linux extension board (Liu and Winfield, 2011) based
on the 32-bit ARM9 micro-controller with the Debian/Linux
system installed. The board has a USB extension port, used
to connect a wireless network card, and is equipped with a
MicroSD card slot. These additions to the standard e-puck
robot offer increased processing power and increased mem-
ory. The robots are also fitted with coloured ‘skirts’ to en-
able them to see each other using their built-in image sen-
sors. The experiments are performed in an arena measur-
ing 3 m x 3 m. A vision-tracking system provides high-
precision position tracking and a dedicated swarm server
combines the data from the tracking system and the internal
data from robots for later analysis. Each robot is also fitted
with a tracking ‘hat’ which provides a matrix of pins holding
unique patterns of reflective markers that allow the tracking
system to uniquely identify and track each robot (Fig. 1).

Movement Imitation Algorithm

In this research, a robot-to-robot movement imitation algo-
rithm is implemented on the Linux extended e-puck robots.
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Each robot is able to track and copy the other robot’s move-
ment patterns. Since we are interested in embodied imita-
tion, the algorithm completely depends on the visual data
coming from the image sensor of the robots; no other type
of communication is allowed between the robots.

There are 3 main stages in the imitation algorithm:

• Frame processing: While observing captured visual
frames, the observing robot tracks the movement of the
demonstrator robot. As stated above, the robots are fitted
with coloured skirts; by determining the size and loca-
tion of the skirt on the demonstrator robot, the observing
robot estimates the relative position of the demonstrator
and stores this information in a linked list of positions. In
this way, up to 5 frames per second are processed.

• Data processing: After the demonstrator’s movement pat-
tern is completed, the observer robot processes the linked
list of positions using a regression line-fitting method
to convert the estimated positions into straight line seg-
ments.

• Pattern replication: The straight line segments and their
intersections are converted into a sequence of motor com-
mands (moves and turns).

In this way, the observing robot replicates the pattern
demonstrated by the demonstrator robot.

Quality of Imitation
To quantitatively assess the fidelity of imitation (that is, the
similarity between the original movement pattern and its
copy), a quality of imitation function needs to be defined.
Since each movement pattern consists of straight moves and
turns, there are 3 components to each pattern that can be
copied: the number of segments (straight moves), the length
of each move and the angle (turn) between each consecutive
move. Therefore, the overall quality of a copy can be cal-
culated by separately estimating 3 quality indicators. The
quality of move length,Ql, between the original pathO and
its copyC is calculated as follows:

Ql = 1−

∑
m
|lOm − lCm|∑
m
lCm

(1)

wherelm is the length of movem that is to be compared.
Here, the ratio is calculated of move length differences be-
tween the original pattern and its copy and the total move
length of the copy. If the original movement pattern and
its copy have different numbers of segments,NO andNC

respectively, the sum is calculated only over the number of
segments in the smaller:min(NO, NC). The quality of an-
gle (turn) imitation similarly calculated as:

Qa = 1−

∑
m
|aOm − aCm|∑
m
aOm

(2)

wheream is the turn angle following the movem. The
quality of segment imitation simply compares the difference
between the number of segments of the original pattern and
its copy. It is calculated as:

Qs = 1−
|NC −NO|

NO
(3)

whereNO andNC are the number of segments of the
original path and its copy. The overall quality of imitation,
Qi, is a combination of 3 quality indicators:

Qi =
LQl +AQa + SQs

L+ A+ S
(4)

whereL, A andS are weighting coefficients.
To test the quality of imitation, a demonstrator robot is

programmed to follow a sequence of straight line moves and
turns that describes an equilateral triangle, while an imitator
robot watches. Then, the imitator robot performs its copy of
the demonstrator’s pattern (Fig. 2). By comparing these two
patterns, the quality of imitation is determined. The same
scenario is repeated multiple times, with different distances
between the robots. As shown in the figure, the best quality
is achieved when the distance between robots is 1 m (Fig. 3).
When the distance between robots is increased (to 1.5 m or
more) the quality of imitation starts to degrade. This arises
because the relative positional changes are estimated based
on the size and location of the observed robot in the field
of vision of the imitator robot. When the separation distance
increases, the positional changes are harder to detect, as they
cause smaller variations in the image of the observed robot.
On the other hand, when the distance between robots is small
(that is, 0.5 m or less), the demonstrator robot leaves the
field of vision of the imitator robot many times, forcing the
imitator robot to rotate itself each time and thus it may miss
some turns of the demonstrator robot’s trajectory while it is
busy. Therefore, we have a separation range, between 0.5
m and 1 m, that is optimal for our vision based embodied
imitation algorithm.

Experiments
The notion of an imitation experiment is introduced to exam-
ine the effects of multiple cycles of imitation on the struc-
ture of the movement patterns that are being copied. Dur-
ing these experiments, 4 robots are placed in the arena, 1
m apart from each other (Fig. 4). Robots interact by copy-
ing each others’ movement patterns using the imitation al-
gorithm outlined in the previous section. Robots can be
in one of two modes during the experiments: demonstra-
tor or observer. When a robot enters demonstrator mode,
it turns its LEDS on for 35 seconds to signal that it will
start to demonstrate a movement pattern. During this pe-
riod the demonstrator tries to grab the attention of one (or
more) other robots. After that, the demonstrator robot turns
its LEDs off and executes a movement pattern that consists
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Figure 2: Plot of the trajectory of robots during an imita-
tion run. The demonstrator robot moved in an equilateral
triangular trajectory which was then copied by the observer
robot. The robots were placed 1m apart.

of straight-line moves and turns. When execution is com-
plete, the demonstrator robot blinks its LEDs for one sec-
ond to signal ‘finish’. Then the demonstrator robot returns
to its original start position and enters the observer mode.
When a robot enters observer mode, it searches for a start
signal by scanning the arena while rotating itself. When it
detects a start signal, it focuses its attention on the demon-
strator robot and waits for the demonstration to start. After
completion of the demonstration, the observer robot records
what it has observed and enters demonstrator mode. The fi-
nite state machine of the controller of the robots is shown in
Fig. 5. At the start of the experiment, two of the robots are
in demonstrator mode (Robots A and B) while the other two
are in observer mode (Robots C and D).The experiment is
left free-running as the robots change roles while imitating
each other. All internal calculations and movement patterns
of the robots are recorded for later analysis.

Imitation with no memory

In the first set of experiments, the robots are able to remem-
ber only the most recent pattern they have observed; any
newly-observed pattern replaces the previous one. Robot
A is initialised with a square trajectory and Robot B is ini-
tialised with a equilateral triangle trajectory. Fig. 6 shows
the pattern evolution map of an experiment in which 39 suc-
cessful imitations were completed in approximately 20 min-
utes. In the figure, each node represents a pattern. If an
arrow exists at a node, this means one of the robots executed
that pattern and it was imitated by another robot. The new
copy is at the end of the arrow. If the copy is high-quality,
(Qi >= 0.85) the the node has a dark colour.

We first observe in this experiment that the original pat-
terns deteriorate very quickly. At the beginning of the run,
both robots (C and D), by chance, copied the square trajec-
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Figure 3: Mean quality of imitation (Qi) value with 95%
confidence intervals calculated at different distances be-
tween robots. Each bar shows mean quality value over 20
cycles of imitation in which an equilateral triangle (each
side 15 cm) movement pattern described by the demonstra-
tor robot is copied by an imitator robot. For quality of im-
itation calculation, each quality indicator was given equal
weight:L = A = S = 1.

tory and the triangular trajectory vanished from the experi-
ment. The square trajectory also deteriorates rapidly, as any
low quality copy can easily replace it. Because some bad
copies missed turns, eventually the robots ended up with
a pattern consisting of a single forward move. These low
quality copies do not occur often but just one is sufficient to
disrupt the evolution of the movement patterns. In this ex-
perimental run, all patterns after pattern number 22 consist
of one single move without any turns. These single move
patterns can be copied with high quality but we still ob-
serve some poor copies. We conclude therefore that when
robots have no memory, evolution of the movement patterns
is acutely sensitive to imitation errors.

Imitation with unlimited memory

In the second set of experiments robots have unlimited mem-
ory so they save all patterns that they have observed. When
they enter demonstrator mode robots randomly select, with
equal probability, one of the patterns in their memory and
demonstrate it. Once again Robots A and D are initialised
with a square trajectory and Robots B and C are initialised
with an equilateral triangle trajectory. Fig. 7 shows the
pattern evolution map for an experiment with this setting.
In this run, 55 successful imitations were completed in
30 minutes. We first observe in these experiments that –
as we would expect – the original movement patterns are
more likely to be preserved (with variation), as each newly-
observed pattern is stored in memory. Low quality copies
occasionally occur, but as they do not replace previously ob-
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Figure 4: Each experiment presented in this section is per-
formed in a 3 m by 3 m arena with 4 robots, placed 1 m apart
and arranged as shown here. In all experiments, Robot A
and Robot B are started in demonstrator mode while Robot
C and Robot D are started in observer mode.

served patterns, these paths cannot easily become dominant.
Second, we see that as patterns evolve during multiple cy-
cles of imitation, some paths that are able to be copied with
high quality emerge and propagate among robots. In this
run, pattern 27 has this property. Fig. 8 shows the evolution
of pattern 27. It is a descendant of the original equilateral
triangle trajectory, and there are 5 intermediate copies be-
tween the original triangle and pattern 27. At each copy, the
pattern is modified by the imitating robot. Finally pattern
27 emerges and a sharp increase in quality of imitation can
be observed after this point (Qi > 0.94 for all of its descen-
dants). What makes this pattern and its descendants easily
copiable? First, short moves are more prone to error, as a
small mistake in perception can cause them to vanish; a pat-
tern that can be copied with high quality typically does not
include short moves. Second, the length of each move varies
at each subsequent copy. Although estimating the relative
size and position of the demonstrator robot is straightfor-
ward image processing, it is error-prone, because of the rel-
atively low resolution of each robot’s image sensor. A move
directed towards or away from the observing robot can only
be detected if it causes a perceptible change in the size of
the demonstrator robot, i.e. a detectable change in number
of pixels in the image of the demonstrator. At each copy, the
observing robot stores what it infers from the demonstra-
tion, as perceived from its relative position and perspective.
Therefore, the patterns tend to evolve into ones that can be
more easily imitated. Fig. 9 shows pattern 27 and its de-
scendants. As can be seen, there is a high level of similarity
between these patterns. At the end of the run, pattern 27 and
its descendants form a cluster of similarly-shaped patterns in
the robots’ memories. Fig. 10 shows the averageQi value
for this experiment in comparison with the averageQi value
for the cluster formed by pattern 27’s descendants. As can
be seen, although the distance between the robots is 1 m, the

Figure 5: Finite state machine of the controller of the robots.
The robots are programmed to copy each others’ movement
trajectory as they keep changing their roles to demonstra-
tor and observer. To prevent a deadlock with all the robots
searching for a start signal, two of the robots (Robot A and
Robot B) are programmed to time out and enter ‘Signal
Start’ state after completing two complete scans of the arena
in ‘Search for Start Signal’ state (the dashed arrow).

averageQi value is slightly low; around 0.83. This can be
explained by the fact that some low quality imitations oc-
cur during the evolution of patterns. A sharp increase inQi

value can be observed after a pattern emerges that is more ro-
bust to uncertainties in the robot’s sensors and the imitation
process: the averageQi value for the cluster that is formed
by the descendants of pattern 27 is 0.96.

Imitation with Limited Memory

In the previous set of experiments, we showed that certain
patterns, those that are more robust to uncertainties in the
real robots’ sensors and actuators and the estimation process
of imitation, can emerge and evolve during multiple cycles
of imitation. As these emergent patterns can be copied with
high quality, their descendants have similar, inherited char-
acteristics. As a result, clusters of highly copiable patterns
are formed in the memories of the robots. These clusters
may grow larger with subsequent cycles of imitation if, by
chance, members of these clusters are selected for demon-
stration. We now show that with a limited memory, these
emergent patterns and their copies can become dominant. In
the third set of experiments, an example run with limited
memory is presented, in which an emergent pattern and its
highly similar descendants become dominant. Here robots
have a limited memory, in which they can store only the
most recent 5 patterns observed. When the memory is full
and a new pattern observed, the oldest pattern in memory
is replaced with the new pattern. Fig. 11 shows the pat-
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Figure 6: Pattern evolution map for a 4 robot experiment
with no memory. Each node in the figure represents the
demonstration of a movement pattern. If a pattern is demon-
strated and imitated, the new copy of that pattern is linked to
it by an arrow. For instance, pattern 2, the original square,
was demonstrated by Robot A and was copied by two robots.
The new (child) copies of pattern 2 are patterns 3 and 4. If
the copy is of high quality (i.e.Qi >= 0.85), then the node
has a dark colour.
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Figure 7: Pattern evolution map for a 4 robot experiment
with unlimited memory. Initial movement patterns are a tri-
angle (1) and a square (2).
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Figure 8: Evolution of pattern 27 in Fig. 7. Pattern 27 is
a descendant of the original equilateral triangle pattern. By
following the imitation links on the pattern evolution map
for this experiment, we can see that there are 5 intermedi-
ate copies between the original triangle and pattern 27: the
patterns numbered 5, 11, 18, 20, 26. All of these patterns,
starting with the original triangle and ending with pattern 27,
are shown here in order. All axis are marked in cm.
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Figure 10: AverageQi value for all imitation events in the
experiment shown in Fig. 7 (All copies) and averageQi

value for the cluster formed by pattern 27’s descendants
(Cluster), with 95% confidence intervals
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Figure 11: Pattern evolution map for experiment with lim-
ited memory. The 20 patterns in the memory of all 4 robots
at the end of the experiment are highlighted as diamonds.

50 55 60
35

40

45

50
1

50 55 60

40

45

50
10

40 45 50
50

55

60

12

Figure 12: Evolution of pattern 12 in Fig. 11. There is
an intermediate copy (10) between the original triangle and
pattern 12. All axes are marked in cm.

tern evolution map from an experiment with these settings in
which 72 successful imitations were completed in 60 min-
utes. In this run, a V-shaped pattern, pattern 12, emerged
and all of its descendants are high quality copies. Fig. 12
shows the evolution of this path and Fig. 13 shows some of
its high-quality descendants. At the end of this run, 12 of the
20 patterns in the memory of all 4 robots are descendants of
this pattern. Since the robots randomly choose which pattern
to demonstrate, there is now a 60% chance that one of the
descendants of pattern 12 will be demonstrated again. Once
it is selected and copied, the new copy is itself likely to be a
high quality copy and so similar to pattern 12. This process
will then increase the percentage of patterns in the memory
that are similar to pattern 12. We conclude therefore that
with limited memory, patterns robust to uncertainties that
emerge are more likely to become dominant.

Conclusion and Discussion
In this work, we have used real robots to model social in-
teractions between artificial agents, in particular learning by
imitation. We have shown that variations in the real robots’
sensors allow certain behaviours to emerge and evolve dur-
ing multiple cycles of imitation. These evolved movement
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Figure 13: The descendants of pattern 12 in Fig. 11. Starting
with pattern 12, some of its high-quality copy descendants
(patterns 12, 21, 22, 33, 34, 38, 43, 52, 53) are shown in
order. All axes are marked in cm.

patterns are more robust to the uncertainties of the real robot
embodied imitation process and so they can be imitated with
high fidelity. As the robots share a similar perceptual context
and embodiment, they are able to – in effect – agree on the
structure of the movement patterns that can be transferred
between them.

We have experimentally tested three cases with different
sizes of robot memories: no memory, unlimited memory and
limited memory, in order to test the hypothesis that mem-
ory size will effect the likelihood of dominant movement
patterns emerging. In the no memory case, the evolution
of movement patterns is extremely sensitive to any instance
of poor quality imitation, which means that the original
movement patterns very quickly deteriorate. In the unlim-
ited memory case, patterns emerge that can be easily copied
but are less likely to then become dominant, as the number
of patterns in the robots’ collective memory grows larger
with each new imitation cycle. However, in the case with
limited memory, these evolved patterns can become dom-
inant if they and their descendants are, by chance, chosen
for demonstration. For simplicity of analysis, we have car-
ried out our limited memory experiments with a small mem-
ory size (5 patterns per robot). We conjecture that with a
larger (but still limited) memory, multiple patterns that can
be imitated with high fidelity can emerge and form clusters
of similarly-shaped patterns in the robots’ collective mem-
ory. In this way, the robots can collective evolve an ensem-
ble of patterns that can be copied between them with high
fidelity. Here the imitated patterns are not linked to a task or

an environmental context. However it seems possible, and
testable using the embodied approach outlined in the paper,
that associating imitation with behaviours that have utility
could lead to the emergence of non-verbal communication
between robots.
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Abstract

In most theories concerning the origin of life autocatalytic
sets are supposed to play an important role in the phase tran-
sition between non-living and living matter. Although several
theoretical models describe this phase transition, it is very
hard to recreate the experimental conditions in wet lab. We
here introduce a stochastic model of catalytic reaction net-
works with energy constraints, devoted to the study of the
emergence of autocatalytic sets, in which some of the as-
sumptions of the already existing model are relaxed in order
to explore the possible reasons which make the emergence
of autocatalytic cycles difficult or which make them unstable.
Moreover, since living systems operate with a continuous ex-
change of matter and energy with the environment, we inves-
tigate the effects on the model behavior of changes in the rate
of the energy intake.

Introduction
The life as we know today is the result of billions of years
of evolution and, even though the first forms of life were
simpler than today, a certain degree of complexity was
surely necessary in order to lead off the phase transition
between non-living and living matter.

Although different scenarios for the onset of life have
been proposed1, autocatalytic sets of molecules (ACSs)
are considered of paramount importance to both extant
biological systems and during the transition from non-living
to living systems.
In the first case, ACSs represent the basic architecture
of some of the most fundamental metabolic processes
such as the citric acid cycle urea cycle, calvin cycle and
beta-oxidation (Alberts et al., 2005), on the other hand, the

1The main theoretical frameworks can be divided in the “gene
first” approach, based on the template matching (Gilbert, 1986;
Müller, 2006; De Lucrezia et al., 2007; Anastasi et al., 2007; Tal-
ini et al., 2009; Rios and Tor, 2009; Budin and Szostak, 2010),
the “metabolism first” approach, based on the self-organization
of the chemicals involved in (Oparin, 1924; Miller, 1953; Eigen
and Schuster, 1977; Kauffman, 1986; Mossel and Steel, 2005; Lee
et al., 1996; Saghatelian et al., 2001; Lifson, 1997) and the lipid-
world (Segre et al., 1998)

emergence of ACSs might have played a pivotal role in
acquiring autonomy and homeostasis during the emergence
of the first living systems (Ruiz-Mirazo and Mavelli, 2008)
and they have been regarded ever since as the blueprint of
primeval living systems (Fishkis, 2007; Ma et al., 2010).

Though the RNA world scenario, with particular regard
to the role of the ribozymes (Gilbert, 1986; Talini et al.,
2009), provides a plausible solution with respect to the
prebiotic storage and replication of the information, it has
been proven that template-dependent polymerization can
occur only for relatively short nucleotides strands catalyzed
by remarkably long RNAs (Bartel and Unrau, 1999; Bartel,
1999).
On the other hand, looking at the metabolism-first approach,
the self-replication of only a single catalyst is plausible only
within a very complex chemical system.

In his theory concerning the emergence of ordered struc-
tures and patterns of activation from disordered interactions
(the so called “order for free” hypothesis (Kauffman, 1993))
Stuart Kauffman pointed out the idea that all that is needed
is the presence of a set of molecules composed of a sufficient
number of different molecular types in which each molecule
catalyzes a step in the formation of one or more other
molecules in the set; then the catalytic closure is reached if
each molecule in the set is catalyzed by at least one other
molecule of the set. Based on a combinatorial approach,
Kauffman stated that the emergence of autocatalytic sets is
inevitable when the molecular diversity reaches a certain
threshold (Kauffman, 1986).
While the Kauffman initial approach is based on an analysis
of the reaction graph, without taking into account the
dynamics, there are several models in the literature that
study autocatalytic systems from a dynamical point of
view, such as those by Dyson (Dyson, 1985), Eigen and
Schuster (Eigen and Schuster, 1977), Kauffman (Kauffman,
1986), Farmer and Bagley (Bagley and Farmer, 1992;
Bagley et al., 1989), Jain and Khrishna (Jain and Krishna,
1998), Lancet (Segre et al., 1998) and Kaneko (Kaneko,
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2006).

Even if all these models predict the emergence of an
autocatalytic set, observing it in a wet lab experiment
remains a very difficult task. On the one hand, it is possible
that the simplifications introduced by the in-silico models
are unrealistic with respect to the extant biological systems
but, on the other hand, the indications provided by the the-
ory may be not correctly implemented in actual experiments.

In previous works (Fuchslin et al., 2010; Filisetti et al.,
2011a,b, 2010) we introduced a novel stochastic model
devoted to the study of the generic proprieties of catalytic
reaction networks based on a particle description of the
system, while in the present work we investigate the effects
of the introduction of energetic constraints in the system.

Living systems cannot operate isolated from the environ-
ment and they need a continuous flow of energy and matter
in order to be maintained far from the equilibrium. While
the incoming flux of matter is necessary in order to feed
the system with the elementary nutrients to be transformed
in more complex molecules, energy is channeled into the
construction of molecules whose constitutive reactions are
energetically unfavorable. Energy is stored as chemical
bonds in molecules called “carrier molecules”, which
diffuse rapidly in the cell and thereby carry energy from
places of energy generation to the reactions requiring energy
to occur (Alberts et al., 2005).
While results concerning the influence of different compo-
sition of the incoming flux of matter have been presented
in (Filisetti et al., 2010; Fuchslin et al., 2010; Filisetti et al.,
2011a,b), here we focus on the role of the energy, some first
indications can be found in (Fuchslin et al., 2010), within
a system composed of both energetically unfavorable and
favorable reactions.

It is important to remark that, coherently with the scien-
tific approach typical of complex systems biology (Kaneko,
2006), we are not interested in investigating the specific
nature of the chemicals present in out model, nor the
particular interactions among them, but rather in the
characterization of the dynamical behaviors emerging
from the interaction of a set of chemicals and in the de-
tection of possible generic properties of this kind of systems.

In section II the principal features of the models are pre-
sented while in section III we describe how the energy has
been introduced in the stochastic model. In section IV we
discuss some preliminary results of a set of simulations in
which we study the influence of the the amount of energy
introduced in the system and, in the final section, conclu-
sions and indications for further works are provided.

Description of the model
An exhaustive description of the model can be found
in (Filisetti et al., 2011a) and (Filisetti et al., 2010); we here
summarize the principal features for a better comprehension
of the paper.
Taking inspiration from the original work by Kauff-
man (Kauffman, 1986) the principal entities of the model
are linear chains, species from now on, oriented from left to
right, composed of the concatenation of letters from a finite
alphabet, e.g. [A,B] or [A,G, C, T ].
Let X stands for the entire set of species and
xi, i = 1, ..., N , representing each single species. In
accordance with the stochastic nature of the model the
total amount (quantity of molecules) of each species xi
is denoted by x̂i. Since the reactions take place in a
well-stirred tank reactor with fixed volume, the relation
between concentrations and quantities is straightforward.

The dynamics of the system is ruled by two different
reactions, namely condensation and cleavage. By means of
the former two species are concatenated in order to create
a longer species (e.g. AB + BA → ABBA), whereas by
means of the latter one specie is cut in order to create two
shorter species (e.g. ABBA→ AB +BA or ABB +A or
A + BBA), in general given a species of length l there are
2(l − 1) different cleavage products.

We assume that for spontaneous reactions the rate of the
backward reactions is negligible with respect to that of the
forward reactions (i.e. strongly negative ∆G◦).
Furthermore, since we are interested in the behaviors of
catalytic reaction networks we assume that no reaction
proceeds without the aid of catalysts, namely all reactions
are characterized by a high energy barrier (i.e. activation
energy) that would make them too slow to be observed in
the absence of the correspondent catalysts.
The main novelty presented in this work is the explicit
introduction of energy constraints, according to which some
types of reaction require energy to proceed, as it will be
described in the following section.
It is important to notice that the present version of the model
neglects any catalysis provided by elements other than
species belonging to the system, even though environmental
catalysts, such as mineral clay, are thought to have played a
relevant role in prebiotic synthesis (Ferris et al., 1996).

Given the number and the length of the species present in
the system one can compute the overall number of conceiv-
able reactions, including both cleavage and condensation, as

R̂ =
N∑
i=1

(L(xi)− 1) +N2 . (1)

where L(xi) is the length of the i-th species and N is the
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total number of species present in the system. An important
assumption is that we consider an independent probability
p that any species catalyses a random reaction, hence not
all the R̂ conceivable reactions will occur, but only those
that are actually catalyzed by some of the existing species.
p turns out to be one of the key parameters of the model,
since it rules the overall activity of the system by tuning the
number of possible catalysts present in the reactor.

The dynamics is based on the well-known Gillespie
stochastic algorithm (Gillespie, 1977, 2007) but, in order
to speed up the computational performance, some of the
processes are described by means of an approximated
algorithm; in particular the ingoing and outgoing fluxes and,
as we will see in the next section, the dynamics related to
the introduction of the energy.

In accordance with the nature of the reactions, i.e. con-
densation and cleavage, we can summarize the reaction
scheme as following:

• Cleavage: AB + C → A+B + C

• Condensation: (whole reaction: A+B+C → AB+C)

– Complex formation: A+ C → A : C

– Complex dissociation: A : C → A+ C

– Final Condensation: A : C +B → AB + C

where A and B are two generic substrates involved
in a specific reaction, C is the specific catalyst for that
reaction and A : C represents a temporary complex, which
is necessary for the condensation process to happen.

One of the main features of the model concerns the
possibility to create new species by means of the internal
dynamics. The creation of new species leads to the creation
of new reactions; on the other side, some species could also
vanish. To maintain the consistency of the system in the
case of reappearance of some of the vanished species, all
the reactions are kept in memory.

Another important remark regards the emergence of
competition and inhibition phenomena by means of the
particle-based algorithmic approach, since the molecules
involved in a specific reaction cannot be used in another one
at the same time.

Notice that with regard to an asynchronous stochastic
model such this, the question on the correct reaction graph
to use is of fundamental importance. To this end we intro-
duced three distinct reaction graphs, to be used according to
the circumstances. In detail:

• The possible reactions graph: in which all the possible
reactions at a certain moment of the simulation, including
those that will not actually occur, are drawn.

• The complete reaction graph: in which all the reactions
that occur at least once over the simulation time frame are
conserved.

• The actual reaction graph: after defining a specific tem-
poral window, W , only the reactions that occur within W
at a specific time are kept in the graph, while the older
ones are removed. Notice that the temporal window turns
out to be a key parameter in the analysis of the system,
since the detection of ACSs is made using this specific
graph representation. In this way it is possible to define
cycles even in a stochastic system with asynchronous up-
date and, at the same time, to neglect the influence of very
rare reactions on the overall dynamics.

Introduction of the energy in the model
The first rationale at the base of the introduction of the
energy within the model is that energy does exist in nature
and, to a wide extent, it deeply affects the nature and the
dynamics of biophysical and biochemical systems. With
regard to our model of catalytic reaction network, both
information and matter were present in the original descrip-
tion (Filisetti et al., 2010, 2011a), while energy was missing.
Therefore, one of the major objectives of this work is to
decipher whether and how energy actually influences the
overall dynamical behavior. Moreover, we may hypothesize
that the association of energy to some specific type of
reaction could lead the system to novel complex behaviors,
mostly in regard to the possible emergence of ACSs.

The general idea is to divide the possible reactions in two
classes in accordance with the specific energetic constraints,
namely exergonic and endoergonic reactions. While ex-
ergonic reactions occur releasing energy, endoergonic
reactions require the presence of energy carrier molecules
that release an amount of energy to some of elements
involved in the reaction, otherwise the reaction cannot
occur2.
For simplicity we assume that the exergonic reactions
release energy in form of heat (in the present state of
the model there is no coupling between exergonic and
endoergonic reactions) and that the presence of substrates
and catalyst is sufficient for them to occur. Constraints on
the endoergonic reactions are explained below.
It is also important to remark that, in order to maintain a
certain degree of generality, no hypotheses on the specific
form of energy are formulated. Temperature is assumed to
be kept constant by coupling the reactions with a heat bath.

Let us assume the presence of an incoming flux of loaded
energy carriers φE measured in (mol/sec), which transport

2We could assume the condensations to be endoergonic reac-
tions and that, conversely, cleavage reactions occur spontaneously
and do not require any chemical energy: these conditions hold, for
example, in case of RNA in aqueous environment.
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the energy into the system and which instantaneously diffuse
in the reactor. The energy carriers, ECs from now on, bind
and energize the internal species with a energization kinetic
constant knrg.

Once that an energy carrier has released energy to a spe-
cific molecule it is removed from the system (we do not con-
sider the unloaded energy carriers in the dynamics), while
that species remains energized until it becomes part of any
reactions requiring energy to proceed to completion. We
also assume the presence of an outgoing flux of ECs co-
herent with the efflux constant of the reactor kout and the
presence of an ECs decay constant kdec, by which an EC
can be discarded because of the loss of its energetic load.
Such processes are described as in the following:



d[EC]
dt = φE − kout[EC]− kdec[EC]

−knrg[EC][X−]
d[X+]

dt = knrg[EC][X−]− kout[X+]

−kdec[X+]− ψ
d[X−]

dt = ψ +K + kdec[X
+]− knrg[EC][X−]

−kout[X−]

(2)

where [EC] stands for the concentration of the ECs,
[X+] represents the overall concentration of the charged
molecules, [X−] is the total concentration of the uncharged
molecules, ψ represents the decrease of [X+], and the
increase of [X−], because of the reactions occurred con-
suming the energy contained in the species involved in, and
K represents the incoming flux (moles/sec) of uncharged
molecules3.

It is important to stress that, considering the three-
molecular nature of the condensation reactions, and the bi-
molecular nature of the cleavage reactions, there are 12
possible combinatorial energy configurations in accordance
with the position of the molecules carrying the energetic
group: catalyst and/or first substrate and/or second substrate,
table 1.

In accordance with table 1, the reactions admitted by the
possible different energy frameworks can be thought as two
independent Boolean functions, one for the condensation re-
actions and one for the cleavage reactions, of the respec-
tively 8 and 4 possible input arguments (there are 22

k

pos-
sible different Boolean functions, where k is the number of
different Boolean inputs).
Nevertheless, only a subset of the overall 256 + 16 Boolean
functions are biologically plausible according to the adopted
assumptions.

3Although the model is based on a stochastic algorithm, in order
to speed up the computational performance, both the energy flux
and the species energization processes are described by means of
an approximated algorithm.

Catalyst Substrate 1 Substrate 2
Condensation

1 + + +
2 + + -
3 + - +
4 + - -
5 - + +
6 - + -
7 - - +
8 - - -

Cleavage
9 + + //
10 + - //
11 - + //
12 - - //

Table 1: In the table all the possible energy configurations
are represented. Symbol “+” stands for the charged state of
the molecules whereas symbol “-” represents the uncharged
state of the molecule.

In principle, if we consider a system composed of a set of
distinct interacting chemicals, it would be reasonable to as-
sign distinct energetic Boolean functions to each specific re-
action. Of course, there are constraints between cleavage
and condensation groups (for a nice and detailed presenta-
tion, see (Plasson and Bersini, 2009)); at the present stage
of the model we make simple choices compliant with the
underlying physical and chemical properties (see below), by
leaving more detailed and complex scenarios to future de-
velopments.

Preliminary results
The preliminary analyses regarding the introduction of
energy within the model are aimed to understand the
influence of a variation of a) the energy carriers incoming
flux φE and of b) the energization kinetic constant knrg
on the overall dynamics, with particular attention to the
emergence of ACSs.
In detail, we considered the specific case in which all the
condensations are endoergonic reactions and, thus, require
energy to occur, and all the cleavages are neutral, since
they can occur both in presence and in absence of energy.
Furthermore, we decided to concentrate on the case in
which a unique Boolean energy function is associated to
all the condensation reactions, i.e. the function number
14 (00001110 in binary code), which requires that at least
one of the two substrates is energized, while the catalyst of
the reaction is necessarily not energized. For the sake of
completeness, the Boolean energy function associated to
the cleavage is the number 15 (1111 in binary code), that is
the true function.
We specify that, in the course of this study, we decided
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to simulate systems with standard structural parameters4

and with a critical reaction probability, i.e. the probability
according to which one random species catalyses, on the
average, one random reaction5. We made this choice in
order to observe whether and to what extent an energy
variation in the system affects the emergence of ACSs in
the region of the parameters space that is, according to the
literature (Farmer and Kauffman, 1986), close to the phase
transition.

We analyzed different ensembles of systems in which we
varied independently:

• the incoming flux of energy carriers φE , starting from the
benchmark condition in which no carriers are present in
the system: 0, 10−23 mol/sec (corresponding to 6 carri-
ers/sec), 10−22 (60), 10−21 (600), 10−20 (6000);

• the energization kinetic constant knrg: 10−1, 1, 10, 102,
103.

In figure 1 we can observe the variation of the average
number of species present in the reactor, and not belonging
to the incoming flux, at the end of the simulation (i.e. 1000
seconds) as a function of the variation of the incoming flux
of energy carriers φE (x axis) and of knrg (z axis).

In those cases in which there are no energy carriers in the
system we can see that no new new species are present at the
end of the simulation and this is clearly due to the impossi-
bility for the condensations to occur in case of no energy.
On the other hand, we can observe a maximum region along

4The detailed setting of the system is the following:

• the alphabet is composed of two letters, A and B;

• the firing disk containing the elements present in the reactor at
the beginning of the simulation is composed of all the species
up to length 4;

• the volume of the reactor is set to 10−18 dm3 and the overall
initial concentration is set to 10−4;

• the influx is composed of all the species of the firing disk and
the influx rate is set to 10−21 mol/sec;

• monomers and dimers can not be catalysts;

• the number of energy carriers entering the reactor and the
value of the energy kinetic constant are varied according to
the analyses and they are shown in the captions of the relative
figures.

Notice that with these settings around 600 new molecules are en-
tering the reactor every second and that at the theoretical dynamical
equilibrium around 30000 molecules would be present inside the
reactor.

5In this case the reaction probability is set to: 10−4

0

2

4

6

8

10

12

14

1e-23

1e-22

1e-21

1e-20

phi

0.1

1

10

100

1000

Knrg

0

3,07

6,13

9,2

12,3

15,3

O
v
e
r 

T
h
re

s
h
o
ld

Figure 1: The figure shows the average number of species
not belonging to the influx, with concentration greater than
0 from a set of 30 different simulations for each point rep-
resented in the graph. On the x axis the variation of φE is
represented while on the z axis the variation of knrg is rep-
resented.

the direction of the diagonal individuated by the follow-
ing combination of φE and knrg (respectively): (10−23 -
1; 10−22 - 10; 10−21 - 102; 10−20 - 103), the maximum
of the slope being reached in the cases corresponding to the
following three combinations of φE and knrg (respectively):
(10−22 - 10; 10−21 - 102; 10−20 - 103), the first one being
the absolute maximum.
Even if φE and knrg are independent parameters, their com-
bination actually represents the amount of available energy
present in the system: this is the reason why similar val-
ues of the variable under analysis (i.e. the number of new
species) are observed in relation to different combinations
of these parameters. Moreover, the presence of a region of
maximum indicates that there is an optimal amount of en-
ergy for the system in terms of overall production of new
species. For larger values of both φE and knrg the “effi-
ciency” of the system in producing new species begins to
decrease. This effect is partially due to the fact that when all
the molecules in the reactor are energized the number of not-
energized catalysts decrease due to the constraint on the total
quantity of energy, as well as the number of possible conden-
sations; hence in accordance with the particular assumptions
concerning the chosen energy function, a decrement of the
not-energized catalysts slows down the production of new
molecules.
In figure 2 we can find the variation of the average concen-
tration produced within the ACSs and within their first-order
leaves in correspondence of the above mentioned combina-
tions of φE and knrg.

In figure 3 the variation of the average concentration of
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Figure 2: The figure shows the average concentration pro-
duced within the ACSs and within their first-order leaves
from a set of 30 different simulations for each point repre-
sented in the graph. On the x axis the variation of φE is
represented while on the z axis the variation of knrg is rep-
resented.

the species produced by chains of reactions (and not belong-
ing to ACSs) is shown.

We can see that, while the graph regarding the chains
closely resembles that of the new species produced by the
system, figure 1, confirming an optimal value of available
energy in regard to the enhancement of the general activity,
for what concerns the molecules produced within the ACSs
(and their leaves) a unique point of maximum is reached for
the combination φE = 10−22 and knrg = 103, which also
corresponds to the maximum in the creation of new species.
Finally, it is important to remark that with most of the com-
binations of φ and knrg no ACSs are present in the system
at the end of the simulation and this would provide another
possible explanation for the difficulty in observing the emer-
gence of ACSs in wet lab experiments: according to these
results, a fine tuning of the parameters regarding the energy
is needed to allow the system to produce ACSs.

Conclusions
The introduction of energy constraints associated to specific
types of reactions represents a major novelty in the develop-
ment of our stochastic model of catalytic reaction networks.
In this regard, the main aim of this work was to show
whether and to what extent the introduction of energy might
affect the overall dynamics and, in particular, the emergence
of autocatalytic cycles.

To this end, the preliminary analyses on critical systems
showed that the combination of two key parameters, namely
the incoming flux of energy carriers φ and the energization

0

0,0002

0,0004

0,0006

0,0008

1e-23

1e-22

1e-21

1e-20

phi

0.1

1

10

100

1000

Knrg

0,0e+00

1,6e-04

3,3e-04

4,9e-04

6,5e-04

8,2e-04

C
o
n
c
e
n
tr

a
ti
o
n
 P

ro
d
u
c
e
d

Figure 3: The figure show the average concentration pro-
duced by chains of reactions from a set of 30 different sim-
ulations for each point represented in the graph. On the x
axis the variation of φE is represented while on the z axis
the variation of knrg is represented.

kinetic constant knrg, jointly representing the amount of
energy available for the endoergonic reactions, is respon-
sible for a remarkable variation of the general activity of
the system (indirectly attested by the production of new
species). In particular, it was possible to prove the existence
of an optimal value of energy, beyond which the activity of
the system begins to decrease.

Focusing on the emergence of ACSs, it was then possible
to demonstrate that the maximum production of new species
is observed in the case of systems with optimal values of
energy, which contain ACSs involving a large number of
molecules, hence confirming their relevance in the overall
dynamics. On the other hand, with most of the tested
combinations of φ and knrg ACSs could not been detected
and this might provide another possible explanation to
the difficulty in observing their emergence in wet lab
experiments. Moreover, as we already showed in (Filisetti
et al., 2011a, 2010), the autocatalytic sets are not robust
and in most of them the catalytic closure is achieved by
means of a “bottleneck” reaction occurring rarely during
the simulations; although the energy constraints allow the
emergence of structural ACSs, they do not confer neither
robustness nor some forms of self-sustaining dynamics.

The results show that our model might unravel some un-
expected features concerning the emergence of autocatalytic
sets of molecules as for example the presence of an optimum
in the energy flux.
Thus, several developments are underway in order to refine
the description of the model like, for instance, the associa-
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tion of distinct energization Boolean functions and of dis-
tinct knrg to different reactions and species, with the pur-
pose of investigating possible complex behaviors related to
the availability of energy.
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Abstract

Pleiotropy and epistasis are central to understanding how
genes are expressed. Kauffman’s NK model is used ubiq-
uitously to investigate gene expression in evolution and other
contexts; it is widely understood to reflect the results of epis-
tasis, but it is less often used to study pleiotropy. In this pa-
per we introduce the NEP model, a variant of the NK model
which allows epistasis and pleiotropy to be studied individu-
ally. We apply our methods to global and local optima and
adaptive walks, and elucidate new insights into Kauffman’s
complexity catastrophe.

Introduction
Pleiotropy, which refers to a single locus affecting more than
one trait, and epistasis, several loci collectively affecting a
single trait, have long been recognized to be fundamental to
our understanding of gene expression (Tyler et al., 2009).
Epistasis is widely encountered in humans (Moore, 2003)
and other organisms (Remold and Lenski, 2004; Bonhoeffer
et al., 2004), as is pleiotropy (Ostrowski et al., 2005; Wagner
et al., 2008; Scarcelli et al., 2007). Epistasis and pleiotropy
are also seen to play a key role in evolution (Phillips, 2008;
Fenster et al., 1997). Thus it is important to form a clear
picture of the mechanisms of epistasis and pleiotropy and
their effects on phenotypes.

Kauffman’s NK model (Kauffman and Levin, 1987), a
computational model of genomes in fitness landscapes, has
been widely used to investigate properties of fitness spaces
(Kauffman, 1993; Weinberger and Stadler, 1993; Macken
and Perelson, 1989; Orr, 2005) and evolution thereon
(Østman et al., 2010). A number of variants of the NK
model have also been studied, such as the infinite-allele vari-
ant (Welch and Waxman, 2005) and the block model (Perel-
son and Macken, 1995); the NK model and its variants have
been shown to be applicable to a variety of biological phe-
nomena (Macken and Perelson, 1989; Perelson and Macken,
1995; Kauffman and Weinberger, 1989; Orr, 2006).

Epistasis and pleiotropy can be tuned in the NK model,
but they always vary in tandem, which makes it difficult to
study the two effects separately. In this paper we describe

the NEP model, a variant of the NK model in which epistasis
and pleiotropy can be tuned independently.

Methods
Models
The NK Model The NK model comprises a population of
genomes, each of which consists of N loci, with A alleles
at each locus. The model defines one trait for each locus;
the locus interacts epistatically with K other loci in deter-
mining that trait. The fitness of a genome is calculated by
averaging the fitness contributions of all of the traits. Each
trait is represented by a (K + 1)-dimensional table, with the
length along each dimension equal to A, where the values in
the table are stochastically chosen from a uniform distribu-
tion. The fitness contribution for each trait is selected from
the table by choosing the row corresponding to the allele of
the base locus, the column corresponding to the allele of the
next locus, etc.

Choosing which other loci interact with a given locus can
either be done deterministically, by having each locus in-
teract with the succeeding K loci (where the genome is as-
sumed to be circular), or stochastically, by choosing K other
loci at random. Because the NK model contains a trait/table
for each of the N loci, there are N traits/tables in total. In
the rest of the paper we will refer to traits and tables inter-
changeably.

Fig. 1 gives an example genome with its associated ta-
bles; the top part of this figure refers to the NK model, and
the bottom part contains tables that are added for the NEP
model. In this example N = 4 and A = 2, so each genome
contains 4 loci with 2 alleles each; the interaction degree, K,
is 1. The horizontal bar in the middle of the diagram is the
genome, and the 4 dots on the bar are the loci. The numbers
0, 1, 1, 0 along the genome are the alleles at each locus.

In this example, each consecutive pair of loci interact in a
trait, as do the outer two loci, for a total of four traits. Each
trait is shown in the diagram as a two-dimensional lookup
table above the genome, which is linked to its pair of loci
by a pair of lines. The first pair of alleles is (0, 1), so the
corresponding fitness contribution is the .71 shown in the
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Figure 1: An example genome with its tables. The genome, with alleles, runs across the center of the figure; each pair of loci
is linked to a table which represents the trait determined by that pair of loci. The single entry shown in each table is the fitness
chosen by the allele values of the corresponding loci. The four tables along the top of the figure constitute an NK model, and
all six tables together form an NEP model.

0th row and the 1st column; the fitness contributions for the
other pairs of loci are shown similarly. (In an actual instance
of the model, of course, all of the values in each table would
be filled in.) The overall fitness of the genome is then the
average of the four lookup values.

The parameter K has traditionally been used to tune the
degree of epistasis in the model: K determines the degree
of epistasis, because each locus in the model interacts with
K other loci. However, we note that K also determines the
degree of pleiotropy, because each locus appears in K + 1
tables. The NK model has no way to separate epistasis from
pleiotropy, however, which can lead to uncertainty about
which of the two is causing any particular observed effect.

The NEP Model In order to separate epistasis from
pleiotropy, we introduce the NEP model, adding the two new
parameters E and P . To assist in describing E and P , we
define T as the number of tables in the model. For i from
1 to T , Ei is the number of loci in the ith table — in other
words, the number of loci that are used to look up the value
in the ith table. The loci used in each table are chosen at
random. We refer to Ei as the epistatic dimension of table i.
For j from 1 to N , Pj is the number of tables in which the
jth locus appears, referred to as the pleiotropic dimension
of that locus. The NEP model is a generalization of the NK
model, and the parameters E and P can be seen in the NK
model: since the parameter K refers to how many other loci
a given locus interacts with, while our parameter E refers to
the total number of interacting loci, any given NK model has
K = E − 1; similarly, K = P − 1. The difference between
the NK model and the NEP model is that the NK model fixes
P ≡ E but the NEP model allows P to be different from E.

When two or more loci interact epistatically in the NEP

model, the fitness contribution for that interaction is cho-
sen from a stochastic lookup table. The stochasticity of the
lookup table means that the interaction between the loci in
determining the fitness is highly non-linear, consistent with
the usual definition of epistasis.

Since a genome can have A possible values at each locus,
there are a total of AN genomes in the fitness space in either
the NK model or the NEP model.

In the example of the NK model in Fig. 1 described above,
E = 2 and P = 2; as always in the NK model, P ≡ E.
However, in the NEP model we can modify the example to
have P differ from E, by adding the two tables shown below
the genome. The dimension E of each table is still 2, but
now each locus is linked to 3 tables, so P = 3.

Referring to Fig. 1, there are two ways to count the links
between the genome and the trait tables: If we count the
links where they connect to the tables, we get

∑T
i=1 Ei

since the epistatic dimension of each table is equal to the
number of links connecting to it. On the other hand, if we
count the links where they connect to the loci on the genome,
we get

∑N
j=1 Pj since the pleiotropic dimension of each

locus is equal to the number of links connecting to it. Since
those two counts must be equal, we find that

N∑
j=1

Pj =
T∑

i=1

Ei . (1)

This equation can be rewritten as NP̄ = ĒT , where P̄ and
Ē are the average values of Pj and Ei respectively. In prac-
tice we usually either choose to have Pj be the same for all
loci, Pj ≡ P , or choose to have Ei be the same for all tables,
Ei ≡ E. In this paper we take the former approach.

Note that the embedded-landscape model (Altenberg,
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1994; Heckendorn et al., 1999) has previously introduced
flexibility in the number of tables to the NK model, in
the same way as the NEP model; however, the embedded-
landscape model has generally been used in studies of com-
putational complexity and has typically not delineated the
effects of epistasis and pleiotropy.

Numerical Analysis
The current study employs an NEP model with N = 20
and A = 2. We simulated 400 different models: for P
equal to each of 1 through 20 we chose, using the equation
NP = ĒT , the value of Ē closest to each of 1 through 20,
for a total of 400 (P, Ē) pairs. When Ē was an integer we
chose all of the tables to have that value for Ei. When Ē
was not an integer we chose some of the tables to have Ei

equal to the next integer below Ē, and some the next integer
above, with the counts of each chosen to give the desired av-
erage Ē. This ensured that the tables were as similar in size
as possible. Each pair (P, Ē) gave a model, and each model
was run 100 times, populating the lookup tables with a dif-
ferent random seed each time; all of the statistics for each
model were averaged across those runs.

Among the phenomena we study here are local optima
and adaptive walks, both of which are important in study-
ing the dynamics of evolution (Orr, 2005). If the fitness of
a given genome is greater than the fitness of any genome
at a Hamming distance of 1 from the given genome, that
fitness is said to be a local optimum. An adaptive walk is
a sequence of genomes that starts at a randomly-selected
genome and proceeds by single fitness-improving mutations
until it reaches a local optimum.

We collected the following statistics: variance in fitness
within each fitness space; global optimum fitness, defined
as the largest fitness value in the fitness space; mean lo-
cal optimum fitness; number of local optima in the fitness
space; average length of adaptive walks, defined as the num-
ber of fitness-improving mutations traversed in the walk; fit-
nesses attained in adaptive walks, defined as the fitness of
the last genome in the adaptive walk (by definition, a lo-
cal optimum); first step up in adaptive walks, defined as
the difference in fitness between the first genome and the
second genome in an adaptive walk; last step up in adap-
tive walks, defined as the difference in fitness between the
second-to-last genome and the last genome in an adaptive
walk; and the maximum step up, defined as the largest dif-
ference in fitness between any two adjacent genomes in
the fitness space. These are some of the most commonly-
measured statistics in studies of the NK model (Kauffman,
1993; Macken and Perelson, 1989) and its variants (Perelson
and Macken, 1995).

In each run, the variance, the global optimum, the mean
local optimum, and the number of local optima were cal-
culated by iterating across all 220 genomes in the fitness
space. The maximum step up was calculated by iterating

across all pairs of genomes. To calculate statistics on adap-
tive walks, 1,000 adaptive walks were simulated in each run;
each reported statistic is then the average value of that statis-
tic across the 1,000 adaptive walks simulated.

Representative results from the 400 models are described
below.

Results
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Figure 2: Fitness variance by epistatic dimension and
pleiotropic dimension.

Fitnesses and Optima
Variance in fitness increased approximately linearly with
epistatic dimension (Fig. 2A) and decreased with pleiotropic
dimension (Fig. 2B). This can be understood by considering
what happens when we increment either the epistatic dimen-
sion or the pleiotropic dimension. First, if we increase P̄ by
1 while holding Ē fixed, the equation NP̄ = ĒT tells us
that we need to multiply T by (P̄ + 1)/P̄ . Since the fitness
of any given genome is calculated by averaging one entry
from each of the T tables, multiplying T by (P̄ + 1)/P̄
means that each calculated fitness is averaged across more
table-entries, which decreases the fitness variance.

Secondly, consider incrementing Ē while holding P̄
fixed. This requires us to multiply T by Ē/(Ē + 1), de-
creasing the value of T , which has the opposite effect to
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incrementing P̄ : it increases the variance of fitnesses. In-
crementing Ē also increases the variance by increasing the
degrees of freedom of the model, which is equal to the num-
ber of separately-generated stochastic table-entries. Since
each table contains AĒ entries, for any given values of A, Ē,
and T , the number of separately-generated stochastic table-
entries is

TAĒ . (2)

If we increment Ē while holding P̄ fixed then the new total
number of entries is given by

T
Ē

Ē + 1
AĒ+1. (3)

Thus the net effect of incrementing Ē is to multiply the num-
ber of separately-generated stochastic table-entries, and thus
the degrees of freedom, by AĒ/(Ē + 1). For A = 2, this is
greater than 1 as long as E > 1.
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Figure 3: Global optimum fitness by epistatic dimension and
pleiotropic dimension.

Fitnesses of global optima increased with epistatic dimen-
sion; for smaller pleiotropic dimension (up through about 5)
the global optimum approached 1.0 (Fig. 3A). The global
optima decreased with pleiotropic dimension (Fig. 3B). The
global optimum is an extreme value of fitness, so as the vari-
ance increases with epistatic dimension, the global optimum

also increases. The opposite argument shows why the global
optimum decreases with pleiotropic dimension.
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Figure 4: Local optimum fitness by epistatic dimension and
pleiotropic dimension.

As with global optima, fitnesses of local optima increased
with epistatic dimension (Fig. 4A) and decreased with
pleiotropic dimension (Fig. 4B). Since local optima are lo-
cal extreme values, the same argument as with global optima
indicates why local optima increase with epistatic dimension
and decrease with pleiotropic dimension.

The number of local optima increased dramatically with
epistatic dimension (Fig. 5A); for high and low epistatic
dimensions, the number of local optima did not vary with
pleiotropic dimension, but for intermediate epistatic dimen-
sions, lower pleiotropic dimensions gave slightly higher
numbers of local optima (Fig. 5B). Note also that for an
epistatic dimension of 2, the graph of the number of local
optima by pleiotropic dimension is a little noisy; later we
will notice the same phenomenon in a different way with the
lengths of adaptive walks.

Kauffman proves (Kauffman, 1993) that for K = N −
1 the number of local optima is very large; the proof uses
only the epistasis effects of K, not the pleiotropy effects.
The results we get here are consistent with that, in that the
number of local optima increases with epistatic dimension
but varies little with pleiotropic dimension.

237ECAL 2011



0

1

2

3

4

5

L
o
g
 C

o
u
n
t

1 5 10 15 20

Epistatic dimension

A

Pleiotropic

dimension:

1

5

20

0

1

2

3

4

5

L
o
g
 C

o
u
n
t

1 5 10 15 20

Pleiotropic dimension

B

Epistatic

dimension:

1

2

5

10

20

Figure 5: Log number of local optima by epistatic dimension
and pleiotropic dimension.

Adaptive Walks

In general the length of adaptive walks decreased with
epistatic dimension (Fig. 6A) and increased or held steady
with pleiotropic dimension (Fig. 6B). For epistatic dimen-
sion of 1 the average length was 10, regardless of pleiotropic
dimension; otherwise, for each pleiotropic dimension, the
average length peaked at an epistatic dimension of 2 and de-
creased from there. For epistatic dimension between 2 and
about 10, lengths of adaptive walks increased as a function
of pleiotropic dimension.

Kauffman proves (Kauffman, 1993) that in an NK model
where A = 2 and K = 0 the average length of an adap-
tive walk is N/2. Again, the proof uses only the epistasis
effects of K, and thus holds for the NEP model; this ex-
plains why the average length is 10 in our models when the
epistatic dimension is 1 (which is equivalent to K = 0). For
epistatic dimensions greater than 1, the average adaptive-
walk length is inversely related to the number of local op-
tima, and thus it decreases with epistatic dimension and in-
creases with pleiotropic dimension for low epistatic dimen-
sions. The inverse relationship with number of local op-
tima is also why we see the same noisiness in the graph of
adaptive-walk length by pleiotropic dimension for epistatic
dimension of 2 as we did with the number of local optima.
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Figure 6: Length of adaptive walks by epistatic dimension
and pleiotropic dimension.

Attained fitness in adaptive walks increased with epistatic
dimension, with the effect being most pronounced for low
pleiotropic dimension (Fig. 7A); attained fitness decreased
with pleiotropic dimension (Fig. 7B).

Adaptive-walk lengths decrease with epistatic dimension
but attained fitnesses increase; the opposite is true with re-
spect to pleiotropic dimension. This apparent contradiction
is resolved by Figures 8 and 9, which show the typical steps
in adaptive walks.

The typical first step up in an adaptive walk increased with
epistatic dimension (Fig. 8A) and decreased with pleiotropic
dimension (Fig. 8B). The same is true for the typical last
step (Fig. 9), with one exception: for epistatic dimensions
greater than about 10, the typical last step up was lower for a
pleiotropic dimension of 1 than for the next few pleiotropic
dimensions. Again we see the effects of variance: increasing
the variance with epistatic dimension allows for larger steps
up, while decreasing it with pleiotropic dimension decreases
the possible steps up. The phenomenon whereby average
steps up increase with increasing K in the NK model, allow-
ing higher fitness to be achieved with fewer steps, has been
observed by Østman et al. (2010), who ascribed the phe-
nomenon to a combination of pleiotropy and epistasis. In
contrast, we find that the increasing amplitude of steps up is
due solely to increasing epistasis, not increasing pleiotropy,
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Figure 7: Attained fitness of adaptive walks by epistatic di-
mension and pleiotropic dimension.

and, in fact, that amplitudes of steps up decrease with in-
creasing pleiotropy.

Except for an epistatic dimension of 1 (where they were
the same), the typical last step was less than the typical first
step for all epistatic dimensions and pleiotropic dimensions;
the effect was more pronounced for higher epistatic dimen-
sion and lower pleiotropic dimension. The reason for this
is that on the last step of an adaptive walk the fitness of the
genome is already quite high, limiting the remaining steps
available.

The maximum step up, defined as the largest differ-
ence in fitness between two adjacent genomes, increased
with epistatic dimension (Fig. 10A) and decreased with
pleiotropic dimension (Fig. 10B). Again we see the result
of the fact that fitness variance increases with epistatic di-
mension and decreases with pleiotropic dimension.

Discussion
In the NEP model, referring to the equation NP̄ = ĒT we
see that one way to increase the pleiotropic dimension P is
by increasing T by adding one or more traits. As the results
here have shown, increasing pleiotropy in this way tends to
decrease the local and global optima. On the other hand,
when a biological species adds a trait its fitness generally
goes up; it may be that when a biological species adds a trait

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
te

p

1 5 10 15 20

Epistatic dimension

A

Pleiotropic

dimension:

1

5

10

20

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
te

p

1 5 10 15 20

Pleiotropic dimension

B

Epistatic

dimension:

1

5

10

20

Figure 8: First step of adaptive walks by epistatic dimension
and pleiotropic dimension.

it also increases the overall number of loci, thus avoiding an
increase in pleiotropy. Further investigation will be required
to resolve this question.

Effects of Epistasis and Pleiotropy
The overall effect of epistasis is to increase the variance in
fitness, and of pleiotropy to decrease it. We see this first in
the direct measurements of variance of fitness; we also see
it in measurements of global and local optima: less variance
reduces the heights of the available maxima. Attained fit-
nesses in adaptive walks match closely with mean local op-
tima, so they, too, decrease with decreasing variance. First
and last steps in adaptive walks, and maximum single steps,
also trend in the same direction as variance. The situation
here is more complicated, however: because a single step
means mutating a single allele, we are very far from the
extreme-value considerations that apply to global and local
optima.

A key difference between the NEP model and the
embedded-landscape model is that the latter does not fully
separate the effects of epistasis and pleiotropy. For example,
(Smith and Smith, 1999) find that “the epistasis parameter
K has little effect on the global fitness statistics, and does
not affect the mean fitness values of the local optima at all.”
However, when we separated epistasis out from pleiotropy,
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Figure 9: Last step of adaptive walks by epistatic dimension
and pleiotropic dimension.

we found a clear dependency of global optimum fitness and
mean local optimum fitness on epistasis.

The Complexity Catastrophe
In working with the NK model, Kauffman observed a ten-
dency for fitnesses of local optima to decrease with increas-
ing K, and coined the term “complexity catastrophe” to
describe this (Kauffman, 1993). Previous authors have as-
cribed the decrease in local optima to an increase in epista-
sis (e.g., Kauffman (1993); Solow et al. (1999)); in contrast,
in the context of the embedded-landscape model (Smith and
Smith, 1999) stated that the decrease in local optima is due
to an increase in the number of traits.

The results described here allow us to clarify which part
of the complexity causes the catastrophe. As pleiotropic di-
mension increases, both attained fitnesses and the fitnesses
of local optima decrease. On the other hand, as epistatic di-
mension increases, both attained fitnesses and the fitnesses
of local optima increase. The culprit in the complexity
catastrophe is simply that decreasing variance lowers the lo-
cal optima.

Kauffman further observed that as K increases, the mean
value of local optima initially increases, and then starts to
decrease. Looking at parts A and B of Fig. 4, we see the ex-
planation of the observed trends: Increasing K corresponds

0.0

0.2

0.4

0.6

0.8

1.0

S
te

p

1 5 10 15 20

Epistatic dimension

A

Pleiotropic

dimension:

1

5

10

20

0.0

0.2

0.4

0.6

0.8

1.0

S
te

p

1 5 10 15 20

Pleiotropic dimension

B

Epistatic

dimension:

1

5

10

20

Figure 10: Maximum single step by epistatic dimension and
pleiotropic dimension.

to increasing E and P simultaneously, which results in si-
multaneous tendencies to increase and decrease local op-
tima, respectively; at first the former tendency predominates,
and then the latter.

Conclusion
Given the ubiquity of epistasis and pleiotropy in gene ex-
pression, and given the prevalence of the NK model in study-
ing genetic phenomena, it is important to ensure that we
fully understand those two forms of gene linkage in the
context of the NK model. As described here, the NEP
model can be used to distinguish the effects of epistasis and
pleiotropy, allowing assumptions made in the literature to be
re-examined, and allowing new insights to be gained going
forward.
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Abstract

The insights gained from the study of complex systems in bi-
ological, social, and engineered systems enable us not only
to observe and understand, but also to actively design sys-
tems which will be capable of successfully coping with com-
plex and dynamically changing situations. The methods and
mindset required for this approach have been applied to ed-
ucational systems with their diverse levels of scale and com-
plexity. Based on the general case made by Yaneer Bar-Yam,
this paper applies the complex systems approach to the edu-
cational system in Switzerland. It confirms that the complex
systems approach is valid. Indeed, many recommendations
made for the general case have already been implemented in
the Swiss education system. To address existing problems
and difficulties, further steps are recommended. This paper
contributes to the further establishment complex systems ap-
proach by shedding light on an area which concerns us all,
which is a frequent topic of discussion and dispute among
politicians and the public, where billions of dollars have been
spent without achieving the desired results, and where it is
difficult to directly derive consequences from actions taken.
The analysis of the education system’s different levels, their
complexity and scale will clarify how such a dynamic system
should be approached, and how it can be guided towards the
desired performance.

Introduction
The principles of complex systems have been successfully
applied to a diversity of problems Bar-Yam (2004), includ-
ing the health system, military warfare, international devel-
opment and educational systems. Although still in its ini-
tial phase, the effects obtained through using a complex sys-
tems approach – also called “Enlighted Evolutionary Engi-
neering” – are generally promising. At the moment, further
validation to increase the credibility of this approach is still
required. This paper thus applies the complex systems ap-
proach to the educational system in Switzerland. As it turns
out, the Swiss system – which functions rather well in com-
parison with other education systems – already uses several
of the recommended principles. Examples include offering
a variety of ways towards professional qualifications, and
using a diversity of actions to provide for the individual stu-
dents’ needs. To address remaining or new problems, the

complex systems approach should be applied consequently,
as detailed in this article.

Complex systems can help us improve our educational
systems by making us understand the differences between
diverse levels within the educational system and the respec-
tive approaches they require. We will understand why cer-
tain educational systems perform better than others by dis-
cussing the “one fits all” uniform large-scale approach as
compared to diversity and individuality.

The motivation for applying complex systems thinking to
educational systems is that our societies are becoming in-
creasingly complex and intertwined. The modern globalised
world needs mainly specialists – people who are particularly
good at a few things, which often do not correspond to clas-
sical school teachings; some “all-rounders”, who are good
at many things, will make connections between them. When
educating today’s and tomorrow’s generations – enabling
them to be valuable citizens that contribute to a successful
society1 – the educational system must provide people with
a certain minimal common background. Moreover, and po-
tentially even more important, the educational system must
help specialists acquire their particular skills and knowledge
which will make them the valuable resources of society.

Building and maintaining a well-performing educational
system, which is able to cope with varying conditions and
stresses given through migration, economical crises, chang-
ing professional requirements and other factors, is a very
challenging task. Growing difficulties in the educational
systems manifest themselves all over the world, and it is time
to find innovative solutions.

The author of this paper has thorough knowledge of the
Swiss educational system, not only through her own expe-
rience, but also because over the last 6 years she has been
closely involved with primary schools and in touch with uni-
versities of teacher education in Switzerland, through the

1Although, according to Davis and Sumara (2006), there is con-
siderable philosophical controversy about the purpose / effect of
education. For the scope of this paper, we will assume that the pur-
pose of education is to enable people to become valuable citizens
that contribute to a successful society which includes the dignity
and welfare of as many citizens as possible.
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KIDSinfo project, http://www.kidsinfo.ch. It was
launched by the Swiss Association of Women Engineers,
SVIN, to pique school children’s and particularly girls’ in-
terest in technology.

Organisation of this article: The second section details
the typical problems of many educational systems. The third
section explains relevant system characteristics. The fourth
section looks at scale and complexity found at different lev-
els in the educational system. The fifth section brings up
several controversial issues. The sixth section introduces
the case study made on the educational system in Switzer-
land. The seventh section presents related work. Finally, the
eighth section draws conclusions and makes further recom-
mendations.

Problems in educational systems
It is a widely supported observation that in almost all coun-
tries – to a varying degree – young people increasingly have
problems finding their ways in society. Another indicator
of trouble is that in standardised tests applied across one or
several countries, such as the PISA tests (the Organisation
for Economic Co-operation and Development (OECD) Pro-
gramme for International Student Assessment), performance
is often poor. Well-regarded schools or countries frequently
fail to meet the expectations.

Generally speaking, many educational systems are high
in cost but low in efficiency, and lots of social problems sur-
face with or without observable trigger. Many schools com-
plain about disruptive behaviour, violence, cheating, stu-
dents dropping out, etc.

Reforms of the traditional type have shown close no im-
provement; multi-billion $ projects such as “No child left
behind” in the USA were abandoned after years of efforts in
vain because the large scale actions taken failed to bring the
desired effects.

The point is that people have diverse backgrounds, skills
and preferences; therefore, a “one fits all” approach does not
work well in many cases because it fails to take people’s in-
dividuality and their different ways of interacting and learn-
ing into account. While the “average” students may react
well to an “average-fitted” approach, there will always be
plenty of students that will not – for instance, because they
are overstrained, under-challenged, because their interests
are not met, or because they do not understand the impor-
tance of education for their life.

In this situation, insights gained from complexity science
may help. Such an approach takes into account the impor-
tance of scale and complexity at various levels in the educa-
tional system, and may help provide the system with suitable
tools at the right level.

Learning is itself a highly complex process which in-
volves many different factors and perspectives, such as in-
dividual sense-making, teacher-student relationships, class-

room dynamics, school organisations, community involve-
ment, bodies of knowledge, and culture (Davis and Sumara,
2006); knowing, knowing how to do, and knowing how to
be (Lelouche and Morin, 1997). Bar-Yam (2004) discusses
both the inherent complexity of learning itself as well as
the different levels of complexity in educational systems;
concrete examples generally refer to education in the USA.
Other authors are cited in the related works section of this
paper; our main focus here is on the system which provides
the students with opportunities for learning while motivating
their curiosity and creativity.

System characteristics
The original Latin word complexus signifies entwined or
twisted together (Heylighen, 1996). A complex system is
thus made of more than one part, and the parts are at the
same time distinct and connected. It is therefore inherently
difficult to model them. Often, there are circular causal re-
lationships: one part influences the other, which in turn in-
fluences the first, and so on. This description definitely fits
educational systems, with their multi-lateral interactions be-
tween teachers, students, their parents, families and friends,
teachers’ and students’ associations, politicians, economy,
and the society in general.

Due to its distributed nature, the educational system has
weak interdependences between individual classrooms and
between individual schools. What happens at one local
school does not automatically have much to do with what
happens at other schools, in other neighbourhoods or other
cities. Schools are strongly influenced by local conditions,
and within a certain school, what happens inside a certain
classroom is strongly dependent on the teacher, the course
to be taught, the students, and their parents. This leads to
random quality (influenced by many local and some global
factors).

Many system behaviours are local and fine scale – at the
level of the individual student or teacher and the interactions
they engage in with others. The difficulties encountered are
often very particular to a certain case; an action successfully
taken in one case may fail in another similar case.

Generally speaking, systems with high variety perform
well when faced with complex challenges. This means that
a system which is itself complex enough and has a variety of
ways to address individual problems will be successful when
facing a situation of high complexity and variety, as taught
by the Law of Requisite Variety (Ashby, 1956). This cer-
tainly also applies to educational systems and the challenges
they must cope with.

Many different ways of learning exist, including visual,
auditive, tactile and other stimuli, and “learning by doing”.
Learning in diverse ways provides people with diverse ways
of addressing challenges, which in turn often triggers inno-
vation and thus economic growth. This means that it should
be in the educational system’s very best interest to provide
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Figure 1: Examples of entities and their interactions at dif-
ferent levels of the educational system (non-exhaustive)

a variety of ways for people to learn. The goal should be to
achieve a great variety of skills with consistently high qual-
ity, in whatever area of expertise.

The guideline should be to think globally – in terms of
the entire educational system and the goals to reach for the
benefit of the society – but to act locally – at the level of the
individual students, teachers, or groups of them, and taking
into account their individual conditions, problems, goals and
influencing factors.

Complexity at different levels
As already mentioned, educational systems typically have
several levels of diverse complexity and scale. We discern
three of them (although more differences might be made
in-between). Figure 1 illustrates this with some examples;
other levels and other entities and relations between them
exist but have been omitted for the sake of readability.

• Micro-level / local level: Education is highly complex at
the level of the individual student, his / her capabilities
and interests. Many different interrelations are important,
including those between student and teacher, student and
parents / family / close social environment / other stu-
dents, and parents and teacher. Actions to take effect at
this level must be small-scale and individual. Higher level
uniformity of the local tools and actions is not indicated;
what works in one case may fail in another.

• Meso-level / intermediate level: The complexity at the
level of groups of students with similar interests and capa-
bilities is medium, and effective actions can be of medium
scale, as they will address student associations, study
groups, parents associations or teacher teams. A certain
coordination at the meso-level makes sense, as is actions
at this level concern groups of people.

• Macro-level / global level: Large scale uniform approach
can be used at a higher level, including the definition of
minimal educational standards for the society to function,
teacher education which provides a set of skills for indi-
vidual action, and teacher support, giving them tools and
organisations as required to fulfill their tasks. A lack of
coordination or uniformity at the macro-level puts a sys-
tem in danger of becoming disorganised and confusing.

Taking these differences in scale and complexity into ac-
count assures an effective approach to the existing difficul-
ties at each level, because the actions taken are suitable in
scale, scope and complexity.

Issues to be addressed
This section discusses several aspects of importance for a
successful education system.

The right moment for specialisation: Certain aspects of
the educational system are known to be very controversial;
among others, the right age for specialisation. It is known
from cognitive research that key connections and processes
in the brain are established at an early age. This would speak
in favour of an early specialisation, so that children would
develop their special skills under optimal conditions. On the
other hand, children may need enough time to learn a broad
variety of skills and develop large general knowledge before
even being able to decide which their favourite area shall be.
A scientifically sound and generally accepted answer to this
topic has not been found yet.

People’s critical attitude towards teachers: It is an in-
teresting observation that we are highly critical of teachers,
but very little critical of medical doctors, although the latter
ones have just as much responsibility for our well-being as
the former ones, and both of them are human and thus prone
to errors. While teachers carry a good part of the respon-
sibility for our positive development on the mid- and longer
term, doctors’ interventions are ofter on the shorter term (we
typically ask for their help when something is wrong; only
few of us consult doctors for advice while everything is fine).

One possible reason for these different perceptions of re-
sponsibility and well-doing may be that (in most countries)
we have a certain freedom to choose who to take as our doc-
tor; if we are not happy with one, we can move on to the
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next, until we are satisfied. There is thus a certain com-
petition between doctors of the same specialty. Teachers,
however, do not compete with each other, and people have
mostly no possibility to choose which once we want to trust
with our / our children’s education. In some countries, peo-
ple can choose to which school they want to send their chil-
dren, but there, the selection possibilities end, and they must
accept the teachers they are given. On the other hand, private
and higher level schools get to select their students by spec-
ifying minimal performance requirements or through other
selection proceedures.

A way of changing this situation would be to introduce
mechanisms for competition and mutual selection of stu-
dents and teachers in the educational system. The following
versions are imaginable:

• Let schools choose students. Let students choose schools.
Both versions already exist for private schools and higher
/ specialised education institutions.

• Let students choose teachers. Let teachers choose stu-
dents. Neither version does usually exist, to the best of
the author’s knowledge. If two or more teachers offered
exactly the same course, the students’ way of choosing
a teacher would depend on his / her teaching style and
personality. Some teachers might be much more popu-
lar than others, and their classes would very quickly be
fully booked. They may then either accept students on
a “first registered, first served” basis, or select students
based on their performances and characteristics. This
would naturally lead to inequalities and tension, which
may be morally controversial. Competition for sparse re-
sources is, however, also an important principle of how
biology and healthy economies function. It would be very
interesting to study the effect of such a mechanism on ed-
ucation.

The problem with introducing competition between
teachers is that it would add an additional and potentially de-
ceptive performance criterion. Popular teachers are not au-
tomatically those which succeed best in transmitting the re-
quired knowledge and skills; the most popular teachers may
simply be the best entertainers or those which challenge their
students less than their fellow teachers. An analogue phe-
nomenon was observed by Ficici and Pollack (1998) when
studying the similarities between co-evolution and some ed-
ucational systems. In their case, each “team” ranks the per-
formances of the other. They showed that this kind of setup
can get stuck in mediocre stable states. Indeed, competi-
tion may just lead to teachers modifying their content to
get good ratings from students. As a consequence, they do
well in the competitive environment imposed upon them,
but do poorly at fulfilling the wider social goal of produc-
ing bright students. This, of course, would be completely
contra-productive.

A solution to this problem would be to introduce perfor-
mance criteria which measure how well teachers reach the
main goal – that is, enabling their students to succeed in their
further education, and maybe also on the mid- and longer
term, that is, in their professional life. Students and their
parents would certainly understand that it makes sense to
choose a teacher which assures the further academic and/or
professional success of their students as opposed to provid-
ing good entertainment (although both is relevant for effi-
cient learning).

Performance evaluations: An important aspect of the ed-
ucational system is that it needs to evaluate students. The
typically used large scale standard tests fail to thoroughly
reflect on people’s capabilities and skills. Classical school
knowledge cannot be equaled to success in life; very good
students may fail in life, whereas weak students may glori-
ously succeed. Society needs people with a great diversity
of individual skills, knowledge and characteristics, includ-
ing manual skills, emotional intelligence, the ability to col-
laborate in teams, etc. Often, the required skills and knowl-
edge do not correspond to classical school disciplines, and
are thus badly reflected by standard examinations in those
disciplines.

An alternative and more sensible way of assessing stu-
dents may be so-called “portfolio assessment”, meaning that
not only single written exams count, but also individual and
group projects, self-motivated studies, applications scenar-
ios, and other studies. Typical arguments of educational in-
stitutions against such forms of assessment is, for instance,
that is is more challenging to define success criteria, and
that these assessment forms require more human resources,
which are often sparse due to financial pressures.

Moreover, not only the standard skills which everybody
needs must be assessed, but also and especially the particular
skills needed for particular activities. This is called “niche
selection” in biology, and it means comparing similar stu-
dents with each other. The assessment of “non-classical”
skills is not straight forward but well worth the effort of elab-
orating useful metrics.

Yet another aspect of introducing competition and mutual
selection to the educational system is that not only students
need to be evaluated, but also teachers, respectively the qual-
ity of their teaching. This is difficult because there is a lack
of real comparison possibilities: it is impossible to test the
same students on the same topic, using a different teaching
method / a different teacher. Further efforts to find ways
of evaluating teachers and teaching are required, in particu-
lar related to the issue of “deceptive goals” discussed in the
subsection above.

Case study: Switzerland
In general, Switzerland and the Swiss educational system
are doing very well. Although the country has very few
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natural resources, the economy is fairly stable and hardly
affected by economic crises. The unemployment rate has
for many years remained around 3.5 - 4%, which is very
low in comparison with other countries. Switzerland faces
high amounts of immigration, and its population currently
consists of 22% of foreigners, speaking many different lan-
guages in addition to the 4 official languages. Nevertheless,
the difficulties surging in the educational system are well
coped with. Given that many of the actions recommended
by the complex systems approach – for instance having high
diversity at the right levels – are already implemented in
Switzerland and that the systems works well, we can con-
clude that the approach is valid. A few problems, however,
persist in the educational system, and we will look at them
subsequently.

Switzerland has a highly diverse educational system
which is in many aspects governed by what we call the
“Kantönligeist” – the spirit of the little cantons (of which
small Switzerland has 26!) – which means that every canton
can autonomously decide about their school system. This
fragmented attitude is due to the nature of the Swiss state,
which is a federation, and due to the populations apprecia-
tion of old ways and traditions; conservatism prevails.

Remarkably, the country has almost exclusively public
schools, and they generally are of high quality – as just about
everything in Switzerland; the few private schools have par-
ticular characteristics as following Rudolf Steiner’s teach-
ings or being international / foreign.

One of the strongest points of the Swiss educational sys-
tem is that many ways lead through education to profession;
some of the ways focus on academic achievements, others
provide solid manual and profession-specific training. De-
tails are given in the next subsection, followed by an anal-
ysis of the Swiss educational system and recommendations
derived from the complex systems approach as introduced
earlier in this paper.

Ways to professions in Switzerland
As illustrated in Figure 2, children enter the educational sys-
tem at the age of 4 or 5, starting with 1-2 years of the recom-
mended but not mandatory public Kindergarden. Some pri-
vate Kindergarden establishments accept children much ear-
lier, in some cases even as early as from the age of 4 months.
The mandatory nine school years start with primary school
at age 6 / 7. There are diverse forms of primary school (4-
6 years) and intermediary “cycles” (1-3 years under diverse
names), after which the adolescents around age 13 either go
to some form of secondary school. It takes about 2-3 years
and comes in several levels, according to the students’ ca-
pabilities. Assessment is continuous, and there are no major
final exams at the end of secondary school.

Those students which show sufficiently good performance
in primary school and already know that they are headed to-
wards university may attend the so called “Pre-gymnasium”

(2 years), which then leads to the “Gymnasium” (4 years).
Several specialties are available, preparing the students for
university. Assessment is continuous, and there are also ma-
jor examinations at the end, called “Matura”. Succeeding
them gives direct access to any university in Switzerland –
except for medicine, where are numerus clausus takes place.

For those ending their school education at age 16, there
is an excellent way of acquiring well-founded professional
qualifications: an “apprenticeship” is a vocational training
on the job, accompanied by 1-2 days per week at a spe-
cialised professional school. Assessment is continuous and
includes both practical and theoretical evaluations. The final
examinations lead to a nationally recognised diploma, which
is crucial for future employment. About 70% of the adoles-
cents choose this option, which gives them a solid practi-
cal education while already receiving a small salary (which
is a considerable advantage in comparison with those who
are still in full-time school!). In case the young adults with
professional diplomas wish to acquire further qualifications,
they can either attend technical schools or top-up their edu-
cation with 1-2 years of general education which leads to a
“professional Matura” and gives them access to the univer-
sities of applied sciences.

Further information about the educational system in
Switzerland is available on:
http://www.swissworld.org/en/education.

Current state of the Swiss educational system
On the positive side, as mentioned before, the general state
of the educational system in Switzerland is rather good. Al-
ready at primary schools, individual support tutoring is of-
fered to students with special needs, no matter what it is: the
local language, mathematics, reading, writing, keeping their
attention focused, general learning skills, or something else.
In some cities, senior citizens accompany school classes
several days per week and provide support to teachers and
students. Evaluations in most primary schools and some
secondary schools include talks between child, parents and
teacher for the assessment of the child’s performance and
the setting of individual learning targets.

While there are national standards for education, there are
also many individual ways of achieving them, based on the
student’s characteristics, interests and performance. As it
turns out, with this plentitude of possibilities, there really is
a way for everybody to receive suitable education.

On the negative side, many primary school teachers com-
plain about their massive work load, trouble with parents,
too much responsibility, too many diverse objectives to
achieve, and difficulties with the coordination of their stu-
dents very diverse time tables which must include all their
support tutoring and special lessons.

Over the last 2 decades, male teachers have become a rar-
ity at primary schools, whereas at secondary schools, the
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Figure 2: Swiss education system overview

ratio between male and female teachers is still quite equili-
brated. It has not been finally determined what the reasons
for this development are, but it has been suggested that it
may go hand-in-hand with the declining prestige which soci-
ety attributes to primary school teachers. Again, the reasons
are not known, but they may well be related to the previ-
ously mentioned total absence of competition and selection
possibilities.

Another difficulty which people face in the Swiss educa-
tional system are the complications that come with moving
from one canton to another, which is in todays dynamic so-
ciety a rather frequent necessity. The transition from one
canton’s educational system to another does often not go
smoothly. The time when a second language of the coun-
try and English are introduced differs considerably, even
from one city to another. Some insist that English should
be the third language the children learn, and only address it
in secondary school, while others start their “early english
classes” already in the first year of primary school or even
Kindergarden, and before the second language of the coun-
try. Similar inconsistencies exist also in the areas of mathe-
matics or natural sciences.

Interestingly, the B.Sc. which the universities of applied
sciences award do not provide direct access to M.Sc. studies
at academic universities; conversion courses are required.
Similarly, people with a classical Matura do not have direct
access to the universities of applied sciences; practical ex-
perience in industry is necessary. As it is, a B.Sc. from an
academic university is thus not equivalent to a B.Sc. from a
university of applied sciences. These difficulties are one of
the drawbacks of such a diverse system.

Recommendations of the complex systems
approach
Based on the general analysis of the different levels derived
from the complex systems approach to educational systems
as detailed in the fourth section – entitled “Complexity at
different levels” – and the analysis of the Swiss educational
system in the above subsections, the following concrete rec-
ommendations are made:

• Micro-level / local level: The diversity of actions and
measures available for supporting the individual student
already being very high, the system has sufficient com-
plexity for addressing the diversity of needs. However,
the responsibility for the students’s education could be
distributed over a team of teachers and experts, includ-
ing psychologists; Davis and Sumara (2006) also suggest
this. Forming teams would relieve the currently high pres-
sure on individual teachers, and transfer the coordination
of the task from the micro- to the meso-level.

• Meso-level / intermediate level: Some elements of com-
petition and selection may both increase the prestige at-
tributed to the teacher profession (and thus its attractive-
ness for male teachers) and mitigate the critical attitude
of the public towards teachers. A way to introduce com-
petition without drastically changing the school system
would be the have publicly available teacher and school
ratings; maybe a bonus part of the teachers’ salaries could
depend on their rating my students, parents and peers.
Such ratings would need to include both popularity, which
is related to entertainment value and freedom of choice,
as well as the short-/mid-term achievement of academic
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goals and mid-/longer term professional success. More
important changes could be made in later steps.

Where necessary, more support for groups of immigrants
could be offered. Immigrants not only need to learn the
local language but should also familiarise themselves with
the local culture to assure a smooth integration.

• Macro-level / global level: To improve the consistency of
the scholar system, the cantons should finally bring them-
selves to agree on a common school structure. There is no
objectively sensible reason to keep the differences. The
HarmoS project2 aims at this, and about two third of then
cantons have accepted to join, but the other third sadly
refused. Similarly, it is necessary to agree on when to in-
troduce English and the second language of the country;
additional languages are optional and therefore not prob-
lematic.

Related work
The application of the complex systems approach to learning
and education has been pursued by a variety of researchers
mainly over the last two decades. A working group first met
at the NECSI – New England Complex Systems Institute –
in 1999. Kaput et al. (1999) state that their intention was to
apply the complex systems approach to education in content,
teaching, learning, cognition, and the educational system it-
self. They started by asking the plenty of questions; some
answers are given by Bar-Yam (2004).

Lelouche and Morin (1997) emphasise the difference be-
tween three education-related knowledge types: knowledge
about the domain and problem-solving, which are both to be
acquired by the students, and tutoring knowledge, used by
the system to facilitate the students’ learning process. These
three types are modelled at different levels of abstraction, to
shed a uniforming light on the educational system’s opera-
tion and performance.

Vanderstraeten (1997) studies the discrepancy between an
economic perspective on the educational system, which fo-
cuses on manpower-planning / cost-benefit analysis, and a
social perspective, which wishes for an educational system
than satisfies the “voice of the people”. Both perspectives,
however, neglect the fact that education is a composition of
complex circular processes between the educational system
and society. Policy-makers need to take this into account
when designing educational systems.

Davis and Sumara (2010) point out that learning is com-
plex, and education is one of the most complex of human en-
terprises. Most complex systems are also learning systems.
The authors review insights gained by researchers looking
into a holistic and action-oriented complexity. Classrooms
can be described as knowledge-producing networks, rather
than contexts that are centered around a teacher or student.

2Information about HarmoS is available in German and French
on: http://www.edk.ch/dyn/11659.php.

Similarly, curricula should not be seen “in terms of basics
and foundations in discrete disciplines, but rather as nodes,
hubs and links in decentralised networks of human know-
ing”. Also, learning is not so much the achievement of an
individual, but rather something that emerges from the par-
ticipation and implication of others.

In their book, Davis and Sumara (2006) look into the im-
portance of complexity for various aspects of education, in-
cluding learning, teaching and research, and suggest com-
plexity thinking as an appropriate attitude for people in-
volved with education. Among other findings, they conclude
that teams can considerable out-perform the sum of the team
members individual actions. This is a fact which has impli-
cations for the classroom, school boards, associations, com-
munities and societies.

Complexity and education has received an increas-
ing amount of interest over the last few years. A
rich resource about this topic is http://www.
complexityandeducation.ualberta.ca. An
annual international conference has been held since 2003
under the name of the “Complexity science and educational
research conference”, and a corresponding journal is
published under the name of “Complicity: An International
Journal of Complexity and Education”.

Discussion and conclusion
Findings from complexity science can help solve problems
in man-made complex systems, including educational sys-
tems. A key point is to recognise the importance of complex-
ity and scale at different levels, and to adapt the available in-
struments, tools and measures to be taken accordingly. For
instance, a large scale uniform approach is ill-suited to ad-
dress a problem which requires diversity at a smaller scale.
On the other hand, missing standards at the global level can
cause inconsistencies at lower levels and thus lead to unnec-
essary turbulences.

Some may argue that education is merely complicated and
not complex. True, the fact that different people have dif-
ferent learning preferences and abilities is not specifically
a complex systems idea, and is probably better described
as effectively the theory of individual differences from psy-
chology. Teachers and the educational systems must then
compromise to build a system which is reasonably well-
suited for most students and provides society with individu-
als that have the necessary skills and knowledge for society
to function. However, taking the working definition (Frei,
2010) that a complex system is composed of many multi-
laterally interacting individuals, where changes in one place
my have consequences at another place, educational systems
very well qualify as being complex. The question investi-
gated in this paper is wether the complex systems approach
may provide useful hints at how to improve educational sys-
tems, and this has been confirmed so far. Further practical
investigations, however, are certainly indicated.
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In the case of the Swiss educational system, the great di-
versity of tools and intervention possibilities at the micro-
level allow the teachers and school psychologists to find a
suitable approach for every child; responsibility, however,
should be distributed among a team instead of being on one
teacher alone. At a meso-level, groups and associations for
students with similar characteristics and interests would pro-
vide support and incentives for maximising performance,
both for students and teachers. At the macro-level, Switzer-
land has a very diverse system in two senses, with only one
being helpful: the diversity of ways to a profession, includ-
ing vocational education in the form of an“apprenticeship”,
specialised technical schools, universities of applied sci-
ences, and academic universities, is certainly a strength of
the Swiss system and assures the high quality of profession-
als. On the other hand, the differences in the school systems
between the cantons is rather disturbing and hinders people
who move from one canton to another from advancing as
desired, and more nation-wide uniformity at the macro-level
would make sense.

Concrete measures to be taken to improve the educational
system in Switzerland include the shifting of responsibility
from individual teachers towards small teams which may in-
clude psychologists and other experts, and the agreement on
a consistent education system structure across the country.

Generally speaking, for a complex adaptive system to
function and cope with changing conditions and incidents, a
multi-level approach with great diversity at the micro-level,
many choices at the meso-level, and common standards at
the macro-level is recommended.

Once the importance of complexity and scale at differ-
ent levels has been recognised for the educational system,
the next steps include persuading politicians and authorities
in the educational system, which is quite a challenge in it-
self. The human reluctance to change is considerable, es-
pecially since the traditional approach was successful in the
past. However, the world is changing rapidly – among oth-
ers becoming increasingly connected and intertwined – and
thus our approach to teaching must change, too.
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Abstract 
We argue that the phenomenon of life is best understood as a 
process of open-ended becoming and that this potentiality for 
continuous change is expressed over a variety of timescales, in 
particular in the form of metabolism, behavior, development, 
and evolution. We make use of a minimal synthetic approach 
that attempts to model this potentiality of life in terms of 
simpler dissipative structures, using reaction-diffusion systems 
to produce models that exhibit these characteristics. An analysis 
of the models shows that its structures exhibit some instances 
of relevant changes, but we do not consider them open-ended 
enough to be called alive. Still, the models shed light on current 
debates about the origins of life, especially by highlighting the 
potential role of motility in metabolism-first evolution. 

Introduction – The standard view 
In the field of synthetic biology there is a widespread 
optimism that the creation of an entire living cell from scratch 
is imminent (e.g. Zimmer, 2009; Deamer, 2005; Szostak, et al. 
2001). It is hoped that this bio-engineering approach will help 
to resolve one of the outstanding mysteries of science, namely 
the origin of life on earth. The mainstream consensus is that 
the crucial element in the transition from non-living to living 
matter is the appearance of evolution. Many of the researchers 
in the field of artificial life, who are studying the origin of life, 
also share this guiding idea. Their work is thus focused on the 
question of how best to simulate or chemically engineer the 
emergence of self-replicating structures (e.g. Rasmussen, et al. 
2004; Solé, 2009). Within this general direction of research 
we can distinguish two relatively distinct traditions in terms of 
whether they assume the replication of information or the 
replication of metabolism to be the first factor in evolution.  

The information-first (a.k.a. ‘replicator-first’)1 view of life 
claims that there was genetic evolution right at the start of life 
itself. An extreme version of this view is known as the “RNA 
world”, which holds that “the first stage of evolution proceeds 
[…] by RNA molecules performing the catalytic activities 
necessary to assemble themselves from a nucleotide soup” 
(Gilbert, 1986, p. 618). However, it is now recognized that 
this RNA-only view is incomplete, and that the appearance of 
                                                             
1 We call the ‘replicator-first’ tradition ‘information-first’ here in to avoid 
the misleading impression that the ‘metabolism-first’ tradition does not 
involve replication. The core of the dispute is not about replication versus 
emergence as such, but rather about what kind of replication was primary, 
namely informational versus metabolic or compositional.  

Darwinian evolution also requires the compartmentalization 
of replicating nucleic acids to ensure the segregation of 
genomes from one another. The field has therefore turned 
toward the task of incorporating suitable information-carrying 
molecules into the right kind of vesicle in a way that ensures 
the reproduction of both (e.g. Hanzcyc, et al. 2003), and in a 
way that allows for competition and differential success (e.g. 
Chen, et al. 2004). On this updated information-first view, the 
role of metabolism in the origin of the first living cell is at 
most a secondary aspect, and perhaps even completely absent. 
Rather, the essence of life consists of only two components: 
“fundamentally, a cell consists of a genome, which carries 
information, and a membrane, which separates the genome 
from the external environment” (Chen, 2006: 1558). 

The metabolism-first view of life, on the other hand, claims 
that the main driving force at the origin of life was epigenetic 
evolution. A radical version of this view holds that the origin 
of life coincided with the emergence of autocatalytic systems 
(e.g. Kauffman, 1986), and that under certain conditions some 
selective pressures could have already been effective at this 
chemical level (e.g. Fernando and Rowe, 2007; Meléndez-
Hevia, et al. 2008). It has also been claimed that “Darwinian 
competitive exclusion is rooted in the chemical competitive 
exclusion of metabolism” (Morowitz and Smith, 2007: 58), 
and that metabolism has played a bigger role than replication 
in making novelties appear in evolution (Pulselli, et al. 2009). 

Similar to the updated information-first view, many of the 
metabolism-first researchers also argue for the essential role 
of some kind of spatial separation. It is said that autocatalysis 
by itself is not sufficient for life, and that these processes must 
necessarily be part of the constitution of a spatially localized 
individual (Maturana and Varela, 1980). Some researchers 
have gone further in claiming that the network of autocatalytic 
processes must necessarily be enclosed within a bounding 
membrane (e.g. Luisi and Varela, 1989).  

Modeling studies along these lines have tended to assume 
that a physical membrane is essential, because it prevents the 
autocatalytic processes from diffusing into the environment 
(e.g. Bourgine and Stewart, 2004; Varela, et al. 1974), and 
allows the regulation of molecular intake (e.g. Bitbol and 
Luisi, 2004). Research in prebiotic chemistry has shown that it 
is possible to engineer the emergence of membrane-bounded 
micelles that provide the autocatalysis for their own 
replication (e.g. Walde, et al. 1994; Bachmann, et al. 1992; 
see also the model by Ono and Ikegami, 2000). In addition, 
recent models have demonstrated that under some conditions 
the growth and division of membrane-bounded autocatalytic 
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systems can lead to differential replicative success (e.g. Ono, 
2005; Ono, et al. 2008). On this view, which is sometimes 
identified with the “autopoietic” approach (e.g. Maturana and 
Varela, 1980; Varela, et al. 1974), the essence of life consists 
in a membrane-bounded, self-producing system.   

It is important to notice that, although the two mainstream 
traditions may differ in emphasis, they do not hold mutually 
exclusive theories about the essence of life. In fact, they both 
accept the general claim that a biological individual is defined 
by the physical boundary that is imposed by its membrane, 
although they have different primary reasons for doing so (i.e. 
unit of selection versus unit of self-production). And they also 
both accept that life is essentially about stability and survival, 
and that the driving force of instability and biological change 
is primarily located outside of the individual, in the external 
environment and in evolutionary changes. They only disagree 
on the details of this account (i.e. is survival primarily about 
other generation or self re-generation, and is the beginning of 
evolution genetic or epigenetic). In general, the underlying 
assumption of the mainstream view is that the first form of life 
is essentially structurally isolated and behaviorally passive. 

In this paper we will challenge this assumption. We follow 
Virgo (2011) in arguing that dissipative structures whose self-
production is spatiotemporally localized, but not necessarily 
membrane-bound, have much in common with living beings. 
Even very simple examples of these structures are capable of 
motility, adaptive behavior, structural change, and epigenetic 
evolution. Consequently we regard such systems as worthy of 
study in the context of the origins of life.  

Living without doing? An alternative view 
Despite some outstanding disagreements, the two mainstream 
traditions are united by a theoretical view of life that is 
centered on a combination of the spatiotemporal conservation 
of the individual with an evolutionary realization of biological 
change. Accordingly, there are promising attempts to bring 
these two traditions together, such that life is viewed as 
essentially consisting of three distinct and yet functionally 
interrelated components: an informational system, a metabolic 
system, and a compartment (e.g. Rasmussen, et al. 2003; 
Ganti, 1975). And given this convergence of the two main 
traditions, and considering the recent experimental successes 
in realizing this view via synthetic biology, it seems that the 
optimism pervading the field is well founded. The creation of 
all kinds of useful artificial life forms appears to be within our 
grasp, and the final mysteries of the origin and evolution of 
life on earth seem tantalizingly close to being resolved. 

However, the confident promises of synthetic biology will 
sound all too familiar to those of us who know the history of 
synthetic psychology – an approach better known as artificial 
intelligence. Indeed, around half a century ago there was a 
similar optimism prevalent in the scientific community that 
the creation of artificial minds and conscious robots was just 
around the corner. The driving force of that optimism, which 
in hindsight looks hopelessly naïve and deeply misguided, 
was a digital-information-centered science of the mind that 
resonated with advances in engineering and technology.  

Today the view that cognitive science can be reduced to 
computer science is no longer in fashion, although the 
alternative still remains to be properly worked out (Froese 
2010). How ironic it is, then, that at the moment in which 

cognitive science is undergoing a major theoretical makeover, 
namely toward a view of the mind as essentially embodied, 
embedded, and enactive (e.g. Gallagher 2005; Clark 2008; 
Thompson 2007), the science of life is at the same time 
extoling the virtues of trying to reduce the complexities of 
cellular biology to the abstract linearity of “logic circuits” 
(Nurse 2008) and “computer programming” (Balazs & 
Epstein 2009). History, it seems, is repeating itself. 

But the purported reduction of life to logic is not as 
straightforward as the recent advances in biotechnology may 
seem to indicate. In particular, we note that, in a crucial sense, 
the life of the individual organism is completely absent from 
the mainstream framework outlined above. On the one hand 
we have structural self-maintenance, and on other hand we 
have informational self-replication. However, we know the 
former from the general class of dissipative structures, and the 
latter from the case of viruses – and neither of these two 
phenomena is typically considered as being alive. What they 
are missing is the autonomous expression of goal-directed 
behavior at the level of the individual, namely forms of 
translational movement and transformational change, which 
can be studied in terms of ethology and ontogeny. 

We propose that all of these aspects of life, i.e. metabolism, 
behavior, development, and evolution, are integrated into one 
coherent process of open-ended becoming. On this view, the 
possibility of distinguishing between these different aspects is 
simply due to the fact that the process of living is expressed in 
terms of activities on a variety of timescales. All known forms 
of life are embedded within four broad categories of change: 

Metabolism: the events on this timescale are taking place 
continuously in the chemical domain. They are foundational 
in that they realize the concrete, spatiotemporally localized, 
existence of the individual living being in an autonomous 
manner via self-production (Barandiaran and Moreno, 2008).  

Behavior: the events on this timescale are unfolding in the 
relational domain of the individual-environment interaction in 
a moment-to-moment manner. The relational changes can be 
more or less tightly coupled to metabolic changes (Egbert, et 
al. 2010), but they are a non-reducible emergent property of 
the interaction that cannot be conceptualized non-relationally. 

Development: events on this timescale make an individual 
become a structurally qualitatively different kind of individual 
within its lifetime. Examples are learning and morphogenesis. 

Evolution: structurally qualitative changes in the historical 
lineage of generations of individuals take place on even larger 
timescales. Examples are genetic, compositional genetic, and 
epigenetic forms of evolution that are shaped by natural 
selection, sexual selection, and/or natural drift.  

Of course, the differentiation of the changes exhibited by 
living beings into these four distinct timescales should not be 
misunderstood in any absolute sense. Our starting point is to 
treat life as a unified phenomenon, and these distinctions do 
not reflect strict boundaries between the distinct timescales of 
becoming. While each of these timescales can be addressed in 
relative isolation, as demonstrated by their respective fields of 
scientific study: molecular biology, ethology, developmental 
biology, and evolutionary biology, a complete understanding 
of life must be able to show how these different aspects are 
expressions of one and the same unified phenomenon. They 
are mutually interdependent and yet non-reducible. 

251ECAL 2011



We suggest that one way of approaching this issue is by 
introducing the intermediate timescales, namely behavior and 
development, into the current debates surrounding the origin 
of life. We need to consider that the living ‘self’ referred to by 
the notions of self-maintenance and self-replication is a center 
of activity, i.e. an agent (Ruiz-Mirazo, et al. 2010). And at the 
same time this additional complexity requires a model that is 
simple enough so that it can still be understood in a complete 
manner. To be sure, it may be that the most minimal form of 
life that satisfies our timescale criteria would actually have to 
be a membrane-bound single-celled organism that is already 
capable of information-based genetic evolution by means of 
natural selection. This is, of course, the hope that is harbored 
by those in synthetic biology who are trying to create life by 
combining bounded self-maintenance with self-replication.  

On the other hand, we know from work in artificial life that 
some life-like behaviors can already be found in protocells 
and prebiotic chemistry. For instance, it has been shown that 
metabolic self-production can easily lead to movement as well 
as adaptive gradient following, i.e. chemotaxis, in minimal 
models of protocells (e.g. Suzuki and Ikegami, 2009; Egbert, 
et al. 2010). Similarly, it has been demonstrated that some of 
the chemicals typically favored for the synthesis of artificial 
cells can spontaneously form oil droplets that exhibit self-
sustained motility and a type of chemotaxis (e.g. Hanczyc, et 
al. 2007; Toyota, et al. 2009). It is in this context that there 
have been calls for the establishment of a new field of study, 
variously labeled as “homeodynamics” (Ikegami and Suzuki, 
2008), “chemo-ethology” (Egbert and Di Paolo, 2009), and 
“chemical cognition” (Hanczyc and Ikegami, 2010). In what 
follows we make a novel contribution to this endeavor. 

The primacy of movement 
Let us conclude this introduction by outlining our motivation 
for the rest of this paper. It has been argued that the ‘RNA 
world’ hypothesis faces considerable difficulties when 
confronted with the constraints of prebiotic Earth (Shapiro, 
2000). One promising response is to reject the requirement of 
a digital genetic system for open-ended evolution, and to relax 
the distinction between genotype and phenotype. It is possible 
that these two features may not have been present at the origin 
of life, but developed in later stages. We therefore assume that 
a primordial protocell’s chemical mixture itself can serve as a 
kind of “compositional genome” (Segré, et al. 2000), which 
remains relatively well preserved during protocell division; or 
alternatively that heredity can be achieved through multiple 
attractors in the autocatalytic reaction network's dynamics, as 
in the model of Fernando and Rowe (2007).  

We could also assume the existence of a self-organizing 
membrane structure to protect the consistency of the chemical 
mixture from adverse environmental influences, e.g. a lipid 
vesicle (Luisi, et al. 1999). This is the main alternative “Lipid 
world” scenario of the origin of life (Segré, et al. 2001). 
However, through this additional step the scenario inherits the 
major underlying assumptions of the standard view, namely 
that the origin of life gave rise to an essentially structurally 
isolated and behaviorally passive entity. The living individual 
is enclosed in an interactionally inert compartment. And yet 
all life as we know it today is an active process of organism-
environment interaction and its adaptive regulation (Di Paolo, 
2009), and the membrane of cellular organisms is an active 

interface in this process (Hanczyc and Ikegami, 2010). It is 
precisely by means of this active self-other interface that a cell 
regulates its metabolism and behavior through chemical and 
sensorimotor coupling (Bitbol and Luisi, 2004).  

This dilemma leaves us with two possibilities: either we 
continue to assume that life began enclosed in a compartment 
and try to explain how this boundary later developed an active 
role, or we relax the traditional requirement of a compartment 
as the first step in biological organization (Tanford, 1978). It 
may seem that only a structural compartment can ensure the 
individuality of a protocell as an entity that is distinct from its 
environment, but this is not always the case. This assumption 
confuses the organizational limits of the organism with its 
spatial boundaries (Virgo, et al. 2011). It is possible that 
chemical gradients are sufficient for the self-maintenance of a 
coherent systemic identity, as we will argue below.  

While it is true that such a flexible ‘boundary’ makes it 
more challenging to survive in unfavorable environmental 
conditions, it is also the case that some adverse effects of the 
environment can be mitigated by rapid multiplication and, 
especially, by motility and directed exploration – a possibility 
that has not yet been sufficiently considered by the standard 
view. Here we see the importance of distinguishing between 
different timescales. In other words, in evolutionary terms it 
does not matter if these individuals are more prone to die from 
environmental events, as long as they can replicate and move 
to different areas quickly enough. The whole population must 
be sufficiently distributed in space such that some of them 
always remain alive. It is therefore conceivable that at the 
origin of life a capacity for adaptive self-motility came before 
the development of a more solid self-boundary. The model 
described in the next section is intended as a minimal proof of 
concept of this possibility. 

Toward a Minimal Model of Life 
One of us (Virgo, 2011) has argued that many of the 
properties of living organisms are shared by simple dissipative 
structures of the kind that form in reaction-diffusion systems. 
Prigogine (1955) coined the phrase “dissipative structure” to 
denote a structure within a physical system that is actively 
maintained by a flow of energy and/or matter, rather than 
being an inert structure that is merely resistant to decay. 
Prigogine observed that living organisms are dissipative 
structures in this sense; however there are many other 
examples.  

Given what has been argued above, a suitable starting point 
for our model would be a self-sustaining chemical processes 
that is a spatiotemporally coherent individual, and yet is non-
compartmentalized. These criteria are met by a special class 
of dissipative structures, which Virgo (2011, Chap. 5) has 
called precarious, individuated dissipative structures. In 
addition to being dissipative structures, organisms have the 
properties of being precarious, in the sense that if their 
structure is sufficiently disrupted it will stop being maintained 
(i.e. death); and individuated, in the sense that organisms are 
spatially localized, and this localization is a result of the 
dissipative processes that make up the organism, rather than 
being imposed from outside (see also Di Paolo, 2009).  

Virgo points out that certain other dissipative structures 
share these properties with living organisms. One non-living 
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example of this type is a hurricane (McGregor and Virgo, 
2009). It is dissipative in that it ‘feeds’ off a temperature 
gradient between the sea surface in the upper atmosphere; it is 
precarious in that if an important component is removed it can 
blow out (as will eventually occur if it passes over land); and 
it is individuated in that it is the cause of its own spatial 
localization. Not all dissipative structures are precarious or 
individuated, and not all precarious, individuated dissipative 
structures share all properties of living systems. Nevertheless, 
as Virgo argues, studying such structures provides a useful 
methodology for modeling some of life’s basic properties. 

A simple and easy-to-study system that exhibits precarious, 
individuated dissipative structures is the Gray-Scott reaction-
diffusion system, which was first studied in a two-dimensional 
context by Pearson (1993). This is a simple model of chemical 
reactions taking place on a surface. The reaction modeled is a 
simple autocatalytic one, A + 2B → 3B, meaning that when 
two molecules of B collide with one of A, they react to 
produce a third molecule of B. A second reaction, B → P , 
represents the decay of the autocatalyst into an inert product 
that leaves the system. The molecules A and B have a separate 
concentration at each point on a 2-D surface, represented by a 
and b (the concentration of P is not modeled). In addition, the 
‘food’ molecule B is fed into every point at a rate proportional 
to 1-a. This can be thought of as due to the surface being 
immersed in a solution of A at a constant concentration of 1. 

Finally, in addition to reacting and being added to the 
system, the two chemical species can diffuse across the 
surface.  Overall this gives rise to the equations 

where a and b are functions of space as well as time, r and k 
are parameters determined by the rates of the two reactions 
and the feed process (the rate of the autocatalytic reaction has 
been set to 1 without loss of generality), and DA and DB are 
the rates at which the species diffuse across the surface. These 
equations can be solved numerically using a method that is 
akin to a cellular automaton, except that each cell contains a 
continually variable amount of the two chemical species. 

Pearson observed that, depending on the choice of initial 
parameters, this system can form a variety of patterns, some 
of which are shown in Figure 1. Of particular interest are the 
spot patterns in Figure 1(f) and 1(g), since the spots have the 
properties of being individuated and precarious (Virgo 2011). 

Finally, we know that many kinds of dissipative structures 
that are formed by reaction-diffusion systems are also capable 
of sustained movement and even replication. This kind of self-
organized motility has been investigated experimentally (e.g. 
Lee and Swinney, 1995; Lee, et al. 1993; 1994) and modeled 
mathematically (e.g. Varea, et al. 2007; Krischer and 
Mikhailov, 1994; Pearson 1993). The dynamics of replicating 
reaction-diffusion patterns have also been studied (e.g. 
Reynolds, et al. 1994; 1997). In the dissipative structures of 
the Gray-Scott model we find cases of motility and replication 
as well, and this includes some kinds of spots. We thus have 
all the basic requirements to begin our investigation of these 
spots as a potential minimal model of life as a form of open-

ended becoming, as it is expressed on the four timescales of 
metabolism, behavior, development, and evolution. 

Metabolism 
A reaction-diffusion spot can spontaneously emerge under 
appropriate conditions, and once it exists, it can self-maintain 
its precarious existence by means of a continuous turnover of 
chemical reactions. As a self-producing network of chemical 
processes it satisfies the requirements of the first timescale. It 
also provides the reference point of a spatiotemporal entity 
against which changes on other timescales can be measured. 

It is interesting to note in this regard that the spatiotemporal 
boundaries of a spot are intrinsically fuzzy. It is just as 
impossible to pinpoint the precise moment in time when the 
spot begins or ceases to exist, as the precise point in space 
where the spot ends and the environment begins. This is 
because the spot is a self-organizing phenomenon that is both 
continuous in time (temporal ambiguity) and continuous in 
space (spatial ambiguity). Nevertheless, an intuitive grasp of 
what constitutes an individual spot is possible; we either see 
an individual spot on the surface or we do not. 

Once an individual spot has spontaneously formed, it will 
continue to exist even when it encounters a limited range of 
conditions that would not have enabled its original emergence. 
The fact that spots can exist outside of their original range of 
emergence is an indication that they are actively re-producing 
the viability conditions required for their existence, which can 
be considered as a strong criterion for autopoietic autonomy 

∂a

∂t
= DA∇2a− ab2 + r(1− a); (1)

∂b

∂t
= DB∇2b + ab2 − kb, (2)

Figure 1. Examples showing the range of patterns exhibited 
by the Gray-Scott reaction-diffusion system with various 
parameters (DA = 2× 10−5 and DB = 10−5 in each). The 
integration method and initial conditions are similar to those 
used by Pearson (1993). Patterns are chosen as exemplars of 
various phenomena; see Pearson (1993) for a more systematic 
classification. (a) A spiral pattern; (b) A chaotic pattern of 
travelling waves; (c) A line pattern. Lines grow at the ends 
and then bend to fill space in a process reminiscent of a river 
meandering; (d) A labyrinth pattern; (e) A hole pattern; (f) A 
pattern of unstable spots, whose population is maintained by a 
balance between reproduction and natural disintegration; (g) 
A stable spot pattern. Spots reproduce to fill the space and 
then slowly migrate into the more-or-less organized pattern 
shown (with a different choice of parameters, spots can be 
produced that are stable but cannot reproduce). 
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(Froese and Stewart, 2010). It is no different in the case of 
living beings: although they must have first emerged when the 
environmental conditions were right, they must now actively 
produce their own conditions of existence in order to persist.  

Behavior 
We define the concept of behavior broadly as any change in 
the individual-environment relationship, which is induced by 
an instability or tension in that relationship. A behavior ceases 
when that tension is resolved or transformed into a different 
kind of tension, which elicits a different kind of behavior. In 
this paper we take the view that all behavior is characterized 
by an essential asymmetry centered on the individual 
(Barandiaran, et al. 2009). The tension that triggers a behavior 
may originate in the environment, but the fact that there is a 
response at all is an achievement of the self-constitution of the 
individual. In this sense their behavior is intrinsically active.  

The term ‘behavior’ covers a huge variety of changes in all 
kinds of entity-environment relations, so some distinctions are 
in order. One important distinction in biology and psychology 
is between reactive behavior, namely behavior that is 
triggered by events in the environment, and active, or intrinsic 
behavior, namely behavior that is initiated by the individual. 
Again, the distinction is not an absolute one since, on the one 
hand, all biological systems have internal state and their 
reactive behavior is therefore always also a function of their 
history, and, on the other hand, the expression of active 
behavior always takes place in the context of environmental 
events. Nevertheless, a behavior can be more or less driven by 
autonomous and environmental conditions. Let us consider 
these two kinds of behaviors in the case of the spots. 

Reactive behavior. The spots exhibit a clear type of reactive 
behavior with respect to differences in chemical gradients in 
their surroundings. We can describe this behavior in terms of 
approach and avoidance: the spots are capable of following 
chemical gradients that increase the concentration of their 
constituents, i.e. chemotaxis, and they are also capable of 
avoiding chemical gradients that decrease the concentration of 
their constituents. For example, when we remove constituents 
from nearby a spot by using a virtual pipette, the spot will 
tend to move away from the pipette. In this way it is possible 
to chase spots around the surface. If the pipette is too fast and 
gets too close to a spot, it destabilizes the spot in such a way 
that it is no longer sustainable and dies.  

If there are several spots in the environment, then these 
approach and avoidance behaviors will make them interact in 
certain ways. This is because a spot consumes the food in its 
proximity, thereby surrounding itself with a negative gradient 
that keeps other spots away. If the spots did not tend to move 
away from one another then they would merge rather than 
remaining separate; these approach and avoidance behaviors 
therefore form an important part of the individuation process.  

Note that although these behaviors are reactive in the sense 
that they do not occur except in the presence of an appropriate 
environmental trigger, they are the result of an active growth 
process. The spot moves because the autocatalyst grows faster 
on the side where the food concentration is higher. This 
behavior could thus be said to be reactive in the behavioral 
domain, but active in the metabolic domain. In order for the 
spot to move even in the absence of environmental triggers it 

must create its own instabilities. Of course, the whole spot is 
already in a far-from-equilibrium state, but what is needed is 
an asymmetrical distribution in the general field of individual-
environment relationships (Matsuno, et al. 2007). 

 
Intrinsic behavior. One way of achieving active motion is by 
modifying the original Gray-Scott reaction-diffusion system 
by introducing a second autocatalyst to the system, which 
feeds not on the ‘food’ molecule but on the other autocatalyst 
(see Virgo, 2011). That is, the reactions B + 2C → 3C and 
C → P  are added to the system, so that Equations 1 and 2 are 
extended to Equations 4-6, where DC  is the rate of diffusion 
of C, and k1, k2 and k3 are the rate constants for the reactions  
B → P , B + 2C → 3C  and C → P , respectively. 

With an appropriate choice of parameters, the effect of 
this is to produce spots of the primary autocatalyst, which are 
accompanied by a region of the secondary autocatalyst. Since 
the secondary autocatalyst feeds on the primary one, the spot 
of primary autocatalyst tends to avoid it by moving away, 
while the secondary spot follows. This gives the secondary 
autocatalyst the appearance of being attached as a ‘tail’ behind 
the primary spot (see Figure 2.) The spot-tail system as a 
whole moves around spontaneously even in a homogeneous 

∂a

∂t
= DA∇2a− ab2 + r(1− a); (4)

∂b

∂t
= DB∇2b + ab2 − k1b− k2bc

2; (5)

∂a

∂t
= DC∇2c + k2bc

2 − k3c, (6)

Figure 2. Two snapshots of the system resulting from 
Equations (4)-(6), integrated on a surface of 2 by 2 units, with 
the parameters DA = 2× 10−5, DB = 10−5, DC = 10−6,             
r = 0.0347, k1 = 0.2, k2 =0.8 and k3 = 0.005. The colors are 
adjusted so that the secondary autocatalyst C appears as a 
darker shade of gray than the primary autocatalyst B.  A group 
of spots with tails can be seen on the mid-left side of plot (a), 
and after duplication in plot (b) in the same place. Some tail-
less spots can be seen as well, their tails having been lost in 
the process (hence, this is limited heredity with variation). 
The spots with tails move constantly in the direction facing 
away from their tails at a rate of approximately 4× 10−4 
distance units per time unit, which results in their colonizing 
the empty part of space more rapidly than the tail-less spots. 
However, with this choice of parameters, the tailed spots 
cannot invade areas occupied by tail-less spots, and they are 
eventually crowded out and become extinct. 
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environment. In the sense that this motility depends on the 
internal constitution of the whole spot-tail system itself, we 
can characterize it as intrinsic rather than as reactive.  

Although this spot-tail system is not strictly speaking an 
autocatalytic “hypercycle” (Eigen 1971), because the catalytic 
dependency is not mutual, it nevertheless can be considered as 
symbiotic to some extent (see Lee, et al. 1997). While the tail 
is somewhat parasitic on the primary spot (since it contributes 
nothing to it metabolically), their jointly induced movements 
can be adaptive in some environments. Thus, in contrast to the 
standard view that parasitic reactions are a significant problem 
for the metabolism-first approach because of their detrimental 
metabolic effects (and hence, the necessity of a compartment, 
see Takeuchi and Hogeweg, 2009), we argue that this is not 
always the case. With certain parameter settings, the spot-tail 
systems can reproduce more rapidly than spots without tails, 
and their movement also tends to make them colonize new 
areas more rapidly. This highlights once more the importance 
of distinguishing between different timescales: what may be 
detrimental on the metabolic timescale (parasitic reaction), 
can induce changes on the behavioral timescale (exploratory 
behavior), which are adaptive on the evolutionary timescale. 
Figure 3 shows an example of a scenario where over longer 
timescales spots with tails are better adapted than tail-less 
spots. The parasite-enabled exploratory behavior helps to 
prevent the occasional localized extinction events from killing 
the population. We will return to this finding later. 

Development 
We conceive of the notion of development in a broad way so 
as to include any structural changes induced by the organism, 
which turn it into a qualitatively different kind of being in its 
own lifetime. These structural changes can include (in order 
of increasing temporal scale) growth, habituation, learning, 
adaptation, and ontogeny. Not all forms of life will exhibit all 
of these variations of becoming to the same extent, but all will 
display some capacity for developmental change.  

We find lifetime dependent structural changes in the case of 
the spots as well. These changes typically proceed via the 
incorporation of external elements rather than the internal 
differentiation that is familiar from modern cells, but we can 
perhaps still think of this as a kind of proto-development. The 
emergence of spot-tail systems that was described above is 
one example. Virgo (2011) also observed a second, related 
kind of process in a reaction-diffusion system (with a different 
set of equations), whereby two nearby spots consisting of 
mutually complementary catalytic reactions join together to 
form a multi-spot system, thus forming a proper hypercycle 
(Eigen, 1971). In some respects, development can be seen in 
single spots as well. When they exhibit directional movement, 
they do it because they grow toward the increasing gradient, 
and die back on the other side. They are like plants in that 
growth and behavior are not always readily separable.  

Evolution 
We have already observed that there is a heritable difference 
between a spot with a tail and a spot without tail (see Figure 
2). However they are clearly lacking a digital genetic system 
with which to encode these differences. In our analysis of the 
evolutionary capacity of the reaction-diffusion systems we 

therefore focus only on the possibilities of epigenetic 
evolution and of evolution with a compositional genome. 

 
Epigenetic evolution. It is well known that one of the main 
epigenetic factors of inheritance is the particular time-space 
configuration in which an individual is born. A famous case is 
the beaver's dam, which, once constructed, provides a home 
for subsequent generations. This kind of inheritance can also 
occur in the case of reaction-diffusion spots. For instance, the 
offspring of those spots, which happened to divide because of 
a high concentration of nutrients, will also find themselves in 
a situation with high concentration of nutrients.  
 
Composition-genomic evolution. We have noted above that 
the chemical composition of spot can be considered as both its 
phenotype and genotype combined. The idea is that this kind 
of ‘compositional genome’ could have enabled protocellular 
evolution by means of natural selection even in the absence of 
a digital information-carrying component such as RNA and 
DNA (Segre and Lancet 2000). For instance, Virgo (2011) has 
observed spots undergoing a Lamarckian form of evolution, 
whereby traits that have been acquired during an individual's 
lifetime are passed along to the offspring. This is the case for 
spots with tails. Once a spot has acquired a tail (perhaps by 
passing near to another tailed spot), it will divide in a way that 
typically results in offspring that have tails. 

We also find a difference in selective pressure since in 
some environments the spots with tails are more viable than 
the single spots on their own (see Figure 3). This is because 
their combination results in an internal instability that makes 
the spot system move around even in the absence of chemical 
gradients, and they are thereby able to minimize the impact of 
catastrophic events. Greater spatial distribution lessens overall 
risk to the population. In this scenario the original single-spot 
constituents may therefore die out eventually, while the spot-
tail variant persists. Here we therefore have all the elements of 
evolution as it is standardly conceived, namely reproduction, 
variance, and selection, but with limited rather than unlimited 
heredity (sensu Szathmary and Maynard Smith, 1997). 

Figure 3. A snapshot from the same system shown in Figure 
2, with the same parameters, except that randomly chosen 
areas in the right-hand side of the surface are occasionally 
cleared by an externally induced cataclysm (e.g. the food 
concentration in a random 0.5-by-0.5 area is set to zero every 
1000 time units). The spots with tails are able to persist in 
this region due to their ability to colonize the cleared areas 
more rapidly than the spots without tails. But in the left-hand 
side of the figure they are out-competed. 
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Discussion 
The model has served as a proof of concept that even simple 
reaction-diffusion spots can exhibit many essential life-like 
characteristics, where life is conceived as a process of open-
ended becoming. We have focused on the importance of self-
organized motility and behavior in the context of current 
debates on the origin of life. In this discussion we would like 
to draw attention to the shortcomings of the current model, 
and to consider possible ways of overcoming them.  

The spots satisfied the basic requirements of metabolism 
(self-creation) and movement (self-motility). In fact, they are 
even capable of adaptive behavior that resembles the foraging 
behavior of actual bacteria (nutrient gradient following). The 
spots are also capable of some proto-development through the 
incorporation of new external elements, and these lifetime 
changes are inheritable over generations. Taken together these 
findings suggest that the spots meet the criteria of undergoing 
changes within the four major timescales characteristic of life, 
namely metabolism, behavior, development, and evolution. 

But are these spots a model of the phenomenon of life? We 
characterized life as an open-ended process of becoming, and 
it is precisely in relation to open-endedness that the limitations 
of the model are most apparent. How far can this approach be 
scaled up? Are compositional genomes capable of “unlimited 
heredity” (Szathmary and Maynard Smith, 1997) as suggested 
by the work of Segre and Lancet? Is it possible to set up the 
environmental conditions such that a more complex network 
of dissipative structures emerges? By which mechanism could 
such a network learn? How could it reproduce itself?  

One issue that would need to be tackled in future models of 
this kind is how to introduce the possibility of solidity. In the 
current model the spots are fully transparent to environmental 
interactions, although chemical gradients may constitute some 
boundaries. This extreme openness effectively turns the whole 
spot into an interface with its environment. In order to enable 
a more open-ended increase of complexity it may eventually 
become necessary for the system to localize these interfaces at 
its spatial boundaries. Some researchers have argued that 
internal differentiation between the constitutive elements that 
are responsible for self-creation and those that are needed for 
interaction is a first step toward more behavioral autonomy 
(Barandiaran and Moreno, 2008). Internal differentiation may 
enable further specialization of these elements, since they no 
longer need to do both tasks at the same time.  

Relatedly, it is possible that at some point a differentiation 
between phenotype and genotype may become necessary in 
order for further evolutionary transformations to become a 
stable possibility. And even during the organism’s lifetime the 
internal mediation between phenotype and genotype entails a 
certain lack of self-coincidence in the being of the organism 
that could facilitate open-ended becoming. The organism's 
being is then no longer simply a product of its own doing, as it 
is in the case of the spots, but also of its own genetic self-
interpretation. This is because the same DNA can give rise to 
different expressions in the context of a different phenotype. It 
is of general interest to further determine to what extent DNA 
is necessary for the phenomenon of life. One way to address 
this issue, and which we have pursued in this paper, is to see 
how far it is possible to get without DNA or any other genetic 
system. By following this approach some constraints may 

become apparent for which a dedicated digital genetic system 
is an essential part of the solution.  

Conclusion 
We have argued that the phenomenon of life is a process of 
open-ended becoming, and that contemporary debates about 
the origins of life should take the role of self-organized 
motility and behavior into account. We revisited Virgo’s 
(2011) arguments concerning simple dissipative structures in 
reaction-diffusion systems from this theoretical perspective, 
and discussed the potential of some of these structures as a 
minimal model of life. We conclude that the current model is 
able to partially satisfy the proposed view by exhibiting some 
changes on the temporal scales of metabolism, behavior, 
development, and evolution. The model also demonstrated the 
importance of distinguishing between the organizational limits 
of the organism and its spatial boundaries, as well as between 
its various timescales. Future work should try to determine to 
what extent this approach is able to scale up to more complex 
phenomena, including individuals that have the potential for a 
greater variety of becoming. 
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Abstract

Cross-feeding interactions are a common feature of many mi-
crobial systems, such as colonies of E. coli grown on a single
limiting resource. We have studied this phenomenon in Ger-
lee and Lundh (2010) from an abstract point of view by con-
sidering artificial organisms which metabolise binary strings
from a shared environment. The organisms are represented as
simple cellular automaton rules and the analog of energy in
the system is an approximation of the Shannon entropy of the
binary strings. Only organisms which increase the entropy of
the transformed strings are allowed to replicate. This system
exhibits a large degree of species diversity, which increases
when the flow of binary strings into the system is reduced.

Introduction
The origin of biodiversity has been a long standing problem
in ecology and the evolution and maintenance of diversity
was long difficult to account for, especially in the light of
the proposed competitive exclusion principle which states
that several species competing for the same resources can-
not co-exist. Related to these issues is the question of how
species diversity influences ecosystem productivity (Waide
et al., 1999). Several experiments and theoretical models
have been devised to resolve this issue, but many of the re-
sults have been inconclusive and even contradictory.

One of the simplest ecological system where diversity
emerges, and is stably maintained, is in populations of E.
coli growing in a homogeneous environment limited by a
single resource, usually glucose. The diversity is facilitated
by cross-feeding (syntrophy), where one strain partially de-
grades the limiting resource into a secondary metabolite
which is then utilised by a second strain. This phenomenon
was first observed by Helling et al. (1987).

In Gerlee and Lundh (2010), we present a more general
model of the evolution of cross-feeding, which is not aimed
at modelling a specific biological system, but rather extracts
and models the general principles governing systems where
cross-feeding might emerge. In order do this, we have de-
vised a novel Artificial Life system, named Urdar1 in which

1Urdarbrunnr is one of the three wells that lie beneath the world
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Figure 1: A schematic view of the model. The agents a
in the model digest binary strings r by applying CA-rules,
transforming r to r′. To each such metabolic step we can
associate a difference in energy ∆E (visualised with dot-
ted lines). The reproduction of each agent depends on how
much it can decrease the energy of the binary string and oc-
curs with probability P (∆E) (represented by the arrows on
the left hand side). The binary strings exist in a common
pool which they enter (and leave) at a rate γ, as shown by
the arrows on the right hand side.

the fitness of an organisms is defined in a more general sense
and where interactions between organisms are at the core of
the model. The fitness of the organisms in this model is
directly related to their ability to extract energy from a com-
mon environment, and is thus closely connected to the fun-
damental concept of energy which drives many ecological
interactions.
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Figure 2: The Shannon diversity index of the species distri-
bution as a function of the flow rate γ. Each data point was
averaged over 20 simulations and the error bars represent
one standard deviation.

The Model
In order give a short description2 let us give its main fea-
tures. The dynamics, depicted schematically in figure 1,
during one update can be described in the following way:

1. Each agent in the population picks randomly a resource
string rj from the resource poolR and transform it accord-
ingly to its CA-rule and then puts the transformed string
back into the resource pool.

2. The efficiency of the “metabolic process” just occurred
is evaluated by measuring the energy difference ∆E of
the string before and after the ”digestion/transformation”.
This is done by drawing a random number x uniformly
between 0 and 1, and ifP (∆E) > x the agent reproduces,
replacing a randomly picked agent with a copy of itself.

3. With probability µ the offspring will be mutated uni-
formly to another CA-rule.

4. In order to keep energy flowing into the system, after all
agents have been updated, a fraction γ of the strings are
replaced with high energy binary strings.

Results
The main result indicates that the diversity increases as the
resource level in the system drops, and this trend was in-
vestigated systematically by measuring the time average of
the Shannon index shown in figure 2 and reveals that the di-
versity is a decreasing function of the flow and exhibits an
approximately linear decrease with the flow rate γ, except
for a saturation for high values of γ.

We have also studied the total population’s productivity.
See figure 3. A still open question for future studies is how

tree Yggdrasil in Norse mythology. The name means well of fate.
2An online version of the platform is available at:

http://www.math.chalmers.se/˜torbjrn/Urdar/
urdar.html
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Figure 3: Three different measures related to productivity in
the system. (a) shows the reproduction rate ρ, i.e. the num-
ber of divisions per update which corresponds to biomass
growth, (b) shows the energy uptake rate E , i,e. the energy
difference between outflow and inflow, and (d) shows the
efficiency of the energy uptake η.

good these population-productivity is compared to the op-
timal productivity, i.e. how good is the through evolution
obtained population with respect to the total energy extrac-
tion.

References
Gerlee, P. and Lundh, T. (2010). Productivity and diversity in a

cross-feeding population of artificial organisms. Evolution,
64:2716–30.

Helling, R. B., Vargas, C. N., and Adams, J. (1987). Evolution
of escherichia coli during growth in a constant environment.
Genetics, 116:349–358.

Waide, R., Willig, M., Steiner, C., G., M., Gough, L., Dodson,
S., Juday, G., and Parmenter, R. (1999). The relationship
between productivity and species richness. Annu. Rev. Ecol.
Syst., 30:257–300.

259ECAL 2011



 

 

On Computations and Strategies for Real and Artificial Systems 

Amr S. Ghoneim1, Daryl L. Essam1 and Hussein A. Abbass1 

1

University of New South Wales at the Australian Defence Force Academy (UNSW@ADFA)  
 School of Engineering and Information Technology (SEIT)  

Canberra ACT 2600 Australia 
h.abbass@adfa.edu.au 

 
 

Abstract 
A challenge in reproducing life is to reproduce cognition. We 
propose a methodology by which human actions are analyzed in 
a real-setting and are then used to evolve artificial neural 
networks capable of reproducing these actions. It is also 
demonstrated that analyzing human actions can be used for 
skill-assessment, where we introduce a model for in-silico 
computational psychology to assess skills and competency of 
human plays. The same methodologies can be used by coaches 
and mentors to diagnose skills for their players and juniors in 
an attempt to improve their abilities. Results demonstrate 
interesting patterns in the way expert players develop their 
skills overtime and that it is possible to reproduce these skills 
in an artificial context. 

Introduction 
Establishing a methodology to analyze human actions has a 
wide spectrum of applications for ALife research. 
Understanding how human develop their expertise overtime 
can shed more light in the black-box of human intelligence. In 
this paper, we look at the dynamics of learning in real human, 
how skills develop and how the trajectory of skill-
development for a human playing a complex game can be 
assessed. We use these findings to guide the evolution of 
artificial neural networks to play similarly to the human.  

In an early paper in the ALife field, Stewart (1992) argued 
that life is cognition, that our knowledge and the way we 
make decisions are particularly crucial determinants for how 
we evolved. As was put by Varela (1995): 

Yet when it comes to a re-understanding of knowledge 
and cognition I find that the best expression to the use 
for our tradition is abstract: Nothing characterizes better 
the units of knowledge that are deemed most natural. 

Many studies focused on understanding the dynamics of 
learning and evolution (Floreano and Urzelai, 1998). In this 
paper, we analyze learning based on real human and map it to 
an artificial model.  

In this paper, we consider the game of GO as an example 
where a human player needs to start from the lowest skill 
level, working his/her way up to establish themselves as 
advanced players. We needed to select a gaming environment 
in general and the game of GO in particular as our test 
platform for a number of reasons. The beauty of GO lies in 
the fact that: it has simple rules but large and complex search 

space. First, we need an unambiguous scoring or ranking 
scheme. In the game of GO, this is readily available known as 
the system of kyu and dan ranks. Second, computer games 
offer a low-risk environment for prototyping artificial 
learning. Third, online game engines are easy and cheap 
sources of large amount of data. Fourth, a game such as GO is 
complex in its strategies, where it relies on human ability to 
capture spatial patterns and connect information and patterns 
across the whole board, an important characteristic when we 
design artificial games or game-theoretic models on networks. 
The methodology is too generic that it can be applied to both 
real and artificial spatial game playing. 

We structure the rest of the paper in three main sections. 
First, we present a tiny coverage of the literature related to this 
paper, taking into consideration that space constraints forced 
us to remove many references. Second, we present the 
methodology and analysis using real-human players. Third, 
we use this analysis to evolve artificial neural networks to 
reproduce similar behaviours. Finally, conclusions are drawn. 

Background Material 

Skills and Competency 
The term skills refer to the learned capacities, whether general 
or domain-specific, that would be crucial/useful to perform a 
particular job (Bassellier, et al. 2001). Skills are the 
component competencies that collectively create the overall 
competency; i.e., the set of skills, knowledge, and qualities or 
“behavior patterns” which are needed to allow an agent to 
perform tasks/ functions with proficiency (Woodruffe, 1993). 

Currently, evaluating the skills of strategic board-game 
players depends entirely on the degree to which the game’s 
objectives are achieved (i.e. final outcome). Ranking systems 
– whether online or offline – are virtually the only objective 
method for automatically assessing the players’ experience. 
However, subjective detailed assessments can frequently be 
obtained from experts, where different aspects of a player’s 
skills may be evaluated. These types of studies have 
traditionally been answered through psychological and skill 
assessment tests (Groth-Marnat, 2009). We extend this 
approach to a computational environment to overcome the – 
sometimes – instability inherent in subjective assessment and 
reduce the resources required to do an assessment. 
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Learning 
Learning can be defined as: given a task, a training-
experience, and a performance-measure, a system is assumed 
to be learning “if its performance at the task improves with 
experience” (Thrun & Pratt, 1998). A similar model can be 
found in (Osherson et al., 1986), where the learning process 
classically requires—beside a learner—an item-to-be-learned, 
an environment wherein the learner is shown the item-to-be-
learned, and finally the hypotheses arising to the learner—
given the environment—regarding the item-to-be-learned. 

This characterizes the relationship between the learning 
process and experience; a concept greatly discussed—whether 
explicitly or implicitly—in topics related to the “analysis of 
human performance”, or in “studies of learning and 
training” (Farrington-Darby & Wilson, 2006). Experience 
does not necessary lead to more powerful thinking strategies 
and/or acquiring directly-perceivable cues—which the 
inexperienced are usually aware of—but rather to a more 
efficient employment of the strategies and cues based on the 
experience-base (Klein & Hoffman, 1993). Hence, experience 
can “describe skills, knowledge, or abilities, in tasks, 
activities, jobs, sport and games”, and it can “refer to a 
process such as decision making or […] to an output such as 
a decision” (Farrington-Darby & Wilson, 2006). 

Analysing online behaviour and interaction was also 
investigated in (François et al., 2007), where Self-Organizing 
Maps where used to classify online interaction between 
Autistic children and robots to detect the different play styles 
since “interaction is decisive in the process of learning 
through play.” Also, analysing and displaying users’ activity 
and interaction in an online system/community, whether in a 
competitive way (e.g. ranking scores) or an non-competitive 
way (e.g. activity statuses), was found to draw users attention 
and motivates users participation (Deiml-Seibt et al., 2009). 

Symbiotic Adaptive Neuro-Evolution 
Symbiotic Adaptive Neuro-Evolution SANE (Moriarty & 
Miikkulainen, 1997) is an approach to neuro-evolution where 
two separate populations are evolved simultaneously instead 
of evolving a complete network. The two populations are 
neurons (explicitly decomposing the search space by acting as 
local solutions) and network blueprints (exploring the best 
combinations of neurons). Blueprints are considered a better 
alternative to building the networks out of randomly selected 
neurons. Usually, SANE develop three-tiered feed-forward 
NNs, evolving neurons for its single hidden layer. Each 
neuron defines a fixed number of weighted connections that 
are randomly assigned to both input- and output-layer nodes. 

When applied to evolve Go player, each board intersection 
is represented by an input node for each player, and a single 
output node. It is illegal to activate both nodes representing an 
intersection. The first input node – per intersection – is 
activated iff the corresponding intersection is occupied by a 
white stone, and vice versa if the intersection is occupied by a 
black stone, the second input node is activated. An empty 
intersection is indicated by deactivating both input nodes. A 
sigmoid activation function is used for the output nodes. The 
next move is represented by the highest value (corresponding 
to the best predicted move). If the selected move is illegal, the 
move corresponding to the next highest activation is selected. 

However, the network passes if all its output values are below 
a predefined threshold (that is, 0.5 in our experimentation). 

The evolved NNs – the blueprints population – are 
evaluated by playing a game(s) of Go against the selected 
opponent, the fitness value is merely the final score(s). As for 
the neurons population, the fitness value for a neuron is the 
normalized summation of the fitness values of the blueprints 
in which it participated. Single point crossover is then applied 
on mates selected from the elite one third of the blueprints, 
and 25% of the neurons, creating two offspring that replace 
the worst individuals. Mutation is then applied conservatively 
to the neuron population, and more aggressively to the 
blueprints (to maintain high diversity among the network). 

The Game of Go 
The game of Go is the oldest strategic board game in the 
world, and is also one of the most popular. Though the game 
is hard, the rules of the game are few and simple, easy to 
learn, and flexible enough to accommodate any board size as 
well as the standard 19×19 board. This two-player game, 
where players alternate placing stones on the intersections of 
the board, is theoretically in the same category as Chess, as 
both games are intellectually stimulating, requiring high-level 
strategic thinking, while also giving the chance for players to 
apply their tactical skills (Chikun, 1997). The differences 
between Go and other games (including Chess) in complexity 
measures is obvious in (Allis, 1994), with the complexities of 
Go far larger than that of any of the other perfect-information 
games. Unlike Chess, there are no Go programs that can 
challenge strong human players (Van der Werf, 2004), nor 
even moderate human players (Ernandes, 2005). Also, 
although 9×9 Go boards have a complexity between that of 
Chess and Othello (Bouzy & Cazenave, 2001), existing Go 
programs are still immature. 

It is worth mentioning that the best known computational 
model for GO is Monte Carlo Simulation. No neural network 
or biologically inspired model exists as yet that can 
outperform Monte Carlo Simulation. As such, this study is a 
first step to potentially take a different approach towards 
building neuro-players. 

Methodology 
The main idea of the proposed methodology is to exploit the 
possible computational building block(s) of human’s actions 
to assess their skills and competency. The methodology 
estimates human’s skill and competency levels through 
models trained on historical data of human with known skills 
and competency levels. The methodology has five main steps: 

Subject Identification and Selection: The human subjects to 
be selected to form the training data need to have gone 
through multiple competency levels. In other words, this is a 
longitudinal study that commences with these subjects at a 
low competency level then moves up to higher ones during 
the data collection exercise. This is the most expensive step in 
the whole methodology, time-wise and dollar-wise, in the real 
world. The game of Go traditionally uses the ranking (rating) 
system of kyu and dan ranks. In this paper, players with ranks 
ranging from 30 to 20 kyu are collectively referred to as 
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Beginners, ranks from 19 to 10 kyu are Casual players, 9 to 1 
kyu are Intermediate amateur players, and finally from 1 to 7 
dan are Advanced amateur players. Due to some ambiguities 
in defining the Professional dan ranks in the game records, we 
have decided not to include those ranks in the analysis. We 
collected the games from No Name Go Server (NNGS) online 
game-archive (Adam, 2009). The cases – game records – were 
selected from the years’ span 1995 up till 2005. Two datasets 
are selected separately, a Training Dataset ‘trainDS’ which is 
used to train the proposed classifier, and a Testing Dataset 
‘testDS’ from which we will select a set of Go players to 
observe their behaviour. 

We selected 381 games for training (127 for each category; 
Casual, Intermediate, and Advanced) based on some strict 
rules that the games should be complete, with a registered-
name, and compatible players. We did not select ‘Beginner’ 
cases because this category contains so much noise. The 
reason for this noise is that it contains all players who newly 
joined the server, not necessarily that they are beginners but 
they have not played enough on this server to establish a rank. 

Data Identification and Collection: Every action performed 
by the human gets recorded. In the context of a game, actions 
are simply the board moves. In the case of a computer board 
game, the state of the board at each step of the game gets 
saved. The training data (i.e. the data set that will be used to 
build the model) needs to be labelled (i.e. training subjects’ 
skills and competency levels have been assessed by some 
other means), preferably with no missing values, carrying a 
reasonable number of records for each subject over time and 
that spans the subject moving from one skill level to another, 
and of reasonable size. The richness of the data collected per 
subject, as our experiments demonstrated, means that we do 
not require a huge dataset to build the skill-assessment model. 

Four hundred games were selected for the testDS with only 
16 games found to be common between the two datasets. The 
400 games were played by 246 distinct registered-names (i.e. 
players). We imposed a threshold of at least 10 games, 
yielding a final set of 15 players (Table 1) to be used for 
testing. In the first phase of the experiments, we will run our 
system using the trainDS.  

Model Knowledge Initialization: Skill assessment requires a 
richer understanding of the domain, probably more than what 
is needed in a traditional data mining task. What is being 
recorded from the interface is mostly raw data that needs to be 
grouped, and possibly transformed to a different 
representation, before it can be used properly for skill 
assessment. These initial features form the basis for building 
the actual model. 

We use spatial analysis of the board to establish what we 
call reasons for each move. Assume a move is played in a cell, 
the spatial analysis will see the different shapes that are newly 
formed by this move. These 48 reasons are then grouped into 
seven categories: a category of what it seems a bad move 
(anti-suji), a category for attack, a category for defence, a 
category for gaining an advantage, a category for deep 
planning, a category for end of game and an overall category 
of all reasons put together. These seven categories are named 
as: “Not Recommended”, “Considered an Attack”, 
“Considered A Defence”, “Explicit Gains”, “Thoughtful”, 
“End of the Game” and “All Reasons” respectively. 

Player 
ID 

Number of 
Games 
Played 

The Averaged Experience Range 
Covered by the Corresponding 

Player’s Games 
1 74 Upper-Beginner to Lower-Intermediate 
2 38 Lower-Intermediate to Mid-Intermediate 
3 32 Mid-Intermediate 
4 46 Mid-Beginner to Mid-Casual 
5 20 Lower-Intermediate 
6 16 Mid-Casual to Lower-Intermediate 
7 35 Mid-Casual to Upper-Casual 
8 13 Mid-Casual to Upper-Casual 
9 36 Upper-Intermediate 

10 26 Lower-Intermediate to Mid-Intermediate 
11 50 Lower-Advanced 
12 11 Lower-Advanced 
13 57 Upper-Intermediate to Lower-Advanced 
14 10 Mid-Intermediate 
15 34 Lower-Intermediate to Mid-Intermediate 

Table 1: The final test dataset 

It is obvious from the plain definition of each category that 
these categories can overlap. The Frequencies ‘F’, 
Frequencies per Step ‘FS’, and the Percentages ‘P’, are 
applied as measurements for the aggregated subsets of the 
generated-reasons per game. Subsequently, and between each 
distinct pair of experiences, the Wilcoxon-test and a two-
sample T-test were applied to statistically signify the ability of 
the calculated medians/means to differentiate between the 
corresponding distinct pair of experiences. 

Model Building: The model can vary in its characteristics, 
ranging from simple statistics to complicated neural networks, 
decision trees, or classifier systems. The choice of the features 
in the previous step and the right model in this step are critical 
and can create all the differences between good or bad skill 
assessment models. 

The Median and the Median Absolute Deviation (MAD) 
(Davies & Gather, 1993) were chosen as robust univariate 
measures in case the dataset is contaminated by outliers (i.e. 
observations which appear to be inconsistent with the 
remainder of the dataset) and thus subject to masking and/or 
swamping effects. Human players can be of a wide range of 
experiences, spanning from beginners to professionals. Given 
the set of experiences },,{ 21 neeeE = , let De denote a 
subset of the dataset of all games D where the experience of 
both opponents is e. The median can be estimated as: 

( )[ ] [ ]( ) 2/,:12/,:2/1,, seesee RDDRDDseMedian ++ += ϕϕϕ  

where φ is the measurement function (i.e. denoting F, FS, and 
P), Rs is the sth reasons subset, |De| is the number of games in 
De, and 

eee DDD ::1 ϕϕ  are the order statistics of 

eDϕϕ 1 . Accordingly, MAD can be estimated as: 
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The medians of the different reasons subsets can model how 
the general strategy is decomposed into characterizing sub-
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strategies, and demonstrates the variations in the strategies 
employed by human Go players of different experiences. To 
confirm the potential hypotheses suggested by the data, both a 
two-sample T-test and a two-sided Wilcoxon rank sum test are 
used. By permuting reasons subsets, estimated measurements, 
and pairs of different experiences, the T-test and Wilcoxon-
test will respectively examine the null hypothesis that the data 
– measurements per game – have equal means/medians 
against the alternative that the means/medians are not equal. 

The two-sample T-test tests a null hypothesis H0 that the 
two independent samples come from normal distributions 
with unknown variances and the same mean, against the 
alternative that the means are unequal. The test is two-tailed, 
and performed at a significance level α = 0.05, i.e. the 
probability of mistakenly rejecting H0 (Type I error) is no 
more than 5%. Alternatively, the Wilcoxon-test tests a null 
hypothesis H0 that the two independent samples come from 
identical continuous distributions with the same median, 
against the alternative that the medians are unequal. The 
Wilcoxon-test is also performed at α = 0.05. 

In this study, a three-tier ensemble is used to predict the 
class label of a game of Go as Casual, Intermediate, or 
Advanced. The first-tier is based on Random Forests (RFs) 
(Breiman, 2001); ensembles of Classification Decision Trees 
(CDTs). In order to analyze the reasons, we are looking for a 
robust white-box model, which can handle data without 
requiring a lot of data preparation. These requirements 
suggest the use of CDTs. Each individual classifier (i.e., RF) 
is trained to classify a class and its complement; for example, 
a RF is trained to classify Casual games versus Not-Casual 
(i.e., Intermediate and Advanced) games, and so on. Thus, 
each RF outputs two probabilities ‘Pr’; i.e. for the previous 
example, a probability that a given game is originating from 
the Casual class: Pr(C), and a probability that the same given 
game is originating from the Not-Casual class: Pr(¬C).  

In our experiments, a RF is an ensemble of – a maximum of 
– 1000 classification decision trees. A forest’s attributes are 

determined according to the Error and the Size; respectively, 
the minimum error (i.e., misclassification probability for the 
out-of-bag observations) recorded during the process of 
adding up trees while creating the forest and the ensemble 
size (i.e., number of trees) corresponding to that error value. 

The second-tier creates an ensemble of RFs (i.e., a Forest 
of Random Forests) for each class then the joint probability 
distribution is calculated for two cases: that the instance 
belongs to the class and that the instance does not belong to 
the class. The third and final tier combines the results from 
the second-tier forests using a final gate-function to create for 
each observation (i.e., game) a single probability ‘Prfinal’ per 
class. The final gate-function combines the probability that an 
instance is from one class and the probabilities that this 
instance does not belong to other classes.  

Table 2 shows the medians and median absolute deviations 
among the 127 games per skill level and reasons’ subsets. 
Table 2 shows a statistical difference between 
casual/intermediate and casual/advanced human Go players, 
yet it fails to differentiate between intermediate/advanced 
players. The medians tend to get higher with experience 
considering both F and FS as measurements; the only 
exceptions are when the medians of the advanced are lower 
than or almost equal to the corresponding intermediate in both 
subsets Not Recommended and Explicit Gains. Though this 
apparent correlation between the F/FS medians and the 
growing experience is expected to some extent, because more 
experienced players tend to play longer games, the two 
previously mentioned cases highlights the possibility that 
more experienced human players are less attracted by 
direct/instant gains and are more considerate when it comes to 
not recommended moves. This possibility is supported by 
medians reported for the measurement P, where the medians 
of both subsets almost decrease with growing experience. 

Using P again, the medians of the subset Considered A 
Defence somewhat decreases with growing experience, 
suggesting that a more aggressive strategy is applied by well-

Measurements Reasons’ Subsets Casual Games Intermediate Games Advanced Games 
Median MAD Median MAD Median MAD 

Frequencies (F) 

Not Recommended 28 8 35 9 34 7 
Considered An Attack 262 80 337 112 357 84 
Considered A Defence 400 79 471 84 484 72 
Explicit Gains 123 13 138 13 139 14 
Thoughtful 134 40 175 47 189 44 
End of the Game 0 0 1 1 2 1 
All Reasons 840 174 1021 191 1053 163 

Percentages (P) 

Not Recommended 3.493450 0.5431392 3.217822 0.4167558 3.222919 0.3764555 
Considered An Attack 30.89655 3.544815 33.26510 3.895654 33.63148 2.681764 
Considered A Defence 46.64372 1.643718 45.64995 1.862967 45.76271 1.503475 
Explicit Gains 15.23702 3.438733 13.83588 3.526759 13.05903 2.960512 
Thoughtful 15.57943 1.648398 16.92677 1.553367 17.68140 1.462031 
End of the Game 0 0 0.1154734 0.1154734 0.1552795 0.09492900 

Frequencies Per 
Step (FS) 

Not Recommended 0.1206226 0.02429229 0.1275862 0.02576802 0.1269231 0.02250541 
Considered An Attack 1.039024 0.2743185 1.261649 0.3359982 1.322222 0.2477437 
Considered A Defence 1.628099 0.1956418 1.730375 0.2213487 1.801394 0.1727017 
Explicit Gains 0.5088968 0.06054765 0.5152838 0.06837375 0.5154639 0.06208771 
Thoughtful 0.5527273 0.1229400 0.6518518 0.1434485 0.7003484 0.1255453 
End of the Game 0 0 0.00387596 0.00387596 0.00666666 0.00361788
All Reasons 3.418118 0.4618815 3.810169 0.5740072 3.941176 0.4627970 

Table 2: The Medians and Median Absolute Deviations (MAD) of the different subsets, among diverse experiences 
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experienced human players, as opposed to a more defensive 
strategy by their less-experienced counterparts. The later 
suggestion is supported by the medians reported for the subset 
Considered An Attack which increase in correlation with 
growing experience in view of all of the three measurements. 
The medians reported for both subsets Thoughtful and End of 
the Game also increase in correlation with growing experience 
in view of all measurements. 

Thus we can generally claim that, with rising experience, a 
human player’s strategy evolves to a more thoughtful and 
aggressive strategy, a strategy that cares more about the final 
steps and eludes the not recommended moves, and last but not 
least, a strategy that is less lured by direct gains. This claim is 
statistically supported for human players who progress from 
casual to both intermediate and advanced experiences. 

While using reasons greatly simplified and abstracted the 
typical knowledge used by humans, the use of aggregated sets 
of reasons additionally shortened the available reasons and 
allowed for the highest possible level of strategic abstraction. 
The three proposed measurements proved to be reasonable in 
quantifying the strategical aspects of the varying experiences. 

Using the features generated per game, an initial 
preprocessing step is carried on by applying the Minimum 
Covariance Determinant (MCD) algorithm for outliers’ 
detection. A MCD α-value of 0.7 was selected, and all the 
games tagged as outliers were excluded from the trainDS. In 
this study, outliers are not considered noise or error, rather 
they are assumed to carry important information that accounts 
particularly for any unaccounted for parameters when 
selecting the dataset (for example, the length – number of 
moves per game). This step is followed by growing RFs that 
aim to use the previously calculated features to classify the 
games according to players’ ranks. The preprocessing step 
showed that the measurement FS appears less affected by the 
potentially different or varying mechanism responsible for the 
outliers. Thus, FS is selected as the reliable measurement to 
monitor the players’ competency and skills. 

Using the uncontaminated trainDS, 30 RFs are trained to 
differentiate between each experience level and its 
complement. The 30 RFs trained – per experience, and using 
the FS – are combined to form the second-tier ensemble.  

Model Testing: Once the model is built, it gets tested with 
subjects that were not included in the model building exercise. 
Upon successful testing, the model is ready for use.  

Using the testDS, the games for each player are temporally 
ordered and then reasons were extracted to estimate the 
strategic reasoning behind the moves. FS is then applied – and 
combined according to the aggregated reasons’ subsets – thus 
creating the final feature set for each game. The proposed 
classifier generates three final probabilities for each game: 
Prfinal(C), Prfinal(I), and Prfinal(A) for Casual, Intermediate and 
Advanced respectively. Given the number of available 
experience-levels as Nclasses, and the total number of games per 
a single player as Ngames, three Competency Monitoring-
Curves are plotted for each player; each representing the ‘un-
weighted’ Cumulative Moving Average (CMA) for an 
experience-level, with a maximum window size of 50 games. 

For space limitations, we will only show the results for one 
player with average predictive results to make the discussion 
more interesting. Figure 1 presents a 2-dimensial line graph 

with two y-axes for the player. The left y-axis – ‘Player’s 
Experience Curves’ – displays the value of the three 
Monitoring-Curves (i.e., generated probabilities), while the 
right y-axis – ‘Ranks’ Categories’ – displays the Player’s 
Rank according to the online NNGS archives. The Player’s 
Rank curve is also a CMA of the actual rank-values. A label 
on the right y-axis represents the center of the respective rank 
category. The x-axis displays the game number, with imposed 
temporal frames for the corresponding dates (months/years). 

The monitoring-curves in all of the resulting figures 
(including those not-shown) show a clear consistency between 
the experience level of a player and his/her probabilities’ 
curves. That is, as the player ‘assumingly’ gains more 
experience with time, the probabilities’ curves reflect this 
learning activity by either declining or rising. Player#1 
advances from an Upper-Beginner to a Lower-Intermediate 
experience over the course of the 74 games selected. 
Concurrently, the Casual-monitoring-curve of the mentioned 
player declines from 0.875 to around 0.5625, the 
Intermediate-curve also converges to around 0.5625 rising 
from 0.4375, and the Advanced curve is also rising from 
0.3750 to a little bit higher than 0.5. 

Figure 1: The Competency Probability-Curve for Player 1 

Though, on strict classification bases, this player is 
classified as a Casual during the whole period (since the 
Casual probability curve is higher than both the Intermediate 
and Advanced), the clear trend in the curves assures that – 
with more games – the player is going to be correctly 
classified as Intermediate. Obviously, classifying a Beginner 
player as a Casual is reasonable in this context, since no 
Beginner cases where included in trainDS. 

264 ECAL 2011



 

 

In this context, we would like to point out that even though 
the classifiers are trained using cases only from the mid-range 
of an experience level – in order to minimize the ‘strategical’ 
overlapping between the different levels – this is not the only 
reason for misclassifying games from around the boundaries 
between ranks. Alongside the potential personal-influences, 
we would like to refer to the case that expecting from an 
expert – for instance – a consistent performance at that level 
in all subtasks might be a mistake (Klein & Hoffman, 1993). 
Thus, a player who advanced from being a Casual to the 
Intermediate level is not expected to show this level of 
Intermediate-like proficiency in all aspects of the game.  

Figure 2: The Skills Probability-Curve for Player 1 

Here we reach the final stage of our results, in which we 
diagnose the skills learning-activity of human Go-players by 
temporally observing each of the strategies’ characteristics. A 
straight benefit of the figure is the distinctive opportunity to 
realize how the strategic reasoning of human Go-players is 
decomposed among the available strategies’ characteristics, 
and how those characteristics evolve temporally with 
experience. Figure 2 shows the normalized un-weighted CMA 
of the FS directly measured from the games. As a player 
progresses from being a Beginner to lower-Intermediate – 
through being a Casual – the categories ‘All Reasons’, 
‘Considered an Attack’, ‘Considered a Defense’, and 
‘Thoughtful’ seem – in general – to decline slightly with 
experience. The ‘Explicit Gains’ appears to be the only curve 
rising during the Beginner to lower-Intermediate progression. 
These findings are obvious in Figure 2. On the contrary, 
progressing from the Intermediate to Advanced shows 
precisely the opposite behavior. As players progress through 

the Intermediate rank and to being Advanced, the categories 
‘All Reasons’, ‘Considered an Attack’, ‘Considered a 
Defense’, and ‘Thoughtful’ unevenly increase with 
experience. Unsurprisingly, ‘Explicit Gains’ is the only curve 
declining during the Intermediate to Advanced progression. 
Both the ‘Not Recommended’ and ‘End of the Game’ curves 
show subtle variations during the entire experience range. 

Our earlier findings seem to agree with only half of the 
later findings, that is, the changes occurring as a player 
progresses through the Intermediate rank and to being an 
Advanced. This apparent disagreement – where the categories 
‘All Reasons’, ‘Considered an Attack’, ‘Considered a 
Defense’, and ‘Thoughtful’ seem to decline as a player 
advances from being a Beginner to a lower-Intermediate – can 
be attributed to two associated reasons. At first, in Table 2 no 
Beginner games matched the selection criteria, and therefore, 
the progression from Beginner to Casual was not investigated. 
That leads us to the second reason; the window size of 50 
games employed in the CMA considers this ‘history’ of being 
a Beginner when the player has already advanced onto being a 
Casual, thus affecting the curves for an additional period. 

Each skill monitoring figure characterizes how a player is 
evolving with the experience he/she is gaining. Plain benefits 
of such results is the ability to construct customized – to a 
specific-personality / level-of-expertise – learning processes; 
designed tasks that convey to a learner the missing bits of 
knowledge/skill/understanding, by which gaining an 
experience might be assured and/or accelerated. Another 
potential benefit is the ability to clone a person/level-of-
expertise, possibly for creating an automated instructor. 

Strategically Aware Fitness Measurement 
In this section, we advance the findings of the previous 
sections by asking whether or not we can use it, not only to 
analyze human subjects, but also to guide an artificial 
evolutionary process. This is what we will call a strategically-
aware fitness function. 

To accomplish this goal, SANE was used to evolve 9×9 
neuro-Go players using both the traditional exclusively score-
dependent fitness function, and the proposed strategically-
aware function. The networks are evolved against the GNU 
Go engine as an opponent. To compensate for the additional 
computational cost of estimating the strategies in the Go 
games, 50 blueprints are evolved instead of the 200 suggested 
by (Richards, et al. 1998). Due to the nature of the problem in 
which a network is evaluated by playing a game, and in spite 
of using elitism, the fitness values across generations fluctuate 
due to stochastic effect. 

After generating the Strategically-Aware component (TP), 
the traditional score-based fitness function can be modified by 
simply adding the generated probability to the game score. 
The effect of the added term can be tuned by the coefficient α. 
The proposed fitness measure f for a Network is calculated as: 
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where NGames is the number of games played by Network in the 
evaluation phase, Scorei is a value – in the range from 0 to 1 –
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representing the Network’s score in game i, while TPi is the 
Trained Probability generated by the RF for the game i. 

To investigate the effect of the added TP, the coefficient α 
was varied, using four values; 1.0, 0.8, 0.2, and 0.0. The first 
α value represent the traditional score-based fitness function, 
while α set to 0 represents the case where the networks’ 
evaluation is based entirely on the Trained Probability. 

In General, the parameters in the experiments are based on 
those found effective in ( Richards, et al. 1998), except for 
the number of blueprints which was reduced from 200 to 50. 
A single run consists of 500 generations, and 10 different runs 
were evolved. The 500 generations are twice the number of 
generations required by SANE to evolve a network capable of 
defeating Wally on 9×9 boards in (Richards, et al. 1998). 
Since Wally is a trivial engine when compared to GNU Go, 
GNU Go’s level was set to 1 throughout the experiments 
instead of the default of 10. However, GNU Go – even when 
playing at level 1 – is much more developed than Wally. 
Therefore, we do not expect to evolve a NN that is capable of 
defeating GNU Go, but a network that has developed enough 
strategies to be explored. 

The games were scored using Chinese rules. The networks 
were always evolved to play White, thus never making the 
first move. The komi value – necessary to avoid a tie – was set 
to 0.5, and no handicap stones were given to the networks. An 
upper bound of 200 moves per game was placed, to ensure 
that unreasonably long move-sequences that are probably 
suggested by the untrained networks are not pursued. This 
experimental setup cost up to a maximum of ≈7 days for a 
single run per an α value using a Sun Constellation Cluster. 

Results and Discussion 
In order to investigate the effect of the proposed fitness 
function, two different types analysis – to the neuro-evolution 
process – are to be shown and discussed. We start by showing 
and discussing the convergence among the varying α values. 
Then a Tournament between selected players and GNU Go – 
set to different levels – is held. 

Figure 3 shows the convergence of the 50 blueprints and 
4000 neurons evolved using SANE for 500 generations. For 
each α value, the average fitness – of 10 different runs – for 
the 1) best network, and the 2) entire population are plotted.  

The convergence of the fitness values or all of the different 
combinations enters a relative plateau, staring from around 
generation number 50 for both α values of 0.2 and 0.8, and 
followed by generation number 150 for both α values of 0.0 
and 1.0. The same is true for the convergence of the entire 
population, except for α = 0.0 where the population seems to 
continue evolving. Notably, the ‘relative’ difference between 
the best network and the population in terms of fitness values 
decreases with an increasing α, except for α = 0.8 which 
shows the lowest difference. A possible explanation is that 
while depending more on the TP component rather than the 
score, the evolving networks increasingly fluctuate between 
the generations. However, setting to α = 0.8 shows a less 
varying fitness than α = 1.0, even in other detailed figures that 
are not shown here due to page constraints. 

The first step to investigate the playing capabilities evolved 
and whether it takes advantage of the engine’s weaknesses is 

by holding a tournament between selected representative 
players and GNU Go. As we mentioned before, SANE used a 
weaker player than GNU Go at level 1 as an opponent. The 
behavior of the evolved players when playing against GNU 
Go set to different levels will shed a light on the type of the 
strategies evolved. The tournament involves GNU Go at 10 
different levels, starting from 1 (weakest) to 10 (default). 

Figure 3: The Convergence of the Fitness Values 

A simple and straightforward criteria is used to select a 
representative player for each of the varying α values; the 
network achieving the overall best ‘game score’ across the 10 
runs and the 500 generations. Figure 4 shows the best games’ 
scores across the 10 runs, the best score for each α is 
encircled. The maximum possible score using the Chinese 
rules – and a komi value of 0.5 – on a 9×9 board is 81.5. 

Figure 4: Best Games’ Scores across the 10 runs 

The tournament consists of the four selected players versus 
GNU Go at 10 different levels. The players will be named 
PlayerA, PlayerB, PlayerC, and PlayerD; representing 
respectively the α values of 1.0, 0.8, 0.2, and 0.0. For each 
pair – that is, a selected player versus a GNU Go at a single 
level – 30 different matches were played. The komi value is 
set to 0.5, the games are scored using Chinese rules, and the 
GNU Go always starts the games. 
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Table 3 shows the percentage of Wins of the 4 selected 
players against GNU Go. Even though none of the players 
were able to defeat GNU Go at a level higher than the one 
they were evolved against, as α decreases, the percentages of 
wins against GUN Go at level 1 increases until is reaches 20% 
of the games for PlayerD. This finding strongly suggests that 
the networks evolved using the proposed fitness function 
evolve different varying strategies to defeat the opponent. 
Even if those players were selected from premature 
generations; PlayerC was evolved in the seventh generation. 

The main objective in a game of Go is to secure a territory. 
The capability of creating and defending a group of connected 
stones that remains alive – i.e., do not get captured – until the 
end of the game is fundamental to a go player. Therefore, the 
final scores of the games, even in cases of loosing, are 
meaningful to our analysis. Players that can secure bigger 
territories than other players, and which will be reflected in 
the final score, are relatively more trained. 

Figure 5 shows the average score of the selected players 
against GNU Go. Since GNU Go always plays as the black, 
and given the komi value of 0.5, the minimum possible score 
for the selected players is -80.5. All players report their best 
results when playing against level 1. For higher levels, Players 
C and D report the minimum possible score. However, 
PlayerB reports better average scores in most of the higher 
levels than PlayerA. 

Figure 5: The Average Score against GNU Go 

Conclusions and Future Work 
We provided a methodology for an automatic and objective 
assessment and monitoring of human-players’ skills and 
competencies in the game of Go. The generality of the 
approach entails that the models can be used to assess 
artificial players as well, which we successfully demonstrated 
using an Artificial Neural Network. The findings are seen as 
advancement towards better understanding of human 
strategies to assess the skill levels of humans. For example, if 
player’s skills are constant for a while, and if the objective is 
to improve the performance of that player, the artificial life 
environment or a game environment may switch to some 
training scenarios to improve the specific skills which have 
been stagnating. If the aim is to entertain the person, the game 
may alternate between an easier version and a harder version. 
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10 0% 0% 0% 0% 

Table 3: Selected Players’ Details and Percentages of Wins 
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Non-Template Molecules Designed For Open-Ended Evolution
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Abstract

Theories of the Origin of Life can be categorised as ‘template
replication first’ and ‘metabolism first’. A key question for
metabolism first theories is whether metabolic systems can
support open-ended evolution; this is related to the number
of possible persistent states of such a system. Earlier work1

has demonstrated that artificial chemical systems can have
memory; an essential requirement for inheritance. The cur-
rent paper extends this, taking a ‘proof of concept’ approach
to the question of the number of persistent states. It shows
an artificial chemical network forming a ‘memory bank’ with
many possible states. It also makes the link between chemi-
cal network structure and molecular structure, and provides a
design for a set of artificial molecular species for the memory
bank network. Preliminary simulation results from the Sim-
Soup artificial chemistry simulator are included, confirming
the operation of an initial set of ‘memory units’. The work
supports the view that open-ended evolution can begin with-
out requiring highly complex template molecules.

Motivation, Approach, And Paper Overview
Metabolic theories of the Origin of Life propose that early
organisms were metabolic systems that transmitted inher-
ited information without the use of template replicating
molecules such as DNA and RNA, and without the very
complex mechanisms needed for their accurate replication2.

It is envisaged that the systems were individuals capa-
ble of growth and reproduction; in some theories they are
thought of as protocells that could divide. Variations in the
metabolisms of different individuals would have led to dif-
ferences in fitness that would drive evolution.

For this to be workable, successful variations would have
to be retained and passed on to offspring. In addition, for
evolution to be effective it would need to be open-ended,
with a large number of possible variations in metabolism.

The motivation for this paper is to investigate whether
this is feasible. A ‘proof of concept’ approach is adopted in

1See Gordon-Smith (2005, 2007, 2009a,b) for earlier papers
including SimSoup model details, and SimSoup (2011) for open
source program code.

2Such mechanisms are prebiotically implausible, and so prob-
lematic for template replication first theories.

which an artificial chemical network and associated molec-
ular structures are designed for open-ended evolution. If the
structures identified are not too complex, then it is reason-
able to suppose that molecules with similar capabilities and
properties could have occurred in the prebiotic world.

The rest of this paper includes the following:3

• Conceptual Background inspiring this work

• Memory In Chemical Networks:

– A Network Oriented View Of Chemistry: A descrip-
tion of the Network Components from which chemical
networks are constructed, the way these can be com-
bined to form more complex Compound Interactions,
an explanation of the distinction between Static and
Dynamic Networks, and a discussion of Catalysis from
a network point of view

– Network Memory And Exploration: A description of a
network that forms a Two State Memory Unit, and a dis-
cussion of how such units can be put together such that
The Dynamic Network Explores The Static Network

• Network Structure For High Memory Capacity: A de-
scription of a network in which many Memory Unit Sub-
Networks are combined to form a Memory Bank Network

• Molecular Structure For The Memory Units: A detailed
description of a set of molecular structures in the SimSoup
artificial chemistry that have been designed to implement
the Memory Bank Network. This section describes:

– Molecular Structure In SimSoup
– Atom Types For The Memory Unit Molecules
– The Memory Unit Molecule Structures And Dimer

Splitting: Structures of Memory Unit Molecules, and
of Dimer Splitting that is key to its operation

• Results of ‘proof of concept’ tests to investigate the work-
ability of the memory bank

• Discussion, Conclusions And Prospects, and References.
3Section names are italicised.
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Conceptual Background
The SimSoup project takes inspiration from:-

• Metabolic theories including those of Aleksandr Oparin
(Oparin, 1957), Stuart Kauffman (Kauffman, 1993), Free-
man Dyson (Dyson, 1999), Chrisantha Fernando and
Jonathan Rowe (Fernando and Rowe, 2007), and the Lipid
World theory and GARD model of Doron Lancet’s group
(Segré et al., 1998, 2001a,b)

• Graham Cairns-Smith’s clay crystal and genetic takeover
theory (Cairns-Smith, 1982)

• Tibor Gánti’s work on the principles of life and chemoton
theory (Gánti, 2003)

• Network theory, particularly the work of Sanjay Jain and
Sandeep Krishna (Jain and Krishna, 1998; Krishna, 2003)

• The Chemical Organisation Theory of Peter Dittrich and
Pietro Speroni di Fenzio (Dittrich and di Fenizio, 2007)

• Günter Wächtershäuser’s chemo-autotrophic Iron-
Sulphur World (Wächtershäuser, 1990, 1997, 2006)

• Linus Pauling’s chemical bond theory (Pauling, 1960).

Memory In Chemical Networks
A Network Oriented View Of Chemistry
This section presents a network oriented view of chemistry,
and introduces terminology used in SimSoup.

Network Components The basic units of chemistry are
particles and elementary reactions between these particles.
The particles can be molecules or ions and are of different
types (species). In an elementary reaction, one or more par-
ticles reacts directly to form products in a single reaction
step and with a single transition state.

In SimSoup, a species of particle is called a Molecule
Type, and an elementary reaction with particular Reactant(s)
and Product(s) is called an Interaction Type. An instance of
a Molecule Type is a Molecule, and an instance of an Inter-
action Type is an Interaction.

From a network point of view4, there are only three forms
4A network constructed from elements as shown in Figure 1 is

not a graph in which the vertices represent Molecule Types and the
edges represent Interaction Types. Constructions and Fissions each
have three vertices connected by two edges, whereas each edge in
a graph has only two vertices.

A chemical network can be represented by a directed bipartite
graph. A bipartite graph has vertices that can be divided into two
disjoint sets U and V such that every edge connects a vertex in U
to one in V. In a directed bipartite graph, each edge has a direction.

Alternatively, a chemical network can be represented by a di-
rected hypergraph; a hypergraph is a generalisation of a graph in
which a ‘hyperedge’ can connect any number of vertices. In a di-
rected hypergraph, hyperedges connect ‘head’ vertices to ‘tail’ ver-
tices. The network elements of Figure 1 can be regarded as edges
in a directed hypergraph.

of elementary reaction as follows (see Figure 1):-

• Construction: Two Reactant Molecules join to form a sin-
gle Product Molecule

• Transformation: A single Reactant Molecule re-arranges
to form a Product with the same atomic composition, but
different structure

• Fission: A single Reactant Molecule splits to form two
Product Molecules.

Figure 1: The three forms of Interaction Type. In Construc-
tion C1, Reactant Molecules of types A and B join to form a
Product of type C. In Transformation T1, a Molecule of type
D re-arranges to form a Molecule of type E. In Fission F1, a
Molecule of type F splits into Molecules of types G and H.

Compound Interactions More complex reactions can
take place as a result of Interaction Types combining in vari-
ous sequences. Figure 2 shows a compound interaction with
overall scheme A + B→ E + F.

Figure 2: A Compound Interaction

A Compound Interaction does not have a rate constant
that determines the reaction rate according to the concen-
tration(s) of the (non-intermediate) Reactant(s). In Figure
2, the reaction dynamics depend on the concentrations of C
and D, as well as of A and B. If the Compound Interaction
forms part of a larger network, C and D may be Reactants
or Products for other Interaction Types, and so the reaction
depends on factors other than the concentrations of A and B.

Static And Dynamic Chemical Networks A set of
Molecule Types and Interaction Types (along with tempera-
ture and pressure dependent rate constants) define a static
network. This is determined for all time by the laws of
physics. A dynamic network is a set of actual Molecules
and actual Interactions taking place between them at partic-
ular rates. As such, it is a possible process that can occur
within the framework of a static network.
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Figure 3: Catalysis Example

Catalysis The word ‘Catalyst’ does not denote a kind of
Molecule. It denotes a role that a Molecule can play in a
chemical process. In Figure 3, X plays the role of a catalyst;
it is used by Construction C1, and released by Fission F1, so
that overall it is neither consumed nor produced.

Network Memory And Exploration
A Two State Memory Unit Figure 4 shows a simple
(static) network for an artificial chemistry consisting of three
elementary reactions C1, F1 and F2:

A+X→ I1 (Construction C1)
I1→ I2 + X (Fission F1)
I2→ B+X (Fission F2).

Figure 4: A two state chemical memory unit.

A is abundantly available ‘food’; initially no other
Molecules are present. In the absence of X Molecules,
Construction C1 cannot proceed and A remains the only
Molecule Type present. If a single Molecule of X is intro-
duced, a Molecule of I1 is produced (Construction C1). This
then splits (Fission F1) to release an X Molecule and an I2
Molecule. The I2 Molecule then splits (Fission F2) to re-
lease another X Molecule plus a B Molecule. Overall, for
each A Molecule consumed, one new X Molecule becomes
available in addition to the B Molecule. As a result, the sup-
ply of X is maintained (even if there is some ‘leakage’).

The network is bistable; it has two states, one in which
only A Molecules are present and no Interactions occur, and
another in which Interactions proceed and X is maintained.
The introduction of a single Molecule of X is ‘remembered’
because it triggers a switch to a new persistent state.

The network therefore constitutes a simple memory unit
with an information capacity of 1 bit5.

5Under the current design for the memory unit, state changes of
the unit are not reversible. However, such changes can be reversed
at the ecosystem level. See the ‘Discussion’ section below.

The Dynamic Network Explores The Static Network
Figure 5 shows a static network in which two of the memory
units in Figure 4 are connected in series.

Figure 5: A two unit memory network with three states

If only A is available as ‘food’, there are three possible
persistent states of the dynamic network: i) neither unit is
active (only A is present), ii) only unit 1 is active, iii) both
units are active.

In a more general situation where the static network is
(effectively) infinite, we can consider a dynamic network to
be ‘exploring’ the static network. A perturbation (such as
the addition of a single X or Y molecule) can cause new
parts of the network to become accessible.

Network Structure For High Memory
Capacity

The previous section described how simple two-state mem-
ory units can be combined to form a larger network with
more stable states and so higher memory capacity.

This section presents a network that systematically com-
bines a large number of memory units to form a network
with a correspondingly large memory capacity.

Memory Unit Sub-Network
Figure 6 shows a two state network that will form a memory
unit within a larger ‘memory bank’ network6.

Ps,p−1 and Dsp are ‘food’. The Interaction Types in the
network are as follows:

Ps,p−1 +Msp → Psp C1 (Construction)
Dsp + Psp → PspDsp C2 (Construction)
PspDsp → PspMsp +Msp F3 (Fission)
PspMsp → Psp +Msp F4 (Fission)

If a Molecule of Msp is added to the food, then an Inter-
action of each of the four types can take place in sequence
(C1, C2, F3, F4). The overall scheme for this sequence of
Interactions is:

Ps,p−1 +Dsp +Msp → Psp + 2Msp

The sequence can only proceed if at least one Molecule of
Msp is present, but once the reaction has started it continues
due to the excess production of Msp.

There is nothing ‘special’ about the sequence C1, C2, F3,
F4. If the Interactions are considered in different sequences

6Molecule Type name convention: Msp,Psp and Dsp indicate a
monomer, polymer and ‘closed dimer’ respectively. See the section
covering molecular structure for further explanation.
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Figure 6: A memory unit for the ‘memory bank’. Molecule
Types are colour coded as follows: red - input to this unit,
blue - output from this unit to the next unit, green - inter-
mediate products. The blue and green Molecule Types to-
gether form an autocatalytic set. If the inputs are present, a
Molecule of any member of the set can activate the network.

then it can be seen that a single Molecule of any one of Psp,
PspDsp or PspMsp (in addition to the food) is also sufficient
to activate the network.

In short Msp, Psp, PspDsp and PspMsp are an autocat-
alytic set that can be activated by any member of the set.

A Memory Bank Network
Figure 7 shows a ‘memory bank’ of 25 units in five inde-
pendent rows or series. Each units has a label Usp, where s
indicates the series, and p indicates the position of the unit in
its series. Each unit has the structure shown in Figure 6, with
only the specific Molecule Types varying. The large circles
on the left of the diagram represent a maintained food set.

Figure 7: A Memory Bank with 25 units.

In each series the food provides the input to the first unit,
and the outputs of each unit provide the inputs to the next
unit. Each unit in a series may be either active or inactive;
shading indicates an active unit. The next unit in a series
can only become active if its predecessor is active (the main-
tained food set is considered to be the predecessor of the first
unit, and is always active). The labels of the form Msp over
the arrows represent Molecule Types that will, if introduced
in very small quantities, activate unit Usp provided its pre-
decessor is active.

Overall, the diagram represents a static network in which
each of the five series has 6 possible states (from no units
active, to all five active), so that the network as a whole can
have 65 = 7776 different states. A network with ten series
of nine units would have 1010 possible states.

Molecular Structure For The Memory Units
In this section the link between network structure and molec-
ular structure is made. A set of SimSoup Molecule Types
that produce the memory bank of the previous section is de-
scribed.

Molecular Structure in SimSoup
The approach to modelling molecular structure has been de-
scribed elsewhere (Gordon-Smith, 2009b). It is summarised
here, and an extension introduced for the work discussed
here is described.

Molecules are two dimensional rigid structures built from
Atoms bonded together such that they occupy fixed positions
on a square ‘Board’ (similar to a chess board). Each square
contains at most one Atom. Bond angles are always 90◦ or
180◦, and bond lengths are all equal. Atoms bond together
in a way broadly consistent with valence bond theory.

Molecules can Join or Split to form Molecules of different
types. Joining must respect the ‘one Atom per square’ rule.
Splitting occurs by breaking the weakest set of bonds that
hold the Molecule into a single unit.

Bond strengths are usually fixed according to the types
of Atom at each end of a bond. The extension introduced
for this work is that in some cases, a bond can be perturbed
(weakened or strengthened) by the proximity of Atoms that
do not themselves participate in the bond.

Atom Types For The Memory Unit Molecules
The SimSoup Atom Types used for the Memory Unit
Molecule Types are described below:

• Assemblite: Forms two bonds. Can be used to assemble
the structural framework for a Molecule. Colour: black

• Stoppite: Forms one bond, and when present at a bonding
site stops further growth of the Molecule at that site (much
as Hydrogen does in an organic molecule). Colour: grey
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• Junctium: Forms three bonds. Can be used to provide a 3
way junction in a structure. Colour: blue

• Loosium7: Forms three bonds. Can provide a weak
(loose) bonding site within a structure. Does not bond
to Anti-Loosium. Colour: spring green

• Anti-Loosium: Forms three bonds. Can provide a weak
(loose) bonding site within a structure. Does not bond to
Loosium. Colour: cyan

• Grabite: Forms three bonds. Can provide a bonding site
in one monomer for another monomer to ‘grab’ as part of
building a polymer. Colour: red

• Hookite: Forms two bonds. Can provide a ‘hook’ that
can attach to an atom of Grabite to form a bond as part of
building a polymer. Colour: green

• Perturbium: Forms three bonds. Bonds can be weakened
or strengthened by nearby Metal atoms. Colour: magenta

• Metal: Forms one bond. Can perturb nearby Pertur-
bium/Perturbium bonds, even though not bonded to Per-
turbium. Colour: orange.

Memory Unit Molecule Structures And Dimer
Splitting
Monomers, Polymers And Closed Dimers This section
describes the structures of Molecule Types that appear as
Reactants for Constructions C1 and C2 in Figure 6.

Molecule Types of the form Msp are monomers, those of
the form Psp and Ps,p−1 are (short) polymers, and those of
the form Dsp are closed dimers.

Figure 8 shows examples. Figure 8a shows monomer M01

and its structural units. The positions of the two recesses
labelled S = 0 and P = 1 vary as the series s and position
p indices vary. The recesses are called the series recess and
the position recess respectively.

Along the top of each monomer are three small projec-
tions and a recess. The left hand series projection is directly
above the series recess. The middle position projection is
one place to the left of the position recess.

Figure 8b shows polymer P01. The naming convention
for polymers is such that Psp represents a polymer of length
p+ 1 whose end monomers are Ms0 and Ms,p.

The positions of the recesses and projections on the top
and bottom of the monomers ensure that two monomers can
only join in a polymer if they are in the same series (same s
index) and their position (p) indices differ by 1.

The Half-Probes and Half-Acceptor on each monomer
also have recesses/projections, and the positions of these are
similarly dependent on the series and position indices.

7Only two of the bonds supported by Loosium and Anti-
Loosium are used for the memory unit Molecules.

(a) Monomer M01 showing structural units

(b) Polymer P01

(c) Closed Dimer D01

(d) Polymer P03

Figure 8: Example monomer, closed dimer, and polymers.
See the supplementary material for larger examples.

The structure of the monomers allows for both s and p
to vary between 0 and 9. There are therefore 100 possible
monomer types, and these can be used to construct 10 series
of polymers, with polymers in each series being built from
up to 10 monomers. Each series corresponds to a row in an
enlarged version of the memory bank of Figure 7.

Figure 8c shows a closed dimer, formed by joining two
monomers ‘back to back’.

Finally, Figure 8d shows P03, a polymer of length 4.

Dimer Splitting Intermediates And The Splitting Mecha-
nism Figure 9 shows the structure of the Fission Reactants
in Figure 6. Figure 9a shows Molecule Type P01D01. Figure
9b shows Molecule Type P01M01.

Dimer splitting is a key mechanism for the memory unit.
It provides the means by which the autocatalytic set of Fig-
ure 6 maintains itself. Taking the example of Figure 9,
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(a) Memory Unit intermediate P01D01

(b) Memory Unit intermediate P01M01

Figure 9: Dimer splitting intermediates

a Molecule of P01D01 first splits (Fission F3) to release
a Molecule of P01M01 plus an M01 monomer, and then
the P01M01 Molecule splits (Fission F4) to release a P01

Molecule plus a second M01 monomer.
In short, the autocatalytic set maintains itself by splitting a

‘food’ dimer Dsp to produce a surplus of the monomer Msp.
Dimer splitting involves a mechanism in which a poly-

mer temporarily binds a dimer, and as result the Pertur-
bium/Perturbium bond that holds the dimer together is
weakened. The details of this can be explained by reference
to Figure 10, which shows the central part of P01D01.

Figure 10: The central part of P01D01, showing the way
in which the polymer (P01) part on the right ‘attacks’ and
weakens the dimer (D01) part on the left at the bond be-
tween the two magenta Perturbium Atoms. The two parts
of P01D01 are held together temporarily by the weak bond
between the two cyan Anti-Loosium Atoms.

The dimer and polymer parts are weakly bound at the
Anti-Loosium/Anti-Loosium bond that joins the Locator of
the M01 part of P01 to the bottom right of D01. The memory
mechanism relies on Dsp being split by Psp, and not by any
other polymer. ‘Incorrect’ splitting is ruled out because the
two Half Probes on Psp must be an exact match for the two
Half-Acceptors on D01.

The dimer weakening occurs because the two (orange)

Metal Atoms at the end of the two Half-Probes on the poly-
mer are close to the two (magenta) Perturbium atoms on
the dimer. This weakens the bond between them, and the
dimer splits. The top (M01) part of the dimer falls away be-
cause it has no other bond either with the polymer or with
the other (M01) part of the dimer. The other part of the dimer
also spits from the polymer shortly afterwards, because the
Anti-Loosium/Anti-Loosium bond holding the two together
is weak, and so can only be temporary.

To summarise: A Psp polymer binds temporarily to a Dsp

dimer, and as a result the dimer is weakened. Both parts of
the dimer separate from the polymer, which is then free to
split another dimer. A dimer can only be split by the ‘cor-
rect’ polymer because the Probe and Acceptor formed by the
Half-Probes and Half-Acceptors of the monomers involved
must have compatible shapes.

Results
Preliminary ‘proof of concept’ tests have been undertaken
to investigate the workability of the memory bank described
above. The tests used the SimSoup artificial chemistry sim-
ulator. Reactions take place in a well stirred Reactor. The
rate constant k for Constructions is set to a constant value;
those for Fissions are set to k = Ae−Ef/RT , where Ef is
the total energy of the bonds that have to be broken, T is
temperature, and A and R are constants.

Results of two runs are presented. Both demonstrate
memory; the first is typical of runs undertaken, the second
illustrates an unusual ‘ringing’ phenomenon.

Run 1
The scenario for Run 1 is as follows:

• Starting at time 1000, a constant supply of ‘food’ is pro-
vided to a the Reactor. This consists of 400 Molecules of
M00 every ten timesteps, plus 200 Molecules of each of
D01, D02 and D02 every ten timesteps

• ‘Seed’ Molecules are added as follows: Five Molecules of
M01 at time 10000, five Molecules of M02 at time 30000,
five Molecules of M03 at time 50000

• At each timestep, every Molecule has a probability of
0.001 of being removed from the Reactor (‘leakage’)

• The size of Molecules was limited. This was necessary to
enable the simulation to run within a reasonable time8

Figure 11 shows the numbers of the three polymers P01,
P02 and P03 present in the Reactor at each timestep, along
with the number of M00 Molecules9.

8The operation of SimSoup is such that whenever a new
Molecule Type enters the Reactor as a result of two Molecules join-
ing, all the possible ways the new molecular (‘board’) structure can
interact with existing molecular structures must be calculated. This
is computationally intensive.

9M00 can be regarded as a polymer of length 1.

273ECAL 2011



Figure 11: Plot showing the number of Molecules of M00,
P01, P02 and P03 present in the Reactor during Run 1.

The addition of the ‘seed’ Molecules at times 10000,
30000 and 50000 in each case triggers a substantial change
that persists over time. Prior to time 10000, there had been
no Molecules of P01 present. Subsequent to the addition
of the Molecules of M01 at that time, the number of P01

Molecules was stable at about 110 until time 30000.
Similar observations apply in regard to P02 and P03. In

each case, the seeding triggers a new persistent state in
which the new Molecule Type is subsequently maintained.10

Figure 12: Manhattan Plot for Run 1. The black triangles
indicate periods during which the Reactor composition (ie
‘mix’ of Molecule Types) varies little. The right hand edges
of the triangles indicate sharp changes in composition.

Figure 12 is a ‘Manhattan Plot’ showing how the overall
Reactor composition varied during the run. The construc-
tion of the Manhattan Plot has been described elsewhere
(Gordon-Smith, 2007). The black triangles indicate periods
during which there is little change in the composition (or
‘mix’) of Molecules in the Reactor.

The plot indicates that the pattern shown in Figure 11 in
relation to a few key Molecule Types occurs more generally
for the Reactor composition as a whole. There are periods

10The numbers of Molecules of existing types has a step change
each time a new state is entered. This is to be expected since the
overall dynamics of Interactions in the Reactor are changed. How-
ever, this does not lead to the disappearance of an existing type.

of roughly constant composition, and sharp changes corre-
sponding to the addition of the ‘seed’ Molecules.

The number of Molecule Types present in the Reactor (not
shown) was high; at the end of the run it was almost 500.

Run 2
The scenario for Run 2 is similar to that for Run 1. There
are differences in the timings at which Molecules are added.

Figure 13: Time series plot for Run 2, showing ‘ringing’.

Figure 13 is a time series plot for Run 2. ‘Seed’ Molecules
are added at times 10000, 20000 and 30000. The system ‘re-
members’ each seeding as for Run 1 in Figure 11. However,
after the third seeding the system shows a variable oscilla-
tory or ‘ringing’ behaviour before stabilising.

Discussion
Stability: The stability of the active state of a memory unit
derives from the positive feedback mechanism that it incor-
porates. The design strategy for Molecule Types to sup-
port feedback is as follows. Firstly, identify each memory
unit with a short polymer Psp that can be produced from
Ps,p−1 by the addition of an Msp monomer, and which can
catalytically split a closed dimer Dsp to produce more Msp

monomers. Then design the monomers to join only in ways
that lead to production of the ‘correct’ polymers, and ensure
that these polymers only split the ‘correct’ closed dimers.

Transition of a memory unit from the inactive to the active
state can be triggered by addition of just a single monomer.
A suppression mechanism could be added if necessary for
stability, although this would add model complexity.

Moderate Complexity Of Monomers: The designed
monomers are moderately complex, although far below the
complexity of DNA and RNA and the molecules involved in
their replication. There may be scope for simplification. It
can also be envisaged that they could be products of some
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systematic process that would result in co-ordination of the
positions of the various projections and recesses.

Bias In Direction Of State Changes: Changes in state of
a Memory Bank in an organism only take place in the di-
rection of increasing p. However, this does not mean that
evolutionary ‘mistakes’ cannot be reversed. If an organism
is less fit as a result of a mutation then it will be less likely
to persist in future generations. It may be possible to change
the design of the molecules to remove the bias, but it does
not rule out open-ended evolution at the ecosystem level.

Integration With Larger Network: Although the Mem-
ory Bank consists of a number of independent rows (or se-
ries), it can be envisaged to be integrated within a larger
metabolic network that it influences.

Conclusions And Prospects
Conclusions
• An artificial chemical network and associated molecular

structures designed to support up to 1010 persistent states
has been shown11. It is reasonable to suppose that this
would be sufficient for open-ended evolution to begin

• The monomers are of only moderate complexity, support-
ing the view that molecules with similar capabilities and
properties (though no doubt very different structure) were
present in the prebiotic world

• The operation of a small set of memory units has been
simulated, completing the first part of the proof of concept

• Supplementary material for this paper is available at
http://www.simsoup.info/Publications.html

Prospects
• It will be appropriate to make optimisations enabling a

larger set of Memory Units to be tested

• The author would like to hear from anyone interested in
translating the ideas described here to ‘real’ chemistry.
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Abstract

We present a “bestiary” of three digital organisms (self-
replicating computer programs) that evolved in three dif-
ferent experimental environments in the Avida platform.
The ancestral environments required the evolving organ-
isms to use memory in different ways as they gathered in-
formation from the environment and made behavioral de-
cisions. Each organism exhibited a behavior or algorithm
of particular interest: 1) simple step-counting odometer;
2) clever low-level computation; and 3) pronounced mod-
ularity in both program structure and program function-
ality. We present descriptive in-depth analysis of the case
study organisms, with a focus on the structure and opera-
tion of the evolved algorithms that produce the individu-
als’ fitness enhancing behaviors.

Introduction
The multi-disciplinary nature of Artificial Life (Alife) makes
for rich cross-fertilization between computer science and bi-
ology, with research that focuses on organizing principles
of living systems (Bedau, 2007). In the broad context of
evolving building blocks of simple intelligent behavior, we
present experiments that address the interaction of memory,
environment, and learning in an evolutionary context. Here,
we recount the key points of work reported in Grabowski
et al. (2010) and expand on that discussion. In the previous
paper, we presented our experimental motivation and design,
and gave a high-level view of the evolved behavior. In the
current paper, we dissect the algorithms that lay beneath the
evolved behaviors, exposing the low-level mechanisms that
produce the fitness enhancing behaviors. We produced our
analyses through instruction-by-instruction examination of
execution traces of the evolved digital organisms.

An important aim of our approach is to inform inquiry
in both computer science and biology. With that aim in
mind, we selected three highly successful digital organisms
that evolved in three different experimental environments.
Each of the case study organisms has a salient feature or be-
havior that seems critical for the evolved solution to work.
The first organism evolved a simple odometer that it uses
to count its steps, turning immediately before it would have

otherwise entered an environmental hazard. The second or-
ganism evolved a computational strategy that uses low-level
bit operations to ensure correct behavioral responses to cues
from the environment. This computational tactic is of spe-
cial interest because it produces high-level behavior from
low-level operations, and it also exemplifies a foundational
principle of biology and psychology, that evolution tends
to produce parsimonious solutions to behavioral problems
(“Morgan’s Canon,” Morgan (1894)). The third organism
evolved distinct functional and structural modularity; the
role of modularity is a topic of great interest in a number of
contexts. These digital organisms were products of an open-
ended evolution system, and the system did not explicitly
select for any of the solutions. We are exploring the range
of unexpected solutions that can come out of such a system.
The diversity of the evolved solutions is broad, even though
we are dissecting only a handful of examples.

Methods
Avida: Overview

Digital evolution (Adami et al., 2000) is a type of evolution-
ary computation that places a population of self-replicating
computer programs (digital organisms) in a computational
environment, where the population evolves as the organisms
replicate, mutate and compete for environmental resources.
Digital evolution is a useful tool for understanding evolu-
tionary processes in biology and for leveraging evolution
to find solutions to computing and engineering problems.
Avida (Lenski et al., 2003; Ofria et al., 2009) is a widely
used software platform for digital evolution. Avida is an in-
stance of evolution in its own right (Pennock, 2007), and
provides a host of tools for experimental studies. In this sec-
tion, we provide a brief summary of how Avida functions.
For more detailed information, see Ofria et al. (2009).

The Avida world is a discrete two-dimensional grid of
cells that holds the population of digital organisms. At most
one organism (Avidian) may occupy a grid cell. The genome
of an Avidian is a circular list of program instructions that
resemble assembly language, that runs in a virtual central
processing unit (CPU). The organism’s CPU contains three
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registers (AX, BX, and CX), two stacks, and several heads
(FLOW, used as a target for jumps; IP, an instruction pointer
that denotes the next command to be executed; READ, for
reading an instruction; WRITE, for writing an instruction).
Execution of the instructions in the organism’s genome act
on the elements of the virtual CPU, incurring a cost mea-
sured in virtual machine cycles. An Avidian accomplishes
all functions by executing the instructions in its genome,
such as movement, gathering information from its environ-
ment, or replicating. The basic Avida instruction set is
Turing-complete (Ofria et al., 2002), and is easily extended
by adding new instructions to the system.

An Avidian replicates by copying its genome into a new
block of memory. Mutations in Avida occur through er-
rors in this copying process that produce differences be-
tween the genomes of parent and offspring. These differ-
ences may take the form of inserting or deleting an instruc-
tion, or changing one instruction to another, and occur at ran-
dom with a user-defined probability. The Avida instruction
set has the property of remaining syntactically correct in the
presence of mutations, so a mutated genome will continue to
execute, even if it performs no useful functions (Ofria et al.,
2002).

Newly-produced offspring are placed in a randomly se-
lected grid cell, overwriting any organism that was occupy-
ing the cell. This process gives a fitness enhancing advan-
tage to an organism that can replicate faster than others in
the population; organisms compete for the limited resource
of grid space, and individuals that replicate sooner than oth-
ers will have a higher proportion of descendants in future
populations. Avidians may replicate sooner if they speed up
their execution by accumulating metabolic rate bonuses as
they evolve to perform user-specified tasks. Fitness in Avida
is measured as the organism’s metabolic rate divided by the
number of cycles the organism requires to replicate.

Experiment Design

We placed each Avidian in an environment containing a path
that it could follow to collect food and increase its metabolic
rate. Our environments were inspired by maze-learning ex-
periments with honey bees (Zhang et al., 2000). Organisms
had to sense the cues that formed the path and react ap-
propriately to them. In some cases, advantageous behavior
involved the ability to store experience for later decision-
making.

For these experiments, we added sensing and movement
instructions to the basic Avida instruction set. Thesg-move
instruction allows an organism to move one cell in the di-
rection of its current orientation (its facing). In this study,
each digital organism had its own virtual grid, so organisms
did not interact during movement. Two instructions accom-
plished orientation changes,sg-rotate-rightfor turning 45◦

to the right andsg-rotate-left, for turning 45◦ to the left.
We added a sensing instruction,sg-sense, that allowed the

Avidian to get sensory information from its environment.
When an Avidian executes the sensing instruction, the in-
struction places a predefined value in the executing Avid-
ian’s BX register, according to which cue is present in the
grid cell at the organism’s current location. These values are
analogous to sensory input that the organism obtains from
the environment, and are not directly used in calculations.
The operation of thissg-senseinstruction is important to the
analyses of the evolved programs. The virtual grids for these
experiments had a sensory cue in each cell of the grid. The
environments contained some combination of the following
cues (Grabowski et al., 2010):

1. Nutrient: A cue that indicates a cell is on the path, and
provides “food” (i.e., energy that adds to the organism’s
metabolic bonus). The nutrient cue has a sense value of 0
from thesg-senseinstruction.

2. Directional cue: A cue indicating that a 45◦ turn to ei-
ther the right or left is needed to remain on the path; the
cell also contains nutrient. Right turns and left turns have
different sense values fromsg-sense, 2 for right and 4 for
left.

3. General turn cue: A cue that indicates a turn but does
not specify the direction, and contains nutrient. The return
value for the general turn cue is 1.

4. Empty: A cue that indicates a cell that is not on the
path. Movement into empty cells depletes energy gained
by movement into cells that are on the path. Thesg-sense
instruction returns a sense value of -1 for empty cells.

We added two new comparison instructions to the Avida
instruction set,if-greater-than-X(if-grt-X) andif-equal-to-X
(if-equ-X), that supplemented existing comparison instruc-
tions. These instructions allow an organism to compare
the value in its BX register to a predefined value. Ano-
op (NOP) label immediately following the comparison in-
struction determines the value to use in the comparison. We
added the new comparison instructions because an Avida or-
ganism has to combine several different arithmetic instruc-
tions in order to compare a register value to any specific
value. The newif-equ-Xand if-grt-X instructions provided
a shortcut and simplified comparisons for the Avidians, and
also contributed to evolved genomes that were simpler to an-
alyze. The details of these new instructions did not adversely
affect the adequacy of our model, since our focus in the ex-
periments was on memory; the mechanisms of constructing
comparisons are not relevant to our questions of interest.

We constructed several environment types using the cues
described above. The three organisms that we present in this
paper evolved in three different environments.

• Environment 1 and Environment 2: Evolving reflexes.
The first two environments contain paths with directional
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(right and/or left), nutrient, and empty cues. Paths in En-
vironment 1 contained only one type of directional cue
(right or left) in each path instance; they are “single-
direction turn” environments (see Figure 1). Environment
2 paths contained both right and left turns in the same
path, and so are “dual-turn” environments (see Figure 2a).
With both of these environment types, we expected the or-
ganisms to evolve a reflexive reaction to the path cues that
they sensed, since the sensory information did not have to
be retained for decision-making in the individual’s future.

• Environment 3: Evolving volatile memory. This en-
vironment type uses all four sensory cue types. The spe-
cific directional cue (right or left) is encountered when the
turn is the first turn on the path or when the turn direction
changes (e.g., the organism has done one or more right
turns and now needs to turn left). The general turn cue
is encountered when the turn direction is to remain the
same as the previous turn (e.g., the organism executed a
left turn at the previous turning and the current turn is also
to the left) (see Figure 2b). This arrangement requires the
organisms to evolve mechanisms for storing, using, and
updating information about their experience on the path
they are traversing, equating to a simple form of memory.

Organisms were presented with one of several different
paths of the particular environment type (four different paths
for Environments 1 and 3, and five different paths for Envi-
ronment 2), chosen at random when the organism was born.
Each individual experienced only one specific path in its
lifetime, but all of the environments were experienced by
multiple organisms during the course of evolution. In all ex-
periments, organisms could raise their metabolic rate bonus
through a path traversal task. The details of the task are pre-
sented in Grabowski et al. (2010). We ran 50 experimental
replicates for each environment type, seeding each exper-
iment with an organism with only the ability to replicate.
All other functions had to evolve, using instructions enter-
ing the organism’s genome through mutations. We used the
default Avida mutation rates for all our experiments, a 0.085
genomic mutation rate for a length-100 organism (a 0.0075
copy-mutation probability per copied instruction, and inser-
tion and deletion mutation probabilities of 0.05 per divide)
(Ofria et al., 2009). Experiments ran for a median of approx-
imately 33,000 generations (250,000 Avida updates). Our
populations had a maximum of 3600 individuals.

Results and Discussion
Environment 1: Evolved Odometry

For Environment 1 (single-direction turn paths), we deliber-
ately constructed simple paths with two regularities: each in-
dividual environment contained only right turns or only left
turns, and the path progressed continuously outward from
the starting position, giving the paths a spiral shape. There

was also one unintentional regularity: the ancestral right-
turn paths were the same except for the organism’s starting
position and the resulting distance to the first turn. The left-
turn paths had more differences in the numbers of steps be-
tween turns. One population from this environment evolved
a step-counting organism. This result is particularly excit-
ing, since some animals use a mechanism analogous to step
counting to determine the distance they have traveled on
excursions away from their nests (Wittlinger et al., 2006).
While odometry is considered a straightforward problem in
robotics, it is by no means clear how it works in most an-
imals, how it participates in higher-level processes such as
path integration, and how it first evolved. Our approach may
afford a way of exploring these problems.

Figure 1 shows trajectories of the Environment 1 ex-
ample organism (Org:StepCount) moving on a right-turn-
only path (Figure 1a) and on a left-turn-only path (Figure
1b). Org:StepCount’s evolved strategy performed well in
both turn environments. Interestingly, Org:StepCount back-
tracked on the right-turn grid,i.e., it turned around and re-
traced its steps on the path. This behavior did not reduce
Org:StepCount’s metabolic rate; the task quality calculation
rewarded movement into unique path cells but did not pe-
nalize an organism for multiple movements into a path cell
(Grabowski et al., 2010). Org:StepCount was able to nav-
igate the entire right-turn path without entering any empty
cells and also successfully followed the left-turn-only path,
stopping after it encountered a single empty cell.

We analyzed an execution trace of Org:StepCount while
it traversed each of these two paths, to uncover how its algo-
rithm produces the observed behavior. Most—but not all—
of the movement and replication code of Org:StepCount’s
program is organized into two sections. Some instructions
for this behavior (i.e., movement and replication) are scat-
tered in other locations in the genome, so Org:StepCount
is not completely modular. A distinctly modular organism
evolved in Environment 3, discussed later. One of the code
sections (“Section 1A”) handles moving on a right-turn path,
and the second (“Section 1B”) focuses on left-turn paths.
Section 1B also contains a nested copy loop that is used for
replication. Both of these code sections execute, whether
the organism is on a right-turn or left-turn path, but the re-
sulting behavior differs according to the path type (i.e., right
or left). Section 1A is essentially a counting routine. When
Org:StepCount is traversing a right-turn path, Section 1A
counts its steps; for left-turn paths, Section 1A counts the
number of 45◦ turns the organism executes. When on a left-
turn path, Org:StepCount uses Section 1B to travel to the
end of the path and then replicate. When Org:StepCount
is on a right-turn path, Section 1B allows the organism to
avoid stepping off the end of the path by retracing some of
its steps, at the same time finishing its replication process.

The following is a pseudocode description of the func-
tionality of Section 1A:
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(a) Right Turn Path (b) Left Turn Path

Empty Nutrient Right Turn Left TurnOrg.Final LocationOrg. Inital Location Org. Trajectory

Figure 1: Trajectories of Org:StepCount on ancestral paths.

DO
rotate right
IF (CX > 0) copy
copy
CX <- sense
IF (CX equal nutrient) rotate left
ELSE IF (CX equal right turn)

CX <- 128
move

BX <- BX + 1
WHILE (BX not equal CX)

Org:StepCount’s current environment (i.e., left- or right-
turn) determines how this code executes. When traversing
a right-turn path, Org:StepCount uses this loop to count its
steps to the end of the path. Setting the CX register to the
value of 128 (by reading the current position of the Instruc-
tion Pointer (IP)) and incrementing the value in the BX reg-
ister (which begins at a value of 0 at the first loop iteration)
with every loop iteration sets up the exit condition for the
loop: after Org:StepCount has taken 127 steps in the loop,
the last increment of the BX register causes execution to exit
the loop. When executing this loop on a left-turn path, the
organism remains in the same spot and executes the loop
four times, performing a one-eighth turn in each iteration.
When the value of the BX counter reaches 4, Org:StepCount
exits the loop, and is now facing in the “wrong” direction
(i.e., facing back the way it has already come). The section

of code immediately following this section includes another
set of four one-eighth turns, so Org:StepCount regains the
facing it had upon entering Section 1A.

Section 1B operates as follows:

DO
move
BX <- sense
IF (BX not equal nutrient)

rotate left
IF (BX equal empty)

WHILE ( not end label) copy
ELSE IF (not end label) copy
IF (end label) divide

WHILE (BX not equal empty) AND
(not end label)

When this algorithm is executed on a left-turn-only path,
Org:StepCount moves along the path, eventually moving
one step off the end of the path into an empty cell. At
that point, Org:StepCount “stands still,” and executes a tight
copy loop to complete copying its genome to its offspring,
at which time it divides. On a right-turn path, however,
Org:StepCount never enters the tight copy loop; instead, it
copies just one instruction for each iteration of Section 1B,
while it retraces its steps along the path. This strategy pro-
duces the backtracking in the trajectory plot of Figure 1a.
The organism retraces the path moving back toward its ini-
tial location, stopping part of the way through the path (red
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octagonal symbol). The number of instructions needed to
produce an offspring remain similar on right- and left- turn
paths (1779 instructions for the right-turn path shown in Fig-
ure 1a and 1780 instructions for the left-turn path shown in
Figure 1b) since an extra instruction is copied with every it-
eration of Section 1A when Org:StepCount is moving on a
right-turn path. Table 1 lists the Avida instructions for the
two code sections described above.

Section 1A Section 1B
sg-rotate-r sg-move

if-grt-0 sg-sense
nop-C nop-B
h-copy if-n-equ
h-copy sg-rotate-l

sg-sense if-equ-X
nop-C pop

jmp-head if-less
sg-rotate-l h-search
if-equ-X if-label
get-head nop-C
sg-move h-divide

inc h-copy
if-n-equ mov-head

mov-head

Table 1: Avida instructions for Org:StepCount.

Environment 2: Economical Code and Clever Math
Environment 2, the dual-turn environment, presents evolu-
tion with a slightly more complex version of the problem
encountered in Environment 1, since evolution must always
contend with both turn directions in every path. The evolved
algorithm of the example organism from this environment
(Org:BitOperator) is interesting because it evolved some re-
markably clever math that helped it succeed in its environ-
ment, using simple, low-level computations to produce com-
plex, high-level behavior.

Org:BitOperator successfully negotiated both ancestral
paths and novel paths. Figure 2a shows Org:BitOperator’s
trajectory on a novel path. The dimensions of the grid con-
taining the path are different from the dimensions of the
grids in the ancestral environments: the novel path shown
has dimensions of20× 20, as opposed to the25× 25 grids
that were experienced during evolution. Since all environ-
ment grids are toroidal, the grid dimensions should make no
difference to organisms, and organisms never have access
to any global information. However, we included tests like
these to provide additional evidence that the evolved algo-
rithms do not work by finding and exploiting geometrical
information, such as grid size, but instead function through
gathering and using information from the environment.

Org:BitOperator executes most of its movement with a

concentrated movement loop. At a high level, the structure
of the code ismove-sense-decide. The decision concerns
whether or not to turn, and if a turn is to be made, which
direction to turn. Within the loop, conditional statements
guard the turn directions to provide the correct execution
flow for each environmental cue. In pseudocode, this move-
ment loop functions as follows:

DO
IF (BX > 1) rotate left
copy
move
BX <- sense
BX <- right-shift(BX) #Line 1
IF (BX equal 1) rotate right #Line 2
ELSE IF (BX < CX) #Line 3

IF (BX > 0) CONTINUE #Line 4
WHILE (BX > 0)

Org:BitOperator has a simple, but clever, mechanism for
using the default behavior of the comparison instructions to
select the correct action, based on the current sense informa-
tion. Org:BitOperator manipulates the current sensed cue
value so that the values match the comparisons as needed.
The key detail of this loop’s execution is how the right-shift
operation (Line 1) prepares the sensed cue value for use with
the unmodified comparison statements. Stepping through
the algorithm, starting from theBX<-sense line, the cur-
rent cell cue is sensed, and the value placed in BX. That
value is then right-shifted, dividing most sense values by 2.
Recall the return values from thesg-senseinstruction. If the
sensed cue is nutrient (return value = 0), BX is still 0; if the
cue is right-turn (return value = 2), BX is now 1; if the cue is
left-turn (return value = 4), BX is now 2; if the cue is empty
(return = -1), BX is still -1 (since the operation is an arith-
metic right-shift, the sign bit is preserved in the shift). This
low-level manipulation of the sense value permits the algo-
rithm to use the default behavior of the comparison instruc-
tions, thus avoiding the need for NOP modification of the
instructions. This characteristic provides more robust per-
formance for Org:BitOperator, since the comparison needs
only one instruction to complete its action, not two. The
first comparison (Line 2) is true when the last sensed cue is
right-turn, so the right turn is executed. The next compari-
son (Line 3) is false for all cues except empty, so execution
returns to the top of the loop as long as the organism en-
counters non-empty cells. Sensing an empty cell triggers
loop exit.

This solution is simple and economical, accomplishing
the job with few extraneous instructions. Org:BitOperator
has evolved an equally frugal copy loop near the end
of its genome. The copy loop performs the bulk of
Org:BitOperator’s replication, and begins execution only af-
ter the movement loop has terminated. Table 2 gives the
Avida code for Org:BitOperator’s movement loop. Not only
is the elegance of these evolved solutions to be admired from
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(a) Sample trajectory, dual-turn novel path. (b) Sample trajectory, irregular turn novel path.

Empty Nutrient GeneralTurn Right Turn Left TurnOrg.Final LocationOrg. Inital Location Org. Trajectory

Figure 2: Trajectory of the two example evolved organisms from Environments 2 and 3. Figure 2a shows the example organism,
Org:BitOperator, from Environment 2 (dual-turn paths) traveling on a novel path. The grid containing the path has different
dimensions (20× 20) from those of the ancestral paths (25× 25). Figure 2b shows the example organism, Org:Modular, from
Environment 3 (irregular paths) traversing a novel path. This path grid also has dimensions (23× 32) that differ from those of
the ancestral environments (25× 25).

Movement Loop
if-grt-X

sg-rotate-l
h-copy

sg-move
sg-sense
shift-r

if-equ-X
sg-rotate-r

if-less
if-grt-0

mov-head

Table 2: Avida instructions fused in our example dual-turn
environment organism, Org:BitOperator.

a computational perspective, they also provide evidence of
“Morgan’s Canon,” a parsimony principle that has guided a
century of research in animal and human psychology (Mor-
gan, 1894). By this principle, one should prefer hypotheses
that invoke simpler rather than more complex mechanisms
of information processing. Our results suggest that digital
evolution could lead to empirical study of this principle.

Environment 3: Evolving Modularity

Environment 3 was the most complex environment in our
study. To enhance fitness in this environment, organisms
needed to make decisions based on their life experience,
and update their memory of that experience at irregular in-
tervals. The case study organism from this environment
(Org:Modular, shown in Figure 2b traversing a novel path)
evolved an algorithm with functional and structural modu-
larity that provides appropriate behavioral responses to en-
vironmental conditions.

The execution of Org:Modular’s genome is fairly com-
plex, with a high degree of flexibility to handle conditions
in its environment. In general, Org:Modular moves its ex-
ecution to different parts of its genome depending on the
sensed cue from the environment. Org:Modular has two
loops for its path-following, one loop that navigates left-turn
path segments, “Module 3A,” and the other loop for travel-
ing on right-turn path sections, “Module 3B.” Org:Modular
has well-defined functional and structural modularity in
its genome for handling right-turn and left-turn path sec-
tions. Such refined modularity was not observed in other
organisms that we analyzed. Module 3A appears first in
Org:Modular’s genome, before Module 3B. Module 3A can
perform an arbitrary number of forward steps and consec-
utive left turns. This behavior in Module 3A is produced
by a nested loop that results in straight-ahead movement on
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the path; iterations of this smaller loop continue until a non-
zero cue is sensed. The smaller loop terminates when a left-
turn or general turn is sensed, but execution remains within
Module 3A. Sensing a right-turn or empty cue will exit
both the smaller loop and Module 3A. Module 3B enables
Org:Modular to negotiate right-turn path sections, accom-
modating any number of repeated right turns and forward
steps. Execution exits Module 3B upon sensing a left turn
cue, and jumps to the beginning of the organism’s genome,
thereby arriving again at Module 3A. Execution of Module
3B terminates if an empty cell is sensed, continuing with the
instructions following the module. Org:Modular also has a
modular copy loop near the end of its genome that manages
the majority of the copying for the organism’s replication.

Module 3A, for navigating on left-turn path sections,
functions as follows:

DO
DO

move
BX <- sense
IF (BX < CX)

swap (BX, CX)
BX <- BX - 1 # Line 1

WHILE (BX < CX) # Line 2
rotate left

WHILE (BX equal turn) OR (BX < CX)

The decrement of the value in BX following the sense
instruction (Line 1) manipulates the value in the BX reg-
ister such that execution remains in the nested loop as
long as the organism is sensing nutrient cues (meaning that
Org:Modular is moving straight on the path), but will exit
the nested loop when any other cue is sensed. Whenever
this module is executing, the value in CX is 0 at the top of
the loop. ExecutingBX <- BX-1 with the nutrient return
value (0) places a value of -1 in BX, so execution does not
exit the nested loop (Line 2). Decrementing the general turn
cue return value (1) places a value of 0 in BX, causing exe-
cution to exit the nested loop and do the left turn. When the
right-turn return value (2) is decremented, the value in BX
becomes 1, and the nested loop is exited. Execution then
exits Module 3A, after executing the left turn. The swap of
values in BX and CX is executed only if an empty cell is
sensed. The swap puts 0 in BX, and -1 in CX, so the nested
loop is exited, and execution leaves Module 3A after the left
turn, since BX is equal to CX after BX is decremented.

A pseudocode description of the functionality of Module
3B, for moving through right-turn path segments, is:

DO
rotate right
IF (BX < CX) BX <- sense
move
BX <- sense
IF (BX equal turn) CONTINUE # Line 1

ELSE IF (BX equal left turn)
jump IP to 0

BX <- BX + 1
rotate left

WHILE (BX not equal CX)

There is a section of instructions between the modules
that has no move instructions, but has a single right-turn
instruction that negates the last left turn performed before
exiting Module 3A. An additional right-turn instruction ex-
ecutes before Module 3B entry, ensuring proper orientation
for turning right, since Module 3B contains both right- and
left-turn instructions that always execute. Correct orienta-
tion is maintained by selectively executing the left turn at
the end of the module. When a general turn cue is sensed,
execution in Module 3B skips the left turn (since BX=1),
and returns directly to the top of the loop. When a nutrient
is sensed, BX=0, so the increment of BX and the left turn are
executed. When Org:Modular senses a left-turn cue, execu-
tion jumps out of Module 3B, returning to the beginning of
the genome. As in Module 3A, the value in CX is 0 during
execution of Module 3B. If an empty cell is sensed, incre-
menting the value places a value of 0 in BX, and execution
exits the module. Once Org:Modular moves into an empty
cell, execution moves to the copy loop, and Org:Modular
completes its replication. Table 3 lists the Avida code for
Org:Modular’s path-following modules.

Two features of Org:Modular are particularly interest-
ing. The first is the organization of the genome. The sec-
tions of the genome that do the bulk of the relevant behav-
ior for Org:Modular—the two movement modules and the
copy module—are functionally and spatially modular. For
all three of these modules, very little happens within them
apart from the main function of the module. The modules
are also spatially modular,i.e., located in different areas of
the genome. Example organisms from the preceding experi-
ments also demonstrate some structural modularity, but their
functional modularity is less well-defined. The parallel with
the structural and functional modularity seen in the neural
control of animal behavior is striking (Bullmore and Sporns,
2009). The second feature of special interest is the flexibil-
ity of execution flow between code modules. The execution
flow enables Org:Modular to cleverly handle all the contin-
gencies of the environment. For example, even though Mod-
ule 3A (left-turn module) is encountered first in the sequen-
tial execution of the genome, if a right turn is encountered
first, the execution flow moves easily through Module 3A
into Module 3B (right-turn module). The algorithm evolved
to deftly maneuver along the paths, using the information of
the cues from the environment to alter its execution.

We presented a “bestiary” of digital organisms, case stud-
ies of three evolved organisms that show the range of sur-
prising solutions that can arise in open-ended evolving sys-
tems. Each example organism had a striking characteris-
tic that highlights issues of interest in both computer sci-
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Module 3A Module 3B
sg-move sg-rotate-r
sg-sense if-label

sub nop-B
if-less add
swap nop-B

h-divide if-less
dec sg-sense

if-less sub
mov-head sg-move

push nand
if-label sg-sense
nop-C if-equ-X
shift-r mov-head
nop-A

sg-rotate-l
if-equ-X
if-less

mov-head

Table 3: Avida instructions for example irregular path or-
ganism, Org:Modular.

ence and biology. Although it is premature to make broad
generalizations based on our results, we can conclude that
the Avidians evolved solutions that were well tailored to the
task, neither more nor less complex than needed. The les-
son of our results is that an evolutionary approach to higher
levels of intelligence will require careful attention to both
the computational resources available to the evolving system
and to the complexity of the tasks presented by the environ-
ment.

The work that we report in this paper laid the founda-
tion for several ongoing research projects. We are continu-
ing our study of evolving navigation, including simple land-
mark navigation and vector navigation. The experiments
discussed in this paper provide an excellent arena for inves-
tigating issues relating to historical contingency in evolu-
tion: how accidental changes to the genetics of a population
shape the path of future evolution. Steps in evolution are
thus dependent on prior history (Blount et al., 2008). We are
exploring what factors determined what strategy evolved in
our experiments.

Our results underscore how results from Artificial Life ex-
periments can provide insight for different fields of study.
The strategies shown by these case study organisms high-
light the power of evolution to find surprising and clever
solutions to problems. These solutions may guide the de-
velopment of intelligent artificial agents, and also provide
insights into the fundamental principles governing the early
evolution of intelligent behavior in biological systems.
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Abstract 
To study the evolutionary process and the emergence of 
species, we have conceived an individual-based evolving 
predator-prey ecosystem simulation presented in (Gras, 2009). 
One major and unique contribution of this simulation is that it 
combines a behavioral, an evolutionary and a speciation 
mechanism. This is the only simulation modeling the fact that 
individual behaviors affect evolution and speciation. We have 
already obtained some very interesting and promising results 
from our simulation on species abundance distribution, study of 
chaotic patterns or population spatial distribution. 

Introduction 
Since the last decade, the individual-based modeling approach 
became more common as machine capable of running time-
consuming simulations appeared (DeAngelis, 2005). 
However, few attempts have been made to simulate a 
complete and complex ecosystem. The first one is Echo 
(Hraber, 1997), which includes an evolutionary mechanism. 
However, the organisms are very simple, and have no 
behavior model. Another system studying long term evolution 
is Avida (Lenski, 1999). It has nevertheless limitations such 
as: the individuals do not move, are quite limited in number, 
and there is a fix fitness function which means that the system 
is mostly an optimization process.  
Other models, such as PolyWorld (Yaeger, 1992), 
Bubbleworld.Evo (schmickl, 2006) or Framsticks 
(Comosinski, 2000), have been proposed including more 
complex agents and behavioral models. They use Artificial 
Neural Networks or system of learned rules to evolve the 
agent’s behavioral model during their life and by an 
evolutionary process. However, these approaches are highly 
computational expensive and only allows small population 
(few hundred) of agents. They are therefore more dedicated to 
investigate evolution of learning capacities than high scale 
mechanisms involving populations and species dynamics. To 
investigate several open theoretic ecological questions we 
have designed, Ecosim1

                                                             
1 http://sites.google.com/site/ecosimgroup/research/ecosystem-simulation 

 (Gras, 2009), a large scale simulation 
platform. Our general purpose is to study how individuals and 
local events can affect high level mechanisms such as 
community formation, speciation or evolution.  

Our model 
To observe phenomena at the evolutionary scale that affect the 
individual behaviors, several constraints need to be fulfill: (1) 
every individual should possess genomic information that will 
be the subject of the evolutionary process; (2) this genetic 
material should affect the individual behavior and 
consequently its fitness; (3) it has also to be transmitted and 
modified from generation to generation; (4) a sufficiently high 
number of individuals should coexist and their behavioral 
model should be sophisticated enough in order that complex 
interactions and organizations could emerge; (5) a model for 
species representation and an speciation mechanism, leaning 
on the genomic and behavioral model, has to be defined; (6) 
for speciation events to occur and new co-adapted behavioral 
models to emerge and in turn affect the whole system, a large 
number of time steps need to be performed. We therefore face 
a computational challenge for both memory management and 
computational power. We need a model which allies the 
compactness and easiness of computation with a high 
potential of complex representation. 
We have used a modified version of the Fuzzy Cognitive Map 
(FCM) model (Kosko, 1986) and adapted it to our problem. 
This model is used at the same time as the behavioral model 
of our agents (our individuals) and as the vector of 
transmission of the evolutionary information. It allows a 
combination of compactness with a very low computational 
requirement while having the capacity to represent complex 
high level notions. Therefore, each agent can possess its 
unique proper FCM, which is an inherited modified 
combination of the ones of its two parents. The system can 
still manage several hundreds of thousands of agents 
simultaneously with reasonable computational requirements.  
The FCM contains sensitive concepts such as: predatorClose, 
foodClose, mateClose, energyLow; internal concepts such as: 
fear, hunger, sexualNeed, curiosity, satisfaction; and motor 
concepts such as: escape, searchForFood, socialize, eat, breed. 
It includes also weighted links representing the mutual 
influences of these concepts. Our simulation implements a 
speciation mechanism related to the genotypic cluster 
definition (Mallet, 1995). A species is a set of individuals 
associated with the average of the genetic characteristics of its 
members. A species split if the difference between the FCMs 
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of the two most dissimilar agents is greater than a threshold 
(Aspinall, 2010) leading to two sister species that rapidly 
diverge to became genetically insolated with no more 
interbreeding events. Since species membership is evaluated 
at each time step, a species can emerge or extinct at any time. 
A typical run last several tens of thousands of time steps, each 
time step being the time needed for each agent to perceive its 
environment, to use its behavioral model to make a decision, 
perform its action, to update the species and the world 
parameters. In total, more than one billion of agents will be 
born and several thousands of species will be generated, 
which allows the evolutionary process to take place and new 
behaviors to emerge reacting to a constantly changing 
environment. In addition, a food chain consisting of three 
levels, primary producers, predators and preys, has been 
implemented allowing complex interactions between agents 
and co-evolution to occur.  

Results 

Species abundance distribution 
To validate EcoSim, we have compared the ecological 
patterns it generates with those observed in natural 
ecosystems (Devaurs, 2010). We have focused on species 
abundance patterns as they are a key component of ecological 
theories. To analyze them, we used Fisher’s logseries, since it 
is one of the most classical models of species abundance 
distribution. The following results, well established in the 
ecological literature, are also observed in the communities 
generated by our simulation: the logseries presents a good fit 
to the distributions of small samples; it fails to do so for large 
samples and complete community; the logseries performs 
better on species-rich communities. Even though the logseries 
does not provide a good fit for large samples, the distribution 
patterns observed in our communities are very similar to those 
observed in nature. Thus, at any level, our simulation gives 
coherent results in terms of relative species abundance. 

Chaotic behavior 
Any attempt to model a real system needs to have the capacity 
to generate patterns as complex as the ones of the real system. 
We have studied the properties of the time series representing 
the variation of the number of: preys, prey species, predators 
and predator species (Golestani, 2010). We examined whether 
a chaotic behavior exists in these signals. To enforce our 
results, we use four different methods: Higuchi fractal 
dimension, correlation dimension, largest Lyapunov exponent, 
P&H method. To obtain a statistically significant evaluation, 
we apply the surrogate test method on 24 samplings of these 
data. All of them providing clear predictions that the behavior 
of simulation is deterministic chaotic. 

Population spatial distribution 
We have conceived a measure to compute the spatial center of 
a population in a torus world (Sina, 2011). Computing spatial 
distribution in an ecosystem simulation is important for 
analyzing various aspects of species or group of individuals. 

One of the applications is prediction of extinction of a 
population. When individuals of a population are dying, their 
spatial distribution either globally or locally, starts to 
decrease; since it has a relationship with number of living 
individuals of the population. Also it was shown, as expected 
in the parapatric model of speciation that genetically similar 
individuals in a population tend to live closer to each other. 

Conclusion 
This project is at its early stage but we have already many 
interesting results. We have submitted several papers: 
diffusion and mitigations of diseases in an ecosystem, a 
machine learning approach for modeling species abundance 
distribution, the natural selection effect on the variation of the 
ecosystem’s complexity, and the multifractal properties of the 
individuals’ spatial distribution. We are currently working on: 
the effect of reduction of gene flow on the rate of speciation, 
the emergence of new complex behaviors and their effect on 
fitness, applying machine learning techniques to predict 
species extinction and speciation events, the effect of choice 
of mating partner on variation of the population’s fitness and 
the effect of multiple food resources on emergence of species. 
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Abstract

Cultural  evolution  occurs  through  the  transmission  of 
cultural  traits,  and  we consider  the  meme  as  the  unit  of 
cultural  transmission.  We construct  an agent-based model 
representing  the  processes  by which cultural  transmission 
occurs and to link these to the community-scale phenomena 
arising from agent interactions. We base our model on small 
communities  of  e-Puck  robots,  and  following  work  on 
movement-based memes, consider sound as the medium of 
cultural  transmission.  Our  architecture  affords 
(re)production of memes, variation in meme production and 
a  range of  meme selection and meme memory strategies. 
Through  these  processes,  we  identify  the  meme 
complexities,  meme  memory  strategies,  meme  selection 
strategies  and e-Puck movement  speeds that  promote and 
inhibit both meme diversity and reproductive fidelity.

1 Introduction

Human and animal decision-making is strongly influenced by 
knowledge acquired through observation of the behaviour of 
others,  and  when  behavioural  patterns  are  spread  among 
individuals  over  generations  this  is  a  form  of  cultural 
evolution  (Danchin  et  al.,  2004).  Thus  cultural  evolution 
occurs through the transmission of cultural behaviours / traits 
(Christensen and Kirby, 2003).  Agent-based models seek to 
understand  the  processes  by  which  cultural  transmission 
occurs and to link these to the community-scale phenomena 
observed when groups of agents interact (Buzing et al., 2005). 
By understanding these processes at the individual scale it is 
possible to manage change at the community scale (Bown et 
al., 2007). To effect cultural change is a challenging problem 
and  it  is  possible  to  progress  by  taking  inspiration  from 
biological systems (Danchin et al., 2004).

One  view  of  cultural  evolution  is  to  recognise  a 
correspondence between the processes underlying cultural and 
biological evolution: variation, reproduction, natural selection 
(Heylighen  and  Chielens,  2008).  Rather  than  genetic 
transmission  and  recombination  with  variation  as  the 
mechanism of reproduction, cultural  evolution considers the 
meme (Dawkins, 1976) as the unit of cultural transmission, 
i.e.  communication.  Memes  may  be  transmitted  and 
recognised by individual agents in the community. Variations 
may occur through errors in interpretation. Natural selection 
occurs  since  some memes  are  fitter  than  others:  i.e.,  some 
memes  are  more  likely  to  be  communicated  than  others 

(Heylighen,  1999).  Thus,  biology  offers  a  framework  for 
studying cultural evolution (Speel,  1995). However, cultural 
studies  face  the  same  problems  as  biological  ones:  it  is 
impossible to measure everything and real-world complexity 
is overwhelming (Humphreys 2007).

To make progress,  many social  science experiments  take a 
problem-led view of social behaviours, focusing on specific 
issues and building in assumptions about societal functioning 
to  support  analysis of the question posed, e.g.,  in emergent 
cooperation and communication (Buzing et al. 2005) and in 
language  (Christiansen  and  Kirby,  2003).  In  Buzing  et  al. 
(2005),  for  example,  results  show that  cooperation pressure 
leads to  the evolution of  communication skills  that  support 
cooperation. This cooperation pressure is built into the model, 
in that resource acquisition is directly enabled by cooperation. 
Communication is likewise built in, enabling recruitment of 
cooperators to acquire resource. Importantly, the model allows 
flexibility in the extent to which agents use communication – 
talking  to  request  cooperation  and  listening  to  respond  to 
cooperation requests – to interact with other agents. The work 
demonstrates  the  impact  of  environment  (cooperation 
pressure) on communication strategy, and that the ability to 
listen occurs in advance of the ability to talk. Such a problem-
led  view  thus  focuses  model  construction  on  factors 
(measurables) and system dynamic assumptions that are likely 
to  contribute  to  the  phenomenon  being  investigated.  While 
this  approach limits  the scope of the model to the question 
asked,  it  does provide insight into that  question.  Moreover, 
model results serve to refine the real-world question being set 
and direct  iteratively the next phase of experimental  design 
(Christiansen and Kirby, 2003) so focusing data collection on 
those  measurables,  and  this  in  turn  can  refine  the  model 
construction (Bown et al., 2007).

Here, we take an alternative, complementary approach, where 
no assumptions are made about societal functioning and the 
goal is to elicit the fundamental processes responsible for the 
development of a proto-culture. This is similar in approach to 
Kirby (2001) where a protolanguage,  lacking any structure, 
gives  rise  to  a  syntactic  structure  through evolution  of  the 
language itself rather than through evolution of the users of 
that language. Here, we outline an artificial culture laboratory 
designed  that  affords  (re)production of  memes,  variation  in 
meme production and a range of meme selection strategies. 
Through these fundamental processes, we are able to identify 
conditions that promote and inhibit both meme diversity and 
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reproductive  fidelity.  Our  artificial  culture  lab  comprises  a 
physical  arena  with  closed  boundaries,  populated  by  two-
wheeled  mobile  robots  called  e-pucks,  capable  of  moving 
forwards,  moving  backwards  and  turning  (Mondada  et  al., 
2009). They are equipped with a range of sensors that enable 
detection  and  tracking  of  obstacles  and  other  robots. 
Importantly,  robots  can  sense  and  track  the  movements  of 
other  robots  nearby.  Robots  can  signal  to  each  other  with 
movement and light (through programmable LEDs), and both 
movement and light may be detected through a simple  on-
board camera. Robots can also signal to each other through 
sound, as each has an on-board speaker and microphone. This 
allows multi-modal communication strategies on a one-to-one 
or one-to-many basis, and with or without active consent (i.e. 
one robot can eavesdrop on the communication between two 
others).  The  artificial  culture  lab  is  fully  instrumented.  A 
tracking  system  allows  the  movements  of  all  robots  to  be 
captured and recorded for analysis and interpretation. The e-
pucks have linux board upgrades (Liu & Winfield 2010).

We  have  implemented  two  modes  of  robot-to-robot 
communication: movement and sound. In each case, memes 
are the unit of cultural transmission. Our longer-term goal is 
to  integrate  movement-meme  and  sound-meme 
communication and investigate the evolution of multi-modal 
communication  strategies.  We  have  already  published  our 
movement  and  we  detail  sound-mediated  communication 
here.  For  movement,  memes  are  self-contained  movement 
sequences (Winfield and Erbas, 2011). We refer to the robots 
as copybots (Blackmore, 1999) since they have no behaviours 
other than imitation, alternating from learner to teacher. While 
a teacher robot, seeded with one or more initial memes, enacts 
its meme, one or more learner robots observe that meme and 
store it in memory. When learner becomes teacher, a meme is 
selected  from  memory  and  enacted  while  other  learner 
robot(s)  observe.  Importantly,  we  preclude  robot-to-robot 
telepathy: the learner robot learns the meme enacted by the 
teacher through its senses alone. Consequently learners must 
solve the correspondence problem (Nehaniv and Dautenhaum, 
2007), i.e. the problem of translating perceptions of another’s 
actions (via sensory input) into corresponding motor actions.

The use of real physical robots, rather than simulated robots, 
together  with  the  preclusion  of  robot-to-robot  telepathy 
increases  potential  for  emergence  in  behaviour,  and  in 
Winfield  and  Erbas  (2011)  we  demonstrate  that  embodied 
movement-meme evolution is possible in the artificial culture 
lab. A combination of imperfect sensors, distance-dependent 
errors in sensor input and shared channels of communication 
provide a form of natural variation that drive novelty in the 
meme set. Specifically, artefacts emerging from this variation 
may  give  rise  to  new  memes  –  and  so  new  cultural 
“traditions” – that occur for no other reason than that they can 
(Winfield and Griffiths, 2010). For sound-memes, generated 
through  e-puck  speakers  and  heard  through  e-puck 
microphones,  we  also  adopt  the  copybot  concept.  E-pucks 
move around an arena, listen to sound-memes sung by other e-
pucks and then imitate what has been heard, under different 
meme selection strategies. Of note is that we were required to 
resort to simulation for our sound-meme experiments because 

of  practical  limitations,  particularly  in  regard  to  sound 
detection. With regard to sound generation, the e-pucks were 
not  able  to  generate  a  consistent  frequency.  Moreover,  the 
amplitude produced was very sensitive to battery level and so 
we had a very short operating window. With regard to sound 
detection, the e-pucks are very sensitive to: direction, needing 
to be directly facing the sound source under idealised (sound-
proofed) conditions; distance, with a sharp distance-dependent 
attenuation; and ambient noise, with the noise created by e-
puck  movement  being  particularly  problematic.  The battery 
and  directional  constraints  are  removed  in  the  simulator. 
Inconsistency in frequency of sound generation, i.e., natural 
variation,  and  the  distance-dependent  attenuation  are 
accommodated in the simulator. We undertook systematic in 
vitro  experiments  to  characterise  that  natural  variation  and 
then parameterise the simulator based on those experiments as 
in  previous ecological studies (Bown et  al.  2007).  Ambient 
noise is eliminated by our use of simulation. The benefits of 
working  with  real  robots  are  made  clear  in  Winfield  and 
Griffiths  (2010),  and  the  best  comprise  was  to  capture  the 
natural  variation  through  isolated  robot-to-robot 
communication  experiments  and  then  develop  software 
models  of that  variation.  We are then able to  integrate  this 
sound-meme  model  into  the  real-world  movement-meme 
robot laboratory to effect (a best approximation to) a system to 
explore the evolution of multi-modal communication.

2 Methods

2.1 Simulator Overview
The simulator was designed to simulate a number of e-puck 
robots moving around the Artificial Culture Lab, listening to 
and imitating each other’s songs. 

The simulator was designed to be a high-fidelity simulation of 
the  transmission,  detection  and  analysis  of  sound,  and 
consequently  we  carefully  calibrated  the  sound  dynamics 
using real robots and these dynamics set the time step of the 
simulator  (section  2.2).  Our  treatment  of  space  and  robot 
movement is of lower fidelity, yet designed to map onto the 
Artificial Culture Laboratory (section 2.3). In addition to the 
memory selection strategy  described  in  Winfield and  Erbas 
(2011), we explore alternate selection strategies (section 2.4) 
and the impact  of  these  strategies  on meme propagation in 
communities of robots (section 2.5).

2.2 Real-robot Calibration Experiments and 
Simulator Parameters
Extensive experiments were carried out to measure the sound 
signal  generation  and  detection  capabilities  of  the  (real)  e-
pucks for simulator calibration. We identified a decay function 
for sound attenuation, the range of frequencies that could be 
both generated and detected by the e-pucks, a statistical model 
of  variation  in  frequency  generation,  and  upper  and  lower 
limits on speed of movement.

Sound attenuation over distance –  the ability of e-pucks to 
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detect sounds generated by other e-pucks was measured over 
increasing distances. This is used to reduce the amplitude of 
the  sounds  over  distance,  ensuring  that  distant  sounds  are 
quieter and closer sounds are more readily detected.

Inconsistent  frequency –  e-pucks  may  be  programmed  to 
generate  sounds  at  specific  frequencies;  however  hardware 
limitations preclude generation of a clear, consistent tone. We 
measured variation in frequency generation over  a range of 
frequencies (500Hz to 3200Hz). We then constructed a linear 
regression model to describe the average variation in for each 
frequency in that range in 100Hz intervals. 

Figure 1 – Frequency Variation; Inset Sound Attenuation

Vertical line shows the target frequency of 2000Hz. The distribution curve 
shows the variation of the actual frequency generated by the e-Puck.

The  simulator  samples  from  this  distribution  for  every 
generated  sound.  Fig.  1  above  shows  the  frequency 
distribution for target 2000Hz.

Time-step and sound sampling rate – e-pucks sample sound at 
33kHz.  Allowing  for  the  (measured)  time  to  transfer  the 
samples  from  PIC  to  Linux  processor  (4ms)  and  4ms 
processing time, e-pucks can process 128 samples every 8ms. 
The  time-step  in  the  simulator  is  set  to  8ms.  128  samples 
gives  the  best  ratio  accuracy  of  frequency  and  timing 
measurement  and  gives  a  good  range  of  usable  frequency 
bands. More samples would decrease the timing measurement 
accuracy for little gain as the variation in frequency is greater 
than the increased accuracy of identified frequency ranges.

2.3 Simulation of Space and Memes
The Simulated World – the arena of the Artificial Culture Lab 
is  represented  by a  lattice.  The edge of  the  grid  is  a  non-
toroidal  boundary.  Each  lattice  cell  represents  an  area 
approximating the size of an e-puck (5cm x 5cm). Each square 
may  only  be  occupied  by  a  single  e-puck.  Movement  is 
represented  by  transitions  from  one  square  to  an  adjacent, 
unoccupied  square,  happening  once  every  n  milliseconds, 
where n is determined by the speed of the e-puck (note, the 
resulting simulated speed of the e-pucks is within the range of 
real e-puck speed). E-pucks move in straight lines, reflecting 
off  lattice  edges.  When an  e-puck  attempts  to  move into a 
square  occupied  by  another  e-puck  –  i.e.  a  collision  –  it  
instead changes direction and moves to the first unoccupied 

square in a clockwise direction, with respect to itself, from the 
occupied square, and if surrounded it does not move. The e-
pucks are positioned centrally  in  the cell;  consequently,  for 
sound  attenuation  the  distance  between  two  e-pucks  is 
equivalent to  the  distance between cell  centres.  E-pucks do 
not move if they are imitating or listening to other e-pucks. 
Note,  a  given  e-puck  may  hear  a  single  song,  or  multiple 
songs and this can result in interference.

Memes – a meme is, in the simulation, the representation of 
the song. Memes are mono-tonal, and the frequency that the 
meme is sang at is determined by the particular e-puck singing 
the meme. A meme is made up of a series of pulses of sound 
separated by periods of silence, and these are termed pulses of 
sound and pulses of silence respectively. The description of a 
meme,  then,  at  its  simplest  is  a  list  of  pulse  lengths 
(alternating periods of sound and silence) in milliseconds. 

Here, the “idealised” form of a meme has been defined as a 
series of pulses of equal length. An idealised meme of three 
250ms pulses of sound separated by 250ms pulses of silence 
would therefore be described as 250,250,250,250,250. Errors 
in transmission, detection or analysis of sound could result in 
a non-idealised meme described as 250,400,150,150,250.

Memory:  Distinct  and  Grouped –  to  investigate  different 
strategies of memory and selection, memory may be distinct 
or grouped. An e-puck with distinct memory will store every 
meme heard as a new meme, even if it is identical to a meme 
already  in  memory.  An  e-puck  with  grouped  memory  will 
examine  every  meme  heard  and  determine  if  it  is  already 
known,  in  accordance  with  criteria  defined  below,  or  new. 
New memes  are  added  to  memory;  already  known memes 
have their count incremented. 

Memory:  Short-term and Long-term: -  within the  simulator 
the e-pucks have the equivalent of both long and short term 
memory. Short term memory stores the memes that have just 
been heard while long term memory stores all the memes that 
have been heard during the simulation run. While the e-puck 
is hearing sounds, those sounds are used to build up memes in 
the  short  term memory.  When the  e-puck  hears  silence for 
more than two seconds all the memes in short term memory 
are  finalised,  the  e-puck  decides  which  meme to  sing  next 
(from short or long term memory, depending on strategy), and 
copies all the memes from short term to long term memory. 

2.4 Meme Description and Selection Strategies
Meme – a meme is a number of pulses of sound and silence. 
In its idealised form all pulses are the same length.

Meme Metric – we define a single metric comprising three 
measures:  total  meme  length,  in  milliseconds;  number  of 
pulses in the meme; and a measure of the structural difference 
between the meme and an idealised meme of the same length 
and number of pulses. 

Meme  similarity  is  directly  proportional  to  the  Euclidean 
distance in the three-dimensional metric space. 

Structure= ln (√∑ (PulseLength
k
− IdealisedPulseLength

k )2)

StandardDeviation= 46 .9

MeanFrequency=−16 . 8243+( 1. 01247∗TargetFrequency )
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Two memes are judged to be similar enough to be considered 
the 'same meme' if they have a) the same number of pulses, b) 
the  same overall  length  to  the  nearest  500ms  (one  perfect 
pulse)  and  c)  both  structural  measures  are  either  below or 
above  6.214 (derived from perfect pulse). 

Selection Strategies – here, we examine 4 different strategies 
for selecting which meme to imitate in response to a meme 
being heard.

1.  Random  Mimicry –  after  hearing  a  meme  (or  multiple 
simultaneous  memes),  add  it  to  memory.  When  imitating, 
randomly pick a meme from that memory and sing it. This is a 
form of indirect mimicry. The e-puck does not mimic what it 
has just heard, it mimics something that it has heard at some 
point. Selection is weighted by how often the meme has been 
heard.

2. Direct Short-term Mimicry – the e-puck mimics one of the 
memes  it  has  just  heard,  those  which  are  in  short  term 
memory, picking randomly from those memes if  more than 
one was heard. Selection is thus unaffected by the memes in 
long-term memory (which are stored for auditing). 

3.  Direct  Long-Term  Mimicry  –  the  e-puck  compares  the 
memes it has just heard to the memes in its long term memory, 
determines which newly heard meme is most similar to one of 
the memes already in memory and mimics that heard meme. 
This is direct, memory-driven mimicry.

4.  Proto-Imitation  – the e-puck compares the memes it  has 
just  heard  to  the  memes  in  its  memory,  determines  which 
heard meme is most similar to one of the memes already in 
memory and sings the known meme from its memory.  (most 
similar  is  closest  in  Euclidean  distance  in  the  three-
dimensional metric space) A distinction can be made between 
mimicry,  the  copying of  actions,  and imitation,  recognising 
the intent of those actions and enacting that intent. With this 
latter strategy the e-puck differentiates between the meme that 
it heard (the action) and the meme it believes the singer was 
trying to sing (the intention) and sings that intended meme in 
response.  This  is  simple,  proto-imitation  rather  than  basic 
mimicry.

2.5 Experiments
The distance-dependent sound attenuation and inconsistency 
in  frequency  generation  introduce  potential  differences 
between memes sung and memes heard. Moreover, when this 
is  combined  with  e-pucks  both  singing  and  moving 
concurrently, new memes may emerge. New memes may arise 
from memes that: overlap, such that silences in one meme are 
filled with sounds of another; concatenate, since there are no 
special signals at the beginning or end of a meme it is possible 
to  blend  memes  over  time;  and  are  generated  with  errors, 
through  the  model  of  inconsistency.  The  resulting 
complexities  require  us  to  first  analyse  meme  evolution 
patterns  in  general  (experiment  1).  We  also  explore  under 
what  circumstances  meme  propagation  is  best  effected 
(experiment 2).

Experiment  1  –  Meme  evolution –  the  impact  of  meme 
memory  (distinct  and  grouped)  and  selection  strategies  on 
meme evolution was explored.  The e-pucks were initialised 
with a set of four seeds in  memory:  i) five pulses of 300ms, 
ii) five pulses of 500ms, iii) five pulses of 700ms and iv) five 
pulses of 900ms.  The other parameters varied across the tests 
were speed (eight speeds from stationary 0, to fastest 7) and 
population size (1 to 8 e-pucks). This resulted in 256 distinct 
tests, each of which was run multiple times.

We  have  devised  “Memeographs”  to  report  on  these 
experiments.  Our  memeograph  is  a  hierarchical  graph  that 
shows  the  connections  between  memes  sung  and  memes 
heard. It identifies the individual robots involved, memes that 
are repeated and distinguishes between original seed memes 
and new memes. Nodes are memes and links are “listening 
events”.  For  a  given link,  the  meme at  the arrow end was 
heard  (and  added  to  memory)  as  a  result  of  hearing  (or 
mishearing) the meme at the tail end. While the memeograph 
contains  time-based  information,  it  should  not  be 
misinterpreted as a time-line; in particular, a chain of memes 
should  not  be  taken  as  evidence  that  a  meme  was  sung 
multiple times in a row – it  is possible that  that  chain was 
sung intermittently with other memes being sung in between. 
The  colour  of  the  node  indicates  the  meme.  Node  shape 
indicates the robot. Seed memes are depicted larger than new 
memes.

Experiment  2  –  Meme  Propagation   –  We  examine  the 
propagation of a single meme from a single e-puck across a 
community. Initially, one e-puck knows a single meme; seven 
other  e-pucks  begin  with  no  memes  in  memory. 
Consequently,  these  e-pucks  construct  their  memories  from 
this  seed  meme  only  when  they  encounter  and  hear  that 
meme,  or  some corrupted  form of  that  meme.  We analyse 
under varying conditions the rate of meme propagation. The 
experiments  were  replicated  fifty  times  for  each  memory  / 
selection strategy pairing at eight different speeds (0 to 7). We 
varied seed meme complexity: the shortest meme consisted of 
three 500ms pulses (sound, silence, sound); other seed memes 
were two pulses longer (5, 7, 9, 11 13, 15 and 17 pulses). 

3 Results

3.1 Meme Evolution
Memeograph topology is predominantly affected by memory 
strategy  and  selection  strategy.  Speed  had  no  effect  on 
diversity,  except  for  zero  speed  which  precluded  meme 
exchange  and  therefore  evolution.  Diversity  scales  linearly 
with population size (results not shown). For illustration we 
show four of the possible eight combinations below (Fig. 2). 
For each memory and selection strategy combination, we use 
the  Random  Mimicry  selection  strategy  as  a  baseline  to 
express the average number of memes and clusters of memes, 
determined by QT Cluster Analysis (Heyer et Al, 1999). The 
QT Cluster Analysis is based on the metric described in 2.4, 
normalised to a 0.0 to 1.0 range, with a radius of 0.05 and a  
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minimum cluster size of five.

Memory Strategy

Grouped Distinct

Selection Strategy Clusters Memes Clusters Memes

1. Random Mimicry 1 1 1 1

2. Short-term Direct 
Mimicry 0.91 1.02 0.64 0.90

3. Long-term Direct 
Mimicry 0.94 1.0 0.66 0.80

4. Proto-Imitation 0.98 0.98 0.75 0.81

Table 1 - Meme Evolution Results

Table 1 shows the relative numbers of memes and clusters (groups of 
memes) by selection and memory strategies

Grouped  Memory  -  Memeographs  of  grouped  memory 
experiments  indicate  how often  a  given  link  has  happened 
with a number on the link and by the thickness of the link line. 
Grouped  memory  results  in  fewer  memes  in  memory  and 
fewer clusters than Distinct memory. Table 1 above shows the 
relative sizes of the number of memes and groups of memes 
generated by the different memory and selection strategies.

1. Random Mimicry –  This  is  the  base  line  case  for 
Grouped Memory strategy, it produces more clusters 
and memes than any other selection strategy (when 
using grouped memory).

2. Direct  Short  Term  Mimicry –  (Fig.  2b).  For  the 
grouped  memory  strategy,  the  Direct  Short  Term 
Mimicry  selection  strategy  produces  the  least 
clusters of all the selection strategies. This is because 
the  mimicry  is  only  based  on  the  memes  most 
recently heard, limiting the number of memes that 
could be sung at any point.  There is an increasing 
chance that the memes just heard will already be in 
memory.

3. Direct Long Term Mimicry -  Comparing the memes 
heard  to  the  memes  in  memory  has  the  effect  of 
increasing  the  number  of  memes  involved  in  the 
mimicry, resulting in more diversity of memes than 
the short term mimicry.

4. Proto-Imitation -   results  in slightly fewer clusters 
and  memes  than  the  Random  Mimicry  strategy. 
Singing a meme heard earlier rather than the meme 
just  heard  increases  the  likelihood  that  the  meme 
sung will be different to the heard meme.

Distinct  Memory –  With  every  meme  stored  as  a  distinct 
meme this  strategy  produces  47% more clusters  and  755% 
more memes than the grouped memory strategy.

1. Random  Mimicry  –  all  memes  in  memory  are 
equally  likely  to  be  chosen,  and  over  time  most 
memes will be sung multiple times. This is the base 

line case for Distinct Memory strategy.

Figure 2a – Direct Memory, Direct Short-term Mimicry 

Figure 2b – Grouped Memory, Direct Short-term Mimicry 

Each node identifies a meme in the memory of an e-puck. The shape of  
the node identifies the e-puck, the colour identifies the meme and the size  
distinguishes between seed memes (large) and emergent memes (small).

2. Direct  Short  Term  Mimicry   –  Since  each  meme 
heard  is  stored  as distinct  meme in memory,  long 
chains  of  nodes  with  the  same  shape  and  colour 
occur  (Fig.  2a).  This  combination  reduces  the 
number of clusters more than any other strategy but 
does not reduces  the overall  number of  memes as 
much  as  Direct  Long  Term  Mimicry  and  Proto-
Imitation. 

3. Direct Long Term Mimicry – results in almost as low 
a number of clusters as Direct Short Term Mimicry 
but with far fewer memes stored.
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4. Proto-Imitation – this too is a very limiting strategy 
though the effect on the memeograph is completely 
different.  With  this  strategy,  only  seed  memes are 
ever sung. Whatever the listener hears it interprets it 
as a prompt to sing a seed meme, as such no newly 
heard meme is ever more than one step away from a 
seed meme. 

Using  Random  Mimicry  as  a  baseline  the  other  strategies 
reduce  the  number  of  clusters  found  for  both  memory 
strategies,  with  a  larger  reduction  for  the  distinct  memory 
strategy. They do not change the overall  number of memes 
generated with the grouped memory strategy as they do with 
the  distinct  memory  strategy.  This  is  interpreted  as  the 
selection strategies having the effect of implicitly grouping the 
memes, explaining why this effect of the selection strategies is 
greater when the memory strategy does not group the memes 
(i.e. Distinct Memory). 

Figure 3 – Memeograph Detail – Grouped Memory

Each node identifies a meme in the memory of an e-puck. The shape of 
the node identifies the e-puck, the colour identifies the meme and the size 
distinguishes between seed memes (large) and emergent memes (small).

a & f – two distinct memes, each known by multiple e-pucks
b, c & g – emergent memes created by incorrect mimicry of memes

d & e – two different e-pucks incorrectly mimicking meme c
A closer inspection of the memeograph affords an account of 
experiment dynamics, as depicted in the fragment shown in 
Fig.  3.  In  area  a,  the  large  shapes  show  a  seed  meme  is 
mimicked  successfully  (nodes  have  same  colour)  by  four 
robots  (different  shapes).  Examination  of  the  whole 
memeograph (not shown) reveals that meme is a stable meme 
that is sung and heard correctly often. 

However it  is  not mimicked correctly every time: the three 
small  shapes  in  areas  b  and  c  are  coloured  differently 
indicating that either the imitator sang the meme badly, or that 
the listener misheard, perhaps by not hearing the start of the 
meme. 

Interestingly  the  small  triangle  (area  c)  was  heard  by  two 

other  robots,  diamond  (d)  and  square  (e),  both  of  which 
misheard  the  meme  in  the  same  way,  as  shown  by  them 
having the same colour. More interesting still, this misheard 
meme proves to be a stable successful meme itself and gets 
passed on to all the other robots in the experiment (area f). 

Selection  strategies  of  Random  Mimicry  and  Long-term 
Mimicry  have  more  diversity  than  those  of  Short-term 
Mimicry  and  Proto-imitation  (Fig.  4).  Speed  and  meme 
complexity have no effect on diversity.

Figure 4 – Homogeneity and Diversity

Two 3d scatterplots of memes, each meme is plotted in three-dimensional 
space by its metric; the x-axis is the length of the meme in milliseconds, 

the y-axis is the number of pulses in the meme and the z-axis is the 
measure of distortion from the idealised form of the meme. The memes 
are coloured by similarity derived from QT cluster analysis of the data.

3.2 Meme Propagation
Fig.  5  shows  the  average  spread  across  the  community  of 
initial  seed  memes  of  differing  complexity  for  each  of  the 
memory/selection strategy pairs. The x axis shows the speed 
of the e-pucks. The y axis is number of robots the seed meme 
has spread to,  varying from zero (no propagation)  to  seven 
(maximum propagation). As seed meme complexity increases 
meme propagation decreases: a shorter meme is more likely to 
be spread throughout the community since there is less chance 
of making a mistake in a shorter meme or of only hearing part 
of it. 

Memory strategy has little  effect  on the propagation of  the 
seed meme. In contrast the choice of selection strategy has a 
marked effect. 

Random  Mimicry –  proves  to  be  an  effective  strategy  to 
propagate  the  seed  meme.  It  ensures  that  if  a  robot  has 
correctly heard the seed meme it has a chance to repeat it (or 
any other meme) at some point.
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Figure 5 – Meme spread by meme length and e-puck speed

Speed varies from 0 (stationary) to 8 (fastest). Memes vary from shortest 
(1) to longest (8). Spread varies from 0 to 7 (full propagation). Dashed 
lines above speed 5 indicate speeds the real e-pucks are incapable of.

Direct Short Term Mimicry is the least successful at spreading 
the seed meme. Failing to compare what is heard to what is in 
memory means that any drift away from the seed meme will  
only be corrected by chance errors in communication. 

Direct Long Term Mimicry is a more effective strategy. The 
more often a meme has been heard the more likely it is to be 
mimicked, and an error by a single e-puck is likely to ignored. 
However by mimicking the heard meme that is closest to a 
known meme there will inevitably be some incremental drift 
away from the seed meme. This drift may  lead to a meme that 
is greatly different from the seed meme. 

Proto-Imitation is another effective strategy. The more often a 
meme  is  heard  the  more  likely  it  is  to  be  repeated.  By 
repeating the known meme that is closest to the heard meme 
rather than mimicking the heard meme any errors in the heard 
meme are  ignored  and  the  correct  version  of  the  meme  is 
sang. This limits the incremental drift problem. 

Speed has a significant effect on the spread of the seed meme. 
If the community is moving too slowly there is insufficient 
opportunity  for  meme  exchange.  For  experiments  that 
replicate speeds at which the e-pucks are capable of moving 
(speeds 1-5) we see that as speed increases there is increased 
spread of the seed meme, with the greatest increase in spread 
at the lower speeds and a plateau-effect at higher speeds. To 
investigate this plateau we simulated the effects of robots that 
could move faster than the e-pucks (speeds 6+), and observed 
that at higher speeds meme spread reduces. E-pucks moving 

at high speeds are typically hearing only part of memes being 
sung as they move  away from neighbours too quickly. Very 
short memes (meme 1 and to some extent meme 2) are less 
affected by the high speed drop off.

4 Discussion

We  explored  sound  meme  transmission  in  a  simulated 
community  of  e-Puck  robots.  We identified  conditions  that 
promote and inhibit both meme diversity in and reproductive 
fidelity of sound memes in the artificial culture laboratory.

4.1 Meme Evolution
The  grouped  memory  strategy,  i.e.  only  storing  distinctly 
different  memes  as  new  memes  and  recording  how  many 
times each meme had been heard, resulted in fewer memes 
than  distinct  memory,  i.e.  storing  every  meme  heard  as  a 
distinct meme. Grouped memory also results in fewer meme 
clusters and therefore a more homogeneous set of memes. 

Grouping  memes  eliminates  small  mutations  in  the  memes 
that the distinct memory approach keeps. Consequently, meme 
evolution occurring in small steps through multiple imitations 
(iterations) is precluded. As a result, changes that are observed 
occur  from  larger  meme  mutations,  resulting  in  distinctive 
memes occurring at much lower frequency. 

Short-term direct mimicry, i.e. mimicking one of the memes 
that has just been heard without any reference to other memes 
in long term memory is a conservative strategy. Compared to 
the other selection strategies, this results in the fewest clusters 
and therefore less diversity. If, at any point, a single meme is 
more commonly sang than any other then it is likely to remain 
the most common meme sang (since the chance of randomly 
selecting it increases as more e-pucks sing it). A very different 
meme is  therefore  less  likely  to  be  mimicked  and  one  off 
errors  in  singing  or  listening  will  have  little  effect  on  the 
system.

In contrast, random mimicry maximises diversity in memes. 
The random responses greatly reduce the chance that the e-
pucks will synchronise on a single meme, and allows one off 
memes  that  the  other  strategies  would  ignore  a  chance  to 
propagate.

The  effect  of  allowing  long-term  memory  to  influence 
imitation,  through  long  term  direct  mimicry  or  proto-
imitation, is to reduce diversity. Short-term mimicry is driven 
by the pattern of the most recently heard memes, increasing 
the chance that the epucks will synchronise the memes they 
are  singing,  resulting  in  fewer  distinct  memes  and  more 
homogeneity. Long term memory does though have a greater 
effect on reducing the overall number of memes in the system. 
To  maximise  diversity,  a  combined  strategy  of  distinct 
memory with random mimicry is best. To minimise diversity, 
a strategy of grouped memory with short-term direct mimicry 
is optimal. Note, diversity scales linearly with population size 
and not at all with speed, apart from speed zero which limits 
exchange and effectively precludes meme evolution.
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4.2 Propagation
In addition to the impact of meme selection strategy, detailed 
at length in section 3.4, the successful propagation of specific 
memes  among  the  e-Puck  population  varies  in  accordance 
with meme length, meme complexity and speed of movement. 
Meme  length  and  complexity  impact  successful  meme 
propagation.  Short,  simple  memes  propagate  through  the 
community more successfully than longer, more complex ones 
and are less likely to be truncated or misheard, and during a 
fixed time period, shorter memes can be repeated more often 
and are more likely to be heard throughout the community.

Speed of movement also affects meme propagation. If the e-
Pucks  are  not  moving  at  all  then  there  is  limited  or  no 
opportunity for propagation: any e-Puck out of ear-shot from 
the  others  will  never  receive  the  meme.  For  any  but  the 
shortest memes, moving too quickly has a limiting effect on 
propagation, fast e-Pucks seldom hear the full meme.

In summary, to propagate a specific meme the best approach 
is  for  a simple meme with the robot moving at  an average 
speed  using  any  strategy  except  short  term  mimicry. 
Moreover,  to  propagate  a  specific  meme  while  keeping 
diversity as low as possible - and so to maximise the impact of 
that seed meme - the grouped memory and long term, direct 
mimicry strategies should be used.

4.3 Conclusions
We focused on sound memes and used a similar experimental 
approach  to  our  work  on  movement-memes  (Winfield  and 
Erbas,  2011),  which  reported  embodied  movement-meme 
evolution. Because of limitations in the e-Puck platform, we 
had  to  recourse  to  simulation  but  we  encapsulated  the 
observed  natural  variation  in  e-Pucks  through  model 
parameters.  Here,  as  in  Winfield  and  Erbas  (2011),  we 
demonstrate  that  meme  selection  strategy,  when  combined 
with natural variation and reproduction through imitation, is a 
crucial factor in cultural evolution.

Much progress  has  been made in  evolutionary  biology and 
we, like Mesoudi et al. (2006), believe that much progress can 
be made in cultural evolution by adopting methodologies from 
biology. We propose that our artificial culture lab provides a 
real-world  framework  with  natural  variation  for  controlled 
experimental  simulations in  embodied,  multi-modal  cultural 
evolution. We can explore meme-gene coevolution (Bull et al., 
2000), the influence of environmental variation on selection 
(Kingsolver et al.,  2003), and the links between micro- and 
macro-evolution  scales.  Kline  and  Boyd  (2010)  note  that 
larger populations generate more complex cultural adaptations 
than smaller, isolated ones. In their review they indicate that 
chance  events  that  perturb  cultural  transmission  are  more 
impacting  in  small  populations.  Moreover,  errors  in 
transmission  will  cause  complex  traits  to  degrade  more 
quickly than simple traits, although large populations mitigate 
this.  As  a  complement  to  such  empirical  studies,  our 
experimental  framework  allows exploration,  in  a  controlled 
way, of group selection processes (Boyd and Richerson, 2010) 
in the context of individual variation. We can thus investigate 

the  relation  between  individual  decision-making  and 
community-scale cultural phenomena.
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Abstract 
A flock, school, and swarm are collective behaviors that can be 
compared to a human consciousness or body. Through recent 
developments in image analysis and model simulation, it has 
been found that the collective behavior of animals can, as a 
whole, show characteristics of a single “body”. It has also been 
found that intrinsic noise can positively contribute to swarming 
and/or flocking. Motivated by field observations of soldier 
crabs, Mictyris guinotae, we propose a swarm model based on 
inherent noise and back propagation in time that mimics mutual 
anticipation. A swarm generated by this model is characterized 
by flexible, dynamical and robust behavior containing inherent 
turbulence. We demonstrate that the model can produce 
water-crossing, hourglass and logic gate behaviors, which are 
also found in real soldier crabs. We describe how a sense of 
ownership and a sense of agency of the “body” arise in our 
model, and we propose that the concept of a body should be 
verified in terms not of stability but of robustness. 

Introduction 
 

Does a swarm, flock or school have a single consciousness 
or body (Vicsek, 2001, Couzin, 2007; 2008; 2010, Sumpter, 
2010)? This question has been addressed in the context of 
collective decision making by computer models, particularly 
BOIDS (Reynolds, 1987) and SPP (Vicsek et al., 1995, 
Czir´ok et al. 1996). Owing to developments in image analysis 
that have made it possible to obtain kinetic data on the 
movements of real organisms (Ballerini et al., 2008a, b, 
Carere et al., 2009), several internal dynamical structures 
within groups have recently been identified. These structures 
include topological distance (Ballerini et al., 2008b), scale 
free correlation (Cavagna et al., 2010) and inherent noise 
(Yates et al., 2009). This research also suggests that inherent 
turbulence could play an essential role in collective motion. 
The collective behaviors of animals might be based on 
inherent noise, and the internal structures of a group are 
perpetually generated and modified to maintain a robust unity 
as a whole. 

A flexible but robust swarm (flock or school) can be 
compared to a human’s body (Gunji et al., 2010). In this 
sense, an animal group might recognize external objects in the 

environment by an embodied cognitive process (Varela et al., 
1992, Pheifer and Scheier, 2001, Pheifer et al., 2007). Human 
body awareness can be described by a sense of ownership 
(i.e., the sense that I am the one who is undergoing an 
experience) and of a sense of agency (the sense that we are the 
initiators of our actions) (Wegner et al., 2004, Tsakiris, et al., 
2008). Although a body appears to be very stable and 
unambiguous, it is well known that synchronous visuo-tactile 
stimulus can make body illusions, such as the rubber hand 
illusion (Botvinick, M. and Cohen, 1998) and an out-of-body 
experience (Lenggenhager et al., 2007, Ehrsson, 2007) 
possible. The body is also a robust and flexible system that 
can be adapted to environments. The problem still remains 
whether a swarm, flock and school can be compared to a 
“body” in these senses. 

Here, we show how inherent noise in conjunction with 
organisms’ mutual anticipation can actively contribute to the 
generation and maintenance of a robust swarm in a computer 
model. Mutual anticipation was implemented by 
asynchronous updating and back propagation through time. 
The time slice of a swarm is thus so complex that a swarm is 
robustly maintained and contains inherent turbulence. The 
model was constructed through observations of soldier crabs, 
Mictyris guinotae (Bradshaw and Scoffin, 1999, Shih., 1995, 
Peter et al., 2010). Our model can reproduce a swarm entering 
and crossing water through the emergence of a highly 
concentrated subpopulation driven by inherent turbulence; an 
hourglass of crabs showing regular oscillations; and 
collision-based-computing logic gates implemented by a 
swarm ball. The generation of these behaviors depends on the 
robustness and flexibility of swarming. Finally, we argue that 
a body-like character is embedded in our swarm model in the 
form of the interplay between anticipation and memory. 
 

Swarming by mutual anticipation 
 

Through observations of soldier crabs in the Iriomote 
Islands, Okinawa Prefecture, Japan, we discovered a role for 
inherent turbulence in collective behavior. A swarm of soldier 
crabs always contains inherent turbulence such that 
individuals in a swarm have different velocities, while the 
swarm maintains a coherent and dense unity. Inherent 
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turbulence in particular plays an essential role in 
water-crossing behavior. When a small swarm of soldier crabs 
confronts a water front, it cannot enter the water and moves 
along the perimeter of the water pool. In moving along the 
water front, inherent turbulence creates a highly concentrated 
locus inside the swarm, which can then enter and cross the 
water. 

If inherent turbulence provides the essential mechanism to 
generate robust collective behavior, an important question is 
whether this robustness can be distinguished from stability. In 
the context of stability, perturbations conflict with the 
mechanism that generates order. In the context of robustness, 
inherent noise positively contributes to the generation of 
collective behavior. To implement inherent noise, we 
proposed a mechanism of mutual anticipation based on 
multiple potential transitions. 
 
Basic model 

A model is defined in a discrete space of S × S with S = {1, 
2, …, sMAX }. The co-ordinate of the kth agent at the tth step is 
given by 
 

P(k, t) = (x, y)                            (1) 
 
where x ∈ S, y ∈ S, and k ∈ K={1, 2, …, N}. Each kth agent at 
the tth step has P number of potential vectors v(k, t; i) with i ∈ 
I = {0, 1, …, P-1}. If i = 0, the vector is v(k, t; 0), which is 
known as the principal vector. Otherwise, the vector is 
represented by the angle θk,t, such that 
 

v(k, t; i) = (Int(Lηi cos(θk,t+ξi)), Int(Lηi sin(θk,t+ξi)))    (2) 
 
where for any real number x, Int(x) represents integer X such 
that X ≤ x < X + 1. L is the length of principal vector. Because 
of the wrapped boundary, X belongs to S. If i ≠ 0, random 
values ηi and ξi are selected with equal probability from [0, 1] 
and [-απ, απ], respectively. The target of the vector is 
represented by τ(k, t; i) = P(k, t) + v(k, t; i). 

The mutual anticipation depends on the popularity of a 
site, 
 

ζ(x, y; t) = |{τ(k, t; i), k∈K, i∈I |τ(k,t; i)=(x, y)}|, 
If ∀(k∈K)P(k, t)≠(x, y); 

             0,      otherwise.                   (3) 
 
ζ(x, y; t) represents the number of potential transitions whose 
targets reach the site (x, y) where there is no agent. Before 
updating the location, for any (x, y) at the tth step and ω(x, y; 
t)∈{0, 1} we set ω(x, y; t) = 0. 

The agents’ locations are updated asynchronously. If there 
exists i ∈ I such that ζ(τ(k, t; i)) ≥ 2, the next site for the kth 
agent is defined by 
 

      P(k, t+1) = τ(k, t; s),                       (4) 
 
where s satisfies the condition such that for any i ∈ I, ζ(τ(k, t; 
s)) ≥ ζ(τ(k, t; i)). These conditions ensure that an agent moves 
to the most popular site. If multiple sites satisfy this condition, 
one is chosen randomly. Because the popularities are 
propagated backward in time, agents in a swarm can 
anticipate each other’s moves. 

A set of updated sites is represented by UN = {(x, y) ∈ S × 
S | P(k, t+1) = (x, y)}. The vacated site generated by equation 
(4) is recorded in memory as ω(x, y; t) = 1 if P(k, t) = (x, y) 
and P(k,t+1) ∈ UN. An agent that is not updated by equation 
(4) then moves to the vacated site by 
 

    P(k, t+1) = Rd{( x, y)∈Nf | ω(x, y; t)=1},          (5) 
 
if |{( x, y) ∈ Nf | ω(x, y; t)=1}| ≥ 1, where RdJ represents an 
element randomly chosen from set J, and Nf is the follower’s 
neighborhood. The agent moving by eq-(5) is called a 
follower because it follows a predecessor. 

If an agent is not updated by (4) or (5), it moves by 
 
     P(k,t+1) 
=Rd{ τ(k, t; i)|∀(j∈K’ )P(j, t)≠τ(k, t; i)∧τ(k, t;i)∉UN }      (6) 
 
where K’  is an index set of agents that are not updated. An 
agent moving by eq-(6) is called a free mover. 

Finally, principal vectors are locally matched with each 
other in the neighborhood through velocity matching, M. This 
matching operation is expressed as 
 
     θk,t+1 = <θk,t>M.                               (7) 
 
The bracket with M represents the operation of averaging 
velocity directions in the neighborhood, M. 

Fig. 1a shows the neighborhood of velocity matching and 
of the follower. Figure 1b shows the procedure of velocity 
matching, mutual anticipation, and following. 
 

a

c

rm

rf b

 
 
Figure 1 Schematic diagram of the transition and time 
development of the model simulation: (a) Principal vector 
(black arrow) and alternative vectors (red arrows) of a crab 
(blue square) in the matching neighborhood with radii rm (pale 
gray lattices) and the following neighborhood with radii r f 
(pale gray + pale blue lattices). (b) Transitions of crabs in a 
two-dimensional discrete space. Velocity matching (far left), 
mutual anticipation (second from left), following and free 
movement (second from right) and the resulting distribution at 
the next step (far right). (c) Time development (t = 500-850) 
of our swarm model of 100 agents, with P = 20, α = 0.9, L = 
4, ra = rf = 2. 

295ECAL 2011



 
First, velocity matching is applied to the principal vectors, 

and the agents then move to the most popular site (pink site in 
Fig. 1b), yielding a vacant site (pale blue site in Fig. 1b). 
Highly popular anticipated sites propagate backward in time, 
revealing the asynchronous transitions. Thus, mutual 
anticipation is here implemented by back propagation in time. 
Agents move to a vacant site if it is within the follower’s 
neighborhood. Fig. 1c shows a series of snapshots of our 
swarm model. Each agent is represented with its 5-step 
trajectories. It is easy to see that a swarm contains turbulent 
motion despite maintaining a highly dense whole. 

Fig. 2a shows polarization/density of a swarm plotted 
against external perturbation in our model with P = 1. 
Polarization is defined by the length of the average velocity 
over all agents in a swarm. Density is defined by the average 
number of agents in the neighborhood of 20 × 20 lattices. In 
the model with P = 1, the external perturbation, ξ, is randomly 
chosen from [0, 1] and is coupled with velocity matching. 
When the projected velocity of agent is expressed as (vx, vy), vx 
+ ξ and vy + ξ are given for the unit vector. If P = 1, the model 
corresponds to BOIDS because each agent has only one 
velocity. The coherence of a swarm can result only from 
velocity matching or high polarization; the more polarized and 
dense the population, the less external perturbation there is. 
 

a b

 
Figure 2 Polarization/density plotted against perturbation. (a) 
The polarization/density ratio plotted against external 
perturbation in the model with P = 1. (b) The ratio plotted 
against internal perturbation, which is defined as the number 
of potential transitions normalized by the maximum number 
of potential transitions. For this plot, P ranged from 1 to 30. 
 

Fig. 2b shows the polarization/density of a swarm plotted 
against the inherent perturbation in our model. The inherent 
perturbation is expressed by (P - 1)/PMAX , where P is given 
from 1 to PMAX  (30). The more inherent noise (i.e., more P) 
that is present, the higher the density and the lower the 
polarization are. This relationship reveals that a highly dense 
swarm is generated by mutual anticipation and/or inherent 
noise. For this reason, a coherent swarm (i.e., a highly dense 
swarm with an extrinsic boundary) contains inherent 
turbulence. 

In the next section, we illustrate how inherent noise 
positively contributes to robust swarm behavior by 
demonstrating the role of noise in water-crossing behavior, 
hour glass behavior and collision-based computing 
implemented by swarm balls. 
 
Water-crossing behavior 

The water-crossing behavior observed in real soldier 
crabs can be easily approximated by our model. To introduce 
a tidal pool into the simulation, we define a specific area Up ⊆ 
S×S in which the condition allowing mutual anticipation is 
replaced by 
 

ζ(τ(k, t; i)) ≥c.                              (8) 
 
The value c is an integer larger than 2. Because c > 2, it is 
more difficult for agents to go through the area Up. Only by 
introducing the specific area Up can we simulate the behavior 
of crossing water. 

 
Figure 3 Snapshots of the time development of swarm 
trajectories in a model simulation. Numbers in the upper left 
of each plot denote the time step. Each agent is represented 
with its 5-step trajectories. The rectangle located in the center 
indicates Up, which represents a tidal pool. For these 
simulations, P = 10, α = 0.3, L = 4, and ra = rf = 2. Blue and 
red arrows represent the directions of motion of swarms. Blue 
circle represents highly concentrated area of a swarm. 
 

Fig. 3 shows a series of snapshots of our swarm model 
demonstrating water-crossing behavior. Although a single 
agent or a small swarm cannot enter the tidal pool, a highly 
concentrated, large swarm can enter and cross the tidal pool. 
These behaviors are consistent with the behaviors of real 
soldier crabs observed in Iriomote islands. 

Fig. 4 shows the frequency of a swarm invading the tidal 
pool in a model given by P = 20, α = 0.5, L = 4, and ra = rf = 2. 
For each experiment, we prepared 2000 cases of a swarm 
confronting the tidal pool. If the size of a swarm exceeds a 
certain value, a constant high probability of invasion is 
achieved. If P is smaller, the possibility of which the 
popularity exceeds the threshold decreases. Thus, the 
minimum size of a swarm invading the tidal pool increases. 

Because a swarm generated by our model is so robust that 
a swarm can go through the tidal pool once the swarm enters 
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the water. Yet, if an agent is isolated in the water, then he or 
she cannot move and is left alone. This phenomenon is also 
observed in real solider crabs. 
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Figure 4 Frequency of a swarm invading a tidal pool as a 
function of swarm size. 
 
Hourglass made of soldier crabs 

In field observations, we found a soldier crab moving 
along the wall in a closed container, and we created an 
hourglass made of real soldier crabs (Nishiyama et al., 
2011). Forty soldier crabs are collected and are confronted in 
a closed container, where the floor was made of cork 
providing friction enough to walk for soldier crabs. If the 
container is left for while, solder crabs walk along the wall in 
keeping a half-broken swarm. Since a concentrated swarm 
oscillates along the wall, the hourglass made of soldier crabs 
produced periodic oscillations for approximately two or three 
hours with a period of 70 seconds. 

This behavior can be approximated by our model by 
slightly modifying one rule. 

To simulate hourglass behavior as shown in Fig. 5 and 6, 
we introduced a tendency to walk along a wall. The hourglass 
scenario is constructed as follows. We first defined the wall 
state for any lattice (x, y) such that 
 
      w(x, y)=1 if the site is the wall state;            (9) 

0, otherwise. 
 
In the hourglass simulation, an agent can be located only at a 
site where w(x, y) = 0. The angle of tangential direction is 
defined for each wall state site (x, y) and is represented by 
θw(x, y). The tendency of walking along a wall is defined by 
 
       θk,t=Rd{ β, β+π}                          (10) 
 

β=Rd{ θw(x, y)|d(P(k, t), (x, y))≤ d(P(k, t), (u, v)), w(x, 
y)=w(u, v)=1, (x, y), (u, v)∈NW },                    (11) 
 
where d((p, q), (x, y)) represents the metric distance between 
two sites (p, q) and (x, y), and NW represents the neighborhood 
of wall-monitoring for each agent. If an agent is close to the 
wall with respect to NW, the agent’s velocity, θk,t is parallel to 

the tangential direction of the wall. After this operation, 
velocity matching (equation (7)) is applied to all agents. Only 
from (10) and (11) can agents close to the wall walk along the 
wall and other agents pass using the shortcut. 

 
Figure 5 Snapshots of the time development of swarm move 
in the model simulation for the hourglass. Time proceeds from 
left to right and top to bottom. For this simulation, P = 10, α = 
0.5, L = 4, and ra = rf = 2. Each agent is represented by a black 
square with its own trajectory. First (top left) a main swarm is 
located at right hand, and then it moves to the left (top right). 
After that the swarm moves to the right again (middle center), 
and so on. 
 

A solitary agent separated from a flockmate in our 
model undergoes a random walk because a potential 
transition is randomly chosen for each step. It follows that 
potential transitions stand for inherent noise. Whenever 
agents are highly concentrated, mutual anticipation can 
occur; inherent noise positively contributes to form a dense 
swarm. Thus, even if agents are exposed to large external 
perturbations, the perturbed transitions cannot be 
distinguished from inherent noise. A swarm resulting from 
mutual anticipation is thereby robust to external 
perturbation. In order to demonstrate the robustness of a 
swarm we implement “crab hour glass” (Nishiyama et al., 
2011). 

Fig. 5 shows snapshots of model simulations. It was 
assumed that an individual has a principal vector parallel to 
the tangent of the wall if it was close to the wall, in which 
the direction is chosen with uniform probability to be 
clockwise or anti-clockwise. Other rule settings were the 
same as in previous models. In the simulations, high 
concentrations initially occurred at the left or right ends, 
and the swarm rotated anti-clockwise. Most of the 
individuals walked along the wall, and some followed 
shortcuts. After a long period, the rotational direction 
reversed from clockwise to anti-clockwise and vice-versa. 

The numbers of individuals in the divided areas (left, 
center, and right) shows regular oscillations (Fig. 6). The 
oscillating behavior of the model satisfies the properties of 
an hourglass of real soldier crabs. This oscillation 
mechanism is different from the periodic pattern of insect 
swarms based on escape-and-pursuit behavior. 
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Figure 6 Numbers of agents in the left (blue), center (red) and 
right (green) areas of the container over time. For this 
simulation, P = 10, α = 0.5, L = 4, and ra = rf = 2. 
 
Logic gates made of soldier crabs 

A swarm is so robust that it can be used as a ball for 
collision-computing (Adamatzky, 2002). In addition to the 
hourglass model, we prepared a special scenario in which the 
area in which agents can move freely is tightly bounded by a 
wall, and there is a gradient of preferred direction. The 
constructed OR gate made of agents is shown in Fig. 7. 

Each diagram of Fig. 7 shows a snapshot of the behavior of 
OR gate in time. Two entrances on the left represent input 
positions for two variables x and y, and one exit on the right 
represents the output position for x OR y. If a swarm is present 
at position x, this state represents x=1. Agents move along the 
wall and rightward because of the gradient. After the collision 
of two swarms (each consists of 40 agents), the united swarm 
moves rightward and reaches the output position. It reveals x 
OR y = 1 for (x, y) = (1, 1). Because x OR y = 1 for (x, y) = (0, 
1) or (1, 0), and x OR y = 0 for (x, y) = (0, 0), this setup can 
implement the OR gate. 
 

1 2
3 4

 
Figure 7 An OR gate of swarm balls. A swarm ball consists of 40 
agents. Each agent is represented by a square with its 5-step 
trajectories. Four snapshots of a swarm at different time steps are 

numbered. Red arrows represent the direction of motion of a 
swarm ball. 
 

AND and NOT gates were also constructed using a swarm. 
Fig. 8 shows the behavior of an AND gate. In each diagram, 
two entrances on the left represent x and y for input, and the 
three exits on the right represent x AND NOT(y), x AND y, 
and NOT(x) AND y, respectively. In the central exit on the 
right, there is a tidal pool in which a small swarm cannot enter. 
We define the tidal pool as a specific area Up with the 
threshold c = 10. Because a swarm of 40 agents at the input 
position cannot enter the tidal pool, it retreats after the contact 
with the tidal pool and moves toward the output of x AND 
NOT(y). 
 

1 2
3 4

 
Figure 8 An AND gate of swarm balls. A swarm ball consists of 
40 agents. Each agent is represented by a square with its 5-step 
trajectories. Four snapshots of a swarm at different time steps are 
numbered. Red arrows represent the direction of motion of a 
swarm ball. 
 

1 2
3 4

 
Figure 9 An AND gate of swarm balls. A swarm ball consists of 
40 agents. Each agent is represented by a square with its 5-step 
trajectories. Four snapshots of a swarm at different time steps are 
numbered. Red arrows represent the direction of motion of a 
swarm ball. 
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Fig. 9 shows the behavior of an AND gate for (x, y) = (1, 1). 
In this case, the collision of two swarms creates a large and 
united swarm, which enters the tidal pool. Thus, a united 
swarm produces the output of x AND y. If a swarm ball 
located at the input position of y is part of the logic gate, 
NOT(x) AND y can be utilized for NOT(x) for input x. Thus, 
this device can be utilized as a NOT gate. In this AND gate 
for (x, y) = (1, 1) sometimes the united swarm does not enter 
the water pool. It results in low performance (72%). 

1 2

3 4

 
Figure 10 Another AND gate of swarm balls. A swarm ball 
consists of 40 agents. Each agent is represented by a square with 
its 5-step trajectories. Four snapshots of a swarm at different time 
steps are numbered. Red arrows represent the direction of motion 
of a swarm ball. 
 

Thus we construct another AND gate as shown in Fig. 10. 
We set the initial principal directions of agents by the 
direction along the corridor represented by red arrows in the 
diagram 1 in Fig. 10. Actually we implement this gate by real 
soldier crabs. If the soldier crabs are set at the initial position 
and are threatened by a shadow suddenly appeared, they move 
straight. That is underlying implementation corresponding to 
the initial setting for principal vectors of agents. The swarms 
go straight. After the collision the united swarm moves 
following the united vectors. The performance of this AND 
gate is beyond 95%. 

We here show three dynamics of our swarm model, 
water-crossing, hourglass and logic gate behaviors. The 
underlying mechanisms are based on mutual anticipation or 
inherent noise, which contribute to a robust, coherent swarm 
containing inherent turbulence. The characteristic flexibility 
and robustness of a swarm can be compared to a human’s 
body awareness. A bird flock forms a large sub-domain that 
scales linearly with flock size. Because the proportion of the 
correlated domain against flock (body) size is constant, the 
flock appears to move as a single body (Cavagna et al., 2010). 
Our model can also show the scale-free correlation that has 
been observed in starlings and soldier crabs (Murakami et al., 
2011). We believe that mutual anticipation is a key component 
in the generation and/or embedding of body awareness in a 
system. We now implement these logical gates by real soldier 
crabs, and the results will be given anywhere. 

Robustness of a swarm plays an essential role in 
water-crossing, hourglass and logic gate behaviors. Because 
of robustness, a swarm can cross the water without being 
fallen into separated, hour glass shows periodic oscillation and 
logic gate shows high performance. In our model inherent 
noise (i.e. a number of potential transitions for each agent) 
contributes to make a robust swarm. Even if external 
perturbation is very large, the inherent noise cannot be 
distinguished from external perturbation. It entails that even 
external noise can coordinate to a robust swarm. 

Even if the external noise increases, density and 
polarization of a swarm is not changed at all and a robust 
swarm is maintained, as shown in Fig. 11. The external 
perturbation is given by the product of the strength of a noise,  
λ and random variable, ξ. The random variable, ξ, is randomly 
chosen from [0, 1] and is coupled with velocity matching. 
When the projected velocity of agent is expressed as (vx, vy), vx 
+ λξ and vy + λξ are given for the unit vector. In this 
simulation P = 20, α = 0.5, L = 4, and ra = rf = 2. We tried other 
conditions with respect to P, and obtain similar results of 
polarization and density for 10<P<20. 
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Figure 11. Polarization and density of a swarm generated by 
the model plotted against external noise. 
 

In the next section, we discuss the significance of mutual 
anticipation to embodiment. 
 

Future and Past coordinate Present 
 

The question whether a swarm, flock or school has a single 
consciousness or body has been addressed by investigating 
kinetic data from real animal groups and model simulations. A 
notable finding is that a swarm or a flock has a scale-free 
proportion of correlated domains, which reveals embodied 
collective behavior. Although it has been suggested that the 
interplay between anticipated states and memory states can 
contribute to a scale-free correlation in an asynchronous 
updating model (Gunji et al., 2011), our model is the first 
attempt to implement the interplay of anticipated and memory 
states in a swarm. We here discuss the relationships among 
the concept of body awareness, the interplay of anticipated 
and memory states, and flexibility and robustness. 
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Body awareness is studied in terms of a sense of ownership 
(SoO) and of a sense of agency (SoA) in neuroscience. It is 
known that SoO and/or SoA can be easily implanted in an 
object instead of a participant’s own body through a 
synchronous interplay of visual and tactile stimuli 
(Ramachandran et al., 1996, 1998) . 

The generation of SoO and SoA in cognitive systems has 
also been studied. Fig. 10a shows a schematic diagram of SoO 
and SoA in sensory-motor coupling (Pfeifer, et al., 2007, 
Gallagher, 2000, Synofzik, 2008). After receiving a stimulus 
from the environment, a controller (brain) computes the 
anticipated state of its motor to adapt itself to the environment. 
The order from the controller is sent to the motor, and the 
actual state is revealed. A reaction from the environment is 
received again. In this scheme, the anticipated state processed 
on motor command is compared to the original intention in a 
controller. Because the comparison between the anticipated 
state and the original intention is executed before the motor 
moves, it constitutes a feed-forward process. In contrast, the 
actual state of the motor is compared to the original intention 
after the movement of the motor. This dynamic constitutes 
feed-back process. SoA is thought to be related to a 
feed-forward and SoO to a feed-back process (Gallagher, 
2000). 

Motor 
Command
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SoO

a b
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Figure 12. Sense of ownership (SoO) and sense of agency (SoA) 
in embodiment compared with body awareness in a swarm model. 
(a) Schematic diagram of SoO and SoA in a sensory-motor 
coupling system. (b) The schematic diagram of SoO and SoA in a 
system in which the sensory-motor distinction is vague in the 
“embodied body”. (c) SoA and SoO in our swarm model. Blue 
arrows represent back propagation in time from the anticipated 
popularity of transitions. 
 

Because adaptive cooperation in a system entails the 
exploitation of decentralization and embodiment, the body 
includes redundancy resulting from reciprocal conflicts 
among components (Cruse et al., 2006). Such redundancy 
makes it possible to achieve complementary interplay between 
different modalities without forced learning and can result in a 
vague distinction between body and environment (Lungarella 
at al., 2006). The body and/or the boundary between the body 
and the environment is perpetually generated and maintained. 
The scheme involving SoO and SoA when the environment, 

sensor and controller are mixed up in the form of body is 
represented in Fig. 12b. The motor command and motor are 
here represented by their featured, anticipated and memory 
states. In Fig. 12a, SoO and SoA constitute a hierarchical 
system. However, if there many redundant paths from 
controller to motor and embodiment between parts of the 
system can occur (i.e. the boundary of subsystems in a 
sensory-motor system becomes indefinite), the relationship 
between SoO and SoA in Fig. 12a can be replaced by that in 
Fig. 12b in which SoO and SoA are distributed in a parallel 
manner (Gunji, Sonoda & Niizato, 2011). The connection 
between SoO and SoA is dynamically generated to ensure 
consistency. 

The dynamical connection between SoA and SoO is 
embedded in our swarm model. Through mutual anticipation, 
the anticipated popular sites are propagated backward in time, 
which can reveal actual transitions by asynchronous updating. 
Due to asynchronous updating and the avoidance of collisions 
by agents, a swarm is perpetually generated as a coherent 
system. These features can give rise to dynamic, flexible and 
robust swarming. After that, actual transition is memorized 
and is utilized as a principal vector to generate inherent noise 
(i.e., potential transitions) along the principal vector. SoO is 
here implemented as a reservoir to generate inherent noise or 
potentiality. 

The underlying mechanisms of SoO and SoA emerge 
clearly in our swarm model. The interplay of anticipation and 
memory plays a central role in flexible and robust swarming. 
This interplay is characteristic of body awareness. Because a 
swarm is generated as a “body”, it can show a coherent 
density containing inherent turbulence. The swarm is robust to 
perturbed environments. A system that appears to be in 
equilibrium (e.g., a swarm ball or hourglass showing periodic 
oscillations) is in fact perpetually and robustly generated far 
from equilibrium. The idea of a “body” is thus well-defined 
not in the context of stability but of robustness. 
 

Conclusion 
 

Based on the field observations of soldier crabs, Mictyris 
guinotae, we find that inherent noise can contribute to a 
dynamic and coherent swarm in which internal turbulence 
continuously flows. We implement such a phenomenon by an 
aggregation of agents of which each one have multiple 
potential transitions and can anticipate with each other. As a 
result we obtain dynamic and robust swarm even against the 
external perturbation.  

Due to the robustness the swarm cannot be disturbed in 
perturbed environments such as water pool, and can be 
utilized as hour glass and logic gate. They are preliminary 
implemented by real soldier crabs, and that can be 
approximated by our model. 

Since the swarm model is equipped with anticipation and 
memory, the model can be compared to the comparator model 
for SoA and SoO in body image, as long as a hierarchical 
structure is given up. Two loops including anticipated state or 
past state (memory) can cooperated with generating the 
current state. This structure is an essential structure to 
generate human body image. Our argument entails that a 
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swarm structure in our model can have a similar structure. 
Actually in the swarm a part of the swarm can be moved and 
operated by the swarm itself (corresponding to SoA). It results 
in a coherent and robust swarm as a whole not to be fallen into 
collapse of the swarm. This is the first step to connect the 
swarm with body image with respect to inherent time 
structure. 
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Abstract

A grand challenge in the field of artificial life is to find a gen-
eral theory of emergent self-organizing systems. In this paper
we try to explain the emergent behavior of a simulated swarm
by applying methods based on the fluctuation theorem. Em-
pirical results indicate that the swarm is able to produce neg-
ative entropy within an isolated sub-system due to ‘frozen ac-
cidents’. Individuals of the swarm are able to locally detect
fluctuations of the global entropy measure and store them, if
they are negative entropy productions. By accumulating these
stored fluctuations over time the swarm as a whole is produc-
ing negative entropy and the system ends up in an ordered
state. We claim that this indicates the existence of an inverted
fluctuation theorem for emergent self-organizing dissipative
systems. This approach bears the potential of general appli-
cability.

Introduction
One characteristic of living organisms is their metabolism.
Living beings require energy in order to maintain their inter-
nal order. This is determined by the second law of thermo-
dynamics that describes the ubiquitous decay of all things
and does not allow the increase of order without the cost of
dissipation. In the context of self-organizing systems one
might cite Parunak and Brueckner (2001): “Emergent self-
organization in multi-agent systems appears to contradict the
second law of thermodynamics.” This is of course not the
case, as discussed by Parunak and Brueckner (2001), one
has to distinguish between two kinds of sub-systems: one
that hosts the self-organizing swarm and one in which dis-
order is increased. Hence, a swarm can be thought of as a
heat pump that decreases entropy1 in one basin in favor of
increased entropy in another basin. However, the question
of how the swarm manages to do that still persists. Whether
thermodynamic properties are relevant and helpful in under-
standing such systems is currently discussed (Polani, 2008;
Hamann et al., 2011a).

1In principle, we refer here to Gibbs entropyS =
−kB

∑
i
pi ln pi, for Boltzmann constantkB and the sum over all

microstates with probabilitiespi which applies especially to classi-
cal, finite systems far away from equilibrium. However, an intuitive
understanding of entropy suffices in the following.

The emergence of life is explained by natural selection in
combination with random events (natural evolution). It is
one thing to select the adapted organism but the mutation,
that results in an improved adaptivity, has to occur first.
Concerning the genetic code Crick (1968) phrased the term
‘Frozen Accident Theory’. While Crick was introducing this
concept with focus on genetics, Gell-Mann (1995) applied it
to everything:

[...] the effective complexity [of the universe] receives
only a small contribution from the fundamental laws.
The rest comes from the numerous regularities result-
ing from ‘frozen accidents’.

The intuition of this theory is relatively clear in the con-
text of the slow evolution of our universe. However, we
want to define a concept of frozen accidents within emergent
self-organizing multi-agent systems (De Wolf and Holvoet,
2005) that explains how they can work as heat pumps in the
sense as described above.
While a heat pump has to work against the second law (e.g.,
diffusion of heat) by expending energy, limited violations
of the second law without the expenditure of energy (Evans
et al., 1993) are also possible as, for example, indicated by
Maxwell (1878):

The truth of the second law is . . . a statistical, not a
mathematical, . . . for it depends on the fact that the bod-
ies we deal with consist of millions of molecules.

Violations of the second law are possible for small systems
and short time scales, that is, at atomic and micron scales
over short times (up to two seconds), and were shown exper-
imentally (Wang et al., 2002). We claim that the reduction
of entropy by emergent self-organizing systems could be ex-
plained by the ‘summation’ of such violations to the second
law. The second law is only statistical and, hence, allows
spontaneous decreases of entropy in isolated systems with
nonzero probability.
The possibility of temporal entropy decreases exists because
a system at a temperature above absolute zero according to
statistical mechanics always shows thermal fluctuations, that
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are random deviations of a system from its equilibrium. Say
x is a thermodynamic variable (i.e., it describes a state of a
thermodynamic system at a given time) then the probability
distributionf(x) of this variable for a system at maximum
entropy (at equilibrium state) turns out to be Gaussian with
meanµ = 0:

f(x) =
1√

2π〈x2〉
exp

(
−

x2

2〈x2〉

)
, (1)

for the variance defined by the mean square fluctuation
σ2 = 〈x2〉, which is an average over many ensembles (i.e.,
average over many realizations of the system). Hence, the
probability of observing negative (

∫
0

−∞
f(x)dx) or positive

fluctuations (
∫
+∞

0
f(x)dx) is equal at equilibrium.

The fluctuation theorem (Evans and Searles, 2002; Evans
et al., 1993) quantifies the probability of violations to the
second law. For short intervals it can be said that nature
was running in reverse. Even concerning living systems this
might be true. For example, small ‘machines’ within a cell
(e.g., mitochondria) are likely to run in reverse from time to
time. A transfer of this concept to the macro-world is typi-
cally denied categorically. In a review of Wang et al. (2002),
Gerstner (2002) wrote: “For larger systems over normal pe-
riods of time, however, the second law of thermodynamics
is absolutely rock solid.”
Generally the fluctuation theorem is said to be applicable
only to the micro-world, where Brownian motion can be ob-
served. Truly, this is a well chosen hypothesis. However,
what if we allow dissipation of energy in the first place, sep-
arate the system in two sub-systems of the self-organizing
part and a heat bath, and then observe only the behavior in
the self-organizing half of the system? That way one could
argue that we simulate the micro-world by a macro-system
at the cost of lost heat. This concept (see Fig. 1) is for ex-
ample taken into account by Smith (2008) when stating

dQ = −kBTdS ≡ kBTdI, (2)

for an increment of heatdQ rejected by the system to a
thermal bath at temperatureT , Boltzmann constantkB, re-
duction in entropy of the (sub-)system’s internal state−dS,
and the increase in informationdI (note that Smith (2008)
defines information as “the reduction in some measure of
entropy”). Note that the mere property of being dissipa-
tive is not sufficient to explain a self-organizing system. In
addition to squandering energy the system has to generate
orderly structures. Dissipation is only a necessary condi-
tion for negative entropy production while additional suffi-
cient conditions exist. In case of Rayleigh-Bénard convec-
tion (Bodenschatz et al., 2000), for example, initially fluc-
tuating flows (Wu et al., 1995) occur that are enhanced and
trigger the formation of Bénard cells in spontaneous symme-
try breaking, cf. also (Nicolis and Prigogine, 1977; Haken,

heat bath

self-organizing

system

dissipation
of heat

entropy increase entropy decrease

Figure 1: Schematic of a system divided into a heat bath
with increasing entropy and a self-organizing, dissipative
sub-system with decreasing entropy.

1977). We want to point out the self-amplification of fluctu-
ations as such a sufficient condition here.
In this paper, we report empirical evidence that the nega-
tive entropy production in emergent self-organizing systems
is based initially on frozen accidents allowed by the origi-
nal fluctuation theorem which, in turn, leads in the end to
a global behavior that is described by an inversion of the
fluctuation theorem in dissipative self-organizing systems.
This concept might bear potential of embedding the concept
of emergent behavior in multi-agent systems (swarms, self-
propelled particles etc.) in a theoretical framework built on
sound foundations of theories from physics. Hence, we pro-
pose an approach to understand emergent behavior through
thermodynamics which follows up our earlier reported con-
cept (Hamann et al., 2011a).
In addition, the relation to the fluctuation theorem might al-
low to define preconditions for effective self-organizing sys-
tems in the future. For example, one can define minimum re-
quirements for the agents of the system concerning its cog-
nition abilities in order to be able to leverage fluctuations.
The agent needs sensors that allow to estimate at least prob-
abilistically whether the (local) entropy has just decreased.
Furthermore, the system needs the ability to store such local
fluctuations.
In the following we describe the investigated scenario and
the fluctuation theorem. We analyze the multi-agent system
or swarm, discuss how the results could be viewed as obey-
ing an inverted fluctuation theorem and conclude by giving
a short summary and outlook.

BEECLUST algorithm
The BEECLUST algorithm can be considered a model al-
gorithm for swarms. It is based on observations of young
honeybees (Szopek et al., 2008), was analyzed in many mod-
els (Hereford, 2011; Schmickl and Hamann, 2011; Schmickl
et al., 2009; Hamann et al., 2011b, 2010), and even imple-
mented in a swarm of robots (Schmickl et al., 2008).
This algorithm allows a swarm to aggregate at a maximum
of a gradient field although individual agents do not perform
a greedy gradient ascent. Hence, it might be justified to
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Figure 2: Bottom: Typical state of a swarm controlled by
BEECLUST; positions of stopped agents (circles) and mov-
ing agents (triangles) with trajectories of the last 20 time
steps, contours show levels of the gradient field. Top: func-
tion used in eq. 7.

1.) Each agent moves straight until it
perceives an obstacle O within
sensor range.

2.) If O is a wall the agent turns
away and continues with step 1.

3.) If O is another agent and there
is a third agent as well, the agent
measures the local gradient value.
The higher the gradient value the
longer the agent stays still.
After this waiting period, the
agent turns away from the other
agent and continues with step 1.

Figure 3: The BEECLUST algorithm (stop threshold of 3).

call this emergent behavior. Controlled by this algorithm
three agents will stop (note that in previous works typically
a threshold of two was chosen, which is, however, irrele-
vant in this paper) when they approach each other, measure
the local value of the gradient, and wait for some time pro-
portional to this measurement. Clusters form and finally the
swarm will be aggregated close to the global optimum of the
gradient field (see the lower part of Fig. 2). See Fig. 3 for a
definition of the BEECLUST algorithm.

The collective aggregation close to the global optimum is
achieved via a positive feedback process (Hamann et al.,
2011b): Clusters of 3 stopped agents will form by chance
anywhere in the arena. Agents in clusters closer to the global
optimum have longer waiting times. These clusters will exist
longer than those that are farther away from the global opti-

Table 1: Used parameter setting in this work.
arena dimensions 150× 50[length units]2

proximity sensor range 3.5[length units]
max. waiting time 660[time units]
velocity 3[length units]/[time units]
number of agents 25

mum. Hence, the chance of growing into a cluster of size 4
is bigger for clusters closer to the global optimum. The
area covered by clusters grows with the number of contained
agents and clusters covering a bigger area are more likely to
be approached by chance by moving agents. Hence, bigger
clusters will grow faster. This process, typically, leads to
just one big cluster close to the global optimum. The agents
interact only locally and a BEECLUST-controlled swarm is
able to break symmetries (Hamann et al., 2011b). Hence,
this behavior is different from other aggregation processes,
for example, star formation which includes global interac-
tions due to gravitation.
In the following experiments, the agents have initially ran-
dom headings, are in the state ‘moving’, and are random uni-
formly distributed in the arena. The gradient field is bimodal
with maxima of the same value and shape (see contours in
Fig. 2). See Table 1 for the standard parameters used.

Fluctuation Theorem
According to Evans and Searles (2002) the group of fluctua-
tion theorems “gives an analytical expression for the proba-
bility of observing Second Law violating dynamical fluctua-
tions in thermostatted dissipative non-equilibrium systems.”
In a thermostatted system the temperature is kept constant,
for example, by rescaling the particles’ velocities. The sys-
tem can be thought of as being in contact with a large heat
reservoir in order to thermostat the system. One of these
theorems (steady state fluctuation theorems) applies to time-
reversible, thermostatted, ergodic dynamical systems and
defines the relation of fluctuations (Evans and Searles, 2002)

lim
t→∞

1

t
ln

P [Σt = A]

P [Σt = −A]
= A, (3)

for the time averaged entropy productionΣt =

(1/t)
∫ t

0
Σ(s)ds. The fluctuation theorem compares

probabilities of observing a certain time averaged en-
tropy productionA to its negative value−A. The value
P (Σt = A) describes the probability of finding the system
initially in those states that subsequently generate bundles
of trajectory segments with the time averaged valueA.
The above theorem (eq. 3) predicts an exponential increase
of the relationP (Σt = A)/P (Σt = −A). Hence, with
increasing time positive entropy producing trajectories
become exponentially more likely than their negative
entropy producing counterparts.
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As a consequence of the fluctuation theorem one obtains the
Second Law Inequality

〈
Σt

〉
≥ 0, ∀t, (4)

which states that the average over many ensembles, in which
the time averaged entropy productions where measured, is
positive. Hence, the fluctuation theorem is in accordance
with the second law of thermodynamics.

Analysis of BEECLUST
We consider a system ofN agents that move in a two-
dimensional box and gradient field. We assume the parti-
cles to move frictionless which basically means they have
a permanent acceleration compensating friction. This, in
turn, means they have an energy reservoir (cf. active par-
ticles (Schweitzer, 2003)) and permanently dissipate heat
which results in a situation as shown in Fig. 1. In addi-
tion, we allow infinite accelerations because the agents stop
and start within one time step in our numerical simulation.
Energy costs have to be paid to allow self-organization and
to comply with the second law of thermodynamics. In the
following we carry out the separation between these two
sub-systems: the self-organizing sub-system containing the
agents and the sub-system typified by the heat reservoir. Due
to its energy dissipation the self-organizing sub-system does
not have to obey the second law of thermodynamics. We
define the following equations of motion for each agenti

q̇i = pi/m, (5)

ṗi = Fi +






−pi, particle autonomously stops

p
′

i, particle autonomously starts

0, else

, (6)

whereqi = (xi, yi)
⊺ is the position of agenti, pi is the

momentum, andp′

i is the value ofpi at the time the agent
had stopped. We haveFi > 0 in case the agent bounces off
the bounds or closely approaches another agent. This can
be implemented, for example, via a WCA potential (Weeks
et al., 1971), which is a purely repulsive potential. As ther-
mostat method we use velocity scaling which is governed by
the number of stopped agents. In particular, the special peri-
ods of time in which all agents are stopped are converted to
time periods of no extend. Note that this is only our method
of measuring the self-organizing system. It is not intrinsic
to the system and the behavior of the agents is unconcerned
by this method.
The system dynamics takes place in a high dimensional
phase space(q0,q1, . . . ,qN−1,p0,p1, . . . ,pN−1) ∈ Γ. In
the following we need to detect the essentials of this dynam-
ics by a measure of entropy. We ignore the momentap and
also the y-positions because the main feature of the clusters
is defined by the agents’ x-positions (see Fig. 2). Ignoring
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Figure 4: Distribution of the entropy production for a swarm
controlled by the BEECLUST algorithm,t = 1500, 〈tΩ〉 ≈
15.77, T = 909.1, number of samplesn ≈ 5.0× 106.

the momenta does not hide entropy. Although we start with
all nonzero momenta and during the experiments we have in-
homogeneous momentum distributions but the experiments
typically end with almost all agents stopped (i.e., again a ho-
mogeneous momentum distribution). Similar to (Evans and
Searles, 2002, Sec. 4.3) we observe the agent density mod-
ulation via

ρ(k, t) =
N∑

i=1

sin(kxi(t) +
π

2
), (7)

wherexi(t) is the x-position of agenti at timet, k = 2π/L,
andL = 150 is the box length. The applied sine-function is
shown in Fig. 2. Agents in the leftmost and rightmost quar-
ters of the arena contribute positively, agents in the middle
contribute negatively. In equilibrium,xi ∈ [0, L] would be
equally distributed averaged over many ensembles, yielding
〈ρ〉 = 0. By applying the converse argument, averages of
〈ρ〉 6= 0 would correspond to unequal distributions of agents
whereas negative and positive values indicate whether the
main cluster is in the middle or at the ends.
Following Evans and Searles (2002) we define a ‘dissipation
function’Ω(Γ) that gives the entropy production for a given
phase space trajectory. We integrate changes ofρ over a time
interval[0, t]

tΩ = β

∫ t

0

ρ̇(k, s)ds = β(ρ(k, t)− ρ(k, 0)) (8)

and

β = 1/T =



 2

kBNd

〈
∑

i∈[0,N−1]

p
2

i

2m

〉


−1

(9)

is the reciprocal temperature of the initial ensemble with
Boltzmann constantkB and degrees of freedomNd = 2N .
The distribution of the entropy production forN = 25
agents controlled by the BEECLUST algorithm, which were
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Figure 5: Test of the entropy production distribu-
tion of the BEECLUST-controlled swarm shown in
Fig. 4 against the fluctuation theorem (eq. 10),Y =
1

βt
ln P [ρ(k,t)−ρ(k,0))=A]

P [ρ(k,t)−ρ(k,0))=−A]
, t = 1500, T = 909.1. Note that

anyY 6= 0 corresponds to negative entropy production.

initially random uniformly distributed, is shown in Fig. 4 for
t = 1500. The initial uniform distribution yields〈ρ(0)〉 = 0
which is the state of maximal entropy. Hence, any distri-
bution of the entropy production with a mean of〈tΩ〉 6= 0
indicates negative entropy production (i.e., averaged differ-
ences of the density modulation can have negative or posi-
tive signs but imply negative entropy production, if they are
nonzero). The ensemble average is〈tΩ〉 ≈ 15.77 which
means that negative entropy is produced (initially at maxi-
mum entropy). Note that there is no direct influence by the
gradient field to the entropy productions which are defined
based on the agents’ x-positions. Furthermore, the waiting
times, that are determined by the gradient field, vary only by
a factor of 5 between the minimum and the maximum.
Now we want to apply the fluctuation theorem (eq. 3) to
this system. Especially we have to assume time-reversibility
which is problematic because BEECLUST-controlled sys-
tems are in general not reversible (Hamann et al., 2011a).
However, we argue that it is fair to assume approximate re-
versibility because the irreversibility vanishes, if the agents
measure almost equal gradient values (typically the differ-
ence is only about±10%) determining almost equal waiting
times and almost equal wake-ups. Applying the fluctuation
theorem gives

lim
t→∞

1

t
ln

P [ρ(k, t)− ρ(k, 0)) = A]

P [ρ(k, t)− ρ(k, 0)) = −A]
= βA. (10)

The data shown in Fig. 4 is tested whether it obeys eq. 10 in
Fig. 5. The fluctuation theorem is satisfied for this system
although the system is producing negative entropy and actu-
ally abandoning the equilibrium to which it was initialized.
Hence, one could speak of an ‘inverted fluctuation theorem’
that is satisfied here.
In the following we want to investigate how it is possible for
this self-organizing system to produce negative entropy. We
hypothesize that the negative entropy production is based on

0
e

+
0

0
2

e
+

0
5

4
e

+
0

5
6

e
+

0
5

−20 −15 −10 −5 0 5 10 15

(t1 − t0)Ω

fr
eq

ue
nc

y

(a) no stopping,〈(t1 − t0)Ω〉 ≈ 0.06, n ≈ 8.6× 106
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(b) stopping,〈(t1 − t0)Ω〉 ≈ −3.09, n ≈ 4.1× 105

Figure 6: Distributions of the entropy production for an early
time interval during the transient (t0 = 15, t1 = 20, T =
909.1) classified according to whether a stopping agent was
observed during the measurement.

fluctuations and the stopping behavior of the agents, hence,
a process of frozen accidents. Note that such a mechanism
is similar to the famous thought experiment ‘Maxwell’s De-
mon’ (Maxwell, 1871). Furthermore, an implementation of
Maxwell’s Demon was reported (Bannerman et al., 2009)
that is used as a cooling technique (cf. our metaphor of
a heat pump in the introduction). Here we have rather a
‘distributed demon’ embodied by many autonomous agents
that control themselves (Adami (1998) applies a similar ar-
gument to evolution). BEECLUST does not sort particles
or agents as Maxwell’s Demon but aggregate them (i.e., we
generate uneven density distributions).
We measure the entropy production within a limited time
interval [t0 = 15, t1 = 20] in the early transient. In ad-
dition, we classify for each measurement whether at least
one agent changed its state from moving to stopped (starting
agents do not occur that early in the simulation). The en-
tropy production distribution for these two classes are shown
in Fig. 6. For the measurements without a stopping agent
the averaged change in the density modulation is about 0
(〈(t1 − t0)Ω〉 ≈ 0.06). In contrast, for those measurements
with stopping agents the averaged change of density modu-
lation is negative (〈(t1 − t0)Ω〉 ≈ −3.09) indicating frozen
accidents. For much later time intervals no difference be-
tween measurements with stopped and without a stopping
agents are found. The negative value of〈(t1 − t0)Ω〉 de-
mands for clarification because in the limitt → ∞ the aver-
age density modulation is positive.
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Figure 8: Evolution of the agent density modulation over
time, black line shows ensemble average, gray lines show
samples, insert shows details of the ensemble average within
the first 250 time steps.

The explanation is a special feature of the BEECLUST-
controlled swarm in this scenario which consists of three
phases (see Fig. 7). In the short period before the first clus-
ter forms, the average entropy production isΩ = 0 indicat-
ing that the original fluctuation theorem holds for this phase.
The first cluster usually does not form close to the global
optima but relatively close to the middle of the arena, see
Fig. 7(a). In this area the agent density modulation (eq. 7)
contributes negatively. In a second phase the average density
modulation is negative (Ω < 0) because the density close to
the middle of the arena increases further, see Fig. 7(b). This
is also indicated by the evolution of the agent density mod-
ulation over time as shown in Fig. 8. Initially it stays close
to 0 and only later it clearly takes a positive sign. The insert
shows details of the first 250 time steps and indicates nega-
tive slope for the time interval[15, 20] (i.e., second phase) of
Fig. 6. Only later the clusters ‘move’ towards the ends of the
arena probably due to wall effects, see Fig. 7(c) and conse-
quently the average density modulation is positive (Ω > 0).

Discussion
Note again thatρ(k, t) = 0 corresponds to maximum en-
tropy. Therefore, anyρ(k, t) 6= 0 in Fig. 8 indicates neg-
ative entropy production. We conclude that the negative
entropy production of this system is initiated by entropy
fluctuations which are normally distributed and are nega-
tive/positive with about the same probability respectively
according to the original fluctuation theorem and as seen
in Fig. 6(a). Some of these ‘negative entropy production’-
events are locally observable by the agents themselves be-
cause there are three agent-to-agent encounters with mutual
perception. This local perception of the global measure of
entropy is leveraged by stopping all three agents and stores
the local entropy fluctuation. Cascades of such stopping be-
haviors generate a positive feedback (self-amplification of
fluctuations as in Rayleigh-Bénard convection). In the end,

 0
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Figure 9: Sample run of a simple model based on summa-
tions ofN = 25 random processes initialized toXi(0) = 0
and based on normally distributed random variables (µ = 0,
σ2 = 1).

a system dynamics is generated, that can be described by
an inverted fluctuation theorem, which dictates an exponen-
tially increasing probability of low entropy states. Hence,
this emergent self-organizing swarm does indeed rely on
frozen accidents. Note that the overall system still produces
positive entropy (e.g., due to accelerations of the agents)
while the agent-position-based entropy is only reduced in
the self-organizing sub-system.
The effectiveness of the frozen–accidents concept can easily
be made clear by a simple model. We represent the entropy
contribution of each agenti by a random processXi(t). The
total entropy is just the sum

∑N
i=0

Xi(t) over all agentsN .
The restriction of all random processes to the interval[−5, 5]
is essential and we defineXi(t) = 5, ∀t > t0 with t0
is the first time agenti achievedXi(t0) = 5. That is,
once a random process reachesXi(t0) = 5 (a local prop-
erty) it stays there forever—a frozen accident. As a con-
sequence the number of active random processesNa will
decrease monotonically. A sample run of this simple model
for N = 25 based on Gaussian distributedXi and initializa-
tionXi(0) = 0 is shown in Fig. 9. The bias in the otherwise
random trajectory is noticeable. Note that the summation
of Gaussian distributed random variables

∑
N Xi with each

having a variance ofσ2

i results in a random variable that is
also Gaussian distributed with a variance ofσ2 =

∑
N σ2

i .
With decreasing number of active processesNa more and
more variances vanish (σ2

i = 0). Hence, also the variance of
the sum will decrease which is the macroscopic effect of the
frozen accidents and ensures that states of low entropy are
much more likely to be maintained.
The results shown in Figs. 4, 5, and 6(b) indicate that this
emergent self-organized system obeys an inversion of the
fluctuation theorem which could be stated as

lim
t→∞

1

t
ln

P [Σt = −A]

P [Σt = A]
= A, (11)
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(a) Time until first occurrence of agent-
to-agent collision and〈Ω〉 = 0, 0 <
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(b) Early transient with〈Ω〉 < 0 (cf.
Fig. 6(b)), 15 < t < 20, ρ(k, 15) =
−1.7, ρ(k, 20) = −3.6, 5Ω = −1.9,
blue marks indicateΩ-value in his-
togram and just stopped agents.

0
50

00
0

10
00

00

−10 0 10 20 30 40

180Ω

fr
eq

u
en

cy

 0

 50

 0  50  100  150

(c) Approach of self-organizing equilib-
rium (cf. Fig. 4), 20 < t < 200,
ρ(k, 20) = 0.1, ρ(k, 200) = 10.1,
200Ω = 10.0, blue marks indicateΩ-
value in histogram and main clusters.

Figure 7: The three phases observed in the investigated scenario each with a representative entropy production histogram and
a plot of the arena showing moving (triangles) and stopped agents (circles) with a line indicating their most recent trajectory
(histograms are meant to be qualitative).

following eq. 3. We get an immediate interpretation of this
self-organizing system by inverting the interpretation of the
fluctuation theorem. A self-organizing system that is started
with high entropy will produce negative entropy with an ex-
ponentially increasing probability over time. As a conse-
quence there is a ‘self-organization equilibrium’ of lower
entropy to which the system will converge. As a second
consequence the self-organizing entropy-reduction behavior
is a transient phenomenon, cf. (Prigogine, 1997, p. 62).

Conclusion

In this paper, we have analyzed an emergent self-
organizing multi-agent (or swarm) system controlled by the
BEECLUST algorithm with methods based on and sug-
gested by the fluctuation theorem. The results provide em-
pirical evidence for the existence of an inverted fluctuation
theorem that applies for such dissipative self-organizing sys-
tems. In addition, this work suggests the rich and thought-
provoking metaphor of considering emergent swarm sys-
tems as implementations of a ‘distributed Maxwell’s demon’
because random events are leveraged by autonomous deci-
sions of embodied agents based on locally measured sam-
ples of a global entropy change. A theory based on an in-
verted fluctuation theorem could prepare a wide basis for the
analysis of self-organizing systems. We claim these meth-
ods have a potential for general applicability. For example,
in flocking dissipation occurs due to rotational accelerations
and averaging of directions (loss of information). Poten-
tial generalization is also indicated by preliminary results in

other scenarios which will be reported in future work.

Specific exemplary benefits of such a theory could be the
definition of preconditions for self-organization, for exam-
ple, concerning the cognitive abilities of the agents. Statis-
tical properties of fluctuations describe the time-scales on
which negative entropy production can be observed. The
agents need to perceive local samples of this global property
of negative entropy production and need to react within these
time-scales. Hence, conditions for controller sampling rates
could be derived. The agents need appropriate sensors that
allow local measurements of entropy with an accuracy that is
sufficiently higher then the rate at which events of negative
entropy production occur. Thus, conditions for successfully
generating positive feedbacks could be derived.

Especially the origin of BEECLUST confirms the possibility
of applying the proposed methods to natural systems such
as clustering behaviors in young honey bees (Szopek et al.,
2008) or other social insects, as well as flocks, herds, and
shoals. Hence, the same methods could be used for artificial
and natural systems which could, in turn, enrich primarily
biological studies.

This work proved again that thermodynamics offers many
fully developed methods which can often be applied even
unmodified to problems of emergent behavior (cf. Hamann
et al. (2011a)). Pursuing this research track might be a
promising way of achieving general insights to still rather
fuzzy concepts such as emergence or self-organization.

Finally, it is clear that the reported approach is truly interdis-
ciplinary in combining methods and problems from physics,
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biology, and computer science. It is obvious that, at least
in the field of artificial life, any future research success has
to be founded on a collection of several scientific fields. In
our future work, we hope to continue this approach by gen-
eralizing the concept of an inverted fluctuation theorem for
emergent self-organizing multi-agent systems.
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Abstract

A system of interacting elements can be represented by a di-
rected network so that elements are nodes and interaction be-
tween two elements is an arc. Conventionally, each node is
just a point, each arc represents some kind of interaction be-
tween two nodes and nothing more after the system is mapped
to a directed network. However, in many real systems, each
element has its own intra-node process and interaction be-
tween two elements can be seen as an interface between two
intra-node processes. We can formalize this idea “objects as
processes, interactions as interfaces” within the framework
of category theory. We show that a new notion of connect-
edness calledlateral connectednessemerges as a canonical
structure obtained from the idea. Lateral connectedness is
not defined on the set of nodes of a directed network, but on
the set of arcs. By its definition, it may be associated with
functional commonality between arcs emerging from shared
input or output. As a first application, we examine signifi-
cance of lateral connectedness in the neuronal network of the
nematodeCaenorhabditis elegansby comparing the partition
of the set of arcs induced by the connectedness and the par-
titions based on neuron functions. Lateral connectedness can
capture a part of functional segregation of the neuronal net-
work above a certain interaction strength level.

Introduction
Science of complex networks is one promising approach
to understand the intrinsic organization of living systems
(Alon, 2006; Junker and Schreiber, 2008; Sporns, 2011).
Many characteristics such as degree distributions, average
path length, clustering coefficients, centralities, assortativ-
ity coefficient, network motifs have been introduced in or-
der to reveal functionality of biological, social, technologi-
cal systems from network topology (Boccaletti et al., 2006;
Newman et al., 2006; Newman, 2010). These characteris-
tics are based on the idea which I would like to call the
real viewon networks: each node is just a point and edges
or arcs between nodes indicate the existence of some kind
of interaction between nodes if a system is represented as
a network. However, in many real systems, it is the case
that some kind of process is running within an object rep-
resented by a node. For example, in neuronal networks,
nodes are neurons that have information processing ability.

In gene regulation networks, nodes are genes, but we should
include proteins coded by those genes into nodes if we con-
sider regulation relationships as arcs. Thus, we can think
that complicated chemical processes to synthesize proteins
occur within each node in a gene regulation network. We
can interpret other biological networks including ecological
networks, metabolic networks in the same way. If we con-
sider objects as processes, then interactions between objects
can be seen as interfaces between processes. I would like
to call this view “objects as processes, interactions as inter-
faces” on networks thedual viewin contrast to the ordinary
real view mentioned above.

In this paper, we examine what is involved in having in-
ternal processes on nodes in general for complex networks.
Usually, processes occurring on nodes are described as par-
ticular dynamics. Then, an appropriate statistical ensem-
ble of dynamics is studied in order to conclude something
in general (e.g. random Boolean networks by (Kauffman,
1969)). Instead of statistical generality, we here appeal to
category theoretical universality to study the problem.

We note that there is an inverse dual view, namely, “pro-
cesses as objects”. This idea appears in the formulation
of Metabolism-Repair System by R. Rosen (Rosen, 1958).
Recently, the idea was used as the line graph transforma-
tion in the community detection problem in complex net-
works (Ahn et al., 2010; Evans and Lambiotte, 2009). The
two ideas “objects as processes” and “processes as objects”
have a certain dual relationship called category theoretical
adjunction (MacLane, 1998) if they are formalized within
the framework of category theory (Haruna and Gunji, 2007;
Pultr, 1979).

There are many ways (indeed, uncountably many ways)
to consider objects as processes. However, we can show that
there exists a canonical way (in a precise mathematical sense
stated in Section 3) among all the ways to see objects as
processes within the framework of category theory (Haruna,
2011b). The canonical way to see objects as processes gives
rise to an equivalence relation on the set of arcs of each di-
rected network. This equivalence relation can be interpreted
as defining a new notion of connectedness calledlateral con-
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Figure1: The idea “objects as processes, interactions as in-
terfaces”.

nectedness. An intuitive explanation of derivation of lateral
connectedness without category theory is the main aim of
the former half of this paper. In the latter half, we analyze
the neuronal network of the nematodeCaenorhabditis ele-
gansbased on lateral connectedness as a first application to
real world networks.

This paper is organized as follows. In section 2, we de-
scribe a mathematical formulation of the dual view on di-
rected networks. In section 3, we introduce lateral connect-
edness for directed networks as a naturally emerging struc-
ture from the dual view. In section 4, we apply lateral con-
nectedness to the neuronal network ofC. elegansand discuss
its functional significance. In section 5, we give conclusions
and outlooks.

Objects as Processes, Interactions as Interfaces
In this paper, we only consider directed networks. Some
early attempts related to the content of this section are found
in Haruna and Gunji (2007); Haruna (2008a,b, 2011a).

In the dual view introduced in Section 1, each node is in-
terpreted as a process and each arc is seen as an interface
between two processes. This idea can be formalized as net-
work transformations as follows.

As a motivating example, let us interpret each node as
an arc (together with its source and target nodes) represent-
ing a process running in the node and each arc as a node
connecting two arcs representing processes running in the
original two nodes (Fig. 1). Of course, each node can be
replaced by a much more complicated network representing
a process running within the node. The connection between
the two complicated networks can also be arbitrary. We call
a network (that can be arbitrary complicated) representing
a process running within a node together with information
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Figure2: Three examples of the calculation of the network
transformationL.

how its two copies form an interface corresponding to an arc
a model of directed network type. In general, models of di-
rected network type need not consist of directed networks
(Haruna, 2011b), however, in the following discussion, we
restrict ourselves on models consisting of directed networks
for simplicity.

Fig. 2 illustrates how the above motivating model of di-
rected network type gives rise to a network transformation
L. In Fig. 2 (a), the two nodesx andy are converted to two
arcsx andy by L. The target ofx and the source ofy are
glued by the arcf in the original network. In Fig. 2 (b), there
are three copies of arcsx, y andz after the transformationL
corresponding to the three nodesx, y andz in the original
network. Their sources and targets are glued according to
the arcsf andg in the original network. The similar copy
and glue rule works for the example in Fig. 2 (c).

Formally, the network transformationL can be defined
as follows. LetG = (A,O, ∂0, ∂1) be a directed network,
whereA is a set of arcs,O is a set of nodes and∂0 and∂1

are maps from the setA to the setO that send each arc to
its source node and target node, respectively. The directed
networkL(G) obtained by the application ofL to G is a
quartetL(G) = (O,O × {0, 1}/ ∼, ∂′

0, ∂
′
1), where the set

of arcs ofL(G) is identical to the set of nodesO of G, the
set of nodes ofL(G) is a quotient setO × {0, 1}/ ∼ and
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∼ is an equivalence relation on the setO×{0, 1} generated
by the relation defined by(x, 1) ∼ (y, 0) if and only if there
exists an arcf from x to y in G. The symbol1 indicates the
“source part” of the nodex and the symbol0 indicates the
“target part” of the nodey. The source and target maps∂′

0,
∂′
1 are defined naturally.
In general, for any model of directed network type, the in-

duced network transformation can be described by a similar
copy and glue rule, no matter how complicated it is. For a
category theoretical formulation, see (Haruna, 2011a).

A New Notion of Connectedness
By the network transformationL introduced in Section 2,
each node in a directed networkG is sent to an arc inL(G).
On the other hand, we can think that each arcf in a directed
networkG = (A,O, ∂0, ∂1) is mapped to a node inL(G)
between two arcs inL(G) corresponding to the source and
the target nodes off , namely,∂0f and∂1f (Fig. 3). We
denote this map byφG : A→ O × {0, 1}/ ∼. For each arc
f ∈ A, φG(f) is the target of∂0f (or the source of∂1f ) in
L(G). Hence, we haveφG(f) = [(∂0f, 1)](= [(∂1f, 0)]),
where[(x, i)] is an equivalence class containing(x, i) ∈ O×
{0, 1}.

A natural question about the nature of the mapφG is
“When doesφG(f) = φG(g) hold for arcsf, g ∈ A?” The
answer is straightforward and the necessary and sufficient
condition for the equalityφG(f) = φG(g) is that there ex-
ists a zigzag sequence of arcs betweenf andg as indicated
in Fig. 4. We say that two arcsf andg are laterally con-
nectedif φG(f) = φG(g) holds.

For any model of directed network type, a similar map
on the set of arcs of a given directed network can be defined.
Such a map induces an equivalence relation on the set of arcs
by identifying two arcs if they are sent to the same element
in the codomain of the map. Let us denote the equivalence
relation induced by the mapφG above byRLC . Then,RLC

is canonical in the following sense.For any directed net-
work G = (A,O, ∂0, ∂1), RLC is the smallest equivalence
relation on the set of arcsA among those induced by all
models of directed network type.In other words, the par-
tition of the set of arcs induced by lateral connectedness is
the finest one among those induced by the idea “objects as
processes, interactions as interfaces”. We call each equiva-

gf

f g

f
g

f g

Figure4: Two arcsf andg are laterally connected if there
is a zigzag sequence of arcs between them. There are four
cases depending on the situations at the both ends.

lence classlaterally connected component. This statement
can be proved within the framework of category theory in
more general form (Haruna, 2011b).

In summary, we obtain the notion of lateral connected-
ness as a canonically emerging structure of directed net-
works from the idea “objects as processes, interactions as
interfaces”.

By its definition, lateral connectedness may be relevant
with functional commonality between arcs emerging from
shared input or output. This is in contrast to the notion of
strong connectedness. Here we say that two arcs are strongly
connected if one arc can be reached from the other by a di-
rected path and vice versa. Strong connectedness may be
associated with functionality resulting from circulation of
information or materials. Intuitively, they seem to be dual
to each other. Indeed, this intuition can be enhanced by the
following category theoretical point of view.

Lateral connectedness derives from the network transfor-
mationL which is based on the idea “objects as processes,
interactions as interfaces”. On the other hand, strong con-
nectedness can be obtained from the line graph transfor-
mation R which is based on the idea “processes as ob-
jects”. Given a directed networkG = (A,O, ∂0, ∂1), its line
graph is a directed networkR(G) = (S,A, ∂′′

0 , ∂′′
1 ), where

S = {(f, g) ∈ A × A|∂1f = ∂0g}, ∂′′
0 (f, g) = f and

∂′′
1 (f, g) = g for any(f, g) ∈ S. As noted in Section 1, the

two transformationsL andR satisfy a certain category the-
oretical duality called adjunction (Haruna and Gunji, 2007;
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Figure 5: The wiring diagram of the neuronal network ofC. elegansbased on the database (Oshio et al., 2003)
(http://ims.dse.ibaraki.ac.jp/ccep/) depicted by Graphviz (http://www.graphviz.org/). (a) Arcs are colored based on pairs of
functions of their source and target neurons. (b) Correspondence between colors and pairs of functions of neurons.

Pultr, 1979). By definition,S is the set of arcs of the directed
networkR(G), but it can be seen as a binary relation on the
setA. Mathematically, the notion of strong connectedness
defined above is an equivalence relationSC on the setA of
arcs ofG. On the other hand, we have an equality

SC = S ∩ S−1, (1)

whereS−1 is the inverse of the binary relationS andT for a
binary relationT onA is its reflexive and transitive closure.
In this sense, strong connectedness is generated by the line
graph transformationR which is category theoretical dual to
L.

One might think that the duality between lateral connect-
edness and strong connectedness in the above sense is a
mathematical expression for Lorente de Nó’s two principles
of plurality and reciprocity (Lorente de Ńo, 1938).

Analysis of a Neuronal Network
In this section, we discuss significance of lateral connected-
ness in the neuronal network ofC. elegansas a first applica-
tion of it. We compare the partitions of the set of arcs based
on functions of neurons with the partition induced by lateral
connectedness to examine functional significance of lateral
connectedness. We make use of two similarity measures de-
scribed in the next subsection for the comparison.

Network Data
We make use of the database constructed by Oshio et al.
(2003) (http://ims.dse.ibaraki.ac.jp/ccep/) whose original
reference is White et al. (1986). We remove nodes and con-
nections other than neurons and chemical synapses. The re-
sulting data set contains 233 neurons among 282 neurons

in the somatic nervous system and 4170 chemical synapses.
We construct a family of directed networks whose nodes are
233 neurons in the following way: First, we put an arc from
one node to another node if there exists a chemical synapse
from the former to the latter. Second, since there is multi-
ple chemical synapses from one neuron to another neuron
in general, we specify a weight for each arc by the number
of chemical synapses from the source to the target of the
arc. Finally, we introduce thresholds for the weight values
and consider the network topology consisting of arcs whose
weights are greater or equal to a given threshold.

Each neuron has one of three functional types: sensory,
inter and motor. We consider three partitions of the set of
arcs based on the functions of neurons. The first one is
called ST-partitionwhich considers types of the two neu-
rons at both ends of each arc. Thus, there are nine clusters
for the ST-partition. In the wiring diagram shown in Fig. 5
(a) where threshold is 1, each arc is colored based on the ST-
partition. The correspondence between colors and the ST-
partition clusters is indicated in Fig. 5 (b). The second one
is called theS-partitionwhich considers type of the source
neuron of each arc. The third one is called theT-partition
which considers type of the target neuron of each arc. The
number of clusters in the S-partition or T-partition is three.

The equivalence relationRLC induced by lateral connect-
edness also gives rise to a partition of the set of arcs. We
call this partition theLC-partition. In the following discus-
sion, we measure similarity between the LC-partition and
the above three functional partitions.

Similarity Measures
We make use of two similarity measures to quantify similar-
ity between two partitions on a set. The first one is called the
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Figure6: (a) The number of arcs as a function of threshold. (b) The number of clusters in the LC-partition and in the ST-partition
as a function of threshold.

Adjusted Rand Index (ARI)(Hubert and Arabie, 1985). The
second one is called theAdjusted normalized Mutual Infor-
mation (AMI)(Vinh et al., 2009). To explain the idea of the
ARI, we first review the definition of theRand Index (RI)
(Rand, 1971).

Let X be a set consisting ofN points. Let U =
{U1, U2, · · · , Ul} andV = {V1, V2, · · · , Vm} be two par-
titions of X, namely, they are families of subsets ofX sat-
isfying Ui ∩ Ui′ = Vj ∩ Vj′ = ∅ for i ̸= i′, j ̸= j′ and
∪l

i=1Ui = ∪m
j=1Vj = X. Let us putnij := |Ui ∩ Vj |, ai :=

|Ui| andbj := |Vj | for i = 1, 2, · · · , l andj = 1, 2, · · · , m,
where|Y | for a setY denotes its cardinality. Then, we have
ai =

∑m
j′=1 nij′ andbj =

∑l
i′=1 ni′j for i = 1, 2, · · · , l

andj = 1, 2, · · · ,m. A l ×m matrix C := (nij) is called
thecontingency matrix, which encodes information how two
partitionsU andV overlap. We can calculate both the ARI
and the AMI by using elements of the contingency matrix
C.

The Rand Index (RI) between partitionsU andV is de-
fined by counting the number of pairs of elements ofX on
which two partitions agree or disagree:

RI(U,V) =
N00 + N11

N00 + N01 + N10 + N11
, (2)

whereN00 is the number of pairs that are in the same cluster
in bothU andV, N01 is the number of pairs that are in the
same cluster inU but in different clusters inV, N10 is the
number of pairs that are in different clusters inU but in the
same cluster inV andN11 is the number of pairs that are
in different clusters in bothU andV. After a few algebras,
one can see thatN01 andN10 are given by

N01 =
m∑

j=1

(
bj

2

)
−

l∑
i=1

m∑
j=1

(
nij

2

)
, (3)

N10 =
l∑

i=1

(
ai

2

)
−

l∑
i=1

m∑
j=1

(
nij

2

)
. (4)

Since we haveN00 + N01 + N10 + N11 =
(
N
2

)
, we obtain

the following explicit formula for the RI:

RI(U,V) =(
N
2

)
−
{∑

i

(
ai

2

)
+
∑

j

(
bj

2

)}
+ 2

∑
i,j

(
nij

2

)(
N
2

) . (5)

The RI takes its maximum value1 when two partitions
are identical. The minimum value0 is taken if and only if
one partition consists of a single cluster and the other con-
sists of only clusters with a single point, which is hard to
satisfy by random partitions. Indeed, the RI takes relatively
high values for two random partitions. However, it is plau-
sible for a similarity measure to take values close to zero
for random partitions. To improve this disadvantage of the
RI, Hubert and Arabie (1985) introduced the Adjusted Rand
Index (ARI) which takes over a correction for chance:

ARI(U,V) =
RI(U,V)− E (RI|a,b)

1− E (RI|a,b)
, (6)

where1 in the denominator is the maximum value of the
RI andE (RI|a,b) is the expected value of the RI between
two randomly chosen partitions of the setX subject to the
condition that two vectorsa = (a1, a2, · · · , al) andb =
(b1, b2, · · · , bm) are fixed. Since we haveE

((
nij

2

)
|a,b

)
=(

ai

2

)(
bj

2

)
/
(
N
2

)
(Hubert and Arabie, 1985), an explicit for-

mula for the ARI is given by

ARI(U,V) = (7)∑
i,j

(
nij

2

)
−
{∑

i

(
ai

2

)∑
j

(
bj

2

)}
/
(
N
2

)
1
2

{∑
i

(
ai

2

)
+
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j

(
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2

)}
−
{∑

i

(
ai

2

)∑
j

(
bj

2

)}
/
(
N
2

) .
Our second measure of similarity, the AMI is defined

based on the mutual information between two partitions
(Vinh et al., 2009). Let us introduce the probability that an
element ofX is contained in a clusterUi by P (i) = ai/N .
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Figure7: Comparisons between the LC-partition and partitions based on neuron functions. Two similarity measures, one is
pair-counting based (the ARI) and the other is information-theoretic (the AMI), are used. (a) The LC-partition vs the ST-
partition. (b) The LC-partition vs the S-partition. (c) The LC-partition vs the T-partition. (d) Z-scores for the values of two
similarity measures as functions of threshold.

The Shannon entropy with respect to the partitionU
is defined byH(U) = −

∑l
i=1 P (i) log2 P (i). Sim-

ilarly, the Shannon entropy with respect to the parti-
tion V is given by H(V) = −

∑m
j=1 P ′(j) log2 P ′(j),

whereP ′(j) = bj/N . Then, the mutual information be-
tween two partitionsU and V is defined byI(U,V) =∑l

i=1

∑m
j=1 P (i, j) log2

P (i,j)
P (i)P ′(j) , whereP (i, j) = nij/N

which is the joint probability that an element ofX falls into
bothUi andVj .

Strehl and Ghosh (2002) proposed the normalized mutual
information (NMI) as follows:

NMI(U,V) =
I(U,V)√
H(U)H(V)

, (8)

which takes its values in the unit interval[0, 1]. The NMI
takes its maximum value1 when two partitions are identi-
cal. The minimum value0 is realized when two partitions
are independent, namely,nij = aibj holds for all1 ≤ i ≤ l
and1 ≤ j ≤ m. Hence, the NMI for random partitions
takes its values close to0. However, its adjusted version is
more preferable. The adjusted normalized mutual informa-
tion (AMI) is defined in the similar spirit as in the ARI (Vinh

et al., 2009) :

AMI(U,V) =
I(U,V)− E (I|a,b)√
H(U)H(V)− E (I|a,b)

, (9)

whereE (I|a,b) is the expected value of the mutual in-
formation I between two randomly chosen partitions of
the setX subject to the condition that two vectorsa =
(a1, a2, · · · , al) andb = (b1, b2, · · · , bm) are fixed.

In the next subsection, we apply these two adjusted simi-
larity measures, the ARI and the AMI, to the partitions of the
set of arcs in the neuronal network ofC. elegansby neuron
functions and the partition based on lateral connectedness
for each threshold.

Results

Fig. 6 (a) shows the number of arcs as a function of thresh-
old. Fig. 6 (b) indicates the number of clusters in the LC-
partition and in the ST-partition. The former tends to in-
crease for thresholds within the range from 1 to 10 because
decrease in the number of arcs can leads to division of one
cluster into two or more clusters. It decreases for thresholds
larger than 12 simply because the number of arcs is too small
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(b)(a)

Figure 8: The wiring diagram of the neuronal network ofC. elegans at threshold 4 depicted by Graphviz
(http://www.graphviz.org/). (a) Arcs are colored by the ST-partition. Color assignment is the same for Fig. 5. (b) Arcs are
colored by the LC-partition. Colors of different clusters are specified arbitrarily.

for the number of the LC-clusters to grow by divisions for
those relatively large thresholds.

In Fig. 7 (a), we plot the ARI and the AMI between the
LC-partition and the ST-partition as a function of threshold.
It takes its maximum value when threshold is equal to6.
As a control experiment, we calculate averages and stan-
dard deviations of the ARI and the AMI between the LC-
partition and the ST-partition on 1000 randomized networks
by re-wiring arcs randomly, which are also shown in Fig. 7
(a). Note that degree distributions are invariant under the
re-wiring process. We can see a large deviation from the
control around the maximum point. We have similar results
for the S-partition and the T-partition (Fig. 7 (b),(c)).

To quantify deviation from the control experiment, we
calculate the Z-score for each comparison. The Z-score of a
quantityQ is defined by

zQ =
Qorig − ⟨Qrand⟩

σ
, (10)

where Qorig is the value ofQ in the original network,
⟨Qrand⟩ is the average ofQ calculated from an ensemble
of randomized networks andσ is its standard deviation. The
Z-scores of both the ARI and the AMI take their maximum
value when threshold is equal to4 for all comparisons (Fig. 7
(d)). All of the maximum values of the Z-scores are more
than5, which indicates significant deviation from the con-
trol in all comparisons. However, we should note that the
absolute values of the two similarity measures are not so
high, at most0.152.

In Fig. 8, we plot the wiring diagram where we set thresh-

old 4. Arcs are colored based on the ST-partition (Fig. 8
(a)) and the LC-partition (Fig. 8 (b)). There are two weakly
connected components, one is large and the other is small.
Here, we define a weakly connected component of a directed
network as a maximal set of arcs in which every pair of
arcs are connected by a sequence of arcs ignoring the direc-
tion. Almost all the motor-motor connections are included
in the smaller weakly connected component on one hand,
they also form a single laterally connected component in
the LC-partition. However, the LC-partition fails to capture
more detailed functional partition within the larger weakly
connected component possibly due to many recurrent con-
nections between the sensor, inter and motor region of the
neuronal network ofC. elegans(Varshney et al., 2011). This
is one reason that we have relatively low absolute values for
the two similarity measures.

Conclusions and Outlooks
In this paper, we intuitively explained that how the idea “ob-
jects as processes, interactions as interfaces” can be formal-
ized within the framework of category theory. We derived
the notion of lateral connectedness as a canonical structure
obtained from the idea. By its definition, lateral connect-
edness has possibility to be associated with functional com-
monality between arcs arising from shared input or output.
As a first application of lateral connectedness, we exam-
ined functional significance of lateral connectedness in the
neuronal network ofC. elegansby the method of clustering
comparison. For the analysis, we made use of two similar-
ity measures to quantify similarity between two partitions
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on the same set, one is pair-counting based measure and the
other is information-theoretic measure.

We showed that the partition of the set of arcs based on
lateral connectedness is not inconsistent with the functional
partition of the set of arcs. However, even if we set threshold
at the point where the largest deviation from an ensemble of
randomized networks is observed, it can only capture a part
of the partitions based on neuron functions. One problem of
the analysis performed in this paper may be that the direct
comparison to functional partitions is too strict to recognize
significance of lateral connectedness. Another problem is
that the data used is incomplete. Analysis with more com-
plete data (Varshney et al., 2011) will be necessary.

Introduction of lateral connectedness has several impli-
cations. First, we can analytically solve percolation prob-
lems with respect to lateral connectedness on configuration
model (networks chosen uniformly at random from the set of
all possible networks with a specified degree distribution) of
directed networks (Haruna, 2011b). Applications of the ana-
lytical result on configuration model to biological networks
are now ongoing. Second, we can define alternatives for
some notions used in conventional complex network studies.
For example, the notion of path length can be defined based
on lateral connectedness. Since metrics such as closeness
and betweenness centralities are functions of path lengths,
they are also the targets of alternative definitions. Finally,
theoretical development and empirical applications of the
duality between lateral connectedness and strong connect-
edness are also intriguing issues.
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Abstract 
Generic complex systems of many interacting parts can model 
both natural and artificial systems, and the conditions for their 
stability are of interest. Two influential papers (Gardner and 
Ashby, 1970; May, 1972) laid down a mathematical framework 
suggesting that, without some specific constraints on the 
interactions, such systems are very likely to be unstable as they 
increase in size and connectance. We draw attention to a 
programming error in the first paper and to flaws and omissions 
in reasoning in the second that discredit such conclusions when 
applied to nonlinear systems. With nonlinearity the connectance 
strength of an influence of any one variable upon any other will 
vary according to context, which May’s analysis does not 
address. Further, in nonlinear systems there can be many 
equilibria, and global instability requires every relevant local 
equilibrium to be unstable; neglecting this invalidates the 
conclusions. We discuss the relevance of ambiguous circuits 
(Thomas and D’Ari, 1990) and consider simple classes of 
nonlinear functions that generate these, including the hat 
shaped viability functions that generate homeostasis in 
Daisyworld models. We demonstrate that the May results are 
unreliable even for the simplest families of nonlinear systems 
that model common biological, physical or artificial systems. 

Introduction 
An influential early paper (Gardner and Ashby, 1970) used 
computer simulations to assess the probability that a large 
system of interacting component parts that has been 
assembled at random, or has grown haphazardly, will be 
stable or unstable. They considered systems where the 
interactions between parts were linear, and looked at how the 
expectation of stability changed as the number of variables 
increased. This was a theoretical study, to be motivated by its 
possible application to both biological and man-made 
systems: brains (real or artificial), planetary climate systems, 
social or financial systems, ecosystems. The conclusion was 
the suggestion that all such large (random or haphazard) 
complex linear dynamic systems may be expected to show the 
property of being stable up to some critical, fairly small, level 
of connections; but above that phase transition value they are 
overwhelmingly likely to be unstable. From this it could be 
deduced that if one observed large complex linear systems 
that were indeed stable, there must be something exceptional 
and non-random about the way that the parts were connected. 
 The influence of this work stems primarily from its 
extension and development by Robert May, and the 
subsequent proliferation of a wide body of research in this 

area. He replicated a version of the results analytically rather 
than computationally (May, 1972), and claimed that their 
validity extended beyond the linear systems of Gardner and 
Ashby (hereafter: G&A) to systems “which in general may 
obey some quite nonlinear set of first-order differential 
equations”. May’s interest mainly focused on ecological 
systems, and a subsequent book (May, 1973) largely set the 
agenda for discussion of the relationship between complexity 
and stability in ecosystems ever since. 
 Before this work there was a common perception that the 
more diverse was the range of species in an ecosystem, the 
more robust and resilient to perturbations that system would 
be; and further, it was often assumed that this may well be due 
to some underlying law of large numbers that could apply 
very generally across all sorts of systems with many 
interacting components. But the work of G&A and May, 
apparently using very minimal mathematical assumptions, 
appeared to suggest that the opposite was true – at least, in the 
absence of further specific constraints. So subsequent 
argument and analysis have tended to focus on what further 
constraints, what limitations on the number, sign and size of 
interspecies interactions, might be necessary in order to make 
it likely that a complex ecosystem was stable. The 
mathematics, it has largely been assumed, is relatively simple 
and correct. Hence if we want to explain the existence of 
complex stable systems, it looks like we need to add further 
assumptions. 
 In this paper, we shall demonstrate that the reasoning 
within these two primary sources (Gardner and Ashby, 1970, 
May, 1972) is partially invalidated through omission and 
errors, and in particular should not be generalised in this way 
to nonlinear systems. Firstly, we draw attention to a 
programming error in the G&A paper, which has been noted 
previously (Solow et al., 1999). Secondly, we point out that 
May’s attempted extension to nonlinear systems fails to 
specify the distribution from which the relevant connection 
strengths are drawn.  
 Thirdly, and fatally to May’s reasoning, we point out a flaw 
where he claims to go beyond the purely linear systems of 
G&A towards a more general set of nonlinear systems. May 
considers local stability at just a single fixed point in the space 
of possible values for the system, a point that makes sense 
when considering linear systems with negative self-
interactions. Unfortunately, when we move on to nonlinear 
systems there can be a large (and in some circumstances 
unlimited) number of points of potential stability to consider. 
Global instability would require local instability at every one 
of those points. Hence the probability of global stability will 
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be underestimated if one just considers local stability at a 
single fixed point, as May does. 
 These various criticisms are, as far as we are aware, all 
drawn together here for the first time. We present examples 
demonstrating that it is not merely exotic nonlinear functions 
that raise these issues. Even simple monotonic nonlinear 
functions such as sigmoids, or the simplest piecewise linear 
functions with a single change of slope, are sufficient to 
invalidate the reasoning. Hat shaped viability functions, as 
used in Daisyworld models, are discussed and it is shown how 
stability arises independently of the sign of the opposing 
effect. The ‘ambiguous circuits’ so produced are related to the 
multistationarity analysis of Thomas (Thomas and Kaufman, 
2001a, 2001b). 
 These flaws in the two foundational papers by Gardner and 
Ashby (1970) and May (1972) suggest that a radical 
reappraisal is needed in the mathematical foundations of a 
substantial body of work that has built up over some 40 years. 
Rather than seeking a route to stability by adding further 
constraints to these abstract models, we need to open the 
doors to those possible locations of stability that have until 
now, through error or omission, been excluded. The 
significance goes beyond ecosystem theory to the study of all 
kinds of natural and artificial systems with complex nonlinear 
interactions, including financial systems (Haldane and May, 
2011). 

Gardner and Ashby on Linear Systems 
Their short paper, a Letter of less than one page in Nature 
(Gardner and Ashby, 1970), was an early example of a 
computer simulation, using a Monte Carlo approach. They 
considered a very simplified formal model of any large system 
of many interacting parts. This could be traffic at an airport, or 
the neurons in a human brain. They asked the question: 
supposing one did not know all the details of the interactions 
between component parts, but modelled these as coming from 
some random distribution that gave the signs and sizes of 
these interactions, then what was the chance that such a large 
system will be stable? Although in the real world most of 
these large systems, perhaps biological or social, will be 
grossly nonlinear, they explicitly restricted themselves to 
considering only systems with linear interactions, as a first 
step towards a more general treatment. They were interested 
only in fixed point equilibria. 
 The model had n component parts. The intention was to 
investigate how the generic properties of such systems varied 
as n increases. The instantaneous state of the system can be 
expressed by a vector x, where xi represents the current value 
of the ith variable. In the very general case of nonlinear 
systems we would have, with different nonlinear functions for 
each i: 

  
dxi

dt = NonLinFni(x1,x2,…,xn ) 
 
However in this restricted linear case this simplifies to a 
weighted sum of the current values of all the variables: 
 

dxi
dt = a ji

j
" x j

                                Eqns 1 
  
Because this is a linear system, there is a unique equilibrium 
point where for all i dxi/dt=0. The issue will be: what is the 

probability that this unique equilibrium is stable, given the 
distribution from which the weights aji in the connection 
matrix A are drawn. A is the Jacobian matrix of the first-order 
partial derivatives, and in this case of a linear system these 
terms are all scalars, of fixed size and sign; when later we 
move on to nonlinear systems, these terms will be variable in 
both size and sign.  
 G&A chose to make this a partially connected system, with 
a proportion C of the off-diagonal weights being nonzero. 
These nonzero weights were distributed evenly between -1.0 
and +1.0. Further, they ensured that all the weights aii in the 
main diagonal of the connection matrix (self-connections) 
were negative. They distributed these evenly between -1.0 and 
-0.1; in May’s version that followed, May set all these to -1.0. 
 G&A are thus discussing a family of linear feedback 
systems, parameterised by these two values: n, the number of 
component parts, and C, the connectance or the proportion of 
possible interactions between parts that are non-zero. For any 
given values of n and C, their Monte Carlo approach involved 
testing many cases of such systems, with the connection 
weights drawn from the appropriate distributions, and finding 
out through computation what proportion of the systems were 
stable at their unique equilibrium point. For low values of the 
connectance, where the interactions are dominated by the 
stipulated negative values of self-connections, the probability 
of stability was close to 100% for all values of n tested. But as 
the connectance C increased, the probability of stability fell 
away. Using the limited computational facilities of their day 
(Gardner and Ashby, 1970), they tested examples where n 
equals 4, 7 or 10. Their conclusion, illustrated by a figure, was 
that as n increases the relationship between connectance and 
stability changes from (for n=4) a smooth falling away of 
probability of stability as connectance increases towards a 
step function for values of n of 10 or more. Their figure 
(partly replicated by the thin lines in Figure 1 here) suggests 
that for n=10 this phase transition from “almost certainly 
stable” to “almost certainly unstable” occurs at or around a 
connected value of 13%, C=0.13.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Thick lines give the correct results for G&A’s 
examples, for n = 10,7,4 from left to right. Diagonal terms aii 
drawn from [-0.1,-1.0]; a proportion C of off-diagonal terms 
aji (i ≠ j) drawn from [-1.0,1.0], with the remainder zero. Thin 
lines copy the incorrect results that G&A showed for n = 10,7 
(Gardner and Ashby, 1970). 
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The Programming Error 
When we replicated their method1 our results were similar for 
n=4, but noticeably different for n=7 or 10. The difference, 
shown in Figure 1, is striking, and in particular eliminates the 
sharp nature of the phase transition claimed for n=10. This 
was their main result, and May claimed on the basis of his 
analytical treatment (May, 1972) to have corroborated this: 
“The sharp transition from stability to instability, which was 
the essential feature of their [G&A] paper is confirmed”. 
Having failed to replicate this sharp transition, the first step 
was to check whether we had misinterpreted their methods. 
But eventually a colleague discovered a rarely cited 1999 
reference (Solow et al., 1999) pointing out the same problem, 
with results agreeing with our own presented here. They 
attributed the problem to some unknown programming error 
in G&A’s code. Further, they comment that this nullifies one 
of May’s conclusions where he had assumed that the G&A 
phase transition was a real phenomenon. Correction of this 
programming error does not alter the conclusion that as n 
increases and C increases the probability of stability goes 
down; it does alter the conclusion that for values of n above 
some fairly small value the relationship between stability and 
connectance turns into something close to a step function.  
 For the purposes of this paper, this programming error is 
the least important of the errors and omissions to be discussed. 
Nevertheless, it is of note that it took nearly 30 years until this 
error was pointed out in print. 

May’s analysis: linear systems 
Whereas G&A explicitly limited themselves to the 
consideration of linear systems “merely as a first step towards 
a more general treatment” (Gardner and Ashby, 1970), May 
claims to be considering systems “which in general may obey 
some quite nonlinear set of first-order differential equations.” 
(May, 1972). His method is to focus on the behaviour of such 
nonlinear equations around “the equilibrium point”. Through 
making a Taylor expansion and ignoring the higher-order 
terms one can consider this locally as a linear system. 
Thereafter, May goes on to analyse the same kind of linear 
system as G&A, while still claiming that it generalises to 
nonlinear systems.  
 Insofar as May’s analysis is restricted to the linear version, 
he tackled analytically much the same class of systems that 
G&A had tackled computationally. To be precise, this was a 
slight variant with qualitatively the same behaviour; in place 
of just C or connectance he considers a term α that is the 
mean square value of the distribution of all off-diagonal 
elements, described as expressing the average interaction 
“strength” (measured on a scale that rates the negative self-
feedbacks on the diagonal of the matrix at -1). May’s results 
were broadly similar, claiming that the central feature of the 
results for large systems is “the very sharp transition” from 
stable to unstable behaviour above a critical value that 
“accords with Gardner and Ashby’s conjecture”. As we have 
pointed out above, in fact the transition is not as sharp as 
                                                             
1 Matlab code at www.informatics.sussex.ac.uk/users/inmanh/stable 

G&A indicated; however the analytical results do agree with a 
correctly coded computational Monte Carlo approach. The 
influential take-home message from both the computational 
and analytical results has been: in any such system of many 
interacting parts, as soon as the average interaction strength 
(interactions between different component parts) rises above 
some small value, the probability that such a system will be 
stable drops to near zero. This limitation on stability becomes 
worse as n, the number of parts, increases. In the context of 
ecosystems, such a result challenges the commonly held 
assumption that the more diverse an ecosystem is, the better it 
is able to remain stable in the face of perturbations. 

Picturing Stability 
In preparation for understanding nonlinear systems, we first 
present in some detail a sketch of how to analyse and visualise 
stability in linear systems. This is basic textbook material, but 
that is the level of the flaws that we are going to exhibit when 
we move on later to nonlinear systems. For a simple system of 
two variables, we can graphically sketch the nullclines (where 
dx/dt=0 and dy/dt=0) and, by plotting the consequences of 
perturbations, analyse for stability. We start with two linear 
examples, Equations 2 and 3, sketched and analysed in 
Figures 2 and 3: 
 

dx
dt = "x + y 2 +1            dy dt = x

2 " y +1          Eqns 2 
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Figure 2: The nullclines for Eqns 2. Thick line for dx/dt=0, 
with horizontal small arrows indicating responses to x-
perturbations. Thin line for dy/dt=0, with vertical small arrows 
for response to y-perturbations. The heavy arrows sum these 
responses, giving a stable equilibrium at the intersection (2,2).  
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The Jacobian matrix restates the fact that the self-connections 
are -1, and the cross-interactions are 0.5. These latter 
correspond to tan(X-slope) and tan(Y-slope) as those angles 
are indicated in the figure. In contrast, consider this example 
with the same nullclines, though swapped around: 
 

 dx
dt = "x + 2y " 2      dy dt = 2x " y " 2           Eqns 3 
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Figure 3: Nullclines for Eqns 3. Thick line (dx/dt=0) has now 
swapped places with thin line (dy/dt=0).  Response arrows 
also differ from Figure 2, equilibrium at (2,2) is now unstable.  

 
 Here we can see that the equilibrium is unstable. We can 
note that the connection strengths, the off-diagonal terms in 
the matrix, also here tan(X-slope) and tan(Y-slope), are now 2 
rather than 0.5. So anecdotally this conforms to a general 
picture that larger connection strengths are more conducive to 
instability; though we should also note that if these connection 
strengths had been of opposite sign, of whatever strength, 
stability would have been the consequence. We can now see 
how this analysis extends to the nonlinear picture.  

May’s analysis: nonlinear systems 
May (1972) does not lay down any constraints on the very 
general class of nonlinear systems, bar implicitly that they 
should be smooth and differentiable so that they can be 
approximated by a linear system around any equilibrium point 
under investigation. For simplicity we start by restricting 
ourselves to systems of the form: 
 dxi

dt = Fn jij
" (x j )                    Eqns 4 

 
and further restrict the classes of functions to just linear and 
sigmoid. We can demonstrate our essential points with a two-
variable system: 

 
      dx dt = "x + y                 dy

dt = 20(1+ e(10"x ))
        Eqns 5 

 

 The numbers have been chosen to demonstrate that there 
are now several equilibria, as demonstrated by the intersection 
of nullclines in Figure 4. We can see that two of these 
equilibria conform to the pattern of Figure 2 (and are stable), 
whereas the central equilibrium conforms to the pattern of 
Figure 3 (and is unstable).  

 

 

 

 

 

 

 

Figure 4: Nullclines for Eqns 5. Three equilibria are circled, 
the central one (open circle) is unstable, the other two (closed 
circles) are stable. 

Which Distribution of Connection Strengths? 
With the aid of this sketch we can make the trivial 
observations that the addition of even a single simple 
monotonic nonlinear function, such as this sigmoid, means 
that there can be several equilibrium points and that in general 
the slope of the nonlinear function, related to connection 
strength, varies from one equilibrium to another.  
 May wishes to extend the conclusions of the linear analysis 
– where the probability of stability depends on the nature of 
the distribution from which connection strengths are drawn – 
to a nonlinear case with an undefined distribution of nonlinear 
functions. But this could only be done systematically by 
firstly specifying the distribution of parameters in the 
specified class or ensemble of nonlinear functions; and 
secondly, determining where on such functions one measures 
the slope. Since there can be several equilibria, this gives 
several possible values for the connection strength. Given that 
low connection strengths tend to be conducive to stability in 
the linear case, it can be noted that many nonlinear functions 
including these sigmoids have regions where the slope is low. 
 May would need to do all this to complete his project of 
generalizing to nonlinear systems. One could then in principle 
find the distribution of connection strengths over all the 
equilibria, and perhaps give an estimate of the proportions of 
these that were stable or unstable. But then further work 
would need to be done to assess whether the system as a 
whole was stable or not, since that is a global property. 
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Global versus Local Stability 
 
For a system to be globally unstable, every single equilibrium 
point must be unstable. But for stability it is sufficient for 
there to be just a single stable equilibrium point within the 
region of interest. In the case of linear systems, global 
stability and local stability are one and the same, but May’s 
analysis fails to take account of the fact that nonlinear systems 
are different. Even if we had an estimate of the probability of 
any specific equilibrium point being stable, this may well be a 
gross under-estimate of the chance of there being stability 
somewhere within the system as a whole.  
 In some classes of nonlinear functions, e.g. sinusoidal, 
there is the potential for an unlimited number of intersections 
with a straight line, corresponding to an unbounded number of 
equilibria in the two-variable system. For well-behaved 
curves, as we can see in Figure 4, stable and unstable 
equilibria alternate so that as long as we have more than one 
equilibrium we are guaranteed a stable one.  
 For simplicity, in order to get the main points across, the 
examples above are restricted to systems of just two variables. 
Extending this to an n-variable system with n>2 requires more 
analysis. But in summary, the May analysis simply ignores 
these crucial differences between nonlinear and linear 
systems, and in doing so typically underestimates, perhaps 
grossly, the probability of stability in nonlinear systems.  

Ambiguous Circuits 
Thomas and colleagues (Thomas and D’Ari, 1990; Thomas 
and Kaufman, 2001a, 2001b) discuss the roles of positive and 
negative feedback in nonlinear biological systems. It so 
happens that their main interest is in the positive feedback 
circuits that lead to multistationarity, or switching, in genetic 
regulatory circuits. Nevertheless, much of their analysis can 
be applied to investigating issues of negative feedback circuits 
leading to homeostasis or stability. As with May, they are 
considering a dynamic system of n variables where many (but 
typically not all) pairwise interactions are present. This leads 
to the same connectance or Jacobian matrix. But unlike May 
they explicitly note that in the general nonlinear case the 
strengths (and indeed possibly the signs) of these interactions 
will vary throughout phase space.  
 Following their analysis, we note that any connectance 
matrix A can be considered as composed of multiple 
overlapping feedback circuits. For any such circuit, the 
indices are circular permutations of each other. For instance in 
a 3-variable system as sketched in Figure 5, the full list of 
potential circuits is: <a11>, <a22>, <a33>, <a12a21>, <a23a32>, 
<a31a13>, <a12a23a31>,  <a21a13a32>.  If one or more of the 
connections in such a circuit is zero, that circuit as a whole is 
non-functional; but otherwise, a count-up of the number of 
negative connection weights decides whether that individual 
feedback circuit constitutes a negative feedback (odd number 
of negatives) or positive feedback (even number). The 
limiting case of such a circuit is that constituted by self-
feedback, given by the term aii on the main diagonal; that 
minimal circuit will be non-functional, negative-feedback or 
positive-feedback depending on whether its value is zero, or 
its sign is negative or positive.  

 Thomas and Kaufman (2001a) defined a full-circuit as 
those circuits and unions of disjoint circuits that involve all 
the variables of a system. Hence in this 3-variable system, 
there are six possible full-circuits: 
<a11•a22•a33>, <a11•a23a32>, <a22•a31a13>, <a33•a12a21>, 
<a12a23a31>,  <a13a32a21> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The eight potential circuits, differentiated by 
shading, within a system of 3 variables fully interconnected. 

These correspond to the terms of the determinant of the 
Jacobian matrix. For any one such full-circuit, considered in 
isolation, the type of steady state this generates will be 
determined entirely by the signs, plus or minus, of the various 
component circuits that comprise this full-circuit. Given that 
in nonlinear systems any (or all) connection strengths can vary 
according to position in phase space, and given that the 
change of sign of any one connection will  change the sign of 
any component circuit of which it is part, we can see that this 
will alter the type of steady state generated.  
 This highlights the significance of those connection 
strengths in a nonlinear system that change in sign as one 
moves through phase space. These arise from nonmonotonic 
functions that generate circuits that switch between negative 
and positive according to context – ‘ambiguous’ circuits – and 
thereby generate ambiguous full-circuits. Such changes in 
sign, in one or many such connections, carve up the phase 
space into different regions, and one can expect the properties 
of steady states to differ from one such region to the next. 
This gives the richness of possibilities to nonlinear systems 
that is missing from the linear ones. 

Plausible nonlinearities 
It might be argued that with some systems, although 
interactions are potentially nonlinear they are ‘linear enough’ 
for there to be only a single equilibrium. Here we present and 
discuss some simple nonlinear functions, to see where and 
how they generate multiple possible equilibria. If one was to 
analyse fully the probability of stability in some class of 
nonlinear systems, these might be appropriate simple classes 
to start on. 
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Sigmoids 
Sigmoids are commonly used to model physical or biological 
systems, since they represent an effect that is monotonic yet 
with asymptotes at lower and upper bounds. A widespread 
example of where they are used in artificial systems would be 
Artificial Neural Networks. We have already seen above 
(Equations 5) that even a simple monotonic function such as a 
sigmoid is not ‘linear enough’ to avoid multiple equilibria.  
The ambiguous circuits discussed above, generating changes 
in stability through nonmonotonic functions, do not exhaust 
the ways in which multiple equilibria can exist. Figure 4 
demonstrates how both stable and unstable equilibria can be 
generated merely by a change in strength of a connection 
without change in sign. 

Piecewise linear with a single bend 
Even simpler than a sigmoid, consider a piecewise linear 
function coupled with a linear function: 
 

dx
dt =max(0,2 + y " 2x)        dy dt = x " y       Eqns 6 

 
These are both linear except that dx/dt is constrained not to go 
below zero. As can be seen from Figure 6, this is sufficient to 
generate a pair of equilibria, one stable and the other unstable. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 6: A perturbation analysis of Equations 6, using the 
same conventions as in Figure 4. There is a stable equilibrium 
at (2,2) and an unstable equilibrium at the origin (0,0). 

Sinusoidal functions 
 
We have seen how the single inflexion of a sigmoid allows the 
possibility of 3 intersections with a straight line and hence 3 
equilibria. Crudely speaking, the more bends the more 
possibilities for intersections, and with oscillatory functions 
such as a sine wave the slope changes in sign repeatedly and 
indefinitely. The combination of a straight line and a sine 
wave can lead to an arbitrary number of equilibria that will 
alternate between stable and unstable. Going further, it can be 
shown (Kaufman and Thomas, 2002) that a system of 3 
variables: 

dx
dt = "bx + sin(y)         dy dt = "by + sin(z)  

dz
dt = "bz + sin(x)                                            Eqns 7 

can, depending on the parameter b, move from having a single 
steady state for b>1, through multiple steady states as b 
decreases, with the number of steady states tending to infinity 
as b→0. The dynamics change from simple to chaotic, with 
periodic or multiperiodic windows. The many changes of sign 
within the regions where nullclines intersect provide 
ambiguous circuits and increase the richness of possibilities.  

Hat-shaped functions 
 

 
Figure 7: Three ‘hat-functions’ with broadly similar 
consequences: gaussian, truncated parabola, and witches hat. 

 
Unimodal  ‘hat-shaped’ functions whose slopes have a single 
change of sign are an important class of simple nonlinear 
functions that share some of the asymptotic properties of 
sigmoids. The examples in Figure 7 share the property of 
dropping to zero (or approaching zero in the case of a 
gaussian) each side of a central region. If we take any of these 
hat-functions as y=H(x), this could represent a viability 
function of an organism or species y that can only survive (in 
the case of the gaussian version: survive to any significant 
level) within some  range of values of an environmental 
variable bounded above and below. These can be considered 
amongst the most basic of nonmonotonic functions, and it 
turns out that they do indeed play a crucial role in giving rise 
to homeostasis, or a particular form of stable equilibrium, in 
Daisyworld models. Those who use Daisyworld models 
(which are one class of nonlinear complex system) assert that 
homeostasis arises naturally in these, whereas many critics 
such as Kirchner (2002) consider the probability to be 
vanishingly small unless the parameters are fixed somehow. 
This controversy illustrates some of the archetypal contrasting 
viewpoints presented in the complexity-stability debate, and 
hence we shall review this at greater length. 

Daisyworld 
 Lovelock introduced the Daisyworld model (Watson and 
Lovelock, 1983) as a possible explanation of how organisms 
coupled in mutual feedback with some environmental variable 
could form a homeostatic system, biotic-environmental, as is 
proposed in the Gaia Hypothesis (Lovelock, 1972). The Faint 
young Sun paradox (Sagan and Mullen, 1972) suggests that 
despite the heat output of the sun changing significantly over 
the last few billion years the planetary climate has maintained 
itself around the temperatures conducive for life. The Gaia 
Hypothesis suggests that this arises through homeostatic 
properties of the interactions between biota and environment. 
In the Daisyworld model the organisms (Daisies) have a 
viability whose dependence on temperature is given by a hat-
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function; the truncated parabola version is used in Watson and 
Lovelock (1983). In turn, through differential absorption or 
reflection of sunlight, these Black or White Daisies had a 
positive or negative affect on the same local temperature that 
influenced their viability. Such systems can be analysed for 
stability in the context of noise or perturbations at two levels.  
 In the first instance, any equilibrium state of such a system 
can be analysed for stability or instability in the presence of 
small levels of noise; only stable equilibria will persist, and 
only stable equilibria that have the biota (Daisies) within their 
viability zone are relevant. But the main interest of 
Daisyworld models is the extent to which such stable 
equilibria can persist in the face of major systemic external 
perturbations, such as major changes in heat output of the sun. 
It turns out that the Daisyworld temperature is maintained 
within the viability zone for significantly greater ranges of 
solar forcing with the biotic feedback to the local temperature, 
as compared to without such feedback. This homeostasis 
arises from the nonmonotonic nature of the hat-function. 
 

 
Figure 8: The witches hat-function represents the dependency 
of Black Daisies on local temperature.  

 
Harvey (2004) showed how a simplification of the 
Daisyworld model produced the same effects, using a witches 
hat-function. A reduced version of such homeostasis can be 
shown with just one species of Daisies, e.g. Black ones. With 
Y black daisies, local temperature T, level of solar forcing S, 
then for suitable constants k1 k2 we have: 
 

dY
dt = H(T) "Y     dT dt = S " k1T + k2Y      Eqns 8 

 
The equilibria are shown where the corresponding lines 
intersect in Figure 8. The different sloping lines, intersecting 
the temperature axis at A1, A, A2, correspond to different 
possible levels of solar forcing. It can be seen that, depending 
on the level of solar forcing, there is either one equilibrium 
(e.g. at A1 or lower temperatures, or at A2 and higher 
temperatures) or three (e.g. A, B, C). This latter case gives us: 
a possible stable equilibrium with zero Daisies at A; or an 
unstable equilibrium with Daisies at B, the instability being 
despite the temperature being viable; or a further stable 
equilibrium at C with Daisies present within their temperature 
viability-zone. This last stable equilibrium is the focus of 
interest, and we consider the range of solar forcing for which 
C exists; i.e., for which there is a stable population of Daisies 
within the local temperature viability zone. From inspection of 
Figure 8 we can see that the biotic feedback (from Black 

Daisies increasing local temperature) has given rise to viable 
local temperature over a wider range of solar forcing 
(corresponding to the range A1↔A2 in the figure) than in the 
absence of such feedback (corresponding to D↔A2, the 
unassisted viability range of the hat-function).  
 Thus the presence of Black Daisies extends the range of 
viability towards lower solar forcing (the ‘faint young sun’); 
conversely, White Daisies (giving rise to a line ABC with a 
negative slope in contrast to the positive slope in Figure 8) 
would extend the range of viability towards higher solar 
forcing, a hotter sun. This increased range of homeostasis 
arises from the nonmonotonic nature of the hat-function 
generating extra possible equilibria.  

Criticism of Daisyworld 
This present analysis of the G&A and May papers was 
originally motivated by work on Daisyworld models (Harvey, 
2004) that are one class of these nonlinear systems of a Gaian 
biota/environment. Such models display homeostasis under a 
wide range of conditions, yet critics frequently voice the 
suspicion that this must be because the parameters are 
carefully chosen from an improbable subset, biased towards 
negative feedback, in order to achieve stability. For instance 
Kirchner (2002) suggests that Gaian regulation depends on an 
implausible assumption that the influence of biota on the 
environment have a strong tendency to be environment-
enhancing rather than environment-degrading. This, it is 
implied, suggests that such influence has been biased by the 
modeler to have the appropriate sign, positive or negative. 
Yet, as is shown in Harvey (2004), regardless of the sign of 
such a biota→environment effect, when combined with a hat-
shaped viability function environment→biota, the resulting 
ambiguous circuit has the potential for both stable and 
unstable equilibria within the viability range. Stable equilibria 
will inevitably be ‘selected’ in preference to unstable, but 
since this is independent of the sign of the 
biota→environment effect it cannot be attributed to some 
biased choice of this sign. In either case the viable stable 
equilibrium gives a context that defines this effect as locally 
environment-enhancing.  
 This has inevitably been a limited review of the basics of 
Daisyworld models, missing out many layers of subtlety. For 
instance the role of hysteresis has not been mentioned, and the 
significance of those stable equilibria that are within the 
viability zone, as contrasted with stable equilibria 
corresponding to extinction, has been treated only briefly. But 
the main point to be emphasised here is that the interesting 
(and often counter-intuitive) properties of these models arise 
from exactly those features of nonlinear systems that May had 
omitted in his analysis. 
 Importantly in this context, the homeostasis of Daisyworld 
systems extends to those with large numbers of variables. 
Applying these lessons to the construction of artificial 
systems, it has been demonstrated (Harvey, 2004) that a 
simulated robot coupled with the environment via an 
arbitrarily large number of interactions comprising hat-
functions (on sensory inputs) and linear functions (on 
consequent outputs) could find a homeostatic equilibrium. 
This is so even if the signs of the linear functions are set 
positively or negatively at random, and the relevant 
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parameters are varied across some two orders of magnitude. 
Other examples of systems with multiple interacting 
component parts achieving equilibrium through the use of hat-
functions can be found in Dyke et al. (2007) and McDonald-
Gibson et al. (2008). In these cases there was a single 
environmental variable, and numerous biotic variables subject 
to hat-function viability limits. The Daisystat (Dyke, 2010) 
extends this approach to multiple environmental variables.  

Conclusions 
The core of this paper is the demonstration that May’s (1972) 
generalization to nonlinear systems – of results that largely 
hold true in linear systems (Gardner and Ashby, 1970) – is 
flawed. The method, through linearization around an assumed 
single equilibrium point, will at best give local stability; there 
may be many equilibria, and global stability can arise through 
stability at just one of these. With nonlinear interactions the 
size, and potentially also the sign, of the connection strengths 
varies according to position in phase space, and there is no 
attempt to account for this. To be rigorous, the probability of 
global stability would depend on assessing the (differing) 
probabilities of local equilibria, and combining these to 
calculate the probability that at least one was stable. No 
attempt at this was presented in (May, 1972), and hence his 
conclusions should be rejected. His calculations 
underestimate, potentially by a massive factor, the probability 
of stability in systems “which in general may obey some quite 
nonlinear set of first-order differential equations”. 
 The ambiguous circuits proposed by Thomas and 
colleagues in their analysis of multistationarity have been 
used above to explain how a plurality of equilibria can be 
generated by nonmonotonic functions. But even simple 
monotonic functions such as a sigmoid can generate 
alternating stable and unstable equilibria. A number of 
different simple nonlinear functions were analysed, to 
demonstrate just how easy it is to breach the assumptions 
upon which May was relying. 

Does this matter? 
Daisyworld models, particularly as the number of variables 
increase, are just one example of a complex nonlinear system 
where one would expect May’s analysis to be relevant. These 
demonstrate typical properties of many families of complex 
nonlinear systems: if one treats the slower variables as 
parameters and the faster variables as thermal noise, then the 
remaining variables at intermediate timescales will settle 
down to a metastable equilibrium (that may be disturbed at a 
‘tipping point’ when a ‘parameter’ shifts enough). In ecology 
it used to be a common view that ecosystems developed 
through succession towards a single equilibrium state or 
‘climax’ (Clements, 1916); but nowadays ecologists are more 
open to the possible of multiple possible equilibria in an 
ecosystem.  
 Our intuitions based on understanding simple linear 
systems can all too easily lead us into error when considering 
complex nonlinear ones, with multiple overlapping circuits of 
feedback. This appears to be the root of the problem here. We 
are not aware of any previous exposure of these flaws in May 
(1972); indeed the author is still citing it without qualification 

(Haldane and May, 2011) in the context of ‘banking 
ecosystems’ where clearly there are nonlinearities. It took 
nearly 30 years for the basic programming errors in G&A to 
be pointed out in print, and 40 years is too long for these 
further significant flaws to remain unchallenged.  
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Abstract 
 We present the Bondable Cellular Automata model, which 
uses simple 1-dimensional, binary cellular automata as the base 
atomic elements of an artificial chemistry.  Reactions are 
dependent upon an emergent, ‘resolution independent’ 
observable, measurable for individual or composite cellular 
automata structures.  We discuss the rationale behind our 
choice of observable, ‘mean polarity’, and behind the choice of 
a bonding mechanism based on this observable.  From simple 
experimentation we observe that using cellular automata as the 
underlying dynamical system coupled with mean polarity as the 
reaction success criterion shows potential to support sustainable 
emergent behaviour. 

Introduction 
The general model for an artificial chemistry consists of the 
{S (material), R (reaction rule set), A (algorithm)} triplet, 
with R applied to S according to A (Dittrich et al, 2001).  
Typically R is hand-coded and applies to a single level of 
structural hierarchy, while S is composed of atomic types with 
little or no internal dynamic.  This provides ease of analysis at 
the expense of flexibility. 
 This work applies a recent, alternate approach of ‘sub-
symbolic’ artificial chemistry, described in RBN-World 
(Faulconbridge et al, 2009), and in (Faulconbridge et al, 
2010), where reactions can apply at any level, with reaction 
success based upon an internal dynamic of colliding bodies. 

Here cellular automata (CA) are used to provide the 
internal dynamic.  By using CA as base atoms it is possible to 
construct ‘Bondable CA’ (BCA) systems where the 
application of R is dependent upon an emergent, possibly 
‘resolution independent’ observable of individual (atomic) or 
composite (molecular) CA structures.  The bonded CA within 
composite structures are able to exchange state information, 
introducing new dynamics to the CA, and potentially leading 
to emergent behaviour and structure in the chemical system. 

Why use Internal Dynamics? 
If we allow each body (be it an atom or composite molecule) 
in an artificial chemistry to possess an internal dynamical 
system, then we can allow the reactions which occur between 
bodies to affect the configuration of their systems.  Moreover 
we can allow the reverse: for the configuration of the bodies’ 
systems to affect their ability to react.  This way a feedback 
loop is formed. 

 This can be achieved by forming reaction rules that are 
based upon the value of an observable of each body’s internal 
dynamical system.  If the chosen observable is measurable for 
any body of any internal structure or size, be it a single atom 
or complex molecule, then potentially any two bodies can 
react with each other, even if their size and structure differ.  
This allows composite bodies of arbitrary size and structure to 
be constructed, and allows their dynamical systems to couple 
and interact.  As they grow these composite bodies will take 
the form of an increasing hierarchy of systems within systems 
within systems, all interacting with each other. 
 Further, in the BCA model we have chosen to use an 
observable that reflects change in the configuration of a 
body’s dynamical system as it occurs, whether or not this 
change has been caused by reaction with another body.  So 
two bodies that meet the criterion to react with each other at 
one instance in time might not do so at another instance 
because of interim change in the values of each body’s 
observable; and vice versa.  Similarly, when two bodies react 
to form a larger, single body, the interaction between their 
dynamical systems will cause changes to each over time, and 
might lead to structural instability.  If, according to the values 
of their observables, subcomponents of the single body no 
longer meet the criterion to remain bonded then 
decomposition of the single body will occur.  Such 
decomposition will have a knock-on effect upon the internal 
dynamic of the remaining body, which in turn may cause 
further, future decomposition, and so on.  Thus we have 
introduced and element of spontaneity to the reactions that 
take place, allowing them to occur well after or even in the 
absence of collision between bodies. 
 So using bodies that possess internal dynamical systems 
and basing reaction rules upon a suitable observable of those 
systems allow a rich set of reaction types to take place, 
between bodies unbounded by size, thus providing a 
sophisticated platform upon which we can model and explore 
multi-layered dynamical systems and how they interact. 

Why use Cellular Automata? 
The Cellular Automaton is an ideal underlying system for a 
sub-symbolic chemistry.  A tenet of artificial life research is 
that complex, interesting behaviour may arise from a 
deceptively simple mechanism, and the cellular automaton is a 
deceptively simple dynamical system; deceptive because 
intuition would suggest that from simple rules must emerge 
simple outcomes.  Yet we knew in 1966 that CA with large, 
intricately constructed transition rules were capable of 
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universal computation (von Neumann, 1966), and we know 
now that 1-dimensional CA are capable of performing 
universal computation (Cook, 2004), or of generating pseudo-
random numbers that pass all current tests for randomness 
(Wolfram, 2002).  It is even speculated that CA-type 
processes are at work in nature, such as the colour patterns 
generated in the spiral of the Cone Snail, or in the formation 
of snowflakes (Wolfram, 2002). 
 Further, a strand of research that allows the CA’s transition 
rule to be altered during iteration has allowed computations to 
be performed that are not possible with ‘simple’, standard 1-
dimensional CA (Mitchell et al, 1993, 1997), (Kanoh and Wu, 
2003), as opposed to those CA which require a partition of 
cells to store the ‘program’ to be executed, such as (Cook, 
2004).  Other work has explored the capability of 2-
dimensional CA to perform computations, including universal 
computation (Sapin et al, 2007). 
 Thus simple CA, when allowed to interact, have the 
potential to produce a wider range of behaviours than in 
isolation.  Placing them within the framework of an artificial 
chemistry, with the continual ‘composition, decomposition, 
re-composition’ processes of combinations of CA, allows this 
potential to be explored in a more open-ended, emergent 
manner.  Figure 1 shows how linking two circular, 1-
dimensional CA between just one cell of each can lead to 
large changes in configuration within a short time, and in 
automaton B’s case interferes with its otherwise short and 
simple cycle of just 8 configurations. 

Figure 1: The impact of linking two circular, 1-dimensional 
cellular automata between one cell of each.  The linked cells 
see each other’s neighbourhood when updating.  Note that the 
simple, cyclic configuration of unlinked automaton B 
becomes disturbed through interaction, and that both CAs’ 
configurations are affected. 

 This paper describes the BCA model from different 
perspectives: from the perspective of the individual CA cells, 
from the perspective of the CA, the atom, and from the 
perspective of the molecules, composed of many CA.  It 
describes the reaction mechanism that allows composition, or 
bonding, and decomposition, or unbonding, to occur between 
bodies, be they atoms or molecules.  It provides an example of 
collision leading to bonding then subsequent, spontaneous 
decomposition.  It describes and discusses the reasoning 

behind and the impact of using mean polarity as the 
underlying observable upon which reactions are based.  
Finally conclusions are drawn, which will steer the direction 
of future work. 

The BCA Model 
The Bondable Cellular Automata model is an artificial 
chemistry that uses 1-dimensional, binary CA for its base 
(atomic) elements.  These atoms bond to form molecules and 
molecules further bond to form larger molecules of arbitrary 
size.  Adopting the approach in (Faulconbridge et al, 2009), 
the reaction rules between bodies (whether they be singular 
atoms or composite molecules) are not explicitly defined for 
each type of body, but instead reaction success is based upon 
the comparison of the value of a single observable for each 
body; an observable that is based upon the internal CA 
configurations yet can be measured for any constructible 
body. 

Model Perspectives 
Since BCA is an artificial chemistry based upon cellular 
automata it is useful to describe and observe it from different 
perspectives. 
 
Sub-atomic Level. BCA can be viewed as a collection of 
interacting cells.  Each cell updates its binary state each 
iteration, according to the collective state of its perceived 
neighbourhood of other cells and its assigned transition rule.  
Figure 2 illustrates the cell’s perspective. 
 

Figure 2: The central (green) cell perceives its neighbourhood 
as its left and right neighbours, which for rule-width 2 is the 2 
cells either side (in blue), but BCA allows a cell to perceive 
the neighbourhood of a cell in another CA, allowing 
information to flow between them. 
 
Atomic Level. BCA can be viewed as a collection of 
bondable atoms.  Each atom is a circular CA and bonding 
causes cells in one atom to link to cells in another atom, as 
shown in Figure 3.  Atoms with positive polarity can bond to 
atoms with negative polarity while atoms with the same 
polarity cannot bond and atoms with zero polarity are always 
inert; this is the ‘bonding criterion’. At any instant in time an 
atom’s polarity is defined as: 
 

polarity = count(cells in state ‘1’) – count(cells in state ‘0’) 
 
So, in Figure 3 the upper atom has 5 cells in state ‘1’ and 7 
cells in state ‘0’, giving it a polarity of 5 – 7 = -2 (polarity 
sign: negative).  Similarly the lower atom has polarity of 12 – 
0 = +12 (polarity sign: positive).  Hence these atoms can bond. 
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Figure 3: Two bonded atoms are linked between pairs of cells 
(colour-coded accordingly).  Each cell sees its partner’s 
neighbourhood when updating. 
 
 Bonding causes cells in one atom to link to cells in the 
other atoms.  Cells can have only one link at a time.  Linking 
causes a cell to view the corresponding cell’s neighbourhood 
rather than its own when updating.  Atoms can be bonded to 
many other atoms, limited only by the availability of unlinked 
cells.  This leads to a rich, complete-graph structure for 
bonded atoms, as illustrated in Figure 4. 

Figure 4: The underlying atomic structure of a molecule.  
Each atom is a circular CA, and each CA has its own 
transition rule. 
 
Molecular Level.  BCA can be viewed as an artificial 
chemistry, a collection of molecules that collide in pairs and 
bond. 
 Due to two body reactions each molecule consists of 
exactly two (sub) molecules or (conceptually) of a single 
atom.  Figure 5 shows how this leads to a binary-tree structure 
for molecules, with each parent molecule containing two child 
molecules. 

When molecules collide, if they meet the bonding criterion, 
then they bond.  If they bond this may cause changes to the 
internal configuration of the CA, which in turn affects 
polarity, which may lead to sub-components unbonding, 
which is explained later in the Bonding Example section. 

Molecules bond by linking pairs of atoms, one in each pair 
from each molecule, and how these pairs are chosen and 
linked is described in the next section.  A key aspect of BCA 
is that the rich underlying atomic structure of molecules is 
hidden at this molecular level.  This greatly simplifies the 

description of molecular types and reactions.  Also it is 
possible for two molecules with the same molecular identity 
to have different structure at the atomic level, thus allowing 
isomers to be modeled.  Moreover, since a molecule’s polarity 
is the emergent outcome of initial configuration, the transition 
rules and the topology of the underlying atomic bonds, it is 
possible for two molecules of the same type to possess 
opposing polarities and thus bond. 

 

Figure 5: Molecular structure is nested, forming a binary tree. 
Key: Molecule (rounded square), Atom (outlined ring). 

Material and Reactions 

Atoms and Molecules 
In BCA, 1-dimensional, unbounded (circular) binary CA form 
the atomic elements, their type identified by their transition 
rule.  Atoms can bond to form molecules, and molecules can 
bond to atoms or other molecules to form ever-larger 
molecules. 
 Single atoms behave like standard CA, updating the state of 
each cell each iteration according to the application of the 
transition rule to the cell’s neighbourhood. 
 When two atoms are bonded, pairs of cells between each 
atom are ‘linked’ together.  When updating, linked cells still 
use their own transition rule but see their partner’s 
neighbourhood instead of their own.  Thus the cell states (the 
‘configuration’) of paired atoms affect each other. 

Collisions 
BCA’s topology is a well-mixed soup, consisting of bodies, 
which can be single (unbonded) atoms or composite 
molecules.  At any point in time collision can randomly occur 
between any two bodies.  Two bodies that collide are known 
as the reactants, and are tested to see if they will bond 
according to the bonding criterion. 

Bonding Criterion 
Reactants bond according to the mean polarity of each 
reactant’s configuration. 
 Reactants with opposing polarity signs may bond (positive-
to-negative or negative-to-positive) whilst any reactant with 
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neutral-signed polarity is considered inert and will not react 
with any other body. 
We note that polarity is a scalable, ‘resolution independent’ 
observable in our model, since it can be measured for single 
atoms and for molecules of arbitrary size.  Polarity is also an 
emergent property of the configuration of a body, which itself 
is an emergent property of the initial configuration and 
transition rule(s) of the underlying CA, and of the effect of the 
bonds between them.  Hence polarity is an emergent property 
of the underlying dynamical systems and how they interact. 

Bonding Mechanism 
Atomic Level.  Two atoms with opposing polarities bond by 
forming links between pairs of cells.  Which cells link to form 
the ‘bond site’ is determined by comparison of each CA’s 
configuration at the time of collision.  In keeping with the 
concept that ‘opposites attract’, the longest continuous run of 
currently unlinked state 1 cells is identified in the ‘positive’ 
atom, and the longest run of currently unlinked state 0 cells is 
identified in the ‘negative’ atom. The shorter of these runs 
determines the size of the bond site.  Each cell in the shorter 
run is then linked to a cell in the longer run on a 1-to-1 basis 
until the shorter run is exhausted.  Thus every cell has the 
potential to contribute to a bond site, and therefore to interact 
with cells in other CA, while the actual location and size of 
the bond site is an emergent outcome of the automatas’ 
current configurations.  
 
Molecular Level.  When two molecules with opposing 
polarities collide, they form bonds between pairs of atoms, in 
the manner described above.  The molecules will attempt to 
form bonds between two pairs of atoms, but in practice might 
form a bond between only one pair, or even not be able to 
form any bond at all, as the process below explains. 

Each molecule is polled for its atom with most positive 
polarity, and its atom with most negative polarity.  Again, by 
the principle that opposites attract, the most positive atom in 
the first molecule is paired with the most negative atom in the 
second molecule (and respectively for the other pair).  These 
atoms bond together at the atomic level in the manner 
described in the previous section. 
 Sometimes the chosen pairs of atoms cannot bond, because 
one or both atoms has no free, unlinked cells with which to 
form a bond.  In this situation any ‘fully linked’ atom is 
overlooked and the molecule polled for the next most 
positive/negative atom as appropriate.  This process will 
continue if necessary until either a bondable pair of atoms is 
found or no more candidates exist.  In the latter situation this 
will lead to the molecules bonding between just one pair of 
atoms, or in the extreme case not bonding at all. 
 Allowing two pairs of atoms to possibly form the bond 
between molecules maintains consistency with the concept 
that polarity underpins the bonding mechanism, with the 
most-oppositely polarised atoms in each molecule being 
attracted to each other and attempting to bond.  The key 
benefit of allowing more than one pair of atoms to bond 
between molecules is that it allows a rich graph structure to 
develop at the atomic level, illustrated in Figure 4.  If only one 
pair of atoms were allowed to bond between molecules then 
this structure would be restricted to a tree, providing less 

opportunity for interaction between the atoms within a 
molecule. 

Unbonding Mechanism 
Unbonding occurs spontaneously at the molecular level.  If a 
body consists of more than a single atom, then every iteration 
of the system the bonds between the two sub-components that 
form a body are tested.  The test is simple: if the two atoms 
which are actually bonded no longer attract, then they unbond.  
Unbonding removes all links between paired cells in each 
atom, and their CA no longer interact. 

This unbonding will weaken the link, and hence interaction, 
between the two sub-components of the body, and if it was the 
last bond will lead to separation of the body into smaller 
bodies.  Those bodies will then themselves be subject to 
potential spontaneous decomposition, and so on. 

Bonding Example 
Figure 6 illustrates by example the composition of two 
colliding molecules, and their subsequent decomposition into 
two new molecules. 

Let A and B be molecules in the BCA system.  Further, let 
A be composed of sub-molecules C and D, since this fact will 
become useful when describing the decomposition stage. 
 

Figure 6: Example of the bonding of two molecules, A and B, 
and the subsequent, spontaneous decomposition of the 
resultant into two different molecules, C and D-B. 
 
Composition. Suppose that A and B collide (Figure 6.i).  
They have opposing polarities and attempt to bond. 
 Let the most positive and most negative atoms in A be 
identified as a1 & a2 (respectively as b1 & b2 in B; see Figure 
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6.ii).  Unlinked cells are available on each atom and so a1 
bonds to b2 while a2 bonds to b1 (Figure 6.iii).  The 
molecular equation for this reaction is simply: 
 

A + B → A-B 
 

A-B denotes composition.  Since the reaction success of A 
+ B is not guaranteed for every collision between the types, 
the current equation is insufficient.  So during simulation our 
system records the percentage reaction success of collision 
between pairs of types and we can more accurately write the 
equation as: 
 

A + B 63%
→ A-B 

 
 Note that this says nothing about the underlying atomic 
structure, thus allowing the aforementioned isomers to exist. 
 
Decomposition. We now suppose that the formation of A-B 
leads to changes in the cell states of the underlying CA, 
through interaction between bonded atoms.  These changes 
subsequently cause the bonded atoms in A’s two sub-
molecules, C & D (see Figure 6.iv), to no longer attract.  
Hence the bonds break and A decays (Figure 6.v). 
 This leads to the breakaway of C as a separate body, while 
D remains bonded to B, effectively forming a new molecule 
(Figure 6.vi). 
 The equation for decomposition is: 
 

A-B 18i
→ D–B , C 

 
 Ni represents the number of iterations the composite 
survived for, and the comma indicates separation. We can 
consider Ni as the reaction rate for a decomposing reaction.  
The full chain of events can be written as: 

 
A + B 63%

→ A-B 18i
→ D–B , C 

 
 Some composites will decompose into the original two 
molecules that formed them, so reversible reactions can be 
supported by the model. 

During the run of a simulation we can track the entire flow 
of compositions and decompositions for all molecules to 
derive the reaction network. 

The Impact of Polarity 
The choice of polarity as the basis for the bonding criterion 
followed a process of deduction and experimentation. 
 Table 1 lists the key, measurable properties of a CA and 
their suitability for the role.  It was quickly identified that any 
candidate property for underpinning the bonding criterion 
would need to be not just resolution independent, but would 
also need to at least in part reflect the dynamic nature of a 
CA’s configuration in order to be an emergent property 
leading to emergent behaviour. 

Therefore rule width, dimension, number of cell states and 
size were discounted as too trivial to be useful since they 
remain constant or ignore the CA’s configuration; they 
effectively reduce to static elemental types seen in the general 
artificial chemistry model.  Likewise Transition Rule was 

discarded for the above reason and further since it cannot be 
consistently defined for bonded structures. 

 
 

 Resolution 
Independent? 

Dynamic? 

Rule width Yes No 
Dimension (1d, 2d, …) Yes No 
No. of possible cell states Yes No 
Size Yes Weakly 
Transition rule No No 
Configuration Yes Yes 

Table 1: Summary of key measurable properties of CA. 

 
 This left measures based upon Cell Configuration, which 
fall into two broad categories: long-term measures and instant 
measures. 
 A good example of a long-term measure is cyclelength, as 
used for RBN-World.  We can measure the cyclelength of a 
CA as the number of iterations required for the configuration 
to return to a previous state.  One strength of using 
cyclelength is that it is an emergent outcome of bonding; as 
structures bond the cyclelengths of the sub-components and 
the combined structure can change.  Also, since cyclelength is 
partly dependent upon other properties of CA such as 
transition rule and the current configuration, it could provide a 
valuable reflection of the nature (and specifically Wolfram 
classes (Wolfram, 1984)) of combined CA. 
 However one downside to using cyclelength is that its value 
for a particular body remains static until that body reacts with 
another body through collision.  We believe that using an 
alternative observable, one whose value can change both 
because of and independent of reaction with other bodies, 
adds flexibility to the model since it allows spontaneity and 
uncertainty to what reactions occur and when. 

The other downside to using cyclelength and similar 
measures is computational cost.  Determining the cyclelength 
of a body in BCA requires direct simulation, since it is 
dependent upon not just the CA but also how they are bonded; 
in the worst case its time cost is the Cartesian product of the 
combined width of a body’s CA. 
 Therefore initially BCA employed the instant measure of 
polarity at the moment of collision.  Instant polarity is an 
emergent outcome of both internal configuration and the 
bonding mechanism, is computationally inexpensive (the cost 
is linear with respect to combined width) and allows for 
spontaneous unbonding.  It also provides underlying 
consistency to the model:  the bonding criterion, the location 
of bonds in the bonding mechanism (at molecular and atomic 
levels) and the unbonding mechanism can all be based upon 
this single characteristic. 
 Unfortunately during simulation the measure of instant 
polarity proved to be too stochastic for some transition rules, 
as Figure 7 demonstrates.  The reaction success of colliding 
bodies became dependent upon the time of collision, which is 
randomly chosen. 
 Therefore the measure of mean polarity was implemented.  
This retains the benefits of instant polarity, including 
computational cost rising linearly with size, but, as seen in 
Figure 7, also smoothes the impact of large changes in 
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configuration between successive iterations.  In our 
experimentation the mean is calculated from the instant that a 
body is formed, but alternative calculations, such as the mean 
for the last 100 cycles, could be used, allowing later changes 
in configuration to have greater impact upon it. 
 

Figure 7: Polarity of a Rule 30 Cellular Automata over time.  
Whilst the snapshots of polarity change erratically between 
iterations, mean polarity smoothly settles to a steady value.  

Experiments in Mean Polarity 
 
Rule width 1 
Width (number of cells) 12 
Dimension 1d 
Number of possible cell states 2 (binary) 
Number of transition rules 256 
Initial configuration of cell states ‘000000000001’ 

 
Number of iterations:  
Isolated CA 4096 
Paired System 100000 

Table 2: Set-up for the Isolated and Bonded Pairs 
experiments. 
 
A key question about mean polarity is whether it would be too 
smooth a measure, essentially reducing in most cases to a 
static value over time.  To answer this question simulations 
were run using CA with width 12, rule-width 1, providing 256 
possible transition rules, or atomic types.  Each type of CA 
was simulated in turn in isolation for 4096 iterations.  This is 
the maximum theoretical cyclelength for a width 12 CA and 
thus allows a fair calculation of mean polarity over time for 
the individual CA.  Each CA began with the same initial 
configuration of a single cell set to state ‘1’, all others ‘0’. 
 Following this we attempted to bond every possible pair of 
CA in turn.  If they bonded then the simulation was run for a 
further 10000 iterations, far short of the maximum theoretical 
16.7 million iterations required to cover all possible 
cyclelengths, but in practice sufficient time to determine the 
long-term sign and magnitude of the pair’s mean polarity.  
Table 2 records the set-up for both experiments.  This is the 
first step into the reaction chemistry of the BCA model. 

Results and Discussion 
Isolated CA. For 141 out of 256  (56%) of types the sign of 
mean polarity changes during simulation for isolated atoms.  
Table 3 shows that although all types begin with negative 
polarity approximately a quarter of types finish with neutral 
mean polarity and are hence inert. 
 
 

Positive 75 (29%) 
Negative 115 (45%) 
Neutral 66 (26%) 

Table 3: Tally of final sign of mean polarity of isolated CA 
after 4096 iterations. 
 
 That such a sizeable proportion of CA types become inert 
raises concern.  However the ‘periodic  table’ of types (Figure 
8 in the Appendix) shows that the vast majority of types that 
achieve neutral mean polarity take more than 256 iterations to 
do so, and the opportunity for those CA to bond with others 
and be ‘rescued’ from inertia remains open during that time. 

The periodic table illustrates a strong correlation between 
the time taken to settle and the amount by which mean 
polarity changes.  All CA begin with mean polarity of -10.  
Those that finish with that same value never change polarity.  
Those that finish with mean polarity close to -10 tend to settle 
within 8 iterations, and as final polarity drifts away from -10, 
so the time taken to reach the new value tends to increase.  
We see that many CA types reach high positive polarities, 
notably acquiring a change of sign, and relatively speaking 
take their time to do so.  This is good since it demonstrates 
that the mean polarity measure is dynamic in the majority of 
cases for long enough to present a ‘window of opportunity’ 
for different reactions to occur. 
 
Bonded Pairs. 

 
Total possible unique pairs 32640 
Of which bonded 8625 (25%) 
 
Change seen in mean polarity value:  
Individual CA 14049 (81%) 
Paired System 7921 (91%) 
 
Change seen in mean polarity sign:  
Individual CA 5799 (34%) 
Paired System 3938 (45%) 
 
Both CA and paired system changed 
polarity 

371 (4%) 

Both CA changed polarity but paired 
system did not (the changes ‘cancel out’) 

253 (3%) 

One CA’s polarity remained stable while 
the other’s and the paired system’s 
changed 

402 (5%) 

Table 4: Summary Data for the Bonded Pairs experiment. 
 
Table 4 summarises the results of attempting to bond in pairs.  
The listed percentages for changes seen in polarity are 
calculated as proportions out of the total number of pairs that 
succeeded in bonding.  We observe that in around 4 out of 
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every 5 of such cases the act of bonding re-introduces a 
dynamic element to the value of polarity of the individual CA, 
and in around 1 out of every 3 cases also leads to a sign 
change.  We also see that in almost half of cases following 
bonding the paired system’s polarity sign changes.  This 
reinforces the view that mean polarity is an emergent outcome 
of both the underlying CA configurations and the bonding 
mechanism, not just because it aggregates the values for the 
subcomponents, but crucially because the subsequent 
interaction caused by bonding leads to changes in the 
subcomponents’ values themselves. 

In the 5% of cases where bonding causes a sign change for 
one of the CA, if this change were rapid then during a full 
simulation this would lead to rapid decay of the combined 
body, releasing both atoms near-instantly back into the soup.  
This provides the potential for bonding to cause the 
appearance of unstable molecules, leading to rapid chain 
reaction; a complement to the slower decay modeled in the 
unbonding mechanism.  In such paired systems, the CA whose 
sign remains stable is also of interest, since it might have 
catalytic properties, causing change in the CA it bonds with 
whilst itself remaining unchanged in polarity sign.  Seeking 
and identifying CA atoms with this property, and possibly 
even molecules too, is a further step in the research. 

Additionally, we observed that bonding causes an overall 
drift away from neutrality for the bonded pairs, so the act of 
bonding leaves proportionally fewer inert bodies in the system 
than if CA were left to iterate in isolation. 

These results suggest that rather than locking CA into inert 
structures with (near) static mean polarity as was feared, 
bonding could be a self-sustaining process, keeping the 
system active. 

Conclusion and Future Work 
The modeling and polarity experimentation suggest that BCA 
shows the potential to allow behaviour and structure to be 
emergent properties of both the bonding mechanism and the 
underlying CA configurations.  More generally it allows us to 
study the results of the interaction that occurs between simple 
dynamical systems when they are placed within the 
framework of an artificial chemistry. 

By allowing reactions to occur sometime after or even in 
absence of a collision BCA is also able to model useful 
chemical concepts such as variable decay rates, spontaneous 
reactions derived from internal configuration (rather than due 
to external trauma), isomers, and catalytic behaviour.  Thus 
we believe that it is a worthy candidate system for the study of 
emergence. 
 The experimentation suggests that mean polarity could be 
an ideal resolution independent observable on which to base 
reaction success, possibly leading to a positive cycle in system 
behaviour, where reactions lead to changes in the internal 
structure of bodies leading to the potential for further 
reactions.  However to assess this further experimentation is 
needed, including full simulation runs where numerous 
molecule of many types are present, and are allowed to react 
to form much larger bodies. 
 Mean polarity is only one of many possible ways to 
determine reaction success.  Other candidate observables 
based upon CA configuration exist and can be explored too, 

including the possibility of basing reaction success upon a 
family of measures, or on higher moments.  For whichever set 
of observables we select, we need to strike a balance. 

The experimentation using instant polarity has shown that 
using short-term measures which are based on a 
computationally inexpensive snapshot of the configuration 
can lead to essentially stochastic behaviour.  Conversely, 
other long-term measures, such as cyclelength, are less 
sensitive to short term configuration changes but have 
increasingly large computational overhead as larger molecules 
appear, which impinges upon the scalability of experimental 
simulation.  So other candidates will need to be able to display 
the balance that the use of mean polarity so far achieves, in 
tempering stochastic influence whilst keeping the 
computational overhead low. 

In the experimentation so far the rate of iteration for the CA 
has been identical to the rate of iteration for collision.  So 
every time the system performs a collision (or a set of 
simultaneous collisions) it also updates the configuration of 
every CA.  This need not be so, since we can instead allow the 
CA to operate in a different time frame and iterate them an 
arbitrary number of times between each collision.   
 Further work will examine the reaction networks formed by 
full simulation of the model, assess the impact of allowing the 
CA configurations to iterate at a different rate to the collisions 
and assess the model’s viability for application to the 
modeling of other domains. 
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Appendix 

 

Figure 8.  A ‘periodic table’ for the transition rules in BCA.  The value at which mean polarity settles for each transition rule in 
the Isolated CA experiment, with a starting configuration of a single bit set to ‘1’.  The scale across the top shows the mean 
polarity.  The number in each box indicates a transition rule.  The greyscale shading shows how many iterations it takes for the 
value of mean polarity to settle to its final value.  While individual shades may be hard to discern the general trend is clear. 
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Abstract

We model some of the crucial properties of biological novelty
generation, and abstract these out into minimal requirements
for an ALife system that exhibits constant novelty generation
(open ended evolution) combined with robustness.

The requirements are an embodied genome that supports run-
time metaprogramming (‘self modifying code’), generation
of multiple behaviours expressible as interfaces, and special-
isation via (implicit or explicit) removal of interfaces.

The main application of self modifying code to date has been
top down, in the branch of Artificial Intelligence concerned
with learning to learn. However, here we take the bottom up
Artificial Life philosophy seriously, and apply the concept to
low level behaviours, in order to develop emergent novelty.

Introduction
It is proving very hard to develop in silico ALife systems that
exhibit open-ended novelty generation. This may be because
many such systems are closed in that they often have pre-
designed and fixed algorithms, and fixed information repre-
sentations. The scope for these systems to generate novelty
is heavily constrained by these design decisions. This clo-
sure is in sharp contrast to biology, where its ‘algorithms’
and ‘representations’ are themselves products of the novelty
generation processes.

In this paper, we go back to biology, and look at certain
aspects of its processes that are key to its power to gener-
ate novelty. We use these to develop an open computational
novelty generation architecture.

A key source of open-ended biological novelty seems to
be the embodiment of the genome in a form that makes it ac-
cessible to the other active elements of the system: the DNA
can be modified by proteins, changing what future proteins
are expressed, and what future modifications occur.

We propose that an analogous approach is needed for
open-ended computational innovation. The ‘computational
DNA’ (program code) must be accessible to and modifi-
able by the active elements (executing program). This can
be achieved through run-time metaprogramming. (Metapro-
gramming is when programs manipulate programs; here the

Figure 1: (a) Information flow in the central dogma of
molecular biology; (b) control flow in classical computer
programs. The vertical alignments indicate rough analogy,
discussed later.

Figure 2: Control flow in the cell

manipulator and manipulated are the same program, and the
manipulations are performed at run-time. This is also known
as reflective programming in high level languages, and as
self-modifying code in assembly languages.)

Biological models
Self-innovation circular architecture
Crick’s central dogma of molecular biology, first stated in
1958 [5], has a linear flow of information content (DNA→
RNA → protein, figure 1a). This informational statement
is often more strongly interpreted to mean a linear control
pathway, with DNA ‘in control’ of the system, and no re-
turning control paths. The standard paradigm of computa-
tion has an analogous flow of control (source code→ loaded
code→ executing code). The source code is ‘in control’; all
subsequent events are a direct consequence of this code (fig-
ure 1b).

Such linear flow models are a simple way to describe
causality in a system. However, the linear flow of control
in biology is false. Proteins act on the RNA, and both RNA
and proteins act on the DNA, controlling what is expressed,
and even changing the DNA (figure 2). There is no strict
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Figure 3: (a) original RNA-world; (b) RNAs and proteins;
(c) today’s DNA, RNA and protein world. Solid arrows rep-
resent the direction of control flow and effect; dashed line
represents a molecular stability spectrum.

linear flow of control; it is a closed loop with all entity types
able to affect all other entity types. This circularity of inter-
action allows the emergent biological properties, including
novelty generation.

We propose that an analogous circularity of interac-
tion is needed for computational novelty generation: self-
modifying self-producing computer code, achieved through
run-time metaprogramming.

A history of specialisation
Prebiotically there were molecules. Novelty generation re-
sulted in molecules with additional behaviours: RNA en-
codes information, and can use that information in two ways,
as an active machine, or as a passive template.

In RNA-world [12, 30], the information-bearing template
and the active machinery are the same kind of molecules:
RNA. However, these two behaviours require different kinds
of properties: information-bearing templates require relative
stability, whereas the machinery requires reactivity. Biol-
ogy’s solution was to specialise with two sets of molecules:
RNA (mainly) for information, and proteins for reactivity.
This specialisation continued until today’s situation, with the
even more stable DNA providing long-term stability for in-
formation storage. (See figure 3.)

The phenotype of the genome
DNA expresses proteins. DNA is composed of nucleotide
bases; proteins are composed of amino acids. These have
different reactivity, yet they interact with each other in a
variety of ways, such as chemical binding and topological
entwining. In particular, different portions of the DNA are
physically inaccessible at different stages of the cell cycle.
These interactions are subject to selection pressures (lim-
ited by physico-chemical constraints), which has led to the

emergence of important biological properties, such as: mu-
tating at differing rates for different genes; specifying when
genes express proteins and at what rates; organising the co-
location of genes for particular metabolic pathways. These
are components of biological innovation.

Analogous properties are not seen to emerge in computer
simulations (although they can be explicitly designed in).

In order to build a computational analogue of the rele-
vant biological processes, we need to carefully distinguish
the genome and the DNA/RNA: (a) the genome is an ab-
straction, a sequence of codes; (b) the DNA (or RNA, in
RNA-world) is a physical molecule, embodying the genomic
information. A protein is another class of physical molecule,
its sequence encoded by the genome, physically expressed
from the DNA/RNA. In many models of biological evolution
the genome and the DNA/RNA that it represents are taken to
be synonymous, and the DNA/RNA is modelled differently
from the proteins. In reality, however, the genome is an ab-
straction, and is a different category from the DNA/RNA
molecule that is the physical embodiment of that abstrac-
tion. The DNA/RNA is an intrinsic part of the phenotype of
the organism, of the same category as the proteins. Being
embodied, it interacts with, and is acted on by, enzymes and
metabolites (though less readily than the other entities in the
cell).

This embodiment, which we hypothesise is necessary for
biological novelty generation, provides the inspiration for
our computational architecture to produce analogous open-
ended novelty generation in silico.

Computational analogues
We take this aspect of biology, of circular interaction en-
abled by an embodied template, as inspiration for the design
of a computational form of novelty generation.

We perform the following process [27] (for two related
biological systems, RNA-world and DNA-world): we pro-
duce a model of the biological system; we abstract this into
a conceptual model of the underlying processes and relation-
ships (not shown here); we instantiate the conceptual model
in computational terms. We use UML class diagrams to ex-
press these models.

AChems as analogues of RNA-world
We first look at the simpler RNA-world (figure 4a). Physics
determines how molecules interact, through features such as
molecular folding and binding affinities. The genome is an
abstraction of the information in the RNA. The biological
RNA is embodied: RNA molecules express and are modified
by RNA molecules.

The computational analogy is self-modifying code (fig-
ure 4b). The analogue of the (disembodied) genome is the
(disembodied) source code. The analogue of the active RNA
is the executing code: for the analogy to hold, the execut-
ing code must be able to modify its own instructions. The
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(a)

(b)

Figure 4: UML class diagram of RNA-world: (a) biological
model of embodied RNA; (b) conceptual model instantiated
with an AChem

analogue of the physics (which defines how molecules can
interact) is the virtual machine (which describes the AChem
program language semantics, and how the various AChem
objects can interact).

An assembly language level Artificial Chemistry, where
the executing code is able to modify the instructions (‘em-
bodied source code’), provides a computational model here.
Examples include Tierra [26], Avida [1], and stringmol
[15, 14, 16], where the ‘chemicals’ are direct analogues of
the RNA strands.

Reflection as an analogue of DNA-world
Many modern high-level programming languages are de-
signed to enforce a strict separation between code and data,
and cannot self-modify in this way. But not all.

We next look at ‘DNA-world’, a biologically later spe-
cialisation of RNA-world (figure 5a). The biological DNA
is embodied, and is affected and modified by the proteins it
expresses. (Notice this model does not make the biological
role of RNA explicit in this process. Here we wish to em-
phasise the distinction between stable information archive
and active machine, so we abstract these as ‘DNA’ and ‘pro-
tein’ respectively, and omit the intermediate RNA for the
purposes of our argument.)

Analogously, the computer source code is embodied, and
affected and modified by the executing code it specifies (fig-
ure 5b). Here we need a programming language where there
is a separation between code-representing entities and other
active entities (unlike in the RNA/assembly language anal-
ogy) that can nevertheless interact at run-time. A high-level
language with computational reflection [24] is suitable here:
the source code is embodied in the run-time system, and can
be modified by the executing system, but is (conceptually)
separate from it.

Smalltalk-80 [13] is a good example. In Smalltalk, the

(a)

(b)

Figure 5: UML class diagram of DNA-world: (a) biological
model of embodied DNA and protein machine (omitting the
role of RNA, for emphasis); (b) conceptual model instanti-
ated with metaprogramming

Figure 6: UML class diagram of molecules realising (be-
havioural) interfaces

source code is just another data structure that can be ma-
nipulated by the executing program. Smalltalk is a pure
object-oriented language: every value is an object, includ-
ing classes and code blocks. Code blocks, including ones
that modify and create classes, can be constructed at run-
time and then executed. An executing Smalltalk system thus
has the ability to modify and extend itself: its source code is
embodied in the executing system.

Other computationally reflective languages (ones that can
modify themselves at run-time, to a greater or lesser extent)
include Lisp, Prolog, Python, Ruby, and JavaScript.

Novelty versus specialisation
RNA encodes information, and can use that information in
two ways, as a passive template, or expressed as an active
machine. We can model these two different uses in UML
as interfaces (figure 6). The interfaces capture the specific
behaviours exhibited by certain molecules.

Later (in the RNA-world model), specialisation occurred.
Molecules that had only one of these behaviours, either ma-
chine (protein) or template (DNA), emerged. Once spe-
cialised components (components that have lost an inter-
face) have emerged, they can adapt to perform their speciali-
sation (remaining interface) more effectively. (Biologically,
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specialisation to DNA templates and protein machines was
mediated by RNA, and there are still RNA molecules that
can be interpreted as fragments of this mediation in modern
organisms [3].)

So in modelling terms, novelty generation is creation of
new interfaces, specialisation is removal of interfaces from
sub-species of agents. In code terms, removal of an explicit
interface is simple: it is just deleted. However, removal of an
implicit, emergent interface is not so simple: the low-level
behaviour has to change such that the interface behaviour no
longer emerges. This is the case both in molecular terms,
and in low-level AChem systems. In the molecular case
discussed here, this process occurred through differentiation
into molecules with distinct chemical structures (nucleotide
bases in DNA versus amino acids in proteins). This neces-
sitated the introduction of a decoding element to the expres-
sion relation, to translate from one structure to the other.

We suggest that such a differentiation step will be help-
ful in any analogous AChem system designed to progress
beyond RNA-world level behaviour in this manner. Special-
isation of template and machine behaviours requires tem-
plates to be less reactive and machines more reactive. Al-
though such differentiation may be achieved in a homoge-
neous system (for example, by altering ratios of symbols
in the underlying alphabet), it is is made easier by having
some structural difference between them, to help this be-
havioural difference emerge. Given a structural difference,
translation will be required to take the template into its ma-
chine expression. This translation requirement is not incon-
sistent with template and machinery being the same kind
of thing. There is sufficient richness in chemistry to allow
DNA and proteins to be the same kind of thing (molecules)
whilst having different representations of their information
content (nucleotide bases versus amino acids). The similar
form of embodiment allows the information to be modifiable
by the system it encodes, whilst the different representations
provide the separation of properties that help support spe-
cialised behaviour. Chemistry is rich enough to provide this
spectrum: AChems will need analogous richness.

High level languages can provide explicit support for this
process of specialisation. For example, one pattern sup-
ported by refactoring tools is Extract Interface [11, p.341].
Aspect oriented programming [18] allows particular kinds
of behaviour to cut across the code structure. These are both
design time, rather than run time, processes, but some of the
concepts may be automatable. Another concept, relevant to
implicitly-defined interfaces, is duck typing [20], which al-
lows the type to be determined dynamically, based on what
methods a class currently supports.

The ‘softness’ in losing (specialising away) an interface
is an important property in terms of robustness through re-
dundancy and degeneracy. It is not necessary for a special-
ist to lose an interface completely, only for the system to
lose reliance in it on providing the interface. The specialist

can safely modify other things about itself, but it might still
maintain some ability to implement some part of the inter-
face in an ‘emergency’. If enough parts of the system can
implement parts of the interface adequately, then this degen-
eracy amounts to the system as a whole implementing the
whole interface. This provides a form of distributed backup,
in case of failure of the machine that is ‘supposed’ to imple-
ment the interface.

Computational architecture
The previous discussion leads us to the notion that, to get
emergent novelty in simulation, we should look to run-time
metaprogramming. In such a system the code has never fin-
ished being written, so the program cannot finish running.
Open ended computation is obtained, allowing unprescribed
novelty generation within the computer. The main applica-
tion of self modifying code to date has been top down, in the
branch of Artificial Intelligence concerned with learning to
learn [22, 28, 29]. However, here we take the bottom up Ar-
tificial Life philosophy seriously, and apply the concept to
low level behaviours, in order to develop emergent novelty.

Run-time metaprogramming on its own is not sufficient;
we also need an architecture within which to run the code.
The biological models above can help us here, too. There
are two aspects to the architecture. One comes from the class
box Physics in figures 4a and 5a, one from the roles modifier
and expressor.

Physics engine
Underlying biology there is physics and chemistry: the pro-
cesses that define how molecules move around, how they can
interact (for example, binding affinities), what the result of
the reaction is, and the constraints on the system (for exam-
ple, conservation laws). In an artificial system, we have to
explicitly implement analogues of many of these processes.
The usual way to do this is in terms of a virtual machine
(VM), often referred to as a ‘physics engine’, that provides
the execution environment in which the molecule-analogues
exist. Tierra [26], for example, has an explicit VM that exe-
cutes the Tierra assembly language.

The first point to note is that physics is uncrashable:
there is no real world analogue of a computational core
dump or fatal exception. There are two ways to achieve this
in the computational architecture: language design or VM
handling. The molecular language can be designed such that
any molecular interaction results in a legal behaviour. This
is relatively straightforward at the assembly language level
(care still has to be taken not to access areas outside legal
memory). Alternatively, the VM can be designed to trap
and isolate any unhandled exceptions. For higher level lan-
guages that are modifying themselves, this will become the
necessary route.

Next, the VM provides the spatial dynamics: how the
entities move around, and so who can interact with whom.
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This can be explicitly spatial, or be a ‘well mixed’ aspatial
model, or even a hybrid (a spatial arrangement of containers
with aspatial contents, for example).

We want a system that can generate open-ended novelty
without dissolving into chaos. A completely unconstrained
system could well modify itself out of existence. Some form
of constraint might be needed to allow the system to de-
velop in interesting directions without devolving into a mess
of molecule soup. However, a completely constrained sys-
tem, that allows no modification to its architecture and repre-
sentations, is static and cannot achieve open-ended dynam-
ics. This is the state of most classic agent-based simula-
tions. The VM should provide such constraint through an
energy model. This is some analogue of the constraints that
real-world physics provides, such as conservation of energy.
This provides a limited resource for the various entities; in
particular, it prevents ‘free copying’, or unlimited replica-
tion, and so provides an evolutionary pressure [8, 17]. It is
important not to have a ‘closed’ energy system, however:
this would lead to equilibrium. Biological systems are far-
from-equilibrium systems, maintained there by an energy
flux. More sophisticated VMs might also provide an ana-
logue of entropy.

It seems plausible that some degree of constraint between
a totally static model, and total freedom, is required; this is
possibly some edge of chaos [21] requirement. Hence the
role of the constraint is to help the system self-organise to
maximally complex patterns of structure and behaviour.

Some choices of what goes in the VM and what goes in
the molecular language are design decisions. For example,
it can be beneficial if the entities have a limited lifetime:
this results in entities having to renew themselves to sur-
vive, which imposes a natural evolutionary pressure on the
system. Whether such a decay process is implemented in
the VM or in the entities themselves is a design decision:
the choice will determine how much the decay can be af-
fected by the intrinsic evolutionary process. The presence of
such a decay mechanism has consequences. For example, it
means that there will need to be multiple copies of certain
machine templates (or templates need to have very different
decay properties from active machine molecules), so that the
decay of a template does not permanently lose a solution.

Modification and expression machines
The physics engine provides the VM within which entities
can interact and generate novelty (novel entities, novel be-
haviours, novel interactions). We need some initial entities
to set the system going.

Consider the roles modifier and expressor in figures 4a
and 5a. In biology, these are embodied, ‘implemented’
by specific machine molecules (ribosomes, transposons,
chaperone proteins, etc). Additionally, there are machine
molecules that do things not related to self-modification:
these are the active molecules performing the external ‘func-

tion’ of the system. This provides a route to embedding
application-specific behaviours into a novelty generating ar-
chitecture.

A novelty generating system could be bootstrapped with
some specialist machines for these various tasks. this in-
volves writing the bootstraps as code for the embodied tem-
plates that, when expressed, becomes the active machine.
The key point is that these bootstrap machines are all en-
coded on the template, and so are themselves subject to
modification, either directly, by a modifier machine chang-
ing their encoding, or through imprecise replication by a
‘sloppy’ replicator machine. And these various modifica-
tion machines are themselves subject to modification. This
is why we are describing only the ‘bootstrap’ architecture:
the self-modification processes will then develop new ma-
chines, new kinds of machines, and new ways of expressing
and otherwise generating machines. This self-modification
is what breaks away from fixed algorithms and fixed repre-
sentations, and allows open-ended novelty generation.

Different kinds of bootstrap machines are suggested by
different stages of biological evolution. We could bootstrap
with only replicator machines (machines that can copy tem-
plates). This is the approach we have taken in our original
stringmol AChem [14, 15, 16]. Here we wish to short-circuit
the process of evolving all novelty from scratch, but in a way
that does not compromise further open-ended novelty gener-
ation. We can do so by bootstrapping the system with some
more sophisticated machines, some inspired directly by the
biological processes of figures 4a and 5a, and some higher
level ones implementing ‘non-atomic’ functionality. There
is a tension between performance (composing the actions of
low level machines versus the single action of a ready-made
higher level machine) and flexibility (being able to compose
low level machines in novel ways, and having their mod-
ifications being more likely to produce viable variant ma-
chines). The aim is to engineer a sufficiently powerful and
flexible bootstrap that the system can smoothly self-modify
into an open ended novelty generator.

Candidate bootstrap machines (which would need to be
designed both for the implementation language, and for any
application) include those to perform the following func-
tions:

• expression: a machine that takes a template, and ex-
presses (instantiates) some machine encoded there. This
does not need to be restricted to simple ‘gene expression’:
some machines might use information in the template in
different way, for example, analogous to the use of ‘gene
libraries’ in assembling antibodies. The expression ma-
chine might be ‘sloppy’, expressing a range of similar ma-
chines, with this sloppiness subject to modification.

• modification: a machine that takes a template, and modi-
fies its content in some language dependent way (possibil-
ities include low level machines analogous to transposons
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[10], retroviruses [2, 23], and F-plasmids [19], and higher
level machines analogous to the processes of gene error
correction and crossover, for example).

• regulation: a machine that regulates the action of expres-
sion machines (this is not explicitly included in the UML
models above, but gene regulation is a known critical as-
pect of biological control, and the regulation is performed
by machine-class molecules).

• replication: a machine that replicates templates. There
will be a constant turnover of templates in RNA-world
analogues, and a slower turnover in the more template-
stable DNA-world analogues. The replication machine
should be ‘sloppy’, providing a source of variation, with
this sloppiness subject to modification.

• translation/transduction: machines that translate be-
tween different information-bearing formats (both inter-
nal, and input/output)

• application: machines that perform application-specific
tasks (the analogue of protein machine behaviours that are
not related to modification and expression)

As well as these directly biologically inspired machines,
other ‘higher-level’ bootstrap machines might be developed,
to help kick-start specific kinds of novelty generation. These
are inspired by even later developments in biological evolu-
tion. Such machines might include:

• sensors: machines that can sense the internal state of the
system (for example, via quorum sensing), which infor-
mation may be used by transducers, regulators, etc

• generators: machines that write new templates based on
observed behaviours in the system (for example, ‘reverse
engineering’ the composed behaviour of several low level
machines into a single high-level machine, or breaking
down a high level machine into component behaviours)

Other application-specific bootstrap machines can be de-
signed as required. Design of such machines needs to re-
spect the architecture of the system, in particular, the ‘soft’
nature of the mechanisms [4], and the continual turnover of
the machines (a good solution, once found, must then be
maintained).

Some of these bootstrap machines (particularly higher-
level ones) will be easier to implement in high level lan-
guages than in assembly-level AChems. However, they are
constrained by the particular physics of the system. For ex-
ample, if the system’s physics does not support global ob-
servation, then a global observer machine will not be di-
rectly implementable in the system (however, a property
akin to global observation could potentially emerge). Ma-
chines in high level languages can nevertheless be boot-
strapped to have potentially sophisticated memories and be-

haviours. There is, however, a tension between the sophis-
tication of the machine that allows it to perform complex
functions, and the simplicity of the machine that allows it to
be modified in useful ways. Any higher level bootstrap ma-
chines should be implemented as compositions of simpler
machines wherever possible, allowing modification both of
the machines themselves and the ways they are composed.
That is, the representation of these machines should also be
modifiable.

Biological messiness
Bio-inspired systems are abstractions of the myriad emer-
gent phenomena seen in biology. Their goal is to develop
toolsets that efficiently distil the unique properties of robust-
ness and adaptability seen in biological systems. Care has to
be taken not to throw the baby out with the bathwater, how-
ever. We propose that biology generates emergent phenom-
ena by coupling together two phenomena. The first of these
is massive redundancy and degeneracy, observable in many
biological networks: entities are rarely the ‘sole providers’
of all their functionality. This generates massive ‘baseline
diversity’. The second is natural selection, which builds
hierarchical emergent behaviours by reinforcing beneficial
interactions. Crucially diversity is maintained, both within
and between units of selection, allowing further interactions
to be developed and built upon.

This messiness, redundancy and degeneracy that pervades
biology has ‘function’, in that it provides a sort of embod-
ied memory. It endows the system with robustness, and
alternative pathways should the environment change. It is
important not to simplify this away when building abstract
models of the processes. In terms of the models introduced
above, components should be allowed multiple interfaces,
with different components realising different subsets of the
complete set of interfaces.

Multiplicity and concentration of machines are an impor-
tant part of this messiness. Many molecules need to exist in a
concentration in order to collectively fulfil their role (DNA
being the exception). Given the vast multiplicity of some
molecules, ‘erroneous’ molecules that have partial function-
ality cannot be easily removed, if they do not result in the
death of the organism before reproduction. Checking the vi-
ability of a molecular unit is an extremely expensive process
in biology and is not normally attempted (DNA again being
the exception). The continual decay and replenishment is
the preferred mechanism. For example, the cell membrane
is continually created and consumed [6], and there is a dy-
namic turnover of flagella motors [7].

This further suggests that there should be multiple copies
of templates and machines in the computational system.

Comparison with existing systems
We are not aware of any high level reflective language sys-
tems that fit our DNA-world framework.
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A good example of such a computational system that fits
our RNA-world framework is an assembly language where
the executing code is able to modify the instructions (‘em-
bodied source code’). For example, consider an Artifi-
cial Chemistry such as Tierra [26], Avida [1], or stringmol
[14, 15, 16], which take approaches that are direct analogues
of RNA-world. Their chemicals affect and modify each
other, by the computational execution of the AChem. How-
ever, none fits all the requirements of our framework.

Tierra, directly inspired by RNA-world, fits quite closely
with part of our architecture, but has two major differences.

Tierra has an explicit VM to execute its assembly lan-
guage, designed to be “especially hospitable to synthetic
life”: non-brittle and evolvable. The spatial model is pro-
vided by location in computer memory (although instruc-
tions can point to anywhere in space). The entities are ana-
logues of “creatures of the RNA world”, although the indi-
vidual machine instructions are considered to be more anal-
ogous to the more chemically active amino acids than to
RNA’s nucleotide bases. Tierra uses CPU time-slices as an
analogue of energy, with the size of the time slice being a
tunable function of the entity’s size: small size can be re-
warded, discouraging ‘bloat’, or large size can be rewarded,
encouraging complexity. It has a decay mechanism in the
VM: killing entities when the memory space is close to full.
The code can generate errors, which are used to increase
the probability of the offending entity being killed. Slop-
piness is hardcoded in the VM as bit-flip mutation rates (a
background rate, and a higher rate on copy) [9], and through
flawed instruction execution. The system is initialised with
a single hand-crafted self-replicating entity.

Tierra does not fit our architecture in two important ways.
Firstly, and most importantly, although entities can read

and execute the code of other entities, they can modify only
themselves (each entity’s memory space is write protected).
This disallows the emergence of a population of mutually
self-modifying entities, other than by copying foreign code
into the host entity (a ‘pull’, rather than a ‘push’, mecha-
nism). It is a model of single active machines, not of mutu-
ally interacting machines mutually defining their properties.
This design decision, along with making a less ‘brittle’ pro-
gramming language, was made with the aim of overcoming
problems in earlier ‘Core Wars’ implementations (eg, [25]),
where mutations mostly just destroyed the system. We be-
lieve that the biological inspiration strongly supports mutual
modification, however, and that the routes to overcoming the
Core Wars issues are a more sophisticated energy model, and
a ‘softer’ language, particularly in respect to binding prop-
erties [4].

Secondly, the Tierra energy model is limited. There is no
analogue of an energy store (battery, fat reserves) that would
enable entities to ‘time-shift’ their use of the resource, or
hand on a surplus to their progeny; Tierra is a ‘use it or lose
it’ model. (Ray [26] mentions a possible extension allowing

capture of CPU slices.) Nevertheless, Tierra evolves an in-
teresting diversity of entities, particularly a range of parasite
types.

Avida, although directly inspired by Tierra in the sense
that it is an assembly-language based AChem using CPU
time slices as a selection pressure, has a very different archi-
tecture and motivation from our approach. Entities, in fixed
locations in 2D space, interact only with their neighbours,
and then only through replication, which copies the repli-
cated entity over its oldest neighbour. Bonus time slices,
which can accumulate, are used as an explicit reward mech-
anism to evolve entities to perform certain tasks.

Stringmol is an assembly language AChem that fits our
architecture quite closely, but not perfectly. It is a ‘soft’
replicator system that has generated novel emergent macro-
mutations and hypercycles (two co-dependent species that
replicate each other, but are not self-maintaining) [4, 14]. Its
execution model involves two strings, and active machine
and a passive template; however execution can change ei-
ther string. The system is initialised with multiple copies
of a hand-crafted replication machine, that can replicate any
template string it binds to. We have not investigated its be-
haviour with other kinds of bootstrap machines.

Stringmol has an explicit energy model, in that a certain
number of units are added to the container at each timestep,
and molecules need to use an amount to execute each in-
struction. Hence there is a pressure to be small, to enable
faster replication cycles. However, the energy is a global re-
source (energy is not stored in individual entities, but in the
system and accessible to all). This removes any incentive for
an individual entity to be frugal (beyond replication speed);
stringmol exhibits the ‘free rider’ problem.

Summary and Conclusions
Biology uses a variety of processes to generate novelty and
robustness. Fundamental is the capture of genomic infor-
mation in an embodied genome (DNA or RNA) that is the
same kind of structure (molecule) as the active machinery
(RNA or proteins). This embodiment allows the active struc-
tures to interact with, control, and modify the information
that defines them. Once novelty has been generated, it can
be specialised into different components (DNA as informa-
tion template, protein as active machine), allowing more ef-
fective behaviours to evolve, as the competing requirements
of different behaviours are isolated in different components.
Specialisation of template and active machinery is aided by
different representations (at some level), which require a
translation step from information encoded in the template
to its expression in the machinery. Specialisation should not
go too far: degeneracy and redundancy are also crucial com-
ponents of biological robustness and adaptability.

Taking these concepts, and abstracting them, we can de-
velop a set of requirements for analogous AChem and AL-
ife implementations: (1) run-time metaprogramming, where
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the executing system changes the program that defines its
execution, including novelty generation as addition of inter-
faces; (2) a physics engine VM; (3) specialisation in terms
of removal of interfaces (either explicitly, or implicitly by
separation of implementation structure); (4) an expression
step that decodes information on the template into a differ-
ent representation on the machine (allowing different kinds
of behaviour); (5) redundancy and degeneracy in terms of
allowing multiple interfaces per component, and multiple
copies of components; (6) sufficiently sophisticated boot-
strap machines to short-circuit the origin of life process.

We claim that a suitably ‘rich’ computational environ-
ment based on an embodied, modifiable genome that allows
novelty generation (adding interfaces) and specialisation (re-
moving interfaces) is a necessary component in maintaining
diversity and producing novelty.

Acknowledgments
This work is part of Plazzmid, EPSRC grant EP/F031033/1.
Thanks to Alastair Droop and Tim Hoverd for helpful dis-
cussions, and to the anonymous referees for their helpful
comments.

References
[1] C. Adami, C. T. Brown, and W. Kellogg. Evolutionary learn-

ing in the 2D artificial life system “Avida”. In Artificial Life
IV, pages 377–381. MIT Press, 1994.

[2] J. M. Bishop. Cellular oncogenes and retroviruses. Ann. Rev.
Biochem., 52:301–354, 1983.

[3] T. R. Cech. Exploring the new RNA world, 2004.
http://nobelprize.org/nobel prizes/chemistry/laureates/
1989/cech-article.html.

[4] E. Clark, A. Nellis, S. Hickinbotham, S. Stepney, T. Clarke,
M. Pay, and P. Young. Degeneracy enriches artificial chem-
istry binding systems. In ECAL 2011. MIT Press, 2011.

[5] F. Crick. Central dogma of molecular biology. Nature,
227:561–563, 1970.

[6] E. A. Dawidowicz. Dynamics of membrane lipid metabolism
and turnover. Ann. Rev. Biochem., 56(1):43–57, 1987.

[7] N. Delalez and J. P. Armitage. Parts exchange: tuning
the flagellar motor to fit the conditions. Mol. Microbiol.,
71(4):807–10, 2009.

[8] P. S. di Fenizio. A less abstract artificial chemistry. In Artifi-
cial Life VII, pages 49–53. MIT Press, 2000.

[9] A. P. Droop and S. J. Hickinbotham. Application of small-
world mutation topologies to an artificial life system. In
ECAL 2011. MIT Press, 2011.

[10] C. Feschotte and E. J. Pritham. DNA transposons and the evo-
lution of eukaryotic genomes. Ann. Rev. Genetics, 41:331–
368, 2007.

[11] M. Fowler. Refactoring. Addison-Wesley, 1999.

[12] R. F. Gesteland, T. R. Cech, and J. F. Atkins. The RNA World.
Cold Spring Harbor Press, 3rd edition, 2005.

[13] A. Goldberg and D. Robson. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, 1983.

[14] S. Hickinbotham, E. Clark, S. Stepney, T. Clarke, A. Nellis,
M. Pay, and P. Young. Diversity from a monoculture: effects
of mutation-on-copy in a string-based artificial chemistry. In
ALife XII, pages 24–31. MIT Press, 2010.

[15] S. Hickinbotham, E. Clark, S. Stepney, T. Clarke, A. Nellis,
M. Pay, and P. Young. Specification of the stringmol chemical
programming language v 0.1. Technical Report YCS-2010-
457, University of York, 2010.

[16] S. Hickinbotham, E. Clark, S. Stepney, T. Clarke, A. Nellis,
M. Pay, and P. Young. Molecular microprograms. In ECAL
2009, volume 5777 of LNCS, pages 291–298. Springer, 2011.

[17] T. Hoverd and S. Stepney. Energy as a driver of diversity in
open-ended evolution. In ECAL 2011. MIT Press, 2011.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In ECOOP, volume 1241 of LNCS, pages 220–
242. Springer, 1997.

[19] B. C. Kline. A review of mini-F plasmid maintenance. Plas-
mid, 14:1–16, 1983.

[20] A. Koenig and B. E. Moo. Templates and duck typing. Dr.
Dobbs, June 2005.

[21] C. G. Langton. Computation at the edge of chaos: phase
transitions and emergent computation. Physica D, 42:12–37,
1990.

[22] D. B. Lenat and J. S. Brown. Why AM and EURISKO appear
to work. Artificial Intelligence, 23:269–294, 1984.

[23] R. Lower, J. Lower, and R. Kurth. The viruses in all of us:
Characteristics and biological significance of human endoge-
nous retrovirus sequences. PNAS, 93:5177–5184, 1996.

[24] P. Maes. Concepts and experiments in computational reflec-
tion. In OOPSLA’87, pages 147–155. ACM Press, 1987.

[25] S. Rasmussen, C. Knudsen, R. Feldberg, and M. Hindsholm.
The coreworld: Emergence and evolution of cooperative
structures in a computational chemistry. Physica D, 42:111–
134, 1990.

[26] T. S. Ray. An Approach to the Synthesis of Life. In Artificial
Life II, pages 371–408. Addison-Wesley, 1992.

[27] S. Stepney, R. E. Smith, J. Timmis, A. M. Tyrrell, M. J. Neal,
and A. N. W. Hone. Conceptual frameworks for artificial im-
mune systems. IJUC, 1(3):315–338, 2005.

[28] P. Suber. The Paradox of Self-Amendment: a study of law,
logic, omnipotence, and change. Peter Lang, 1990.

[29] S. Thrun and L. Y. Pratt, editors. Learning to Learn. Kluwer,
1997.

[30] C. Woese. The Genetic Code. Harper & Row, 1968.

341ECAL 2011



A Gene Regulatory Network Design Of  
A Synchronous Single-Input Delay Flip-Flop 

Imad Hoteit1, Nawwaf Kharma2 and Luc Varin3 

1,2 Electrical & Computer Engineering Dept., Concordia University, Montreal (QC), Canada  
3 Biology Department, Concordia University, Montreal (QC), Canada 

1i_hoteit@ece.concordia.ca, 2kharma@ece.concordia.ca, 3varinl@alcor.concordia.ca 
 
 

Abstract 
We present a fully detailed design of the very first synchronous 
single-input delay flip-flop (or BioD) implemented as a gene 
regulatory network in Escherichia coli (E. coli). The device has 
one data input (trans-acting RNA), one clock input (far-red 
light) and an output that reports the state of the device using 
green fluorescent protein (GFP). The proposed (simulated but 
not synthesized) device builds on the toggle switch of (Gardner 
et al., 2000) to provide a more sophisticated device that can be 
synchronized with other devices in/out of the same cell, and 
which requires only one input. We provide the first results of a 
deterministic simulation of a mathematical model of the new 
device, one which provides evidence that the device is likely to 
work as required when actually synthesized. 

Introduction 
The complex processes that take place in a cell are governed 
by gene expression which is regulated at several levels during 
the pathway leading from DNA to protein. Apart from the 
regulation at the DNA level, gene expression may be 
regulated during transcription, post-transcription, translation, 
and during post-translational modification of proteins. 
Notably, much of the control of gene expression is done either 
by the regulatory proteins or by mRNAs which are essentially 
the products of other genes. Hence, the interactions between 
DNA, RNA, proteins, and other molecules, form a gene 
regulatory network (GRN). While examining these 
components individually has provided invaluable information, 
it is essential (a) to thoroughly investigate these components 
in variable environments and/or performing variable 
functions, and (b) to integrate this knowledge to generate 
valuable genetic devices. Here comes the role of synthetic 
biology that aims at systematically designing, building, 
combining and testing new biological functions and systems 
that do not occur in nature. Indeed individual parts such as 
promoters and transcription factors can be assembled to 
synthesize GRNs that perform desired functionalities, such as 
computing machines. 

The synthesis of computing machines via the manipulation 
of DNA (within or without living organisms) started in 1994 
when Adleman executed an experimental procedure that used 
DNA, in vitro, to solve an instance of the directed 
Hamiltonian path problem (Adleman, 1994). In contrast, in 
vivo cell-based or cellular computing started in 1998 with the 

modification of the genome of prokaryotic cells (typically E. 
coli) to realize one- and two-input combinatorial Boolean 
logic gates (e.g. NOT, AND and IMPLIES) (Knight, Jr. and 
Sussman, 1998; Weiss et al., 1998); and a similar feat recently 
was achieved with eukaryotic cells by Kramer (Kramer et al., 
2004). Along another dimension, time-dependant or 
sequential Boolean logic devices have also been implemented 
in living cells, starting most notably with a 2-input toggle 
switch by Gardner (Gardner et al., 2000), and a synthetic 
oscillator by Elowitz (Elowitz and Leibler, 2000). In fact, in 
one decade this field has grown to generate many elementary 
devices (Drubin et al., 2007; Boyle and Silver, 2009; Tigges et 
al., 2009; Haynes and Silver, 2009), including band-pass 
filters (Stricker et al., 2008) and counters (Friedland et al., 
2009). More complicated devices like engineered multi-
cellular pattern generators (Basu et al., 2005), single cell 
biosensors (Levskaya et al., 2005; Tecon et al., 2006), tumor-
targeting bacteria (Anderson et al., 2006), and cell-based 
computers (Cox, III et al., 2007; Balagadde et al., 2008) have 
also been built or proposed. 

Despite the numerous works on genetic switches, all 
proposed designs work asynchronously. This means that the 
switch’s operation cannot be synchronized with the operation 
of other parts, using a single global clock. Henceforth, we call 
a synchronous single-input delay switch a BioD; a novel GRN 
that changes states in response to a clock signal by having its 
output expression follow its input. 

Circuit Design and Modeling 
BioD is a synthetic E. coli cell that expresses a gene 
regulatory network acting as a delay switch.  By delay switch, 
we mean a logical device that has an input (D), a clock (CLK), 
and an output (Q) equal to its state (S); see Figure 1 (Q is the 

Figure 1. The Logical 
Block Diagram for BioD 
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second output and is equal to the logical complement of Q). 
The state of a delay switch is held constant unless and until its 
input differs from its state, on the rising edge of the clock. In 
that case, the next state of the delay switch will copy the value 
of the input (i.e., Q = D). Hence, a cell that acts as a delay 
switch is effectively a 1-bit memory device, controlled by an 
input and a clock. The BioD also exhibits its state by 
expressing (or not) a fluorescent protein. 

BioD 
BioD has two inputs: trans-activating RNA or taRNA as input 
D, and the presence or absence of far-red light as the clock 
(CLK). It has two complementary outputs (Q and Q) defining 
the state of the flip-flop: the ON state is indicated by the 
presence of green fluorescence, while the opposite OFF state 

is indicated by its absence. As with its electronic counterpart, 
the output follows the input on the rising edge of the clock. 
The gene network is comprised of three parts: input genes, 
state genes and selection genes (as shown in Figure 2). 
 
Input Genes. The input genes convey to the selection genes 
whether an input signal is present or not. They do so by 
tipping the balance of the dual-repression of the selection 
genes – discussed below. 

In order to sense input D, gene 1 is designed to be self-
repressed, but in such a manner that can only be induced by 
D. To achieve this, a form of ribo-regulation is used called 
cis-regulation – which means “acting from the same 
molecule”. The cis-regulation or in our case, cis-repression 
prevents the translation of the gene 1 transcripts by causing 
them to bend and cover the ribosome binding site (RBS) like a 

GFP = Q

LacI 7

SELECTION STATEINPUT

cI1

D = taR12

cIompf4
LacI

OmpR3

Red 
LightCLK = cII

2

TetR

cII
5

ompf

Gal4

6
TetR = Q

Figure 2.  Gene regulatory network for BioD. The network consists of three sections. STATE reflects the state of the network. SELECTION affects 
the state switch when the far-red light signal is ON. INPUT drives the selection genes’ activation. 

 
Figure 3. Logic diagram of BioD (provided here for simplicity). The above circuit behaves much like the GRN in Figure 2. It is not an exact 
representation of course, but helps follow the steps the circuit takes to change states. Gene numbers above are matched to gate numbers here. A low 
CLK signal neutralizes the selection gates 4 and 5, and sends a high signal (or identity for NAND gates) to the state gates 6 and 7; keeping them 
unchanged. Since the outputs of input gates 1 and 2 are complements, when the CLK signal is turned ON, only one of gates 4 or 5 becomes active 
and thus (i) affects one of the state gates (6 or 7) and (ii) disables its enabling input gate (gate 1 or 2). The input gates are re-enabled after the CLK 
goes low, leaving them free to respond to input D. 
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lock. The key, comes in the form of trans-activating RNA 
(taRNA) which, when matched with the cis-repressed RNA, 
unlocks the RBS allowing translation (Isaacs et al., 2004). The 
taRNA chosen for input D is taR12 which unlocks the cis-
repression we introduced in gene 1, namely crR12. 

When the input D is present, the transcripts of gene 1 get 
translated into cI proteins (from the λ phage). cI in turn 
represses gene 2. In the absence of input D however, the cis-
repressed transcripts of gene 1 do not get translated into 
proteins, lifting the repression of gene 2 and allowing its 
expression. 

The presence of input D results in the production of the cI 
protein, while its absence results in the production of the cII 
protein (from the P22 phage). 
 
State Genes. The state genes are very similar to Gardner’s 
toggle switch (Gardner et al., 2000). They consist of two co-
repressed genes (i.e. only one expressed at a time), and as 
such define the state of the BioD device. Genes 7 and 6 
represent the complementary outputs Q and Q respectively. A 
green fluorescent protein (GFP) signals the output Q, while its 
absence signals the complementary output Q. The co-
repressed nature of the toggle switch means that when either 
gene is active, it enters into a stable state where it represses 
the other, and insures its own continued expression. In our 
case, that stable state can only be affected by the selection 
genes. 

As can be seen in Figure 2, the selection genes can affect 
the state genes independently of the current state of the BioD. 
As will be discussed below, genes 4 and 5 are mutually 
exclusive when active; protecting the state genes from 
conflicting signals. Furthermore, they will either reinforce the 
repression currently in place in the state genes (resulting in no 
state change), or they will repress the presently dominant gene 
until the balance is tipped, and the other takes over the state of 
the device. Which of the two genes 4 or 5 is activated depends 
on the input genes at the time the CLK signal is turned ON.  
 
Selection Genes. The selection genes are always OFF until 
turned ON by far-red light (the CLK input). In the absence of 
far-red light, genes 4 and 5 are always repressed by the 
phosphorylated version of OmpR, i.e. OmpRP. Gene 3 is 
constitutively expressed and produces OmpR. OmpR is 
phosphorylated in the presence of the EnvZ enzyme. EnvZ is 
connected to Cph1, which in the presence of far-red light, 
induces a conformational change in EnvZ preventing the 
phosphorylation of OmpR. The genes that produce EnvZ and 
Cph1 (and a few others needed for the light response system 
(Levskaya et al., 2005)) are not shown in Figure 2. 

The phosphorylation of OmpR is dominant in the absence of 
far-red light and negligible in its presence. Therefore, the far-
red light signal causes a drop in OmpRP levels and a 
corresponding rise in OmpR levels. This drop affects genes 4 
and 5 using their promoter, as ompf is both activated by 
OmpR and repressed by OmpRP. Both the functionality of 
ompf and the complementary levels of OmpR and OmpRP 
result in a system that is quick to start or stop transcription in 
both genes 4 and 5. 

The selection genes also respond to and affect the input 
genes. As previously mentioned, BioD is an edge-triggered 
device, i.e. it responds to the input when the CLK signal turns 

on, but not to a change in the input when the CLK signal is on. 
This is achieved by designing genes 4 and 5 to only be turned 
off by the CLK signal. When far-red light is introduced, and 
one of genes 4 or 5 turns on, that gene immediately starts 
repressing the genes that can potentially repress it; namely, 
gene 4 represses genes 2 and 5, and gene 5 represses genes 1 
and 4. As a result, any change in the input D when the CLK 
signal is already on, does not translate to the selection genes 
until the CLK signal is turned off, and the repression of the 
input genes is lifted. 

Given that the dynamics of such a gene network are non-
trivial, we provide a single fully detailed scenario tracing 
through one important sequence of transitions. The scenario is 
that of a change of state, from OFF to ON, in response to a 
turned ON input (D), whose level must stabilize, prior to the 
introduction of the CLK signal (far-red light clocking). When 
the state of the BioD is OFF, gene 6 is ON, expressing two 
products. Since one of them (TetR) is repressing gene 7, gene 
7 is considered OFF. In the absence of red light, the 
constitutively expressed (and subsequently phosphorylated) 
repressor (OmpRP) blocks any production from the selection 
genes (4 and 5). Hence, the status quo of the state genes is 
maintained. Lastly gene 1 is ON, induced by the input (D), 
while gene 2 is OFF, repressed by the product of gene 1, 
namely cI.  After clocking, the concentration of OmpRP 
(which was repressing genes 4 and 5) starts falling. The only 
other repressor of gene 4 (i.e. cII from gene 2) is already 
OFF. So gene 4 can start producing, and as such, it starts 
repressing gene 5, which is still repressed by cI from gene 1. 
At this stage, gene 1 is ON, gene 2 is OFF, gene 4 is ON, gene 
5 is OFF, while gene 6 is still ON and gene 7 is still OFF. 
Turning our attention to gene 4, note that one of the repressors 
it produces is identical to the one generated by gene 7, namely 
LacI. Its production starts switching off gene 6, resulting in a 
gradual increase in the expression of gene 7. Once gene 7 is 
fully expressed, it represses gene 6 (via its own LacI 
protein), ensuring the continuation of gene 7’s new ON state. 
Hence, we have achieved a network change of state (indicated 
by GFP) from OFF to ON (following the value of the input 
(D)). For as long as the CLK signal is ON, the new state is 
maintained. If a significant change in the input level occurs 
while the clock is ON, the repressions of genes 2 and 5 would 
not disappear, since gene 4 is ON and produces cI. Indeed, as 
long as gene 4 is ON, it has the ability to keep itself from 
being repressed by other genes, that is, by repressing them. It 
is only when the CLK signal is removed and both genes 4 and 
5 are OFF that the system is free to respond to the input (D) 
again.  

Model 

The network in Figure 2 is simulated deterministically. The 
fast reactions (not shown) involve the binding of proteins to 
one another and to the DNA. The slow reactions (shown 
below) involve transcription of mRNA and translation of 
proteins. The important reactions are presented here as a 
single combined process.  

We define the following terms and chemical species: ܦሺሻ, 
the DNA protein-binding site in the promoter of gene n; ܦ

ሺሻ, 
the ܦሺሻ bound by repressor/activator X; P, RNA polymerase; 
݇, rate of production of gene n (promoter strength); ݇

ሾᇱሿ, 
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effective production rate of gene n after repression/activation; 
 ., number of proteins molecules per transcript of gene Xߟ
 
 

ሺଵሻܦ  ܲ
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రᇲ՜ ூܦ
ሺହሻ  ܲ 

ܫܫܥூூߟ  4݈ܽܩସீߟ  ܴݐ௧ோ்ܶ݁ߟ
 

ைோܦ
ሺହሻ  ܲ

ఱ
ᇲᇲ

ሱሮ ைோܦ
ሺହሻ  ܲ 

ܫܫܥூூߟ  4݈ܽܩସீߟ  ܴݐ௧ோ்ܶ݁ߟ
 

ைோାூܦ
ሺହሻ  ܲ

ఱ
ᇲᇲᇲ

ሱሮ ைோାூܦ
ሺହሻ  ܲ 

ܫܫܥூூߟ  4݈ܽܩସீߟ  ܴݐ௧ோ்ܶ݁ߟ
 

 
ሺሻܦ   ܲ
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where כܫܥ depicts the cI protein that is produced by the cis-
repressed transcripts of gene 1 – therefore is dependent on 
input D. 

We simulate the device using a system of rate equations 
with the concentrations as the dynamical variables. A timing 
diagram is displayed in Figure 4. 

Results & Discussion 
We presented the design of a gene regulatory network (GRN) 
that, if synthesized and integrated into the genome of an 
appropriate strain of E. coli, will give us a single-cell 
synchronous single-input toggle switch (we call the BioD). 
The BioD accepts as input trans-acting RNA, which allows it 
be linked to other GRNs; it is clocked using far-red light, 
which allows external synchronization of its operation; it 
indicates its state by expressing green fluorescent protein 
(GFP), which allows easy external monitoring of the state. 

The whole design is modular in that it allows alteration of the 
input sensing and output expression parts without affecting 
the toggling functionality of the device.   

In the sequel, we present the results of simulating the 
device using a system of rate equations. The results confirm 
our expectation that the device will toggle when and only 
when required – though its speed can still be improved. 

Simulation 
The core functionality of our BioD device is illustrated in 
Figure 4. The highlighted areas indicate the presence of an 
input. The reddish hue reflects the presence of the clock input 
(CLK), while the grey diagonal pattern reflects the presence of 
the data input (D). The examples provided have two different 
data cycles intersecting (or not) with four different clock 
cycles. This setting allows us to show that the device can 
indeed go from one state to the other with nothing more than 
the introduction of the inputs it was designed to respond to; in 
other words, the device does not get stuck in any one state.  

Ideally, with four separate CLK inputs, the state of the 
device should follow the D input four times. In this case, the 
state should turn ON, then OFF, and then OFF again and 
finally ON. Figure 4a displays those exact state changes in a 
deterministic run whose initial condition is an OFF state. The 
normalized GFP expression output follows the input only at 
the rising edge of the clock. However while the clock is ON or 
is OFF, any changes in the input do not propagate to the 
output. This plot is used to demonstrate the overall 
input/output relationship. Figure 4b shows the changes in the 
protein levels – here the levels of LexA and GFP were not 
displayed because they do not affect the behavior of the 
device. 

In the ON level, the expression of a substance is defined 
mainly by its rates of synthesis and degradation. As expected, 
some proteins have multiple stable levels of expression. Since 
cI, cII, LacI and TetR are not only produced in the 
selection genes, but can also be found in either the input or 
state genes, the expression of those proteins is significantly 
increased with the presence of the CLK signal. TetR has four 
levels of expression: (i) OFF, (ii) gene 6 is ON, (iii) gene 5 is 
ON, and (iv) genes 5 and 6 are ON. LacI has similar levels 
of expression using genes 4 and 7. In the case of cI however, 
since gene 4 can only turn on if gene 1 is active, it only has 
three levels of expression (and similarly for cII). 

Tracing the various signals in Figure 4b shows that, the 
simulation starts with two active proteins, TetR (the state of 
the device is OFF) and cII (unrepressed since input D is 
OFF). Here is a step-by-step explanation of the changes seen 
in the timing diagram.  

First, input D is introduced, causing the repression of gene 
2 (or cII) to start. Since gene 1’s transcripts are now 
translated and gene 2 is OFF, gene 4 becomes on an edge-
trigger to be turned ON, while gene 5 is doubly repressed by 
OmpRP and now by cI. The CLK signal is introduced, 
stopping the phosphorylation of OmpR and activating gene 4. 
This raises the levels of cI and LacI. The latter represses 
gene 6 and starts turning the state of the device ON. As TetR 
fades away, the GFP levels start climbing. Then the CLK 
signal is turned OFF followed by the input D. These two 
actions turn OFF gene 4 and disable gene 1 respectively. With 
both inputs OFF, the cI repressors produced by genes 1 and 4 
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degrade without replacement allowing cII to return to its 
previous level. LacI which is now produced by gene 7 
reaches its un-repressed (ON) state equilibrium. 

The second state change occurs when the CLK signal is 
turned on again. Since cII is expressed at that time (no input 
D), gene 5 turns ON, causing the repression of gene 1 
(through Gal4) and the repression of gene 7 (through TetR), 
and raising the level of cII (as it is produced by both genes 2 
and 5).  When the CLK is removed, gene 5 is turned OFF, but 
cII and TetR remain high, while Gal4 is repressed. Note 
that the TetR levels are now produced by gene 6 (which took 
over the state of the toggle switch from gene 7), and no longer 
by gene 5. 

The third CLK signal starts now. Gene 5 is again turned 
ON; the levels of cII, Gal4 and TetR climb. In the middle 
of the CLK pulse, the input D is introduced. This causes no 
change in the network. Since input D only affects gene 1, its 
effects were muzzled because the clock had already turned on 
gene 5 which repressed gene 1. It is only after the clock is 
turned OFF that the gene 1 repression is lifted. At this point, 
even though the CLK signal is removed, the input D is still 
present, and since gene 1 is no longer repressed by gene 5 (or 
Gal4), cI is translated and represses gene 2. The state of the 
device however does not change since the state genes are not 
directly affected by the input genes. 

The fourth CLK signal turns the state of the device back 
ON. In the presence of input D, the CLK turns gene 4 ON 
causing a similar sequence of events witnessed following the 
first CLK signal.  

A Note Regarding Frequency 
The frequency of operation of the BioD, that is to say the 
frequency at which the device can change its state in response 
to the input is closely related to the genes used to build the 
network. Indeed, while the design of the BioD allows for the 
use of other genes than the ones presented in this paper, 

different genes do have different properties modeled by 
different synthesis rates, degradation rates, diffusion rates, and 
promoter/repressor dissociation constants, to name a few. All 
of these parameters indirectly control the time it takes for the 
system to respond to an input change, and the time it takes to 
finish a state change and reach a steady state. 
 In our case, and when going from an OFF to ON to OFF 
state, the CLK signal had to be sustained for at least 22 
minutes to get a sustained state change, while it had to be 
removed for at least 64 minutes for the network to regain its 
steady state. That gave the smallest period (or max. 
frequency) of approximately 86 minutes (5160 seconds). 

A Note Regarding Speed 
Speed is a main area of improvement. Indeed, the slowest 
reactions in a cell are the ones involving repressors and 
ultimately their transcription and translation. The time it takes 
to fulfill these operations depends on the promoter strength, 
the coding sequence that is being transcribed/translated, and 
the presence of RNA polymerases and/or ribosomes nearby. 
The impact of repressors is further delayed until the mature 
protein manages to hit the proper operator site, at the right 
angle and speed. Using post transcriptional regulation like 
taRNA or RNA interference (RNAi) where possible to effect 
the state change in BioD will make the system significantly 
faster. The first such place would be where the selection genes 
interact with the state genes. Instead of producing repressors 
for genes 6 or 7, the use of RNAi to prevent one of them from 
translating repressor proteins would make the entire system 
significantly faster. Since we already make use of taR12 to 
sense the input, we would therefore need another two 
independent riboregulators that do not interfere with taR12 
or with each other. 

a. 

b.

 
Figure 4. Deterministic simulation of BioD. The two timing diagrams are displaying different signals of the same run. The highlighted areas 
indicate the presence of an input. The red hue indicates the CLK signal (FR light). The grey diagonal pattern indicates the presence of the input D. 
a. Normalized GFP expression b. Protein levels 
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Conclusion & Extension 
In this paper, we sought a proof of concept for the first 
synchronous single-input delay flip-flop implemented as a 
gene regulatory network in E. coli. The simulation we present 
provides evidence that the device can toggle from the ON 
state to the OFF state and back, according to the intended 
functionality. The inherent symmetry of the design reduces 
the number of genes needed for the device, but introduces 
some complexity (which is palpable when tracing the various 
changes the device goes through when toggling). 

The BioD is effectively a 1-bit memory element that can 
operate synchronously (on a clock) with any number of other 
elements. As such, it can be used to hold the state of a finite 
state machine, but it could also be used to build a memory 
bank, an event sequence detector/effector, a decision-making 
system, and numerous other memory-requiring devices. 
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Abstract 
Humans are able to perform an unlimited repertoire of reaching 
movements with high accuracy. The skillfulness with which we 
carry out a giving reaching task suggests that there are 
fundamental control policies that allow us to move our body. In 
the current paper we examine how an adaptive reach policy can 
be established, using biologically inspired techniques. The 
developed model, after an initial imitation phase, can replicate 
any given trajectory with very good performance. 

Introduction 
Reaching is a demanding task, due to the difficulty that lies in 
the coordination and control of the high-dimensional 
kinematics of the arm. Despite this fact, primates are able to 
perform it quite effortlessly. To interface between the 
symbolic level, that everyday tasks are described, and the low 
level of motor coordination, the brain uses several 
intermediate stages of processing (Atkeson, 1989). The 
richness of human motor abilities suggests that these stages 
allow the adaptive control of our body, by generalizing motor 
knowledge to other tasks and directions of movement. Much 
of this ability to reach is acquired during the early 
developmental stages of imitation (Piaget, 1962), where 
infants learn to regulate and control their complex 
musculoskeletal system.  
Reaching motions have widely been studied in order to 
understand the brain structures that facilitate motor control. 
Research has revealed that the cerebral cortex uses several 
different cognitive processes to accomplish this goal, 
including kinematic (Atkeson, 1989) and dynamic (Soechting 
and Flanders, 1992) representations of movement, combined 
with forward and inverse models (Wolpert, 1997). To reduce 
the complexity of regulating all these processes, the brain 
makes use of modular structures (Ballard, 1986). Modularity 
is realized in various levels of the cognitive processing 
hierarchy and serves to hide the low level spinal system from 
the higher control centers of the cortex, allowing proper reuse 
of the motor knowledge. 
At the spinal level, converging evidence suggests that 
modularity is implemented by a pre-coded set of control 
modules known as primitives (Degallier and Ijspeert, 2010). 
This concept has received considerable attention in the field of 
engineering. From a mathematical perspective the method of 
primitives, or basis functions, is an attractive way to solve the 
complex nonlinear dynamic equations that are required for 
motor control. For this reason several models have been 
proposed, including the VITE model that describes a way to 
regulate sets of agonist and antagonist muscles to move the 
limb to a desired state or the FLETE model that consists of a 

fixed parameterized system of differential equations that 
produce basis motor commands (see Degallier and Ijspeert, 
2010 for a review). More recent studies in vertebrates suggest 
a force dependent encoding of motor primitives. For example 
experiments in paralyzed frogs revealed that limb postures are 
stored as convergent force fields (Bizzi et al, 1991). In 
(Gizster et al., 1993) the authors describe how such 
elementary basis fields can be used to replicate the motor 
control patterns of a given trajectory.  
To be able to reach adaptively, the agent must learn to 
manipulate its primitives using control policies that generalize 
across different behaviors. In the cerebral cortex one of the 
dominant themes used for learning is by receiving rewards 
from the environment. This paradigm, known as 
reinforcement learning in engineering, does not require an 
exact learning signal of the error but rather a scalar, 
temporally delayed, reward function (Barto, 1995). It is more 
consistent with the type of feedback provided to humans 
during learning, where exact information on the error is 
usually not available. An agent that learns based on 
reinforcement learning tries to find a policy that will 
maximize the probability of receiving immediate or future 
rewards.  
In the current paper we investigate how a simulated agent can 
learn an adaptive reaching policy using methods inspired from 
biological systems. To accomplish the low level motor control 
we employ the notion of force fields to design higher order 
primitives, i.e. motor programs that facilitate the synergetic 
control of multiple joints. Learning is implemented by 
modeling the circuitry of the dopaminergic neurons that are 
responsible for the perception of rewards in the cerebral 
cortex, and using it to form an adaptive control policy for 
reaching.  
The proposed model consists of several interconnected 
regions. The roles of these regions are derived based on 
evidence from imaging and lesion studies that describe their 
cognitive functions. To implement the modularity at the 
cortical level we break down the whole system into pathways, 
i.e. sets of inter-dependent regions that carry out a specific 
process (Hourdakis and Trahanias, 2009). The computational 
areas in each pathway are modeled using liquid state machines 
(LSMs, Maass et al, 2002). LSMs consist an alternative to the 
traditional finite-state machine methods for brain modeling. 
Their difference lies in that they do not require any 
convergence to attractor states. Moreover, they are consistent 
with the homogenity inherent in the cortical regions where 
different processing functions are carried out by similar 
structures (Mountcastle, 1978). To accomplish this dynamic 
form of processing, LSMs perturb neuronal populations using 
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continuous or discrete input signals. A large variety of 
functions can be learned from this perturbation using readout 
neurons, i.e. neurons implemented with traditionally 
supervised learning methods. Recently it has been shown that 
LSMs can carry out any computation with fading memory, 
provided that the properties of separation and approximation 
are fulfilled (Mass et al 2002; Hourdakis and Trahanias, 
2011).  
In the following sections we describe the development and 
evaluation of a reaching model that is inspired by the 
aforementioned cortical processes. We begin by examining 
the biological evidence that underpins the model, and continue 
to describe the implementation of the model and its 
evaluation. 

Computational Model 

Cortical model 
The central nervous system performs reaching by 
transforming sequential target locations into muscle 
commands that move the hand to a desired state (Soechting 
and Flanders, 1992). To relate the intrinsic proprioceptive 
state of the agent to extrinsic behavioral goals, such as the 
points in a trajectory, a forward transformation must be 
learned (Wolpert, 1997). Anatomical evidence from imaging 
studies suggest that the cerebral cortex learns such 
transformations using supervised learning (Doya, 1999). The 
forward model is implemented in the connections of the 
primary somatosensory cortex, where the proprioceptive state 
of the arm is encoded (Sergio and Kalaska, 2003), to the 
parietal lobe, which is responsible for state estimation. After 
the behavioral goals have been established, using the forward 
model and perception, reaching can be accomplished by the 
adaptive control of primitives. Data from animal lesions and 
human studies (Sakai et al, 1998) suggest that the basal 
ganglia are one of the main regions involved in learning 
sequential movements. This is accomplished by processing 
the rewards of the environment, which in the brain are evident 
from the secretion of dopamine, in order to gate motor 
programs (Thach et al, 2000). Learning of new motor policies 
is implemented in the projections of the basal ganglia with 
regions of the prefrontal cortex, where segments of motor acts 
are encoded (Jeannerod et al., 1995), and primary motor 
cortex, where the neurons’ activity is strongly correlated to 
the level of activation of individual muscles (Todorov, 2000). 
Finally, lower level control is mediated by the connections of 
the primary motor cortex to the spinal cord (Dum and Strick, 
1991).  
To model the interaction between the sensori and motor 
systems in the cerebral cortex we use the notion of pathways 
(Hourdakis and Trahanias, 2009). Each pathway implements a 
distinct cognitive function and is defined by two factors: (i) 
the regions that participate in its processing and (ii) the 
directionality of the information as it progresses the levels of 
the cognitive hierarchy. This type of abstraction helps to 
identify and describe at a computational level how cognitive 
functions are carried out neuraly. As a result development of 

the model becomes a two stage process; first individual 
cognitive functions are designed, and then integrated together 
in order to achieve the required behavioral tasks. The 
modularity induced by pathways allows us to overcome 
traditional problems with large scale distributed architectures, 
such as cross talk. This type of modular approach provides 
important benefits in computational modeling since it allows 
identifying how the complex processes that exist in biological 
systems can be modeled with computational principles. 
To design a reaching model, we identify three different 
pathways: (i) motor control, (ii) reward assignment and (iii) 
forward model. These are displayed in the following figure, 
where each pathway is marked with a different color. 

 
Fig. 1. The complete layout of our model with the three 
pathways, motor (blue), reward assignment (green) and 
forward model (purple). 

Motor control (marked in blue) is responsible for the encoding 
of the primitive model. It includes regions Sc, where a set of 
basis primitives are hardwired, MI, where the basis modules 
are combined into higher order control modules and F5, where 
the higher order control modules are synthesized based on an 
adaptive reaching control policy. The latter is learned 
implicitly through the reward assignment pathway (marked in 
green). Finally the forward transformation of the body- 
centered state of the agent is accomplished in the forward 
(marked in blue) pathway. In the proposed model there is also 
an additional visual perception pathway that handles the 
perception of the trajectory. However, due to space 
constraints, in the current paper we assume that the trajectory 
is given to the agent as a series of consecutive points. In the 
following sections we describe the mathematical framework 
that underpins our model, as well as the implementation of 
each pathway. 

Arm control 
To model the effect that the torques have on the joints of the 
robot we use established laws from control theory (Paul, 
1981). The second order kinematics of the robot hand are 
modeled using the following equation: 

𝐷(𝑞, �̇�, �̈�) = 𝐻(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇�   (1) 
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where 𝐷 is the controller that produces the torques that must 
be applied on the joints of the robot given its state 𝑞, and its 
first and second order derivatives, �̇� and �̈� respectively. 𝐻 is 
the joint-space inertia matrix and 𝐶 describes the Coriolis and 
centripetal effects from the joint movement. Eq. 1 can be 
extended with additional terms such as the viscocity of the 
joints or the gravity loading of the plant. In the current paper, 
we applied the model on a simulated frictionless two-link 
plant, and therefore we didn’t include these parameters. 
The aim of the computational model is to derive the 
appropriate local control laws that will allow the plant to 
reach towards any location. In practice we look for a control 
policy that will map the state vector of the robot to a control 
vector from the computational model in a way that minimizes 
the error of reaching. Degallier and Ijspeert (Degallier and 
Ijspeert, 2010), suggested that such a control policy 𝜋 can be 
defined as:  

𝑣 = 𝜋(𝑞, 𝑡,𝑎)   (2) 

where 𝑣 are the joint torques that will be applied to the robot, 
𝑞 is the state space vector, 𝑡 stands for time and 𝑎 is the 
parameterization of the computational model. 
The output of our model is the signal produced by the spinal 
cord circuit. In a biological agent the torques produced would 
be applied to the hand and result in movement. However since 
we use a simulated agent we find the second order kinematics 
of the hand by integrating eq. 1 and solving against the 
acceleration: 

�̈� = 𝐻(𝑞)−1�𝜏𝑝 − 𝐶(𝑞, �̇�)�̇��   (3) 

The next configuration state of the robot is calculated using 
the acceleration �̈� from the equation above, were 𝐻, 𝐶, 𝑞 and 
�̇� are as in eq. 1. The goal of the computational model is to 
produce the appropriate 𝜏𝑝 vector of joint torques that will 
enable the agent to perform reaching. 
To evaluate the proposed model we use a simulated two-link 
planar arm. Control is accomplished by applying torques to 
the elbow and shoulder joints respectively. Therefore in the 
presented simulations the 𝜏𝑝 vector is two dimensional. 

Forward model pathway 
One of the main transformations that takes place during 
reaching is the cognitive implementation of a forward model 
(Wolpert, 1997). In the current paper, the forward model is 
implemented in the regions of the somatosensory and parietal 
lobe, and allows the agent to approximate the end point 
position of its hand using the proprioceptive input from the 
spinal cord. 
To accomplish this we have designed the SI network to 
encode the proprioceptive state of the agent using population 
codes. This is inspired from the local receptive fields that exist 
in this region and the somatotopic organization of the SI 
(Kaas et al., 1979). Population codes assume a fixed tuning 
profile of the neuron, and therefore can provide a consistent 
representation of the encoded variable. To learn the forward 
transformation we train a feedforward neural network in the 
SPL region that learns to transform the state of the plant to a 
Cartesian x, y coordinate. 

Motor pathway 
Due to the high nonlinearity and dimensionality that is 
inherent in controlling the arm, devising an appropriate policy 
for learning to reach can be quite demanding. In the current 
paper this policy is established upon a few higher order 
primitives, i.e. self-organized spinal circuits that coordinate 
elementary motor behaviors. It turns out that, in the adopted 
planar arm, in order to perform any reaching behavior, only 
four higher order primitives are required namely up, down, 
left and right (Fig. 2). In humans such modules are formed 
during the first stages of the vertebrate motor development. 
In order to make the agent generalize motor knowledge to 
different domains, the primitive model must be consistent 
with two properties: (i) superposition, i.e. the ability to 
combine different basis modules together and (ii) invariance, 
so that it can be scaled appropriately. Primitives based on 
force fields satisfy these properties (Gizster et al, 1993). As a 
result by weighting and summing the four higher order 
primitives shown in Fig. 2 we can produce any motor pattern 
required. 

 
Fig. 2. The higher order primitive model proposed. The four 
plots show the force map of the primitive, i.e. the forces that 
are applied to the end position of the limb when the 
corresponding primitive is active. In the current model we use 
four different modules, namely up, down, left and right. 

The higher order primitives are composed from a set of basis 
torque fields, implemented in the Sc module. By deriving the 
force fields using basis torque fields, the primitive model 
creates a direct mapping between the state space of the robot 
(i.e. joint values and torques) and the Cartesian space that the 
trajectory must be planned in (i.e. forces and Cartesian 
positions), resembling the way motions are processed by 
humans. We first define each torque field in the workspace of 
the robot, and then transform it to its corresponding force 
field. Each torque field is described by a Gaussian 
multivariate potential function: 

𝐺�𝑞, 𝑞0𝑖 � = −𝑒
�
�𝑞−𝑞0𝑖 �

𝑇
𝐾𝑖�𝑞−𝑞0𝑖 �
2 �

   (4) 

where 𝑞0𝑖  is the equilibrium configuration of each torque field, 
q is the robot’s angle and 𝐾𝑖  a stiffness matrix. The torque 
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applied by the field is derived using the gradient of the 
potential function: 

𝜏𝜄(𝑞) = ∇𝐺�𝑞, 𝑞0𝑖 � = 𝐾𝑖�𝑞 − 𝑞0𝑖 �𝐺�𝑞, 𝑞0𝑖 �   (5) 

Previous research has indicated that in order to achieve 
stability, two types of primitives must be defined: discrete and 
rotational (Degallier and Ijspeert, 2010). The rotational 
primitives are harmonic oscillators associated with a joint. 
The discrete ones apply a force on the hand based on a shaped 
valley with different equilibrium points. To ensure good 
convergence properties we have used 9 discrete and 9 
rotational basis torque fields, spread throughout different 
locations of the robot’s workspace (Fig. 3). These are 
generated from eq. 5 using different stiffness matrices. To 
generate the discrete torque fields (left block in Fig. 3) we use 
a semi-definite skew symmetric matrix  𝐾𝑑𝑖𝑠𝑐, while to 
generate the rotational fields we use a rotation matrix,  𝐾𝑟𝑜𝑡. 

 
Fig. 3. Nine basis discrete (left block) and rotational fields 
(right block) scattered along the –π..π configuration space of 
the robot. On each subplot the x axis represents the elbow 
angle of the robot while the y axis represents the shoulder 
angle. The two stiffness matrices used to generate the fields 
are Kdisc  =  �−0.672 0

0 −0.908� and  Krot  =  � 0 1
−1 0�. 

Each plot in Fig. 3 shows the gradient of each torque field. 
The axes correspond to the   𝑞1,𝑞2 joint values of the robot’s 
hand. Since we want the model of higher order primitives to 
be based on the forces that act on the end point of the limb, we 
need to derive the appropriate torque to force transformation. 
To accomplish this we convert a torque field to its 
corresponding force field using the following equation: 

𝜑 = 𝐽𝑇 ∗ 𝜏   (6) 

In eq. 6, 𝜏 is the torque produced by a torque field while 𝜑 is 
the corresponding force that will be acted to the end point of 
the plant if the torques are applied. 𝐽 is the robot’s Jacobian. 
In the current implementation where the plant is located in a 2 
dimensional workspace, the 6x3 Jacobian matrix can be 
constrained to a 2x2 matrix as: 

𝐽 = �−𝑙1 ∗ sin(𝑞1) + 𝑙2 ∗ sin(𝑞1 + 𝑞2) −𝑙2 ∗ sin(𝑞1 + 𝑞2)
𝑙1 ∗ cos(𝑞1) + 𝑙2 ∗ cos(𝑞1 + 𝑞2) 𝑙2 ∗ cos(𝑞1 + 𝑞2) � (7) 

Each higher order force field from Fig. 2 is composed by 
summing and weighting the basis force fields from eq. 6. To 
find the weight coefficients, we form a system of 𝑁 linear 

equations by sampling 𝑀 vectors 𝑃 from the robot’s 
operational space, for all 𝐵 basis force fields.  

�
𝜑11(𝑥1) ⋯ 𝜑1𝐵(𝑥1)

⋮ ⋱ ⋮
𝜑11(𝑥𝑀) ⋯ 𝜑1𝐵(𝑥𝑀)

� �
𝑎1
⋮
𝑎𝑀
� = �

𝑃11
⋮
𝑃2𝑀

�    (8) 

Each higher order force field is formed by summing and 
scaling the basis order force fields with the weight 
coefficients 𝑎. The vector 𝑎 is obtained from the least squares 
solution to the problem:  

𝛷 ∗ 𝛼 = 𝑃   (9) 
In the results section we show the force fields that are 
produced by solving the system in eq. 9, as well as how the 
plant moves in response to a higher order force field. 

Reward assignment pathway 
One of the main methods of primate learning is by obtaining 
rewards from the environment. In the cerebral cortex, reward 
is associated with the secretion of dopamine, where 
approximately 80% of the dopaminergic neurons exist in the 
basal ganglia. One of the properties of these neurons is that 
they start firing when a reward is first presented to the 
primate, but suppress their response with repeated 
presentations of the same reward stimulus. At this convergent 
phase, the neurons start responding to stimuli that predicts a 
reinforcement, i.e. events in the near past that have occurred 
before the presentation of the reward. 
In the early nineties, Barto (Barto, 1995) suggested an actor-
critic architecture that was able to facilitate learning based on 
the properties of the basal ganglia. This architecture gave 
inspiration to several models that focused on replicating the 
properties of the dopamine neurons (see Joel et al., 2002 for a 
review). In the current paper we propose an implementation 
based on liquid state machines, and demonstrate how the 
interactions of this region with other neural networks of the 
brain can be modeled. The proposed implementation follows 
the actor-critic architecture and is shown in Fig. 4. 

 
Fig. 4. The liquid state machine implementation of the actor-
critic architecture. Each liquid column is implemented using a 
liquid state machine with feedforward delayed synapses. The 
critics are linear neurons, while the readouts are implemented 
using linear regression. On the top right of the figure (colored 
with green), we show how the actor-critic architecture is 
mapped on the model of Fig. 1. 
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The Critic neurons (𝑃1,𝑃2,𝑃3) model the dopamine neurons 
in the basal ganglia. Their role is to learn to predict the reward 
that will be delivered to the agent in the near future. The 
𝐴1,𝐴2,𝐴3 neurons learn based on the signal emitted by the 
Critic neurons. To model them in the current implementation 
we use a set of linear neurons. The liquid columns in Fig. 4 
encode the input to the basal ganglia circuit. 
To implement the neurons in each liquid column we use the 
leaky integrate and fire neuron model: 

𝜏𝑚
𝑑𝑉𝑚
𝑑𝑡

= −(𝑉𝑚 − 𝑉𝑟𝑒𝑠𝑡) + 𝑅𝑚 ∗ �𝐼𝑠𝑦𝑛(𝑡) + 𝐼𝑖𝑛𝑗𝑒𝑐𝑡 + 𝐼𝑛𝑜𝑖𝑠𝑒�  (10) 

where 𝑉𝑚 is the membrane voltage, 𝜏𝑚 = 𝐶𝑚 ∗ 𝑅𝑚 is the 
membrane time constant, 𝑅𝑚 is the membrane resistance, 𝐶𝑚 
is the resistor capacitance, 𝐼𝑖𝑛𝑗𝑒𝑐𝑡  is a constant current injected 
to the neuron and 𝐼𝑛𝑜𝑖𝑠𝑒 a Gaussian random variable with zero 
mean and a small variance noise. After the emission of a 
spike, the membrane potential is reset to its resting 
value 𝑉𝑟𝑒𝑠𝑡. 𝐼𝑠𝑦𝑛(𝑡) is the incoming current from the 
presynaptic neurons.  
The connections between the neurons in the liquid are 
implemented using a model of dynamic synapses (Markram et 
al., 1998). The post-synaptic potential (𝑃𝑆𝑃) of each neuron 
is transferred to its efferent based on the following equations: 

𝑃𝑆𝑃𝑛 = 𝐿 ∗ 𝑅𝑛 ∗ 𝑢𝑛   (11) 

𝑢𝑛+1 = 𝑢𝑛 ∗ 𝑒
�− 𝛥𝑡

𝜏𝑓𝑎𝑐𝑖𝑙
�

+ 𝑈 ∗ �1 − 𝑢𝑛 ∗ 𝑒
�− 𝛥𝑡

𝜏𝑓𝑎𝑐𝑖𝑙
�
�    (12) 

𝑅𝑛+1 = 𝑅𝑛(1 − 𝑢𝑛+1) ∗ 𝑒�−
𝛥𝑡
𝜏𝑟𝑒𝑐

� + 1 − 𝑒�−
𝛥𝑡
𝜏𝑟𝑒𝑐

�   (13) 

The maximum output of the synapse is governed by the 
absolute synaptic efficacy 𝐿. The change of the efficacy is 
determined using the variables 𝑢𝑛 and 𝑅𝑛, which are 
calculated according to eqs. 12 and 13. 𝑢𝑛 defines the 
utilization of the synaptic efficacy which decays exponentially 
based on the 𝜏𝑓𝑎𝑐𝑖𝑙  parameter to its resting value 𝑈. 𝑅𝑛 is the 
fraction of available synaptic efficacy and defines the strength 
of the 𝑃𝑆𝑃𝑛 at a given spike. It reduces due to the arrival of 
new spikes and recovers exponentially according to the 𝜏𝑟𝑒𝑐 
parameter.  
The actors, i.e. the cortical region that learns based on the 
predicted rewards of the critics is implemented using a set of 
linear regression readouts that are trained to output a firing 
rate proportional to the sum of firing rates of each liquid 
column. Input from different sources is modeled as a set of 
rate code neurons that each projects to a separate liquid 
column using linear synapses with zero delay. 
To implement the synapses between the liquid columns and 
the 𝑃, 𝐴 neurons, we use the imminence weighting scheme 
(Barto, 1995). In this setup, the critic must learn to predict the 
reward of the environment using the weighted sum of past 
rewards: 

𝑃𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯+ 𝛾𝑡𝑟1   (14) 

where the factor 𝛾 represents the weight importance of 
predictions in the past and 𝑟𝑡  is the reward received from the 
environment at time t. To teach the critics to output the 

prediction of eq. 14 we update their weights using gradient 
learning, by incorporating the prediction from the previous 
step: 

𝑣𝑡𝑐 = 𝑣𝑡−1𝑐 + 𝑛[𝑟𝑡 + 𝛾𝑃𝑡 − 𝑃𝑡−1]𝑥𝑡−1𝑐    (15) 

where 𝑣𝑡𝑐 is the weight of the Critic at time 𝑡, n is the learning 
rate and 𝑥𝑡𝑐 is the activation of the critic at time t. The 
parameters 𝛾, 𝑃 and 𝑟 are as in eq. 14. The weights of the 
actor are updated according to prediction signal emitted by the 
critic: 

𝑣𝑡𝑎 = 𝑣𝑡−1𝑎 + 𝑛[𝑟𝑡 − 𝑃𝑡−1]𝑥𝑡−1𝑎    (16) 

where 𝑣𝑡𝑎 is the weight of the Actor at time 𝑡, n is the learning 
rate and 𝑥𝑡−1𝑎  is the activation of the actor at time t-1.  In the 
results section we demonstrate how the output of the Critic 
neurons approximates the response properties of the dopamine 
cells discussed above, as well as how the actor neurons learn 
to control the higher order primitive model. 

Policy learning 
Based on the higher order primitives and reward subsystems 
described above, the problem of reaching can be solved by 
searching for a policy that will produce the appropriate joint 
torques to reduce the error: 

𝑞𝑒 = 𝑞� − 𝑞   (17) 

where 𝑞� is the desired state of the plant and 𝑞 is its current 
state. In practice we do not know the exact value of this error 
since the agent has only information regarding the end point 
position of its hand and the trajectory that it must follow in 
Cartesian coordinates. However because our higher order 
primitive model is defined in Cartesian space, minimizing this 
error is equivalent to minimizing the distance of the plant’s 
end point location with the nearest point in the trajectory: 

𝑑𝑒 = |𝑙 − 𝑡|   (18) 

where 𝑙 and 𝑡 are the Cartesian coordinates of the hand and 
point in the trajectory, respectively. The transformation from 
eq. 17 to eq. 18 is inherently encoded in the higher order 
primitives discussed before. 
From the output of the forward model we obtain the end point 
Cartesian location of the hand, while from the demonstrator 
we obtain the point in the trajectory that must be reached. 
These are injected as rate codes into a liquid state machine, 
where a readout neuron is taught to estimate the subtraction of 
the two input rates using a feedforward neural network.  
The policy is learned based on two elements: (i) decide which 
higher order primitive force fields will be activated, and (ii) 
determine each one’s weight. The output of the actor neurons 
described in the previous section implement the activation of 
the canonical neurons in the F5 premotor cortex which are 
responsible for gating the higher order primitives. Due to the 
binary output of the actor neurons, when a certain actor is not 
firing then its corresponding force field will not be activated. 
In contrast when an actor is firing, its associated force field is 
scaled using the output of the subtraction readouts, mentioned 
above, and added to compose the final movement. 
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To teach the actors the local control law, we use a square 
trajectory shown in Fig. 5, which consists of eight consecutive 
points 𝑝1. . 𝑝8. The agent is taught the trajectory backwards, 
i.e. starting from the final location (𝑝8) in four blocks. Each 
block contains the whole repertoire of movements up to that 
point. Therefore in the first block the actor learns to perform 
the left motion. Whenever it finishes a trial successfully, the 
actor is delivered a binary reward, and moves to the next 
phase which includes the movement it just learned and a new 
behavior. 

 
Fig. 5. The initial trajectory used to train the robot. It consists 
of 8 points that form 4 perpendicular vectors in four different 
directions (up, right, down, left).  

Reward is delivered only when all movements in a block have 
been executed successfully. Therefore, the agent learns to 
activate the correct force field primitives using the prediction 
signal from the Critic neurons in Fig. 4. The final torque that 
is applied on each joint is the linear summation of the scaled 
higher order primitives: 

𝜏𝑝 
=    �𝑥𝑒,1 ∗ (𝐽−1)𝑇 ∗ 𝜑𝑢𝑝�𝑎𝑐𝑡1            
+    �𝑥𝑒,2 ∗ (𝐽−1)𝑇 ∗ 𝜑𝑑𝑜𝑤𝑛�𝑎𝑐𝑡2      
+    � 𝑥𝑒,3 ∗ (𝐽−1)𝑇 ∗ 𝜑𝑟𝑖𝑔ℎ𝑡�𝑎𝑐𝑡3
+    �𝑥𝑒,4 ∗ (𝐽−1)𝑇 ∗ 𝜑𝑙𝑒𝑓𝑡�𝑎𝑐𝑡4      (19) 

where 𝑥𝑒,𝑖 is the output from the neural network distance 
readout, while [ ]𝑎𝑐𝑡 is an operator that includes each force 
field in eq. 19 only if the corresponding actor from the basal 
ganglia module is active. 𝜑 is obtained from eq. 6 for each 
higher order force field, and 𝐽 from eq. 7. 

Results 
In the current section we present the results of the proposed 
model. We focus on the training of each pathway, as well as 
the model’s ability to follow various different trajectories.  
The first result we consider is the convergence of the least 
squares solution for the system of linear equations in eq. 9. 
Figure 6 presents the solution for the “up” higher order 
primitive, where it is evident that the least squares algorithm 
has converged to a good result. The three subplots at the 
bottom illustrate how the hand moves towards the “up” 
direction when this force field is active. Similar solutions 
were obtained for the other three primitives, where the least 
squares solution converged to 7 (left), 2 (right) and 5 (down) 

errors (the error represents the average deviation of the 
vectors in a field from the correct direction of the force).  

 
Fig. 6. The force field (upper left subplot) and torque field 
(upper right subplot) as converged by the least squares 
solution for the “up” primitive. The three subplots at the 
bottom show how the hand moves when the primitive is 
active. 

The policy for reaching was learned during the initial 
imitation phase described previously. During this phase the 
robot performed the training trajectory, and was delivered a 
binary reinforcement signal upon successful completion of a 
whole trial. 
Since the reward signal was only delivered at the end of the 
trial, the agent relied on the prediction of the reward signal 
elicited by the critic. In the following we look more 
thoroughly on the response properties of the simulated 
dopaminergic critic neurons and how the actors learned to 
activate each force field accordingly based on this signal. 
Figure 7 illustrates how the critic neurons of the model 
learned to predict the forthcoming of a reward during training. 
In the first subplot (first successful trial) when reward is 
delivered at t=4, the prediction of the 1st critic is high, to 
indicate the presence of the reward at that time step. After the 
first 10 successful trials (Fig. 7, subplot 2), events that precede 
the presentation of the reward (t=3) start eliciting some small 
prediction signal. This effect is more evident in the third and 
fourth subplots where the prediction signal is even higher at 
t=3 and starts responding at t=2 as well. 

 
Fig. 7. The prediction signal emitted by the critic component 
of the model during the initial stages of the training (subplot 
1), after 10 trials (subplot 2), after 20 trials (subplot 3) and 
after 30 trials (subplot 4). 

The effects of this association are more evident in Fig. 8, 
where it is shown that, after training, even though rewards are 
not available in the environment, the neurons start firing 
because they predict the presence of a reward in the 
subsequent steps. Using the output of this prediction signal, 
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the actor, i.e. in the case of the model the F5 premotor neurons 
that activate the force fields in the MI, forms its weights in 
order to perform the required reaching actions. 

 
Fig. 8. The actual reward signal given to the robot at the end 
of a successful trial (upper subplot), and the reward predicted 
by the critic component after training (bottom subplot). The x-
axis represents the 100ms time blocks of the simulation while 
the y-axis the values of the reward and prediction signals 
respectively. 

The second part of the policy is for the model to learn to 
derive the distance of the end effector location from the 
current point in the trajectory. This is accomplished by 
projecting the output from the forward model and perception 
pathways in an LSM and using a readout neuron to calculate 
their subtraction. Having run several different simulations we 
found that to shape the liquid dynamics and learn this 
transformation the dynamic synapses must have delays of 
approximately 10ms. Since our model resolution was set to 
100ms, we averaged the output of the readout neuron over the 
10 steps of the simulation. In Fig. 9, we illustrate two sample 
signals as input to the liquid (top subplot), the output of the 
readout neuron in the 10ms resolution (middle subplot) and 
the averaged over the 100ms of simulation time output of the 
readout neuron (bottom subplot).  

 
Fig. 9. The output of the distance LSM after training. The top 
plot illustrates two sample input signals of 5.5 seconds 
duration. The bottom two plots show the output of the neural 
network readout used to learn the subtraction function from 
the liquid (middle plot), and how this output is averaged using 
a 100ms window (bottom plot).  
 
The whole simulation trial lasted 5.5 seconds. As the results 
show the liquid was able to extract the distance information 
with a good accuracy. Due to the local control laws used to 
implement the reaching policy, any small errors in the 
computation of distance are actually compensated in later 
steps.  

Having established that the individual pathways/components 
of the proposed model operate successfully, we now turn our 
attention to the performance of the model in various reaching 
tasks. We note here that the model wasn’t trained to perform 
any of the given reaching tasks, apart from the initial 
training/imitation period at the beginning of the experiments, 
shown in Fig. 5. After this stage the model was only given a 
set of points in a trajectory and followed them with very good 
performance. The first three trajectories we tested were 
variations of a straight line motion. 

 
Fig. 10. Three trajectories shown to the robot (red points) and 
the trajectory produced by the robot (blue points). Numbers 
mark the sequence with which the points were presented. 

As Fig. 10 shows the agent was able to follow all three 
trajectories quite precisely. The average normalized deviation 
of the agent’s position from the points of the trajectory was 
0.03 which shows that the resulting performance was 
satisfactory.  
In order to evaluate further the performance of the model we 
used two more complex trajectories. The first required the 
robot to reach towards various random locations spread in the 
robot’s workspace (Fig. 11, Trajectory 1) while the second 
complex trajectory required the robot to perform a circular 
motion in a cone shaped trajectory (Fig. 11, Trajectory 2). 
Figure 11 illustrates how the aforementioned trajectories were 
followed by the robot. 

 
Fig. 11. Two complex trajectories shown to the robot (red 
points) and the trajectories produced by the robot (blue 
points). Numbers mark the sequence with which the points 
were presented.  

To evaluate the performance of the model on any given path 
we created 100 random trajectories and tested whether the 
agent was able to follow them. Each of these random 
movements was generated by first creating a straight line 
trajectory (Fig. 12, left plot) and then randomizing the 
location of 2, 3 or 4 of its points; an example is illustrated in 
Fig. 12, right plot. The error was calculated by summing the 
overall deviation of the agent’s movement from the points in 
the trajectory for all the entries in the dataset. The results 
indicate that the agent was able to follow all trajectories with 
an average error of 2%. This suggests that the selected model 
can confront with high accuracy any reaching task. 
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Fig. 12. The template used to generate the random test set of 
100 trajectories (left plot) and a random trajectory generated 
from this template (right plot). 

Conclusion 
One of the important aspects of human skills is the ability to 
generalize knowledge to different domains and tasks. Using 
modularity and principles from neuroscience, in the current 
paper we investigated how adaptive learning skills can be 
acquired in a simulated agent that performs reaching tasks. 
One of the extensions that we plan for the presented model is 
to investigate how the primitive model can be designed to be 
adaptive, i.e. allow the agent to match the control of 
primitives to the properties of its body. In addition we will 
extend the current 2D plant model to its 3D equivalent by 
adjusting the equations of the Jacobian and primitive model. 
Moreover, we plan to investigate the role of the cerebellum in 
reaching movements, and its involvement in providing 
corrective feedback in respect to the global error of 
movement. Finally one of the important additions that we plan 
to investigate is how the agent developed in the current paper 
can be used during observational learning, i.e. improve its 
performance in reaching tasks without using its body. This 
extended model will be used to evaluate certain hypotheses 
regarding whether learning can be implemented in primates 
during observation.  
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Abstract

We investigate the consequences of introducing an energy
model into open ended evolutionary simulations. We pro-
pose a metamodel for simulations that incorporate an energy
model and apply that model by extending Turk’s Sticky Feet
model. We show that introducing an energy model produces
simulations with measurably increased diversity of the simu-
lated population.

Introduction
We are interested in open ended evolution and in particu-
lar evolution within systems that are open to a simulated
energy flux, open to changes in the simulated environment,
and open to the representation of evolutionary mechanisms.
In this paper we focus on energy flux, which allows us to
represent many aspects of real world systems, such as the
availability of food supplies, and different means of making
a living within an environment, be they predatory or sessile.

In order to investigate these issues we have chosen to
extend Turk’s Sticky Feet [10] model. This gives a sim-
ple mechanism for implementing mobility and experiment-
ing with open-ended evolution. A Sticky Feet simulation
is a collection of simulated creatures moving in a 2D do-
main. Each such creature is a graph of springs connecting
together feet. Motion is achieved as a consequence of sim-
ple harmonic oscillation of the springs, which pushes the
feet around within the simulation space. The coefficient of
friction experienced by the feet is modulated–at times slippy,
at times sticky–which results overall in motion through the
space.

Each creature has a heart and a mouth, each of which is
a distinguished type of foot. The heart represents the crea-
ture’s ‘essence’. The mouth–when it happens upon another
creatures’s heart–allows the former creature to eat the latter,
removing it from the simulation. The likelihood of a crea-
ture happening upon another is facilitated to some extent by
the springs being equipped with sensors, which may mod-
ulate the oscillation of the spring when in the presence of
another creature’s heart. This allows a creature to turn to-
wards another, with the chance that it might then be able to

consume the target. When a creature is consumed the eater
produces a single offspring, which may be a mutation of the
parent. Mutations that include additional feet, springs and
sensors allow the creatures to evolve in a manner that even-
tually produces offspring that are better adapted to hunting
for and eating other creatures.

A Sticky Feet world is one in which creatures evolve to
improve their performance at consuming other creatures,
and therefore being able to pass on their genome. As such,
it provides some aspect of a model of open ended evolution.
We use this term here in the sense of an evolutionary sys-
tem where components continue to evolve new forms con-
tinuously, rather than halting when some ‘optimal’ or stable
position is reached [9].

Sticky Feet [10] works in this manner, as there is no over-
all fitness function and all creature behaviour is expressed
in a single large environment rather than relying on artifi-
cial two-creature tournaments. As such it is representative
of many aspects of real-world evolution.

There is, though, no mechanism for sticky feet creatures
to pass on their genomes other than by consuming other
creatures. That is, the simulation is closed to the develop-
ment of non-predatory behaviour. This is useful from the
point of view of maintaining a constant sized simulation, but
is not representative of real world evolution where popula-
tion sizes can change dramatically.

Natural evolution–that which operates in the world around
us–is different in essence from the sticky feet model in that
success does not entirely derive from hunting and reproduc-
tion. Creatures in natural environments must be able to ex-
tract some sort of living from that environment, supported
either by consuming other creatures, or by turning some flux
in the world, for example sunlight or the chemical nutrients
consumed by extremophiles, into food.

This argument is essentially that famously made by
Malthus in 1798 [7], which led Darwin towards the prin-
ciple of natural selection [2]. Although Malthus discussed
the availability of food we generalise this to the availability
of energy. This is a limited resource although the environ-
ment is continually bathed in an energy flux. This flux may
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Figure 1: Domain metamodel

be used, and stored, by components of the environment, but
if it is ignored it disappears and is no longer of use.

Natural systems are open: they are in receipt of some sort
of resource flux such as that we model as energy. In this
paper, we provide a meta-model for open simulations with
energy flux, consumption, and storage; we describe an ex-
tended sticky feet simulation incorporating an instantiated
energy model; we show that diversity is maximised when
the flux is neither too low, nor too high.

Energy metamodel
In our work we use the CoSMoS approach [1]. We model
the aspects of the domain that we wish to simulate as the
domain model. We describe the actual simulation using the
platform model, which executes on the simulation platform,
producing results that can be analysed with respect to the
results model.

In this paper we describe a class of models, ones that per-
mit a particular sort of open ended evolution of sticky feet
like creatures in a world, a domain, which is bathed in an
energy flux. That is, we must define a domain metamodel to
which our domain models must conform.

The domain meta model describes all possible domain
models that we wish to explore, without limiting the partic-
ular domain. An abstract view of our meta-model is shown
as figure 11 and shows the inter-dependencies of the three
top level packages in our model: Organism, Energy and En-
vironment.

Energy
Energy is modelled, as in figure 2, as a scalar quantity in
arbitrary units. We also describe the entropy of some en-
ergy which might be thought of as the temperature of the
energy which allows us to describe essential aspects of the
energy economy. For example, in the natural world a con-
tinuous low flux of low entropy energy is available in the
form of sunlight. Plants sequester this energy in a form that
allows other organisms, such as animals to consume them
and acquire the stored energy. Those animals subsequently
excrete waste products which still represent energy, albeit in

1All the models here are expressed using the UML.

Figure 2: Energy metamodel

Figure 3: Environment metamodel

a higher entropy form, but which may still be metabolized
by organisms such as dung beetles.

Although some authors use a simple ”battery” model
or conservation of energy (for example [3]), here we pro-
pose an energy model integrated with reproduction and be-
haviour.

Flux. The most basic part of the energy model, represent-
ing a flow of energy from outside the modelled system. This
flux represents energy with a defined entropy and with a par-
ticular temporal pattern; for example at a high level during
daytime but a much lower level during nighttime.

Store. One action of all members of a simulated world is
to store energy. An organism might maintain its existence by
consuming other stores, in the manner of herbivores eating
plants, or by assimilating the flux itself as the plant itself
does.

Demand. Many components of a simulated world make
energy demands. Such components could be the physical
structure of an organism, which requires energy to build and
maintain, or an activity that an organism undertakes, such as
hunting for other organisms to consume.

Environment
The environment metamodel is elaborated in figure 3.
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Figure 4: Organism Metamodel.

Environments are represented as a collection of Regions,
each of which is the recipient of a particular Flux. Regions
are connected together by routes each of which allows or-
ganisms to move from one region to another, albeit at a cer-
tain energy cost.

Organism
The organism metamodel is elaborated in figure 42. It
has two interdependent components: the phenotype and the
genotype.

Genotype. The Genotype metamodel requires that an or-
ganism model expresses a genotype, which can be used as
the source information for a morphogenesis process that
grows its associated Phenotype. The genome of a pheno-
type is the result of a replication process that also creates a
new Phenotype.

Phenotype. The Phenotype metamodel expresses that an
organism’s phenotype, its structure, consists of a number of
body parts and a number of behaviours.

Body parts store energy: they realise the Store component
of the energy model. The body parts are also the target of the
organism’s behaviours. For example, a bird’s wings might
be the target of its ‘flying’ behaviour. Each behaviour affects
at least one part of an organism’s body, and all such parts
must be such a target of at least one behaviour.

Behaviours consume energy: they realise the Demand
component of the energy model. We require that all energy

2The arrowheads in this diagram refer to the UML property of
navigability not to a notion of one object “producing” another.

consumption is expressed as a behaviour. So, for example, a
purely sessile organism must still include a behaviour that it
continually expresses, which demands the energy needed to
maintain its metabolism. The energy for a behaviour is sup-
plied by the body parts that are the target of the behaviour.

Some of an organism’s behaviours produce waste prod-
ucts, included as the Product component. Such waste prod-
ucts are in themselves further energy stores, although they
are not part of the organism’s phenotype. The entropy of
such waste products would usually be higher than that of the
original energy source, but that does not preclude some or-
ganisms being able to scrape out an existence using such low
grade sources of energy. A further waste product is the phe-
notype of a dead creature. Again this represents a low-grade
source of energy, providing carrion-eating as a possible way
of making a living in a world that conforms to our model.

All organisms possess the Morphogenesis behaviour; the
genome contains the information needed for this behaviour.
The specific genome of an organism is the result of another
behaviour, Replication, which creates the genome of an off-
spring organism, potentially generating a mutated genome.

Discussion
Our metamodel expresses the essential requirements for evo-
lution in an energetic context. A range of different imple-
mentations of this model are feasible. That is, a number of
models could be produced, each of which conformed to this
metamodel in the sense that the model’s components were
instances or realisations of components in the metamodel.
Each such model would describe the domain model for a
particular set of simulations in a particular domain.

Note that some ALife simulations incorporate a very basic
notion of a constrained resource. Tierra [8] uses CPU time-
slices as an analogue of energy, with the size of the time slice
being a tunable function of the entity’s size. However, there
is no analogue of an energy store that would enable entities
to ‘time-shift’ their use of the resource, or hand on a surplus
to their progeny; Tierra is a ‘use it or lose it’ model. (Ray
[8] mentions a possible extension allowing capture of CPU
slices.) Stringmol [5] is an AChem with an explicit, but very
simple, energy model: a fixed number of energy units are
added to the container at each timestep, and molecules need
to use an amount to execute each instruction. However, the
energy is a global resource (energy is not stored in individ-
ual entities, but in the system and accessible to all). Our rich
energy metamodel provides a number of features that organ-
isms should be able to exploit to enable a range of different
ways of making a living.

Energetic sticky feet
We have developed one simulation model (figure 5) that con-
forms to our energy metamodel. This is an ‘energetic’ vari-
ant of Turk’s Sticky Feet [10]. That is, our energetic sticky
feet model discusses the same sort of concepts that Turk
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Figure 5: Energetic sticky feet overview

uses, albeit in the context of energy, environment and or-
ganism as prescribed by our metamodel.

Our experimental hypothesis is that the presence of the
energy model will influence the evolution of the simulated
creatures in such a manner that a more diverse world will re-
sult. We test this hypothesis by running the energetic sticky
feet simulation for a range of flux levels, and compare the di-
versity of the evolved creatures with an unconstrained vari-
ant that ignores the need for energy.

Body parts
The creatures in our model follow the metamodel: each crea-
ture has a number of parts and a number of behaviours. The
specific body parts are feet and segments. Following Turk
[10]: a foot is a point mass with a particular, and modulat-
able, coefficient of friction; a segment is a spring that fol-
lows the equations from [10], to achieve motion due to sim-
ple harmonic oscillation of the springs as the point masses’
coefficients of friction are varied.

The feet themselves appear in three varieties. The ba-
sic ones are augmented with special variants, representing
a heart, and a mouth. The heart represents the ‘essence’ of a
creature. When one creature’s mouth gets close to the heart
of another creature then the former may ‘eat’ the latter (as-
suming that the former creature is expressing the ‘eating’
behaviour).

Each segment may optionally have an attached sensor,
which senses the position of other creatures. A sensor may
sense either the heart or the mouth of another creature and,
when it does, may perturb the oscillation of its attached seg-

ment. In this manner the sensors allow a creature to turn
towards prey, or away from a predator.

Behaviours

The overall behaviour of each creature is represented by at-
taching a collection of individual behaviours to the creature.
Each of these acts in a manner reminiscent of the Command
pattern [4], and applies itself if it determines that the time is
appropriate. Every behaviour demands energy, which must
be provided by the owner of the behaviour. If the owner can-
not supply the energy then the creature dies: it has exhausted
its energy supplies.

Our energetic sticky feet implementation does not imple-
ment the waste product component of the metamodel. Con-
sequently, when a creature dies, it just disappears from the
simulation, taking with it any residual energy.

The behaviours available to a sticky creature are:

Sitting: the ‘null’ behaviour that all creatures must ex-
press. This behaviour forces a creature to continually con-
sume energy. The amount of energy consumed is a func-
tion of the complexity of the creature’s phenotype; a larger,
more complex, creature requires more energy just to sit in
one place compared to a small, simple, creature.

Walking: the behaviour that expresses the mode of walk-
ing explored by Turk [10], by oscillation of the creature’s
segments. The size of the energy requirement is proportional
to the friction against which work is done by the springs.
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Eating: the behaviour that allows a creature to look to see
if any other creature’s heart is in the vicinity of one of its
mouths. If so, the former creature may ‘eat’ the latter. This
adds to the eating creature’s energy stores all of the energy
of the eaten creature. The eaten creature is removed from
the simulation.

Reproducing: the behaviour that allows a creature to cre-
ate offspring, with a genome that is a mutation of the single
parent’s genome. At each simulation step there is a proba-
bility, encoded in the genome, that a creature may express
this behaviour. We allocate energy costs to all the compo-
nents of the phenotype, and check that the parent has suffi-
cient energy to construct the child organism. If so, and the
child organism is deemed to be viable, then it is created and
the energy store of the parent is shared equally between the
parent and the child.

Morphogenesis: the behaviour that is followed to con-
struct the phenotype of a new organism from the genome
generated by, optionally, mutating the genome of the organ-
ism’s parent. This differs from the Reproducing behaviour
in that it is reponsible for building the phenotype of the or-
ganism from its genome whereas the reproducing behaviour
creates the new organism’s genome.

Assimilating: the behaviour that allows an organism to
gather energy directly from the flux in the current environ-
ment. The amount of energy available is determined by the
flux applied to the region of the environment that the crea-
ture is inhabiting, and by the physical size of the creature. A
larger creature, in the same manner as a large tree, can ex-
tract more energy from the flux, but needs correspondingly
more energy to construct and maintain the larger phenotype.

Mutation and morphogenesis
In order to get some sort of evolution of the sticky feet crea-
tures our implementation allows for mutation of the genome
whenever the reproducing behaviour is expressed. Mutation
is implemented by structuring a genotype as a sequence of
genes, each of which codes for a particular part of the crea-
ture and its behaviour. Unlike Turk [10] we do not express
a ‘species’ in any way in our model. Rather, each organism
just has its own genome; even though it is likely that many
other creatures have the exact same genome we do not use
this in any part of our simulation. Following Turk’s lead
we implement two general forms of mutation, both of which
are used in any individual mutation step. The first of these
is the modification of the various parameters that apply to
each component. For example this allows the position of the
creature’s feet, the stiffness of the springs in the segments,
and the probability that a creature will attempt to express the
reproducing behaviour at any particular point in time to be
varied. The second form represents structural modifications
of the phenotype. Specifically, these modifications may be

Figure 6: Some example evolved creatures; the filled circle
is the heart, the open circles are mouths. From left to right
these are: a) the initial ‘seed’ creature; b) the ‘manta ray’,
only a few mutations away from the seed; it has two mouths;
c) the ‘killer’, large and fast; d) the ‘multimouth’, with lots
of mouths that stab outwards; e) the ‘spiky’, with lots of
mouths but little area.

performed: adding feet or segments, removing feet or seg-
ments, adding a sensor to a segment and modifying a seg-
ment so as to connect to a different foot.

A possible result of one or more of these mutations is that
the eventual creature does not form a viable phenotype. For
example, it is possible to generate a genome that implies a
phenotype where the feet and segments are not connected as
a single structure, or where a creature does not have a heart.
We choose to declare these mutations non-viable, and termi-
nate the particular cycle of reproduction when they occur.

Even if a mutation represents a viable creature, it is pos-
sible that the resulting creature cannot be incorporated into
the current simulation world. Specifically, in a similar man-
ner to Turk, we do not allow phenotypes that initially overlap
existing creatures. That is, our simulations are expressly two
dimensional at the moment.

Viable creatures are created at a point in the simulation
space that is local to their parent.

Implementation
Our energetic sticky feet implementation follows closely the
model shown in figure 5. The implementation is written
in pure Java and uses our environment-orientation approach
[6] to represent the interaction of many creatures in a multi-
threaded implementation. The environment is a two dimen-
sional world with cyclic boundary conditions.

In all our experiments we initialise a simulation run with
a fixed number of simple ‘seed’ creatures with a pre-defined
genome and a random (according to a Gaussian probability
distribution function) amount of energy. A typical collection
of evolved creatures is shown in figure 6.

There are a large number of parameters to our sticky feet
simulations. For example, there are parameters describing
the construction energy required for each part of an organ-
ism, for the rate of mutation and for the level of energy flux
in different regions of the environment.

Initial experiments with our implementation show that
careful setting of these parameters is necessary in order to
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allow the creatures to survive. That is, it is very easy to
set the parameters so that there is insufficient energy in the
environment for a population of creatures to survive; even
though they can mutate to take advantage of their environ-
ment they run out of time in which to do so. This is in some
ways perhaps a consequence of our approach of seeding the
environment with a collection of fully formed creatures with
significant energy demands.

Experimentation
In order to compare our simulations with something more
representative of Turk’s implementation [10] we need a way
of ‘turning off’ the energy model. That is, we need to be
able to run simulations in a manner that is not constrained
by the availability of energy. In Turk’s implementation the
simulation has a fixed size population as a consequence of
each creature reproducing once only when it consumes an-
other. Hence, the simulation world does not get overrun with
a vast number of creatures.

In a similar manner, our simulation includes an ‘uncon-
strained energy’ option where the creatures function exactly
as they do in the energetic world except that the demand
of all behaviours is set to zero, so no energy is ever con-
sumed, and the reproducing behaviour is only available, and
indeed is forced, in the situation where the eating behaviour
has been invoked. This has the effect of creating a fixed-
population simulation (except that on occasion a new crea-
ture cannot be ‘fitted in’ to the existing simulation, in which
case reproduction is delayed until space is available) of a
form similar to Turk’s.

The differences between the implementation of the ‘en-
ergetic’ and ‘unconstrained’ variants of our simulation are
minor. Hence, we can be sure that measured differences in
the results of the simulations are a consequence of the inclu-
sion, or exclusion, of the energy model.

In order to track the develop of creatures as they evolve
we use a notion of mutation distance in our experiments. As
discussed we have no specific notion of ‘species’ in our im-
plementation. Rather, each creature has its own genome,
which has a mutation distance. The initial population of
creatures all have a copy of the same genome, which has
mutation distance = 0. Whenever a creature reproduces it
may also mutate the genome which is passed on to the child
creature. The likelihood of allowing such a mutation is one
of the simulation’s parameters. After this mutation, follow-
ing the process described earlier, the implementation com-
pares the resulting genome with the initial genome. If they
are different (they might not be because of the random na-
ture of choosing whether to adopt specific mutations) and the
genome represents a viable creature, then that new genome
mutation distance is incremented.

In this manner every creature has a mutation distance, and
we use this as part of our experimental results. There is not
a simple relationship with time; it is possible, although un-

likely, for example, for a creature with mutation distance
150 to co-exist in a simulation with another of mutation dis-
tance 0. The latter creature could have survived from the
outset–our creatures do not die of old age–or it could be the
end result of a series of reproductions that involved no mu-
tations.

Each creature in our simulations has an area that deter-
mines the amount of energy it receives from the environ-
ment’s energy flux. We calculate its area by regarding the
creature as an irregular polygon, ignoring feet that have only
one attached segment, and by calculating the area of that
polygon. So, a creature that was two feet connected by a
single segment (a frequently occurring shape) would have
area = 0 and would not receive any energy from the envi-
ronmental flux.

Hypotheses
The direction of our experimentation is towards investigat-
ing two hypotheses. First, we hypothesise that creatures
evolving in the context of an energy model should do so in a
manner that is measurably different from that which applies
in a ‘unconstrained energy’ world. Second, we hypothesise
that the presence of the energy model creates a wider range
of ways of the sticky feet creatures ‘making a living’. For
example, a creature could survive by eating other other crea-
tures, or it could survive by growing large enough to acquire
sufficient energy from the regional flux. Such a mode of life
could be further enhanced by abandoning movement as that
could be seen as wasting precious energy. Hence, we hy-
pothesise that when evolving in the presence of an energy
model the sticky feet creatures will appear in a wider range
of sizes during their evolution than happens in an ‘uncon-
strained energy’ world.

Similar hypotheses could be expressed about other physi-
cal aspects of the creatures. Here we explore just the size.

Results
Our simulations generate a large quantity of data and here
we show just a single summary of one aspect of it. Figure 7
shows a plot of the inter-quartile range of the sizes (areas)
of the population of creatures as it changes with the genome
mutation distance. This figure includes data for three differ-
ent configurations: the unconstrained ‘control’ situation, one
with an energy flux of 80 (arbitrary) energy units, and one
with an energy flux of 100 units. Data for this plot are taken
from a total of over 40 separate simulation runs and sum-
marise the simulated lives of over 350,000 energetic sticky
feet creatures.

We have chosen these energy levels based on experience
running our simulations. Below an energy flux of 80 units
it is invariably the case that the population of creatures dies
out. For example, in all our experimental data no creature
has existed in a simulation with a flux of 70 with a higher
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Figure 7: Summary of results of execution of energetic sticky feet simulation with mutation distance on the X axis. The
foreground, darkest, distribution shows the inter-quartile range of the areas of sticky feet creatures across 200 mutation distances
of evolution using the implementation that did not use an energy model. The mid-grey plot is the same information using the
energy model at a flux level of 100 units. The pale grey plot shows the results using the energy model at a flux of 80 units.

mutation distance than 94. At a flux of 50, we see nothing
beyond mutation distance 73.

Even without comparing the data with the unconstrained
situation we see a clear effect of the flux on the simulated
lives of the sticky feet creatures. Furthermore, inspection
of figure 7 shows significant differences between the ‘with
energy’ and ‘unconstrained energy’ variants of our simula-
tion. For example, at mutation distance 200 (the largest we
show on the figure) creatures in the energy = 80 world have
a range of sizes from 280 area units at the lower quartile to
2170 units at the upper quartile. In the ‘unconstrained en-
ergy’ world the equivalent sizes are from 140 to 238 units.

Experience with our experiments, and observation of the
results shown here, leads us to a further hypothesis. This
is driven by the observation, seen in figure 7, that at en-
ergy = 100 there is less population diversity than at energy
= 80. As we know that at lower energy levels the popula-
tions of sticky feet creatures usually dies out we hypothesise
that there is a critical energy flux density, in a set of simu-
lations with otherwise consistent parameters, that generates
creature populations of the widest diversity. At low energy
levels there is insufficient energy for populations to survive
and hence they die out before generating significant diver-
sity; at higher energy levels it becomes easier and easier to
make a living, all the way up to the unconstrained world.

We choose a single statistic to represents diversity of sim-
ulations with a particular energy flux, and look to see if it
varies in the hypothesised manner. The statistic we use is
the range of sizes of creatures throughout all lifetimes at a
particular energy level. Figure 8 is a box and whisker plot

of the interquartile range (IQR) of sizes of creatures over
all mutation distances. In figure 8, the median represents
the median IQR of sizes over mutation distance at a partic-
ular energy flux (the median size of the bars in figure 7):
the larger the median, the larger the range of sizes, hence
the greater the diversity. In figure 8, the IQR represents the
variation in the IQR of sizes over mutation distance at a par-
ticular energy flux (the range of sizes of the bars in figure 7):
the larger the IQR in figure 8, the larger the range of range of
sizes, hence the greater the range of diversity. Observation
of figure 8 does indeed show the hypothesised characteristic
of a critical energy flux with maximum diversity.

Discussion
The hypotheses that we have discussed are supported by
the experimental results we have included. Specifically,
the results we see when running the ‘energetic’ simulations
show a more diverse range of creatures being produced than
in similar ‘unconstrained energy’ situations. Furthermore,
there is a ‘critical’ energy level that supports the widest
diversity. At lower energies we see less diverse popula-
tions that soon die out; at higher energies–which includes
the unconstrained case–we see less diverse populations that
nonetheless persist. The critical energy level is the point be-
tween a low energy world where eating other creatures is a
necessity of life, but nevertheless there is not enough influx
of energy to survive, and a high energy world where there
is little evolutionary pressure, and sessile behaviour is com-
mon.

Visual inspection of our simulations make it painfully
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Figure 8: Box plot of inter-quartile ranges of creature sizes
at various energy levels. Each plot shows the 9th percentile,
the first quartile, the median, the third quartile and the 91st
percentile for the distribution of the inter-quartile ranges at
the given energy flux. The rightmost box is for the uncon-
strained energy version of the simulation.

clear that although we generate creatures with a wide range
of sizes and structure they are still recognisably the same
sort of thing: variations on a theme of feet and springs (fig-
ure 6). The end result is interesting but does not compare
with biological evolution and the vast range of forms and
structures that we see there. Our simulations could never
generate such a range of structures because the creatures’
representation, morphogenesis and mutation operators are
fixed, even though the various probabilities of their appli-
cation and effect may change. That is, although we have a
general notion of the sorts of energy we are simulating, and
this is encoded in our metamodel, we do not have a similar
notion of a range of organisms. Therefore, the evolution we
are exploring here is not fully open-ended. In order to do
that we need a more abstract description of evolution.

Conclusions
Our metamodel summarises the essential components of an
energy-rich world which is a basic feature of real world evo-
lution, and also of artificial life. We have shown that ap-
plication of this metamodel in even a simple manner yields
more complex, more interesting, results.

However, our experiments also make it obvious that we
need much more in order to approach real open-ended evo-
lution. In particular we must be able to modify both the
creatures and the kinds of modifications that the creatures
undergo. Our current simulations do not support this.

Future Work
While interesting, our current simulation does not explore
some aspects of the worlds implied by our metamodel. In

particular we have not explored the notion of entropy, which
we believe should open up further different ways of crea-
tures making their living. We have also not explored a non-
homogeneous world with, for example, a range of differ-
ent energy fluxes and different levels of friction which could
make, again, different modes of existence feasible.

And, as we have discussed, we would like to investigate
ways of extending the kinds of evolution that occur in order
to more closely approach true open-ended evolution.
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Abstract

Autonomy of the internet (web system) is studied by running
an NS-2 simulator. A web system consists of three layers,
they are the network, the transport and the application layer
and an network simultor called NS-2 can simulate the trans-
port layer of the web as a packet switching network (PSN).
This paper reports on the complexity of mutually crossing
packet flows which are comparable to other autonomous com-
plex networks, such as real Hippocampus slices, Izhikevich
neural networks, or the game of life. One unique feature com-
mon in all these systems is the coexistence of several synchro-
nised patterns that we think of as the underlying mechanism
of autonomy. In the case of PSNs, adaptive window sizes of
each packet flow show synchronisation but only locally, and
often chaotic behavior is displayed when congestion occurs.
Also considering the packet flow in PSNs as gliders, this con-
gestion allows gliders to bifurcate. We thus propose PSNs as
a new experimental testbed for discussing the autonomy and
adaptability of living systems.

Introduction
Autonomy is one of the most important characteristics of
living systems. Understanding this biological autonomy
by reconstructing it using different media is one of the
main purposes of Artificial Life studies. For example, the
study of autonomous robots uses such an approach. A def-
inition of an autonomous robot is its ability to achieve a
task without people having to make commands. There are
many examples such as Stefano Nolfi’s ’garbage collec-
tors’ (Nolfi, 1997), Pfeifer’s passive dynamic walker (Pfeifer
et al., 2007), Honda’s ’Asimo’, Sony’s ’dog robot’ called
Aibo, Kojima’s ’Keepon’ and so on. Some of these robots
are ”autonomously” detecting walls and avoiding cliffs in
various ways. Self-charging robots have also been built al-
ready (e.g. a robot that uses snails for energy or a trilobite-
like robot that monitors its own battery); so robots can be-
come self-sustainable in that sense.

Rodney Brooks claimed that autonomous robots need not
possess any representation of the environment but the envi-
ronment itself is the representation. They explore the en-
vironment and solve a given task. This is a major feature
of autonomous robots (Brooks, 1991). Such a concept of

autonomy still misses a very fundamental part of biological
autonomy, as we are still easily able to distinguish between
real and artificial creatures (Brooks, 2001).

A simple but primary definition of an autonomous system
is a non-reaction system. For example, a fly’s aviation is
considered to be an autonomous behavior as it behaves inde-
pendently from the environmental pattern (May et al., 2007;
Takahashi et al., 2008). Another such autonomous dynamic
is chaotic itinerancy (Ikegami, 2007); a high dimensional
transition dynamic among pseudo attractors. Aoucturier et
al. (Aucouturier et al., 2008) used this idea to create a danc-
ing mobile robot. Besides a hard-shell robot, Hanczyc and
Ikegami (Hanczyc et al., 2007; Hanczyc and Ikegami, 2010)
studied a self-moving droplet. An oil droplet made of ole-
cic acid and sized about 0.1 mm can move by itself and also
react to environmental pH.

The underlying principle in all these examples is that an
interaction between a system and its environment creates au-
tonomy. In other words, a system can generate and maintain
its own context which temporarily couples and decouples
with the environmental context. More importantly, a system
has its own dynamics without requiring an externally given
task. A so-called ’default network’ found in a brain’s resting
state is another example of such autonomy (Raichle et al.,
2001). The definition of a default network is the brain activ-
ity observed while people are day-dreaming or doing non-
specific tasks. A global (non-periodic) synchrony in neural
activity was found to exist in the default network.

In this paper, we discuss the concept of autonomy using
the example of web systems. Nowadays, web systems have
become huge and complex enough to have consciousness-
like states. Such web autonomy can be considered suffi-
ciently close to biological autonomy. Corresponding to the
non-periodic neural synchrony found in the default network,
we will report the non-periodic behavior in a simulated web
system.

In §2, we review the constitution of web systems, and in
§3, we introduce an internet simulator called NS-2 1 which
emulates the packet switching network (PSN) of the inter-

1The Network Simulator - NS-2: http://www.isi.edu/nsnam/ns/
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systems brain internet ANN the game of Life
basic element neuron & synapses node & packet coupled equation 2 states 2 dim. lattice

structure small world small world random connection regular lattice
dynamics local/global synchrony this paper synchro/polychro gliders/space ships
memory semantic & episodic memory Google DB & Twitter TL attractors & CI space pattern

Table 1: Comparison of five different network systems is be conducted; a real brain system, the internet, artificial neural nets
(ANN) and the game of Life. The structure and dynamics of each network is depicted in the 2nd and 3rd row, respectively.
Possible dynamics of the internet in terms of PSNs is discussed in this paper. In the 4th row, kinds of memory in each network
is also described, where an ANN stores its memory in terms of attractors and chaotic itinerancy (CI) and the game of life stores
its memory in terms of special spatial configurations.

net’s transport layer. In§4, data from the NS-2 simulation
will be discussed with respect to dynamic stability. In §5, a
simple question we can ask about the web autonomy such as
”what happens if everybody stops accessing the internet”, is
examined. Finally, we will discuss what brings autonomy to
a PSN.

Web Systems
The internet has made great progress in the last 20 years
and it has become a lifeline for human society. Its struc-
ture consists of roughly three layers; a network, a transport
and an application layer. When studying the autonomous
dynamics of the internet’s application layer, we can exam-
ine web crawlers and Google’s PageRank to see how the
database is automatically organised and ranked. Many social
network services (SNSs) such as Twitter are also worth not-
ing. They mutually copy and reproduce personal timelines
in massively parallel ways which is somehow complemen-
tary to what Google’s service is processing on their stored
data.

On the other hand, what enables Google and Twitter to
function correctly is a PSN on the transport layer and its
backbone network layer. This creates a system that can
be mutually connected on the internet with IP addresses on
the network layer. The protocols used for communicating
among those IP addresses are TCP or UDP. In particular,
TCP is equipped with relatively intelligent software. Each
network router sends a data flow by switching data pack-
ets. TCP plays an important role in delivering the data to the
address without going missing nor permutation of packets.
The sender controls the data amount and the router controls
data routing.

The topological structure of the internet has been inten-
sively studied and its small world property (Watts and Stro-
gatz, 1998) is revealed. One property that a network has is a
hub connection, and this is now widely known in generic in-
formation about transporting systems, e.g. gene networks
or neural networks in the brain. A.L. Barabasi reported
that such small world networks become even more robust
when compared with random networks (Barabasi and Al-
bert, 1999).

But we also think it is important to understand the flow
dynamics on the internet rather than just its topological
structure. Graham proposes PSNs as a new model for a brain
system in place of a circuit switching network (Graham and
Rockmore, 2011). Grifith et al. argue the similarity between
Google’s PageRank system and how the mind works (Grif-
fiths et al., 2007). These are the dynamic properties of a
network and we hope that the minimal and prerequisite fun-
damental dynamics for a kind of intelligence and mind can
be found in PSNs.

Indeed, the complexity of the internet’s dynamics has an
equally curious property which we find in the human neural
circuit. There have been several studies concerning dynamic
complexity of PSN (see e.g. (Frommer et al., 2009)). The
inherent complexity of PSNs can be seen at the level of pro-
ducing consciousness-like macro phenomena, which Tononi
and Edelman hypothesised with their concept of dynamic
core and reentry (Edelman and Tononi, 2000).

We list characteristics in the Table 1 to compare PSNs
with the other complex enough network systems. Neural
synchronisation phenomena were discovered by Singer in
the visual cortex of a cat (Singer and Gray, 1995). Such syn-
chrony is also found as a self-moving pattern in Hippocam-
pus slices (Takahashi et al., 2010) or in the massive num-
ber of artificial neural networks (ANN) (Izhikevich, 2000;
Izhikevich and Edelman, 2008; Izhikevich, 2006). Here we
only refer to the Izhikevich neural net, as this network is
realistic in its scale and types of neural spiking. It should
be noted that synchronisation is not always a global phe-
nomenon but it is often observed as a local synchronisation
or clustering of neural oscillation. In other words, differ-
ent neural clustering in space and time can coexist. This is
a universal phenomenon in generic coupled nonlinear sys-
tems (Kaneko, 1990).

What is more interesting is that a localized pattern can
propel itself through space; we call these gliders and space-
ships in the game of life. A glider or spaceshp is used
to prove the universal computability of the game of life as
demonstrated by William Poundstone (Poundstone, 1984).
Indeed the role of a glider pattern is for a basic informa-
tion packet to run through the system, and gliders sponta-
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Node A
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Node C

Router

packet buffer

1 2 3

4 5 6

4 5 6

1 2 3

Figure 1: An example network has three nodes and one
router. Nodes A and B send packets to node C creating two
flows.

neously interact with each other to maintain the system’s
autonomous information processing. One of the purposes
of this paper is to look for similar phenomena in PSNs by
taking packets as the simplest form of glider. This notion of
autonomy is what we are going to seek in PSNs.

If a system is autonomous and sufficiently complex, we
expect it to show various signs of intelligent behavior. One
such intelligent behaviour is based on memory dynamics.
Therefore, we put memory as the 4th row in the table. Here
different kinds of memory are potentially stored in the net-
works. ANN stores memory as attractors (see e.g. Hop-
field network (Hopfield, 1982)), which can be referred to
as semantic memory, but it also stores episodic memory
as chaotic itinerant dynamics of pseudo attractors (Nozawa,
1992; Tsuda, 2001; Tani, 1998). As discussed at the begin-
ning of this section, the internet now mainly consists of two
memory structures. One is Google’s Database (DB) and the
other is Twitter’s time line (TL). We think these are related
to semantic and episodic memory in real brain systems, ex-
cept that they are about the application layer. However this is
beyond the scope of this paper and will be reported in ASSC
15 2.

Finally, the game of life stores memory in terms of spe-
cial spatial configuration. The best known example of a
cellular automaton’s (CA) memory might well be von Neu-
mann’s self-reproducing automata (Neumann, 1967). Since
the game of life can emulate any kinds of CA, we propose
here that any powerful CA can become a universal Turing
machine in the game of life.

The Packet Switching Network Model
NS-2 is a simulator for a packet switching network (PSN).
We claim that this network corresponds to the neural net-
work of a brain system, where each connected neuron
sends electric pulses to the others with different timing and
strengths. At the end of this section we compare the basic
properties of PSNs and neural networks, but first we explain
how NS-2 works.

To illustrate how NS-2 works, let us consider a simple
network where three nodes are connected through one router
as depicted in Fig. 1. For example, when node A tries to

2ASSC 15 : The 15th annual meeting of the ASSC.
http://www.theassc.org/conferences/assc 15
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Figure 2: Changes occur in the buffer as the router receives
and sends packets with the buffer size equal to four.

send a packet to node C, it goes through the router. The
router has a certain length of packet buffer, say four. The
packet will be sent to node C if the packet buffer is not over
capacity. If the packet is over capacity, congestion occurs
and the packet will simply be dropped. Fig. 2 shows the
changes in the router’s buffer status when packets 1, 2, 3, 4,
5, and 6 from node A and B are sent to node C respectively.
The figure shows the router’s buffer when two flows occur,
one from node A to node C and the other from node B to
C. The black arrow shows the arrival of the packet to the
node, enqueueing the packet to the buffer, then sending the
resulting dequeueing of the packet. These two events would
show in the logged file of NS-2 as follows:

+ time A C 1 1
- time A C 1 1

where each line denotes ’event’, ’time’, ’destination node
id’, ’arrival node id’, ’flow id’ and ’packet id’. The ’+’ de-
notes the enqueueing event to the buffer and the ’-’ denotes
the dequeueing event to the buffer. Similarly, when the node
arrives at either a route or a node, it will be logged in the file
as:

r time A C 1 1

where ’r’ denotes an arrival event. When the buffer be-
comes full and create a congestion, a dropping event occurs
as shown in the figure for node B packet and it would be
logged in the file as follows:

d time B C 2 4

When a drop event happens, that packet will always be
lost. The Transmission Control Protocol (or TCP) is a mech-
anism designed to create more reliable transmissions. TCP
sends a packet with a serial number. When a node receives
a packet, it sends back the serial number which is called
acknowledgement (or ACK). When the sender receives an
ACK, then it sends the next packet. If the sender node
does not receive an ACK for a certain period of time or re-
ceives ACKs with wrong sequence number, then it resends
the same packet. However, as one can easily imagine, send-
ing packets one by one is not efficient. To cope with this,
TCP has a parameter called congstion window size which
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Figure 3: Network topology for the experiment.

defines how many packets the sender can send at one time.
This window size is advertised by the receiver node. To im-
prove performance, the advertised window size needs to be
set to ’large’. However, when the window size is too large,
it creates congestion with other packets resulting in packet
drops and consequent requests to re-send the packets.

While the advertised window size is imposed by the re-
ceiver, there is another window size imposed by the sender
called the congestion window size, or called the ”cwnd”.
When a new connection is established with a node,the cwnd
is initialized to one segment (i.e. the segment size is an-
nounced at the other end). Each time an ACK is received,
the cwnd is increased by one segment. The question about
how to improve performance then becomes how to adjust
the advertised window size and the cwnd size. The former
is related to the amount of available buffer space at the re-
ceiver for the connection; the latter is based on the sender’s
assessment of perceived network congestion. It is important
to note that the cwnd size continues to increase to a given
threshold or until a drop event happens.

There are a number of different algorithms to increase the
cwnd size. The one we used in this study is called Reno.
The Reno algorithm increases the cwnd exponentially until
the first packet drop occurs due to congestion. After the first
drop, the cwnd is set to half then continues to update itself
in a linear manner. When a drop happens, it again sets to
half and starts to increase again and continues this process
throughout.

As we have explained so far, PSNs (and the simulator,
NS-2) have the following corresponding properties when
compared to biological neural networks:

• Flow dynamics in PSNs correspond to the pulse trains of
neural activities.

• A buffer size corresponds to the activation threshold of a
neural firing. In the NS-2 model we use 10 as the buffer
size and the threshold of a real neural cell is about 15 mV.

• Strength of the cwnd corresponds to synaptic strength.
Here we have Reno algorithm to change the window size.

• A drop event corresponds to the fact that neural pulses
cannot contribute to an overshooting event.

Having this correspondence in mind, we analyse and explore
the PSN in the next section.

Analysis
We have conducted experiments using NS-2 on a simple net-
work topology with a 30 node setting where each node is

Figure 4: An example of spatio-temporal packet flow pat-
tern. The horizontal axis is time (each step is 10 msec) and
the vertical axis is the spatial node (here the total number of
nodes is 30). As this figure shows, each packet flow spon-
taneously bifurcates so that lines are multiplied. Every flow
shows concatinated ”V-shaped” pattern, since every success-
fully received packet is followed by ACK signal sent back to
the sender.

connected to the next node as depicted in Fig. 3. The analy-
sis will be on the flow dynamics, the congestion phenomena
and the robustness of the flow patterns when pouring a tem-
porary flow from outside. We will explain these below.

Flow dynamics
A unique characteristic of a PSN is a self-tuning cwnd size
for each flow in the network. In the first simulation, we cre-
ated 30 flows in which each router sends a series of packet
data to its neighbors through an optimised routing path-
way (or trace). All flows are set to have an equal length.
As described above, each packet between connected nodes
(i → j) is characterised by a triplet (+,-,r) state, where the
state ”+” corresponds to ”the packet in node i is ready to
send”, ”-” to ”the packet has been sent to node j” and ”r” to
”the packet has been received by node j”. Using this infor-
mation, we can visualise the spatio-temporal flow pattern as
shown in Fig. 4.

As for basic observations, we see i) The more numbers of
nodes the flow travels, the more transport time is required; ii)
Due to spontaneous time delays, packets that constitute the
same flow arrive in different timeframes, which causes the
bifurcation of flow pathways. This bifurcation pattern can
be different for each flow; iii) Even within the same flow
and in between the same traces, the bifurcation pattern can
vary temporarily.

It should be noted that the bifurcation of flow path due to
the time delay in point (ii) above is a novel feature in dy-
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Figure 5: The number of drop events as a function of the in-
tegrated input packets (we call a ’duty ratio’) on each source
node. Input packets are given periodically for each node.
When duty ratio = x(< 1), it means that each source node
sends packets for x seconds and rests for the next (1 − x)
second for every cycle.

namic systems. In PSNs, flow is spontaneously quantized
into a series of packets when transporting to other nodes.
This clustering event is not written in the form of an ”equa-
tion” in the PSN but happens only as a result of congestion
and timing. Although such spontaneous clustering is similar
to congestion patterns studied in traffic models (Chowdhury
et al., 2004), PSNs have drop events and ACK signals. In
the case of traffic jams, vehicles or ants will never disappear.
This traffic jam phenomenon is called congestion. Bifurca-
tion of flow pattern is correlated with this congestion pattern,
which we will focus on in the next section.

Congestion Flow
As explained in the previous section, the source node of each
flow tunes the buffer size and the cwnd size to reduce the
drop events. When the amount of flow becomes larger than
a specified volume, congestion occurs spontaneously and the
number of drop events increases exponentially as the amount
of flow increases. Fig. 5 shows an increase in the number
of drops as the ratio of the packet flow period to the frame
increases.

The drop events trigger the clustering of the window size.
In the first hundreds steps, each window size is mutually
tuned and their phases are synchronised as shown in Fig. 6.
This is known as TCP globa synchronisation 3. In the fig-
ure, all flows are set to have an equal length. In this case,
even though the cwnd size changes from a periodic to an
aperiodic state the packet flow is mostly periodic. Because

3TCP Global Synchronisation :
http://en.wikipedia.org/wiki/TCP global synchronization

Figure 6: An example of the cwnd dynamics. Each window
size of the flow is overlaid multiple times. Here the system
has a few drop events so that the network settles down to a
periodic synchronized pattern after four seconds.

almost all the drop events occur at the source of the flow, the
drop events change the cwnd dynamics but not the packet
flow pattern.

We artificially create a special topology that produces
massive congestion in the middle nodes (i.e. between nodes
14 and 15 of the 30 nodes). In this case, both the flow pat-
terns and the cwnd dynamics become unstable, as the drop
events occur not only at the source but also at the relay
nodes. Some examples of the flow patterns and cwnd pat-
terns are depicted in Fig. 8. The transport time of every flow
shows a power law behavior of the exponent being equal to
-2 as shown in Fig. 7. The connection between nodes 14
and 15 becomes a bottleneck and determines the entire time
scale.

When a cwnd dynamic settles into a periodic state, its pe-
riodicity becomes almost consistent with its varying win-
dow size. In the case of aperiodic cwnd dynamics shown in
Fig. 8, we classified this into five clusters based on the tem-
poral oscillating pattern as we do for the dynamical systems.

1. Periodic state: The window size changes periodically in a
stepped way. Fig. 8-(a) represents this cluster.

2. Chaotic state: The window size changes in an aperiodic
way. In the case of Fig. 8-(b,c), we have two differ-
ent chaotic behavious; one with fast amplitudes varying
in time and one with slow amplitudes changees in time,
where their time scales also show some variations.

3. Intermittent chaotic state: The periodic oscillation of win-
dow size is intermittently perturbed by a burst of large
window size. The other intermittent behaviour is that the
amplitude almost periodically oscillates around a certain
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a)

b)

c)

d)

e)

Figure 8: Examples of five categories of cwnd dynamics (right) and the corresponding packet flow pattern (left). From the
above, these are: a) periodic, b) chaotic type 1, c) chaotic type 2, d) intermittent chaos type 1, and e) intermittent chaos type
2. Time scale is set from 0 to 100,000 except for the case e), since the oscillation of case e) is much faster compared to other
cases. See the details in the text.

value but is intermittently perturbed by a larger or smaller
(often null) window size. Both of these can be observed
in Fig. 8-(d,e).

Flows synchronised in the same clustering pattern can
be found in the spatial neighbors with some exceptions. It
should be noted that the chaotic synchrony is what we com-
pare with the Hippocampus slice or Izhikevich neural en-
semble as a candidate for the origin of autonomy and a com-
putation primitive. As discussed in §2, these synchronised
patterns are important in maintaining the functionality of the
network as a whole. In particular, we propose that these syn-
chronised patterns may be a source of PSN autonomy.

Perturbation
Let us perturb the flow network by pouring an extra flow
from outside at a certain time duration. A stable network,
where both flow and cwnd pattern become periodic, will re-
main robust against the perturbation, i.e. the flow pattern and
cwnd dynamics will remain periodic. On the other hand, a

network that has massive congestion at the middle point is
less robust against perturbation. Comparisons before and
after perturbation demonstrate that flow pattern (Fig. 9) and
cwnd dynamics will be different. In other words, the flow
state can be said to have chaotic instability as it amplifies
the small difference caused by the extra flow input.

It can be said that for this special network, the flow state
becomes less robust against perturbation. But we also inter-
pret the state as adaptive because it never falls to a fixed flow
state.

Discussion
The autonomy we are looking for is having the flexible in-
ternal dynamics to change responses against external in-
puts. A certain amount of chaotic dynamics may be re-
sponsible for this. In previous studies, we have partially
proven that an autonomous robot equipped with the coupled
FitzHugh-Nagumo equations shows such autonomy (Au-
couturier et al., 2008). Analysis of how such a robot can

369ECAL 2011



Figure 7: Distribution of throughput time duration. The dis-
tribution of the shorter time duration shows the power law
behavior, which corresponds to the bottleneck connection
between the 14th and 15th nodes.

interact with the environment was the focal point.
In the present paper, we have studied PSNs to reveal the

internal flow dynamics and the system responses to external
pulse inputs. When increasing the amount of flow from the
outside, we showed that cwnd dynamics change from peri-
odic to chaotic. In the case of a network with a bottleneck
edge, the transport time of each flow obeys the power law
and the real packet flow becomes chaotic for a long period
of time.

In §1, we posed a question, ”what happens if everybody
stops accessing the internet?”. An answer to this question
might be ”it won’t stop immediately but will last a long time
because it does not attain a stable pattern as shown from the
PSN experiment”. The ever-changing nature of chaotic and
intermittent clustering may drive the autonomy of the inter-
net even with periodic inputs supplied, for example, by au-
tomated web crawlers. If a simple one-dimentional PSN can
have complex clustering patterns, the internet with its mas-
sive data flow should have ever-lasting and changing clus-
tering, thus making it autonomous. We believe these find-
ings correspond to the examples of complex networks in Ta-
ble 1. That is, autonomous networks can develop complex
local/global space time clustering or gliders.

We also claim that PSNs are a novel class of dynamic sys-
tems that spontaneously bifurcate their flow structure and
may be the backbone of the internet today. The corrspond-
ing gliders in the game of life and other intelligent systems in
Table 1 remaine stable. However in the case of PSNs, those
localised patterns can bifurcate. This bifurcation of glider-
like patterns is why we think this PSN is a new interesting
testbed for Artificial Life studies. As for future investiga-
tions, we have to pay more attention to other novel features

Figure 9: Comparison of space time plots of drop events for
the original and the perturbated network (the horizontal axis
denotes the network node IDs and the vertical axis denotes
time steps). The perturbation is introduced as a pulse packet
flow of duty ratio=1 poured during 10,000 and 20,000 msec-
onds. After the perturbation, a network does not come back
to the original state.

of PSNs. For example, dynamic routing and another TCP/IP
will be a future research target.

Our analysis here is about the transport layer not the ap-
plication layer. Examples of autonomous software in the
application layer include web crawlers, peer-to-peer soft-
ware, and SNS bots. The exsistence of those two layers does
contribute to making a more complex autonomous system.
Within a computer system, an example of a software algo-
rithm that generates chaotic dynamics in the hardware layer
was reported by Berry et al. in 2006 (Berry et al., 2006). We
are now studying the autonomous behavior in the applica-
tion layer using the notion of clustering dynamics found in
the PSN reported in this paper.
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Abstract 
An understanding of the generalized mechanism of self-
reproduction is fundamental to applications in various fields, 
such as the mass-production of molecular machines in 
nanotechnology. We have developed a model for the simulation 
of cellular self-reproduction in a two-dimensional cellular 
automaton, and we have demonstrated that the following three 
functions can be realized: (1) formation of a border similar to a 
cell membrane, (2) self-replication while maintaining carrier-
containing information, and (3) division of the cell membrane 
while maintaining the total structure. Furthermore, we have 
constructed a hybrid cellular automaton model. To reduce the 
number of transition rules, we considered not only the state 
transition rules but also the concentration diffusion in the Gray 
Scott model, in which the self-reproduction phenomenon 
emerges under certain parameters. 

Introduction 
An understanding of the generalized mechanism of self-

reproduction is considered fundamental to applications in 
various fields, such as the mass-production of molecular 
machines in nanotechnology and artificial synthetics in 
biology (synthetic biology). Futhermore, it is difficult to 
construct large, complex machine systems that exceed a 
certain size, using a top-down approach. Therefore, such 
complex systems must be constructed using a bottom-up 
approach based on the phenomenon of biological self-
organization. Thus, it is crucial to elucidate not only the 
details of real cellular reaction networks but also the 
conditions necessary for self-organized and self-replicating 
cells. 

A system that can simulate the self-reproduction of a cell 
must fulfill the following requirements. 1) It can express 
phenomena of nanolevel molecular behavior such as the 
Brownian movement. 2) It can express a chemical reaction 
system. 3) It can express the shape (difference in reaction 
process according to the shape) of compounds such as 
proteins. 4) It can express the emergence of macro shape and 
function for a bottom-up approach. For such a calculation, a 
particle system model is a potentially superior option. 

Fifty years ago, von Neumann (1966) initiated a study on 
self-reproduction models from a mathematical viewpoint. His 
study theoretically proved the possibility of constructing a self-
reproducing machine using cell states and the transition rules 
of two-dimensional square cells. However, von Neumann’s 

self-reproducing machine was large; therefore, it is difficult to 
implement this machine perfectly in a computer system 
(Mange, 2004). In 2010, Hutton (2010) implemented and 
simulated over its entire replication cycles. Later, Langton 
(1989) developed a simple machine capable of self-
reproduction, by abandoning the completeness of von 
Neumann’s machine; although its shape was quite simple and 
it could reproduce specific shapes, the rules of transition were 
complicated. The derivation of transition rules using genetic 
algorithms has been investigated (Reggia, 1998)(Sipper, 
1998); however, it is difficult to derive the generalized rules.  

Historically, researchers have attempted to develop a 
mathematical model to simulate the morphosis of living 
matter. Studies on the reproductive models of a body surface 
design, namely, the Turing model (Turing, 1952), and those 
on the leaf vein pattern of a plant (Feugier, 2005) and mollusk 
shell patterns (Meinhardt, 2003) are examples of previous 
research. In addition, many researchers have used a cellular 
automaton model to study tissue or tumor growth. Although 
these models can simulate a number of features of biological 
self-reproduction on a computer, they cannot reproduce the 
entire body on the basis of unified equations and rules, such as 
cytodifferentiation by gene expression→morphosis of 
cells→organogenesis→emergence of function. 

 
In our previous study (Ishida, 2010) we developed a model 

for the simulation of cellular self-reproduction in a two-
dimensional cellular automaton. We demonstrated that the 
following three functions could be realized by the transition 
between two adjacent cells. 
(1) Formation of a border similar to a cell membrane. 
(2) Self-replication while maintaining carrier-containing 
information (information carrier). 
(3) Division of the cell membrane while maintaining the total 
structure of the cell. 

In this study, we demonstrate the self-reproducing ability 
of a shape that is similar to that of a real living cell. Figure 1 
shows the results of a cell-type self-reproducing two-
dimensional cellular automaton. It is important to note that the 
objective of this study is not to clarify all the necessary and 
sufficient conditions for self-reproduction. Instead, we 
consider the possibility of simulating self-replication in a real 
dynamic chemical reaction environment by applying the 
transition rules determined in this study. A similar previous 
studies by Ono, Ikegami (2000), and Hutton (2007). Ono & 
Ikegami does not completely lead to the replication of the 
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same cell. Hutton’s work involves self-reproduction that does 
not include information carriers such as genes. The latter point 
indicates the novelty of the present study. 

Objective 
In this study, we constructed a hybrid cellular automaton 

(CA) model. Figure 2 shows the outline of the hybrid model. 
To reduce the number of transition rules, we considered not 
only the state transition rules but also the concentration 
diffusion of the field. We chose the Gray Scott model (GS 
model) (Gray, 1984), in which the self-reproduction 
phenomenon emerges with certain parameters. In this hybrid 
model, information carriers trigger the self-reproduction 
phenomenon of the GS model, and a cell membrane is formed 
by a part of the specific concentration of the GS model. If a 
single cell is being simulated, cell membrane formation is 
possible using a linear diffusion equation. This is difficult to 
accomplish using a simple linear model, and the GS model is 
necessary to fill the space while multiple cells are adjacent to 
one another and to maintain the distance between them. 

This model is new, and it can be combined with existing 
models, such as the reaction diffusion equation models in the 
CA model. We express a macromolecule system in the CA 
model, and we express the small molecule-based reaction 
system that constitutes a reaction diffusion model, because the 
calculations become enormous when we calculate the 
reactions of all the molecules. 

The simulation of a real living cell was considered 
difficult to express with only two phases, but it was based 
on future development. Furthermore, because a simple 
chemical reaction system can be substituted for the GS 
model, it is thought that we can simplify the model in the 
future. 

As shown in Figure 3, we arranged the transition rules in 
the CA model and the GS equation parameters in two-
dimensional space in order to simulate the duplication of 
hereditary information carriers, the encapsulation of 
information carriers by a cell membrane, and maintenance of 
the shape of the membrane.  

Cellular automata possess characteristics that can help us 
understand the association between transition rules and results 
so that a state is determined solely by the rules governing the 

transition between adjacent cells. In addition, the cellular 
automaton model has already been applied to discrete particle 
simulation, as in the case of fluids. For these reasons, it is 
theoretically possible to apply the transition rules to chemical 
or particle-collision systems. 

 

 

Step 0 Step 9 Step 136 

Step 410 Step 232 Step 650 
Figure 1 Results of a cell-type self-reproducing two-
dimensional cellular automaton (Ishida, 2010)  

Figure 2 Outline of hybrid cellular automaton model 

Cellular automata model 

State distribution based on the 
Gray Scott model 

Reproduction of cell division phenomenon by mutual 
interaction of simple rules and field equations 

Control the cell 
transition with 

quantity of field 
Control the quantity of 
field with cell transition 

Figure 3 Conceptual diagram of cell-type self-
reproduction in two-dimensional cellular automata 

1. Initial condition 
Only information carriers 

2. Formation of cell 
membrane 

3. Replication of information carriers 
The cell membrane transforms due to the 
changed shape of the information carriers. 

4. The replicated information 
carriers separate 

The cell membrane transforms due to the 
changed shape of the information carriers. 

5. Division of the cell membrane 
Two cells are formed 

Information 
carriers 

Cell membrane 
Nuclear 
membrane 
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Research Method 
 

Cellular automaton model 
A two-dimensional hexagonal grid model was used in this 

study (Figure 4). Although square grids are typically used for 
two-dimensional cellular automata, a hexagonal grid model 
was used in this study for two reasons. 
(1) In the case of a square grid, the state of an automaton in 
the next step is determined on the basis of the state of the cell 
itself and the states of the eight adjacent sites. This increases 
the number of transition rules, and consequently their 
complexity. In the case of a hexagonal grid, the state of the 
next step is determined by the state of the cell itself and the 
states of the six adjacent sites. This reduces the number of 
transition rules. 
(2) Isotropy in the horizontal/vertical and diagonal directions 
is maintained in a hexagonal grid but not in a square grid. 
 

The cell automaton was constructed according to the 
transition rules so that the state of the next step was 
determined by the state of the cell itself and the states of the 
six neighboring cells. Each cell had a state (0–19 states) and a 
direction (6 directions) as attributes. 

0: State of non-being 
1: States in which hereditary information carriers (Only 

states 1 and 2) have a directional attribute (any one of the 
6 directions)). We can describe various types of 
information by creating subspecies (1-a, 1-b, etc.) for 
state 1. 

2–10: States in which the nuclear membrane surrounds the 
hereditary information carriers 

11–18: States that constitute space within the cell 
19: States that consist of the cell membrane 

 
In a hexagonal grid, the calculations start from a certain 

initial condition. As shown in Figure 5, the transition rules 
were divided into the following 4 phases: 1) state transition as 
regards cell membrane formation, 2) division of the 
information carriers, 3) movement of the information carriers, 
and 4) formation of a nuclear membrane surrounding the 
information carriers. In other words, we first applied the 
transition rules for cell membrane formation and settled the 
total states in all cells. Then, we applied the transition rules 
for the division of information carriers, after which we applied 
the transition rules for movement of the information carriers 
and formation of the nuclear membrane.  

To induce objective state transitions of the cellular 
automata, we added transition rules to remove the unnecessary 
side effect reaction at the same time. We divided the 

transitions into 4 phases to discover the transition rules, 
because discovery of the entire set of transition rules was 
difficult to achieve all at once. 

Gray Scott (GS) model 
The cell transition patterns in this cellular automaton model 

resemble those of physical phenomena. Thus, we considered 
the possibility of replacing the transition rules with those of a 
non-linear quantity model such as the GS model. The 
equations for the GS model are given below. The self-
replication patterns occur under certain conditions (Du = 0.04, 
Dv = 0.02, F = 0.02, and k = 0.06 in this study).  

The initial concentrations of U and V assumed for the 
differential equation of the GS model were 1.0 and 0.0, 
respectively. This is a steady state in which there is no change 
in the concentration distribution. When there is a change in 
the concentration level in some spatial position, this triggers a 
dynamic change. When state 19 exists, the concentration 
distribution in the GS model in the same spatial position 
changes (from U = 1.0 and V = 0.0, to U = 0.25 and V = 
0.35). This unstable state leads to changes in the concentration 
distribution of the GS model. 

On the other hand, as regards the action from the GS model 
to CA model, it is as follows. We calculated the ratio (500-
U)/V of density U,V in the GS model and divided it into 10 
parts between the minimums and the maximum of the value, 
and thus derived a potential level (1-10). A transition was 
induced in the CA model space when the condition appeared 
of a potential level shown in Table 4 on the GS model. 

In addition, in the GS model, we can clarify the parameter 
set for when a self-reproduction design appears, but we cannot 
control the size of the self-reproduction design. Therefore, we 
adjusted the space scale of the CA model and the space scale 
of the GS model so that a cell membrane that encapsulated an 
information carrier was formed. The theoretical determination 
of the space scale method requires further investigation 
examination.  
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Transition rules 
Each cell was renewed by the transition rules, and the state 

of the next step was determined by the state of the cell and the 
states of its 6 neighboring sites. The transition rules are 
presented in Tables 1–4. We have not yet discovered a method 
with which to derive transition rules automatically according 
to a uniform law. Therefore, we constructed transition rules 
step-by-step according to the movements of the automaton. 

In this hybrid model, the information carriers first activate 
the GS model. Cell membrane states appear under certain 
concentrations of the GS fields. The movement of the nuclear 
membrane was controlled by the concentration of the GS 
fields. 

 
 Figure 4 Hexagonal grid model used in this study

a 

Each cell; 
・state; 0～19 
・direction; 1～6 
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Initial conditions 
  Figure 6 shows the initial condition. The entire cell is in 
state 19. State 1 indicates the information carriers, three of 
which are arranged consecutively in the central part. The 

intersection of state 19 and state 1 triggers the GS calculation. 
The purpose of this study is to find a minimum set of 
transition rules to achieve self-reproduction in a two-
dimensional cellular automaton space. Our transition rule does 
not realize self-reproduction in any initial state. 

Results 
Figure 7 shows the process of cell membrane formation 

and the process of the division of information carriers within 
the cell membrane. We carried out calculations for 101 steps; 
some of our results are shown in the figure. In each image in 
the figure, the upper part is the CA model and the lower part 
is the distribution of the potential level by the GS model. In 
this way, we were able to replicate the phenomenon of cell-
like division.  

Table 5 shows the number of transition rules for the 
cellular automaton model (Ishida, 2010) and the hybrid model. 
Using the hybrid model, we reduced the number of transition 
rules. In the case of the CA model, the transition rules to 
synchronize the cell-centered nuclear shape and the shape of 
the cell membrane were complicated. In the hybrid model, on 
the other hand, self-replication was possible with fewer rules, 
such that a cell membrane was formed on areas of a specific 
concentration. As compared with the CA model, the hybrid 
model is complicated in terms the calculation of the GS 
model; however, simpler rule description will be possible in 
the future because the GS model can replace the simple 
metabolism system. 

 
 

Table 1 Transition Rule 1 (division of the information carriers) 

State Direction
Transition of

central cell (state)
Transition of central

cell (direction)
1 3300311 11 2 5
2 3300211 510 2 5
3 3300211 511 2 5
4 3303211 510 2 5
5 3303211 511 2 5
6 3003213 500 2 5
7 3300322 55 1 6
8 3303122 655 1 6
9 3003123 650 1 6

10 2213311 5560011 4 0
11 2211411 5566011 4 0
12 2211411 5566010 4 0
13 2311413 5066000 4 0
14 1133344 6600000 1 1
15 1133144 6600100 1 1
16 1333143 6000100 1 0

Supplementary explanation
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State and direction of each cell indicated by seven columns of progression in order of 
a - g from a central cell. 

Direction 

State 
1 2 

3 

4 5 

6 

Supplementary explanation of Table 1 and Table 2

Figure 5 Calculation flow 

Initial condition 

Application of transition 
rules for division of 
information carriers 

Settled the total states in 
all cells 

･･･Transition rules-1  
(Table 1) 

･･･Transition rules-2 
 (Table 2) 

･･･Transition rules-3 
 (Table 3) 

･･･Transition rules-4 (Table 4)   

Settled the total states in 
all cells 

Settled the total states in 
all cells 

Settled the total states in 
all cells 

Application of transition 
rules for movement of 
information carriers 

Application of transition 
rules for nuclear membrane 

formation 

Application of transition 
rules for cell membrane 

formation 

1 Step 

Calculation of Gray Scott 
model 

Transition rules-0  
if ⑲≧１ then  
(U = 1.0, V = 0.0 → U = 0.25, V = 0.35) 

Control the quantity of field with cell 
state 

Control the cell transition with quantity 
of GS model field 
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Table 4 Transition Rule 4 (formation of the cell membrane) 

Table 3 Transition Rule 3 (formation of the nuclear membrane surrounding the information carriers) 

Table 2 Transition Rule 2 (movement of the information carriers) 

Central Cell Conditions of six
neighborhoods

Transition of
central cell (state)

1 ≠①，②，④～⑨ ①≧1 ③ formation of the nuclear
membrane

2 ≠①，②，④～⑨ ②≧1 ③ 〃

3 ③　and (Potential Value = 7） - ⑧ 〃
4 ③ ⑧≧1 ⑧ 〃

5 ④～⑨ （①＜1）and（◎≧1） ◎
nonessential removal
between information

・The circled number  the state of the cell.（ex. ◎ indicates state 0, ① indicates state 1）
・Method of describing condition : e.g., "①≧ 1" indicates that there is more than one cell in state 1 among
  the six neighborhoods.

Supplementary explanation

Central Cell Conditions of six
neighborhoods

Transition of
central cell (state)

1 Potential Value ＝1or 2 - ⑯ formation of the cytoplasm
2 Potential Value ＝3or 4 - ⑰ formation of the cytoplasm
3 Potential Value ＝5 - ⑲ formation of the cell
4 Potential Value ＝6 - ⑭ formation of the cytoplasm
5 Potential Value ＝7 - ⑬ formation of the cytoplasm

6 Potential Value ＝8 - ◎
formation of the constitutive

space in the cell

7 Potential Value ＝9 - ◎
formation of the constitutive

space in the cell

8 Potential Value ＝10 - ⑬
formation of the cytoplasm

・The circled number show the state of the cell.（ex. ◎ indicates state 0, ① indicates state 1）

Supplementary explanation

Potential X

CA model

GS model

State Y

State Direction
Transition of

central cell (state)
Transition of central

cell (direction)
1 3300031 1 4 0 Control of DNA division
2 8800041 1 4 0
3 8800411 11 1 1 movement of terminal
4 1114844 1110000 4 0
5 1114444 1110000 4 0
6 8808111 111 1 1 Movement of middle cell
7 1111444 1111000 4 0
8 8808111 110 1 1 Movement of middle cell（ in

front of  tip）
9 1111444 1011000 4 0

10 8008116 100 1 0 Movement of tip
11 1611445 1000 4 0
12 8008118 100 1 0
13 1811446 1000 4 0
14 1811448 1000 4 0
15 1118844 1110000 4 0 continual movement of

terminal
16 8611800 1000 1 0 Movement of tip
17 1544116 100 4 0
18 8811800 1000 1 0
19 1644118 100 4 0
20 1844118 100 4 0
21 8111808 11000 1 1 Movement of middle cell
22 1444111 1000110 4 0
23 8118008 110000 1 1 movement of terminal
24 1445811 1000011 4 0
25 1448811 1000011 4 0

Supplementary explanation
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Table 5 Number of transition rules 

Conclusion 
In this study, we constructed a model of a hybrid cellular 

automaton model. Our model displayed self-reproduction in a 
cell-like shape with few state transition rules. To reduce the 
number of transition rules, we considered not only the state 
transition rules but also the concentration diffusion in the Gray 
Scott model, in which the self-reproduction phenomenon 
emerges with certain parameters. 

The future direction for this research includes the 
discovery of other sets of transition rules, identification of a 
way to derive transition rules automatically on the basis of a 
uniform law, and theoretical application of transition rules to 
particle collision. 

Figure 8 shows the overall perspective of our artificial cell 
simulation. We believe that the transition rules of this model 
can be applied to the simulation of self-replication phenomena 
in a real dynamic chemical reaction environment. Initially, we 
plan to simulate cell division in a discrete particle reaction. It 
is relatively easy to replace state transition rules with 
collision/reaction rules of discrete particles. Next, we plan to 
simulate cell division in a continuous chemical reaction by 
converting discrete particles rules into chemical equations. 
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Figure 8 Framework of artificial cell simulation  
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Abstract

We survey the relationships between evolution, individual
learning and social transmission within well-mixed and struc-
tured environments. With a novel individual-based simula-
tion, we determine the regimes under which each mode of
learning dominates, in terms of the environment’s relative
complexity and its rate of change. We show that social learn-
ing can give rise to a particularly potent form of the “Baldwin
effect”, wherein an organism develops an innate trait having
first acquired it socially. We demonstrate that social learning
is of increased significance in a structured environment.

Introduction
To operate successfully in a Darwinian system, it is advan-
tageous to possess maximal information about our environ-
ment. This is reflected in the functional information that all
living creatures inherit via DNA, which codes for the set of
functional characteristics most likely to benefit an organism
in its future surroundings (Avery, 2003).

However, the environment which produced a parent is
never quite the same as when its child is born. Ecological
habitats are continually changing as their inhabitants con-
sume and produce resources, with environments effectively
co-evolving with their organisms. Inheritance is thus an in-
trinsically probabilistic process, which uses rules of thumb
to provide the best possible solution given the expected habi-
tat based on previous generations (Seth, 2007).

To optimally deal with uncertainty, all organisms exhibit
some degree of phenotypic plasticity (West-Eberhard, 1989;
Scheiner, 1993): the ability to alter behaviour or physiol-
ogy in response to environmental conditions. By allowing
some morphological decisions to be fixed later in an or-
ganism’s lifetime, evolution can effectively defer decisions
about functional specifics. This appears to be particularly
prominent in fluctuating and heterogeneous environments,
which are naturally less predictable (West-Eberhard, 1989).

Evolution, learning and culture
The most radical form of phenotypic plasticity is be-
havioural learning, which can respond rapidly and flexibly

to novel stimuli based on prior experience. Learning can be
considered as giving foresight to the blind process of evo-
lution, by enabling an organism to search the fitness land-
scape around the point determined by its genotype (Belew,
1990; Borenstein et al., 2006). As Maynard Smith (1987)
observes,

“...finding the optimal [solution] in the absence of
learning is like searching for a needle in a haystack.
With learning, it is like searching for the needle when
someone tells you when you are getting close.” (May-
nard Smith, 1987, p762).

In this paper, we are concerned with two forms of learn-
ing: individual exploration, which we shall define as trial-
and-error learning solely between an individual and its (abi-
otic) environment; and social learning, in which an or-
ganism acquires traits by observing or mimicking the be-
haviours of others (Lefebvre and Palameta, 1988). Countless
species engage in social learning (Galef and Laland, 2005;
Laland, 2004a), through mechanisms such as mimicry,
teaching, and goal emulation. We shall here deal with a gen-
eral case in which a trait is exhibited after observing another
organism as a model (the “exemplar”).

When evolutionary systems are extended with lifetime be-
havioural plasticity, we should expect some interesting inter-
actions to arise. One which came to the attention of the first
generation of evolutionary theorists after Darwin (Baldwin,
1896; Morgan, 1896) is the “Baldwin effect”, a term coined
half a century later (Simpson, 1953) after one of its progen-
itors, ironically in an attempt to discredit the theory.

The general pattern encapsulated within the Baldwin ef-
fect is as follows:

1. A population arises in which some trait P becomes bene-
ficial.

2. Some individuals arise which, through their phenotypic
plasticity, are able to learn P .

3. In some of these individuals, the trait P becomes innate
(genetic assimilation).
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With the assumption that innate behaviours are less costly
than those which are plastic, we would then expect selective
pressure to lessen on these particular learning capabilities: if
we can do it by nature, we no longer need to be able to learn
it (West-Eberhard, 2003).

The status and prevalence of genetic assimilation within
real-world ecosystems is as yet unresolved, and subject to
some controversy (Pigliucci et al., 2006). Due to its onerous
requirements – a species sufficiently advanced to partake in
social learning, bred over a sufficient number of generations
for a trait to become genetically incorporated – it is difficult
to observe via in vivo studies, though Waddington’s (1953)
“veinless” study elegantly demonstrates its biological plau-
sibility. It is, therefore, a well-suited candidate for in silico
experiments.

Theoretical studies of social learning
A large body of theoretical work has been developed at the
confluence between evolution, learning and cultural trans-
mission (Cavalli-Sforza and Feldman, 1981; Boyd and Rich-
erson, 1985; Wakano et al., 2004). The watershed work
was a computational model by Hinton and Nowlan (1987,
henceforth ‘H&N’), who extended binary genetic algorithms
with an undefined third value, whose outcome is determined
by lifetime learning. Though intentionally simplistic, this
model effectively demonstrated the “needle in a haystack”
function of learning as a dowsing rod to guide evolution to-
wards discontinuous fitness peaks.

Belew (1990) and Best (1999) have extended H&N with
differing forms of cultural transmission, both in a well-
mixed environment, incorporating oblique and horizontal
forms of social exchange. While Belew models cultural ex-
change as a bias towards higher fitness, we will follow Best
as treating it as a more neutral form of behavioural mimicry,
in which an organism may imitate deleterious as well as
adaptive behaviours.

Models of social transmission within a spatial environ-
ment include work by by Boyd and Richerson (1988),
Lowen (1996) and Borenstein (2003). A consensus view
has emerged that sociality is of benefit within structured en-
vironments. We wish to extend these analyses to survey
the regimes under which each mode of learning excels, and
whether unforeseen mixed strategies may come to the fore
given a heterogeneous, individual-based model.

We also wish to model the scenario conjectured by Pa-
pineau (2005), who posits that the Baldwin effect may be-
come significantly more prominent when bolstered with so-
cial learning. This can be roughly encapsulated by the in-
equality:

p(G)� p(L)� p(S) (1)

Where p(G) is the probability of exhibiting a trait in-
nately, p(L) is the probability of learning it through ex-

ploration, and p(S) is the probability of acquiring the trait
through social learning. Quite simply, wherein it is effec-
tively impossible to acquire a functional trait P through evo-
lution – perhaps because it is comprised of multiple sub-
traits, which are jointly necessary to reap a fitness benefit
– this process may be somewhat more likely when lifetime
learning is possible, and even moreso when social learning
enables organisms to share traits.

This argument, though intuitively sound, is thus far based
on heuristic assumptions. The following model is intended
to quantitatively explore situations in which a social Bald-
win effect can take place, and particularly those in which
combination strategies can arise: evolved individuals can ex-
hibit both individual and social learning in proportion. We
are furthermore interested in how these phenomena interact
in a context which is explicitly spatial, a combination which
has not yet received significant attention.

Model specification
We will now describe the components of the individual-
based model used to explore these ideas1. An environment
E consists of a B-bit string, representing a ‘target’ task:
E ∈ {0, 1}B . The current environmental state can therefore
be considered as a vertex on an B-dimensional hypercube.

It is inhabited by a population of N agents, each of which
has the following properties:

• bevo, bexp, bsoc ∈ [0, 1] – behavioural traits determining
the propensity towards evolutionary instinct, individual
exploration, and social learning. These are collectively
normalised to sum to unity.

• g ∈ {0, 1}B – genotype, a B-bit string corresponding to
the capability to fulfil the environment’s target task.

• p ∈ {0, 1}B – phenotype, a B-bit string initially equal
to g, but subject to modification through individual and
social learning. If p is equal to E then the agent’s fitness
is maximised.

• Ω – current metabolic state, initialised to a constant Ω0.

An agent’s current phenotype determines how well it
complies with the environment’s demands, based on its
Hamming distance from E. Its metabolic state determines
the extent to which it has ‘grown’ throughout its lifetime.

Actions and learning
Every timestep, each agent selects a behavioural mode ac-
cording to a weighted random of {bevo, bexp, bsoc}:

• bevo – act according to the agent’s current phenotype

• bexp – act according to the agent’s current phenotype, with
β bits toggled at random
1For all subsequent parameter values, see the Methods section.

381ECAL 2011



• bsoc – act according to the agent’s current phenotype, with
β bits copied from a neighbour using roulette wheel se-
lection weighted by Ω. With a probability pnoise, each
of these bits may be copied erroneously (that is, toggled
from 0 → 1 or 1 → 0). This models the inaccuracy
present in real-world imitative learning: a behaviour may
be only partially observed, or reproduced incorrectly.

If bexp or bsoc is employed and the resultant action gives
a higher payoff than the agent’s own current phenotype, the
corresponding bits in p are replaced by the new action: dis-
covering (or imitating) a successful new trait results in its
being incorporated into the agent’s roster. This reflects phe-
notypic plasticity, where β is the limiting factor on the rate
at which new skills can be acquired.

In the case of bsoc, weighting the exemplar by their Ω
value reflects a tendency towards mimicking those organ-
isms which are perceived as being fittest. This is described
by Laland (2004b) as a “copy-successful-individuals” strat-
egy, as observed in avian, chimpanzee and bat societies.

The agent’s metabolism is then modified according to the
following update rule:

∆Ω =
(

1− H(p,E)
B

)α−1

(2)

where H denotes the Hamming distance between two bit
strings. The exponential of α is used to determine the fit-
ness differential between perfect and almost-perfect task ful-
filment: a lower value of α means that payoffs fall more
rapidly with distance. With α = 1, scaling is linear in dis-
tance.

In general, if an agent’s g matches precisely the tasks
specified in Ei, its metabolism will increase by the maxi-
mal value of 1. If g is precisely the complement of Ei, its
metabolism will increase by 0.

Taken as a population mean, the metabolic rate ∆Ω can
be considered as a measure of fitness, as it is directly pro-
portional to reproductive rate. We will subsequently use the
terms interchangeably.

Reproduction
When an agent’s metabolism Ω reaches the value 2Ω0, the
agent reproduces asexually. Its offspring has an identical
genotype, subject to each bit of g mutating with small prob-
ability pmut. Behavioural trails bevo, bexp, bsoc are modified
by a zero-mean Gaussian noise function, standard deviation
µ, and clipped to [0, 1]. These are again collectively nor-
malised to unity. The child replaces a member of the popu-
lation selected uniformly randomly, and its parent’s Ω value
is reset to Ω0.

Sexual recombination was considered as a reproductive
strategy. Kauffman (1993) observes that recombination is
an effective method of finding ‘middle ground’ locations
between points on a complex fitness landscape. However,

Figure 1: Distribution of behaviours in a static environment,
averaged over 25 simulation outcomes.

given our single-peaked landscape, we focus on clonal re-
production for the sake of simplicity. A number of recombi-
native trials indicated that the results would not be qualita-
tively different.

Results
The results of this model are presented in incremental form,
with processes introduced gradually. The motivation behind
this approach is to understand pairwise interactions between
adaptive mechanisms. By doing so, we hope to fully under-
stand the causal basis behind the emergent phenomena.

Static environment
We initialise the environment’s task to 1B for clarity (fol-
lowing Hinton and Nowlan (1987)) Behavioural traits are
initialised to uniformly random values, and the population
left to evolve.

The changing distribution of behavioural traits over time
is shown in Figure 1, as averaged over multiple iterations
(see Methods). At step 0, the frequency of each is 1

3 , indicat-
ing the initial uniformly random distribution of behavioural
modes.

The dynamics can subsequently be divided into three
phases. (i) Between steps 1–4000, the population is dom-
inated by social learners, with a generally low level of geno-
typic fitness meaning that a costlier but fitter social learning
is preferable. (ii) From steps 4000-9000, the trait has been
assimilated into the genotype of the majority, and so innnate
bevo agents outcompete their costlier plastic rivals. (iii) Be-
yond step 9000, a stable optimum is reached.

Sharpening these costs by reducing payoff scaling factor
α0 results in a more rapid convergence to a predominantly
bevo population. This also reduces the effectiveness of life-
time learning, of course, which introduces a penalty in fluc-
tuating environments.
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This is a clear example of the Baldwin effect. Phenotyp-
ically plastic individuals first outcompete their peers (i) as
they scramble to higher fitness through learning and social
exchange, and are subsequently replaced (ii, iii) by innate
mutants, who do not bear the costs of exploration.

A repeated trial wherein all agents begin with a genotype
of 1B reveals, as anticipated, that they continue to maintain
a stable state with only low levels of social and individual
learning.

Static environment with restricted strategies
The above experiment was repeated with a fixed trait muta-
tion factor of µ = 0 and initial behavioural traits restricted
to specific combinations: either pure evolutionary learning
(bevo), or evolution plus learning (bevo + bexp), or evolution
plus social learning (bevo + bsoc), or all three traits in com-
bination.
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Figure 2: Convergence rates with four different strategies:
bevo, bevo + bexp, bevo + bsoc, and bevo + bexp + bsoc.

Figure 2 depicts the relative effectiveness of each strategy
in a static environment, plotting the global mean fitness (that
is, ∆Ω) over a number of generations. The key indicators of
success are the convergence rate and the value to which the
population converges.

All four strategies eventually converge around the same
peak of 0.8. The times taken to do so, however, are markedly
different. Notably, evolution plus learning takes substan-
tially more time to converge than pure evolution alone, and
continues to trail throughout the simulation. This confirms
the findings of Borenstein et al (2008) that, in a static, uni-
modal fitness landscape, individual learning actually serves
to slow convergence rates.

With social learning, convergence times are markedly
more rapid, reaching a mean fitness of 0.5 in less than half
the time as evolution or evolution plus learning.

Static environment with single perturbation
Here, the scenario was repeated as per the Static Environ-
ment case, with with an environmental perturbation induced
at step 10000: each of its bits were flipped according to a

probability p = 0.5. As indicated in Figure 3, this change re-
sults in a temporary increase in social and exploratory learn-
ers, bringing up phenotypic fitness through plasticity whilst
evolution takes time to work out the necessary series of mu-
tations.

Figure 3: A single perturbation occurs at t = 10000. Sub-
sequently, agents are selected for increased social and ex-
ploratory learning tendencies.

Figure 4: Genotypic and phenotypic fitness after perturba-
tions.

This further demonstrates Baldwin-like phenomena, and
moreover with a social focus: whilst a small proportion of
individuals respond to environmental change by switching
to individual exploration, the predominant trend is to rely on
social learning, observing the behaviour of others to max-
imise fitness.

Fluctuating environment
We now extend the above by introducing irregular environ-
mental fluctuations. Each time step, a single bit of the envi-
ronmental task may be toggled, according to a small prob-
ability pswitch. A value of pswitch = 0.01 reflects an ex-

383ECAL 2011



Figure 5: With a regularly fluctuating environment
(pswitch = 0.01), a social learning strategy is more fre-
quently adopted.

Figure 6: With a higher reliance on phenotypic plasticity,
genetic selection pressure is lower, and so genotypic consti-
tution drifts.

pected period of 100 timesteps between fluctuations. With
an initial metabolism Ω0 = 10 and a typical ∆Ω = 0.5,
the environment could be expected to fluctuate once every 5
agent-lifespans.

The optimal combination of strategies is markedly differ-
ent than in a fixed environment (Figures 5 and 6). Social
learning dominates, reflecting the benefit of a faster adap-
tive rate with changing fitness targets.

Convergence patterns are also markedly different (Fig-
ure 7). In a rapidly changing environment (pswitch =
0.005), no strategy attains a mean fitness of above 0.7: even
with the ability to mimic successful peers, it is difficult to
maintain a high performance level in the face of continu-
ous change. Social learning is frontrunner once more, with
bevo+ bexp significantly outperforming pure evolution. This
reflects the advantage in random trials when an organism’s
genome is lagging behind the rate of change of its environ-
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Figure 7: Convergence rates are markedly different within a
fluctuating environment (pswitch = 0.005).

ment.

Environmental rate and complexity
To gain fuller insight into the relative strengths of individual,
social and exploratory learning in fluctuating environments,
we carried out an array of simulations over a range of rates of
change (pswitch ∈ [5× 10−6, 0.5]) and environmental com-
plexities (B ∈ [1, 2048]) Each permutation of pswitch and
B was executed for 105 timesteps, and a snapshot taken of
the final distribution of behavioural traits. These are mapped
in Figure 8, with the dominance of each trait demonstrated
by its share of the pie chart at the given (complexity, rate)
combination.

Learning modes, unstructured environment
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Figure 8: Dominant learning modes at equilibrium, varying
dimensionality and rate of change of environment.
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Figure 9: Ring of environmental ‘cells’. Tasks are numbered
according to Gray code: note that adjacent cells have 1 bit
difference.

At low rates of change and in simple environments, the
population demonstrates a significantly greater mean growth
rate, with a clear prevalence of bevo. As either rate or
complexity increase, strategies become more mixed, with a
trend towards social learning at median values of each. A
greater amount of noise in the results suggests that selection
pressures per are weaker, leading to more vulnerability to
stochastic variation.

At very high rates of change or complexity, a sudden in-
crease of bexp dominance is evident. This is relatively simple
to interpret in the former case: if the environment is chang-
ing faster than information can percolate through a social
group, then even social learning is inferior to individual trial
and error.

The benefit of learning in very complex environments is
less clear; even in a virtually static environment (pswitch =
5 × 10−6), exploration exceeds innate strategies for B =
2048. Analysis reveals that the fitness (∆Ω) in these regimes
is uniformly low: given the rapid fitness falloff due to α,
neither evolution nor social learning are fit to find suitable
values. With such a large parameter space, the optimal resort
is simply bit-wise trial and error.

Structured environment
We now extend the model by introducing a form of spa-
tial structure. The single environment is replaced by a 1-
dimensional ring of L environmental “cells’, each with a
distinct population and set of tasks (Figure 9). Inhabitants
of each cell can only interact with each other. As before, the
size of the total metapopulation remains constant at N .

Each environmental cell has a single neighbour on each
side, with the rightmost cell wrapping around to the left-
most. To introduce correlation between the task structure
of neighbouring cells, integer sequences were produced us-

ing Gray code, a base-2 numeric encoding in which any two
adjacent integers have a Hamming distance of 1. A further
property of Gray code sequences is that they are cyclical,
with the first and final integer of any 2N -length sequence
also one bit apart. It is possible, therefore, to produce inte-
ger rings with pairwise Hamming distance of 1.

During a timestep, a agents may move from their cur-
rent location to a neighbouring cell with a small probabil-
ity pmove. Evolutionary and individual learning are unaf-
fected; social learning, however, is now restricted to exem-
plars within the agent’s current location.

Learning modes, structured environment
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Figure 10: Dominant learning behaviours in a structured en-
vironment with migration.

From Figure 10, we can see that the overall distribution of
learning patterns is similar: in static, simple environments,
innate behaviour is commonplace, moving towards social
learning in more complex and fluctuating contexts.

With rapid fluctuations, exploratory learning still excels,
but it appears to have slightly less prevalence in environ-
ments with a large B value. This appears to be due to what
we will call the “local specialist” effect: in a well-mixed,
complex environment, there are a large range of behaviours
to mimic, drawn from a large variety of sources. Even if we
select our exemplar wisely, we may still mimic the wrong
behaviour, as they too will be employing random search to
test out new tasks.

In a structured environment, conversely, we have smaller
number of local neighbours to mimic. With the roulette-
wheel mechanism used to select exemplars, a smaller popu-
lation also means a higher likelihood of selecting an highly-
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ranked target. Combined with the fact that selection pressure
still operates by removing the weakest agents of the global
population, this means that positive behaviours are dissemi-
nated and adopted rapidly within individual cells, giving rise
to social ‘specialist’ cliques.

Structured environment with migration
In this scenario, we remove environmental fluctuations, and
instead vary pmove: the rate at which migration occurs. Fig-
ure 11 depicts this new distribution, with its Y-axis repre-
senting the rate of migration, over the same range as the
fluctuation rate was previously plotted. The only variation
that an agent will experience in its environment is when it
moves from cell to neighbouring cell, so this can effectively
be considered analogous to our previous environmental fluc-
tuations.

Learning modes and migration rate
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Figure 11: Dominant learning behaviours by migration rate
and environmental complexity.

Learning strategies do not appear to correlate significantly
with movement rates, despite the fact that movement be-
tween cells does effectively change the environment that an
agent experiences. However, a significant difference takes
place at high movement rates. Rather than resorting to in-
dividual trial and error, agents make greater use of social
learning. This may be interpreted as a more focused version
of the local specialist effect; in a static environment with fre-
quent migration, we would expect the rapid dissemination of
local knowledge to become of paramount importance.

In other words, if an agent is commonly moving from en-
vironment to environment, the most effective way to obtain

information about novel functions is to mimic the locals.
This has both logical and and biological plausibility.

Discussion
We have seen that three discrete regimes appear within vary-
ing classes of environment, each favouring different forms of
learning. Within static environments, innate behaviour ex-
cels; within rapidly-changing environment, exploratory be-
haviour comes to the fore. Social behaviour, conversely, fills
the gap between the two.

Beyond this, social transmission serves to inform and
drive subsequent evolutionary behaviour, with what Pap-
ineau (2005) terms a “social Baldwin effect”. Our results
suggest that this may play a pivotal role in the aftermath
of major environmental changes – which, in ecosystems
wherein organisms act as background to other organisms,
may also correspond to the aftermath of major ecological
changes.

In a structured environment, we have seen that success-
ful behaviours are disseminated rapidly, due to reliance on
smaller, focused groups of ‘specialists’ in each location.
With greater environmental complexity, these local effects
are amplified yet further.

Methods
Simulation results are averaged over 25 iterations to min-
imise stochastic fluctuations. Default variable values are
given below.

Variable Value Comments
N 256 Population size
L 32 Number of spatial locations
B 32 Number of bits per task
Ω0 10 Initial metabolic state
α 0.1 Rate of fitness dropoff based on task

proximity
β 1 Maximum number of bits learned

per timestep
µ 0.01 s.d. of mutation as applied to

bevo, bexp, bsoc
pswitch 0.01 Probability of a single

environmental fluctuation
pnoise 0.25 Probability of incorrect observation

during mimicking
pmut 0.01 Probability of sustaining a mutation

per gene
pmove 0.1 Probability of migrating to a

neighbouring cell
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Abstract

Biological organisms have various mechanisms of coping
with the dynamical environments in which they live. Re-
cent papers in computational biology show that individuals
reside in deferent regions of neutral networks according to
environmental variation. This work investigated evolutionary
dynamics of GAs in dynamical environments with neutrality
using a simple model. The evolutionary dynamics observed
were consistent with those observed in the experiments of bi-
ological evolution, confirming that the genotype distributions
change depending on the rates of environmental variation as
well as mutation.

Introduction
The Neutral theory (Kimura, 1983) was developed by Motoo
Kimura in the 1960s. Neutrality is caused by highly redun-
dant mappings from genotype to phenotype or from pheno-
type to fitness. Based on this, it was reported that biological
organisms make good use of genetic mechanisms which do
not appear in phenotype to adapt to environmental variations
on the evolutionary time scale.

The effects of neutrality has been discussed so much in
the EC community especially since Harvey introduced the
concept of neutral networks (Harvey and Thompson, 1996).
These researches can be classified into two types as fol-
lows. The former researches are based on redundant map-
pings from phenotype to fitness, where neutral networks
are included in a problem itself. Examples would be the
evolution of neural network controllers in robotics (Harvey,
1997; Smith et al., 2001) and on-chip electronic circuit evo-
lution (Thompson, 1996; Vassilev et al., 2000). In these re-
searches, evolutionary dynamics are investigated (Barnett,
1997; Newman and Engelhardt, 1998; van Nimwegen et al.,
1999; Katada et al., 2004) or the degree of neutrality in fit-
ness landscapes is estimated (Smith et al., 2002; Katada and
Ohkura, 2006). The latter based on redundant mappings
from genotype to phenotype, where redundancy, that is, neu-
trality has been intentionally incorporated by EC researchers
for problems where redundancy is largely absent to improve
the performance of artificial evolution (Ohkura and Ueda,

1999; Ebner et al., 2001; Knowles and Watson, 2002; Roth-
lauf and Goldberg, 2003).

To the best of my knowledge, in the former type of re-
search, neither evolutionary dynamics nor useful genetic
operators indynamical environmenthas been investigated.
Independently of neutrality, representations of polyploid
model in dynamical environment have been investigated
where useful genes in previous environments are preserved
in some kind of memories (Branke, 2001). Apparently, the
feature of polyploidy is a redundant genetic material, that is,
redundant mappings from genotype to phenotype. However,
it seems likely that there is no research that investigate this
from the view point of neutrality.

GP, whose evolved programs include many introns and
functionally redundant parts, would be classified into the
former research. That is why some GP researchers have
claimed the importance of neutrality in recent years (Yu and
Miller, 2006; Miller, 2009; Vanneschi, 2009).

Recent papers in computational biology show that indi-
viduals reside in deferent regions of neutral networks ac-
cording to environmental variation. Meyers et al. (2005)
analyzed evolution in a periodically changing environment
using a simple model and a codon model where a locus
has several alleles and some of them are functionally equal,
and reported as follows: When environmental variations are
rare, most individuals are located in the center of the neu-
tral network with the highest fitness value in each environ-
ment preparing for detrimental mutation (Fig. 1(a)). This
phenomenon is calledgenetic robustness. When the rates
of environmental variation are intermediate, most individu-
als are located in the edge of the neutral network in order
to obtain a new phenotype which can adapt to an alternat-
ing environment with a few mutations (Fig. 1(b)). This is
calledgenetic potential. When the rates of environmental
variation are high, they are settled in a phenotype with an
intermediate fitness value in both environments (Fig. 1(c)).
This would mean that they have tolerances and adaptivity
for both environments but would never go to extremes. This
is calledorganismal flexibility.

Based on these knowledges, Yu (2007) investigated evolu-
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Figure 1: Distribution of individuals due to environmental variation

tionary dynamics of the GP in a boolean parity problem un-
der environmental variations. It was reported that when the
variation rate is high, the length of a program tree became
long, that is, the effective mutation rate per individual be-
came high, and when the variation rate is low, the length be-
came short, that is, the effective mutation rate per individual
became low. Yu (2007) claimed that when the variation rate
becomes high, individuals of the GP tend to be located in
the edge of the neutral network because the effective muta-
tion rate per individual becomes high and individuals easily
change their phenotype. However, we have trouble defining
a neutral network on GPs due to its representation. There-
fore, it is difficult to discuss directly the consistency of the
obtained results in the GP to the computational biology be-
cause we need the concept of location on a neutral network
for them.

Based on these results, the question arises as to whether
we can get the same kind of dynamics of GAs in dynam-
ical environments with neutrality because neutral networks
have been found in GAs with highly redundant mappings
from phenotype to fitness. In the case of GAs with redun-
dant mappings from genotype to phenotype (including poly-
ploidy), we would get the same kind of results on the “GPs”
mentioned above because it would be difficult for the GAs
to devise a neutral network1 and effective mutation rates of

1It is possible to define a neutral network in GAs with redundant

them are variable.
This paper focuses on the former case, where GAs with

redundant mappings from phenotype to fitness (more pre-
cisely, genotype to fitness) that can form neutral networks
and investigates evolutionary dynamics of them in a simple
model by varying the rates of environmental variation and
the mutation rate. The paper is organized as follows. The
next section describes a neutral network in a mathematical
form. Section III describes a simple model of dynamical
environments with neutrality where evolutionary dynamics
of GAs is investigated. Section IV gives the results of our
computer simulations. Section V discusses the consistencies
with the results obtained in computational biology. Conclu-
sions are given in the last section.

A Formal Definition of a Neutral Network
Katada and Ohkura (2009) defined a neutral network in a
mathematical formula. The details are as follows;

In this study, it is assumed that genotypes are represented
as binary strings and the length of them is fixed. Thus, the
genetic distance between two different genotypes (xg, yg ∈
Φg, xg 6= yg, Φg: the set of genotypes determined by the
length of the genotype,l) is described by the Hamming dis-

mappings from genotype to phenotype (See the next section) but
difficult to make neutral networks emerge from genotype space in
which neutrality is intentionally incorporated as mentioned earlier.
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tance between them,H(xg , yg). Thus, min H(xg, yg) is
the smallest unit of mutation. For binary representations,
min H(xg , yg) = 1.

Based on the above consideration, I describe a neutral
network caused by redundant mappings from genotype to
phenotype in a mathematical form. At first, two individ-
uals, xg and zg, are connected,xg ∼ zg, if there exists
{xg

i }
n
i=0

⊂ Φg, s.t.

1. xg = x
g
0
, zg = xg

n,

2. fg(x
g
i ) = fg(x

g),

3. H(xg
i , x

g
i+1

) = 1,

wherefg is the mapping from genotype to phenotype,fg :
Φg → Φp, and assumed to be surjective and not injective.
Φp is defined as the set of phenotypes.

Thus, a neutral network of a genotypezg is

Φ
′

g(z
g) = {xg ∈ Φg|x

g ∼ zg}. (1)

We can extend this definition to redundant mappings from
phenotype to fitness.
Two individuals,xg andzg, are connected,xg ∼ zg, if there
exists{xg

i }
n
i=0

⊂ Φg, s.t.

1. xg = x
g
0
, zg = xg

n,

2. (fp ◦ fg)(x
g
i ) = (fp ◦ fg)(x

g),

3. H(xg
i , x

g
i+1

) = 1,

wherefp is the mapping from phenotype to fitness,fp :
Φp → Φf , and assumed to be surjective and not injective.
Φf is defined as the set of fitness values. Addition to this
assumption, there would be two cases onfg, which is ei-
ther bijective, or surjective and not injective. In both cases,
however,fp ◦ fg is surjective and not injective only iffp

is surjective and not injective. Thus, a neutral network of a
genotypezg is described in the both cases as follows:

Φ∗

g(z
g) = {xg ∈ Φg|x

g ∼ zg}. (2)

These may seem to be cumbersome at first. But this ele-
gant definition allows us to understand clearly a setting for
computational experiments in the following sections.

Simple Model with Dynamical Environment
and Neutrality

In this study, computer simulations were conducted in order
to compare evolutionary dynamics of GAs with those ob-
served in the experiments of biological evolution (Meyers
et al., 2005). For performing simple analysis, the length of
a string is set at4. According to the setting given in the ref-
erence (Meyers et al., 2005), a set of genotypes is defined

Table 1: Set of genotype

Genotype (gi) ID (i) Nickname
1011 0 NN1-c
1111 1 NN1-e1
1101 2 NN1-e2
1001 3 NN1-e3
1010 4 NN1-e4
0011 5 NN1-e5
1110 6 INV-1
1000 7 INV-2
0111 8 INV-3
0001 9 INV-4
0100 10 NN2-c
0110 11 NN2-e1
0010 12 NN2-e2
0000 13 NN2-e3
0101 14 NN2-e4
1100 15 NN2-e5

1000

11000100

0001

0101

0011

01110110

0010

0000

1010

1110

1001

1101

1111

1011

Figure 2: Space of genotype

as Table 1 and Fig.2. The fitness function is also defined as
follows:

wA(gi) =











1 + s (0 ≤ i ≤ 5)

1 + ks (6 ≤ i ≤ 9)

1 (10 ≤ i ≤ 15)

(3)

wB(gi) =











1 (0 ≤ i ≤ 5)

1 + ks (6 ≤ i ≤ 9)

1 + s (10 ≤ i ≤ 15),

(4)

wherewA andwB are fitness functions for environmentsEA

andEB, respectively.s andk (s > 0, 0 ≤ k ≤ 1) are the pa-
rameters to adjust the highest and intermediate fitness values
given to certain genotypes in each environment, respectively.
These parameters were set as follows:s = 1, k = 0.5 fol-
lowing the recommendations given in (Meyers et al., 2005).

In this function, a fitness value is assigned to a genotype
directly so no phenotype is defined. Thus, it is considered
that fg is bijective as mentioned in the previous section.
Thenfp ◦ fg is investigated. According to the definition of
a neutral network (Eq.(2)), the genotypes withi = 0, · · · , 5
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and those withi = 10, · · · , 15 form a neutral network in
both environments,EA andEB, respectively. These neutral
networks show the highest fitness value and lowest fitness
value in Eqs. (3) and (4), respectively. In each neutral net-
work, a genotype which does not mutate out of its neutral
network with1 bit is considered to be located at the center
of its neutral network (NN1-c and NN2-c in Table 1) while a
genotype which does mutate out of its neutral network with
1 bit is considered to be located on the edge of its neutral net-
work (NN1-e and NN2-e in Table 1). For this setting, each
neutral network has only one genotype which is located at
the center of it. The other genotypes (i = 6, · · · , 9) show
the intermediate fitness value but do not form any neutral
networks.

Computer Simulation
In this computer simulations, the GA (Goldberg, 1989) were
adopted to evolve individuals in both the environments,EA

andEB , mentioned in the previous section. The length of
the genotype is4 as also mentioned in the previous section.
The population size was set at10 according to the setting in
(Yu, 2007). In this study, computer simulations were con-
ducted in order to investigate evolutionary dynamics of GAs
in a simple model by varying the rates of environmental vari-
ation and the mutation rate. Thus, the genetic operations for
the GA were standard bit mutation and fitness proportionate
reproduction. The per-bit mutation rate,q, was set as fol-
lows: q ∈ {0.025, 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5}. Each
run lasted 2,000 generations. The initial environment was
set atEA. The environment was alternately switched ev-
ery λ generations as follows:EA → EB → EA → · · · .
For each run,λ was set between1 and 1000 as follows:
λ ∈ {1, 2, · · · , 20, 30, · · · , 100, 200, · · · , 1000}. 50 inde-
pendent runs were conducted for each parameter. All results
were averaged over50 runs.

Fig. 3 shows the ratio of the individuals with the high-
est fitness value,f = 1 + s, the intermediate value,f =
1 + ks, and the lowest value,f = 1 with q = 0.025 and
λ = {2, 10, 100} 2. For eachλ, a population adapted to a
new environment to produce the individuals with the highest
fitness value. However, not all individuals converged to the
highest fitness value.

The distribution of the individuals were dependent on
λ. For short variable periods (e.g.λ = 2 in Fig. 3(a)),
more than the half of individuals never had the highest fit-
ness value and the individuals with the intermediate fitness
value were dominant (approximately 45-50 %). This is be-
cause environmental variation was so rapid that there was
not enough time for the individuals to adapt to each environ-
ment. This might be considered that evolution supported the
individuals which can adapt faster to rapid environmental

2I plot only the first100 generations forλ = 2, 10 and the first
400 generations forλ = 100 because the similar patterns were
repeatedly observed after the generations.

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 10  20  30  40  50  60  70  80  90  100

P
he

no
ty

pe
 d

is
tr

ib
ut

io
n

Generation

NN1
INVs
NN2

(a) λ = 2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 10  20  30  40  50  60  70  80  90  100

P
he

no
ty

pe
 d

is
tr

ib
ut

io
n

Generation

NN1
INVs
NN2

(b) λ = 10

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 50  100  150  200  250  300  350  400

P
he

no
ty

pe
 d

is
tr

ib
ut

io
n

Generation

NN1
INVs
NN2

(c) λ = 100

Figure 3: Individual distributions at each generation (q =
0.025)

variations, that is, the individuals which can mutate easily
to the one with the highest fitness value. Such individuals
with the intermediate fitness value would be considered to
beorganismal flexibilityas mentioned earlier.

For longer variable periods (e.g.λ = 10 in Fig. 3(b)),
the number of the individuals with the highest fitness value
increased while the number of the ones with the intermediate
fitness value decreased. For even longer variable periods
(e.g. λ = 100 in Fig. 3(c)), there was enough time for the
individuals to adapt to each environment and the individuals
with the highest fitness value became dominant. In Fig. 3,
we can not find “where” the individuals are located in the
neutral network with the highest fitness. The more details
can be found in Figs. 4 and 5.
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Figure 4: Individual distributions over variable periods forEA andEB (0.025 ≤ q ≤ 0.2)392 ECAL 2011
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Figure 5: Individual distributions over variable periods forEA andEB (0.25 ≤ q ≤ 0.5)393ECAL 2011



Figs. 4 and 5 show the ratios of the genotypes overλs
for eachq. Here, the ratio of a genotype was calculated by
dividing the sum of the values just before generations when
the environment was switched with the number of switching
environments and the number of runs. The bold line shows
the ratio of the genotype which is located at the center of
its neutral network and the thin line shows the one of the
genotype which is located on the edge of its neutral network.
The horizontal axis is based on a logarithmic scale.

Over the mutation rate range0.025 ≤ q ≤ 0.1 (Fig. 4(a)-
4(f)), for long variable periods, the ratio of the genotype
which was located at the center of the neutral network with
the highest fitness value was larger than the ones of the
other genotypes in both environments. The genotypes which
were located on the edge of the neutral network attained the
second-largest rate. For shorter variable periods, the ratios
of the genotypes which were located on the edge of the neu-
tral network were larger than the ones of the other geno-
types. Among them, the ratios were different due to their
own locations on the edge. Thus, the ratios of them which
are adjacent to not only the genotypes with the intermediate
fitness value but also the ones with the lowest fitness value
were larger. The variable period range in which this phe-
nomenon appears decreased with the increase ofq. For even
shorter variable periods (approximately1 ≤ λ ≤ 3), the ra-
tio of the genotype with the intermediate fitness value was
largest. For these shortest variable periods, the same result
was obtained in Fig. 3(a).

Over the mutation rate range0.2 ≤ q ≤ 0.4 (Fig. 4(g)-
4(h), Fig. 5(a)-5(f)), for long variable periods, the ratios of
the genotypes which were located at the center of the neutral
network and on the edge of it were large in this order. How-
ever, these values were not beyond0.1. For even shorter
variable periods, the ratios of the genotypes with the lowest
fitness value were a few larger than or equal to the ones with
the highest and intermediate fitness value.

For q = 0.5 (Fig. 5(g)-5(h)), there was no significant dif-
ference between the genotypes, which were distributed ran-
domly.

Discussion
In the earlier section, the loosely defined phenomena,ge-
netic robustness, genetic potentialandorganismal flexibility,
were cited. In order to discuss the results obtained in the pre-
vious section, those are more accurately defined as follows:
genetic robustness: the state where the ratio of the genotype
which is located at the center of the neutral network with
the highest fitness value is largest in the environment,EA or
EB. genetic potential: the state where the ratio of the geno-
type which is located on the edge of the neutral network is
largest in each environment.organismal flexibility: the state
where the ratio of the genotype with the intermediate fitness
value is largest.

According to these definitions, we can find such phase

transitions as organismal flexibility→ genetic potential→
genetic robustness forq ≤ 0.1, and organismal flexibility
→ genetic robustness for0.2 ≤ q ≤ 0.4 in Figs. 4 and
5 with the increase of the variable period. Meyers et al.
(2005) described that we can findgenetic potentialin a
much wider variable period range when the mutation rate de-
creases because it takes more time to reach the state,genetic
robustness. This is consistent with the results in Figs. 4(a)-
4(f) in which we can findgenetic potentialin the ranges,
6 ≤ λ ≤ 20 for q = 0.025, 5 ≤ λ ≤ 10 for q = 0.05 and,
3 ≤ λ ≤ 5 for q = 0.1. Meyers et al. did not mentioned
organismal flexibilityfor the high mutation rates. For the re-
sults obtained in this study, we can not find anyorganismal
flexibility when the mutation rate was high. This would be
considered to be affected by theerror thresholdon the muta-
tion rate (Kauffman, 1995); As the mutation rate increases,
the population gradually loses the current individuals. At
a certain critical mutation rate, the individuals become dis-
tributed randomly.

Meyers et al. (2005) also claimed that the mutation rate
per locus does not need to be variable if the phenotypical
mutation rate or the effective mutation rate per genotype is
variable as opposed to the argument that the variable muta-
tion rate per locus is important for adaptation to environmen-
tal variations. This argument would be explained as follows.
When the mutation rate per locus is low, individuals must
change their phenotypes (or obtain the higher fitness value)
as soon as possible in order to adapt to environmental vari-
ation. Thus, the individuals which are located on the edge
of the neutral network are supported. When the mutation
rate per locus is high, individuals can change quickly their
phenotypes even though they are located at the center of the
neutral network. Therefore, the dominance of the individ-
uals which are located on the edge of the neutral network
becomes invisible at such a mutation rate.

Conclusions
This study investigated evolutionary dynamics of GAs in a
simple model by varying the rates of environmental variation
and the mutation rate. The results can be summarized as
follows:

• Two or three phase transitions were observed over the
variable period range. Especially when the mutation rate
is low, the results were consistent with the results obtained
in computational biology.

• For long variable periods, the frequency of the genotype
which was located at the center of the neutral network
with the highest fitness value was largest in the popula-
tion.

• For shorter variable periods, the frequency of the geno-
type which was located on the edge of the neutral network
was largest.
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• For even shorter variable periods, the frequency of the
genotype with the intermediate fitness value was largest.

In this study, four-bit binary strings were used to provide
simple explanatory examples. Additionally, a small popula-
tion size and an alternating environment were set. Further
computer simulations will be conducted in order to inves-
tigate whether these observations are consistent with more
complex settings (Yang et al., 2007). Another future direc-
tion would be an analytical approach due to the simplicity of
the model.
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Abstract 

In this paper, in silico experiments are performed to investigate 
why protein residue networks (PRNs), i.e. networks induced by 
spatial contacts between amino acid residues of a protein, do 
not have shorter average path lengths (APLs) in spite of their 
importance to protein folding. We find that shorter average 
inter-nodal distances does not necessarily imply better search 
performance, i.e. more successful protein folding. Search 
performance of a zero-temperature Metropolis style hill-climber 
was not significantly improved by randomizing only the long-
range links of PRNs even though such randomization 
significantly reduces APLs of PRNs while retaining much of 
the clustering and positive degree-degree correlation inherent in 
PRNs. However, this result is contingent upon the optimization 
function. We found that the optimization function which places 
PRNs in a favorable spot in the space of possible network 
configurations considered in this paper parallels an existing 
view in protein folding theory that neither short-range nor long-
range interactions dominate the protein folding process. These 
findings suggest the existence of explanations, other than the 
excluded volume argument, beneath the topological limits of 
PRNs.1 

Introduction 

Breaking the code underlying protein folding has remained an 
intellectually tantalizing puzzle as well as a problem of great 
practical significance. Everything a protein requires for 
correct folding under normal circumstances appears to be 
embedded in its amino-acid sequence (Afinsen 1973), 
although a minority rely on the aid of water and chaperone 
molecules. Due to the large sizes that amino-acid sequences 
can take, a random search approach to protein folding is 
deemed infeasible for practical biological purposes (Levinthal 
1969). However, an argument based on separability of the 
protein folding problem, i.e. that the problem can be separated 
into parts which can then be solved independently and 
assembled into an optimal solution2, has been conceived as a 
way out of Levinthal’s paradox (Zwanzig et al 1992; Karplus 
1997). This argument is supported by some sections of protein 

                                                 
1 This is an independent research paper, part of which was 
completed during the author’s stay at Collegium Budapest, 
Hungary who generously provided the computer resources for 
most of the experiments. At the time this paper was prepared, the 
author is a post-doctoral researcher in Montréal, Canada. 
2 For a more colourful description, see Herbert Simon’s parable 
of the two watchmakers in The Sciences of the Artificial, 1969 
MIT Press. 

sequences having a propensity to fold to their native 
secondary structures.  
In general, protein folding is a process that occurs in stages. 

What essentially begins as a linear hetero-polymer (organized 
as a backbone with protruding side chain groups) obtains local 
structure in the form of secondary alpha helices and beta 
sheets and finally global structure as the secondary structures 
arrange themselves compactly in three dimensions. For a long 
time, this spontaneous biological self-organization has been 
attributed to various inter-atomic physical forces and chemical 
constraints impacting a protein molecule. However, in the last 
decade or so, another theory based on the network topology of 
a protein’s native state has blossomed. In this other theory, a 
network view of protein molecules (mostly in their native 
states) is adopted.  
The general recipe to transform a protein molecule into a 

network is to represent amino acid residues (Cα or Cβ) as 
nodes, and contact (spatial, non-covalent) distances between 
pairs of amino acid residues below a certain threshold as links. 
Such protein residue networks (PRN) are constructed from the 
Cartesian coordinates of amino acid residues of protein 
molecules stored in the Protein Data Bank (PDB) (Berman et 
al 2000). There are variations to the general recipe however. 
For instance, a PRN may represent several non-homologous 
proteins rather than a single protein, e.g. the protein contact 
map in (Vendruscolo et al 2002). PRNs may also represent 
different aspects (e.g. surface or core), states (e.g. native or 
transitional), structural classes (e.g. α, β, α+β or α/β), or types 
(e.g. globular or fibrous) of proteins (e.g. Atilgan et al 2004). 
Further, the nodes and links of PRNs may carry different 
meanings, e.g. the atoms of the side chain group of an amino 
acid may be included so that a node may represent more than 
one atom and multiple links between nodes or weighted links 
are allowed (Green and Higman 2003). 
 By examining PRNs, researchers have compiled a list of 
topological characteristics shared by a diverse (in terms of 
structural class, homology and taxon) set of proteins and 
speculated on the reasons for the observed topological 
characteristics in relation to protein folding. A common 
feature of protein residue networks is their small-world nature, 
i.e. they have lattice like clustering coefficients but random 
graph like diameters and average path lengths (Watts and 
Strogatz 1998). The need for rapid communication between 
amino acid residues to facilitate interaction cooperativity 
crucial for protein folding is frequently cited as the reason for 
the small-world feature of PRNs (Vendruscolo et al 2002; 
Dokholyan et al 2002; Atilgan et al 2004; Del Sol et al 2006). 
PRNs are also reported to exhibit high assortativity values 
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which can be related to protein folding speeds (Bagler and 
Sinha 2007). We discuss network characteristics of PRNs 
further on. 
In this paper, we set out to understand why, given the 

assumed importance of rapid inter-residue communication to 
protein folding, PRNs are not smaller-worlds or equivalently 
do not have shorter average shortest path lengths. We address 
this question from a search perspective, which is not unusual 
given the common formulation of protein folding as a search 
problem. We define a spin-glass like problem on a PRN and 
use the performance of a local search (a hill-climber in the 
fashion of the Metropolis algorithm with zero probability of 
assuming a higher temperature configuration) to assess the 
effect of changes in network topology, specifically average 
path length (APL), on search performance. The experiments 
are conducted under several conditions, motivated by existing 
literature on protein folding theory.  

Method 

Protein residue network construction 

Our PRN has N nodes (one for each amino acid of a protein) 
and M links. An undirected link is placed between a pair of 
nodes representing the Cα atom of amino acids when the node 
pair is situated less than 7Å apart from each other. The small-
world property of PRNs is not overly sensitive to the choice of 
this threshold value (Bartoli et al 2007). Distance between 
node pairs is the Euclidean distance between their 3D 
Cartesian coordinates obtained from the Protein Data Bank or 
PDB (Berman et al 2000). The M links are partitioned into 
two sets: long-range links (LE) and short-range links (SE). A 
link between nodes x and y is classified as long-range if their 
absolute distance on the amino acid sequence chain is more 
than 9 (Green and Higman 2003). Long-range links connect 
amino acids which are distant in the primary structure but are 
in close spatial proximity in the tertiary structure.  

Test data set 

A PRN is built for each protein in the GH64 dataset (Figures 
1&2) which was selected from literature surveyed, 
specifically (Green and Higman 2003). The dataset 
encompass proteins from different protein classes, fold types 
and branches of life. Proteins which did not form a single 
connected component (i.e. 1cuk and 1ho4), or had unusually 
high link density (i.e. 1feo) in its PRN were excluded from the 
dataset. So too were proteins with more nodes in their PRN 
than their DSSP output (Kabsch and Sander 1983) (i.e. 2hmz 
and 1epf). We use the output from DSSP (Dictionary of 
Protein Secondary Structure) as globally optimal strings in our 
search problem. If the reverse situation occurs, the DSSP 
output is truncated. A second dataset, EVA132, is used to 
increase confidence of key results in this paper. The EVA132 
protein dataset was extracted from the list of 3477 unique 
chains archived by EVA (Rost, 1999). 200 proteins were 
selected at random from this list, with no overlap with GH64. 
PRNs for these 200 proteins were constructed and selected in 
the same manner as GH64, yielding 132 well-formed PRNs. 
EVA132 PRNs possess similar network characteristics as 

GH64 PRNs. Detailed information on both sets can be found 
in http://arxiv.org/abs/1011.2222. 
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Figure 1 Size of GH64 proteins in terms of the number of Cα 
atoms. PIDs are:1mjc, 1gvp, 1ten, 1ris, 2acy, 1tlk, 1ayc, 1sha, 
1CD8, 1d4t, 1e86, 2fgf, 1eif, 1pdo, 1h7i, 1amx, 1bj7, 1aep, 
1gm6, 3rab, 1wba, 1rbp, 1eyl, 153L, 1fap, 1nsj, 1hro, 1jr8, 256b, 
1ICE, 1arb, 1vlt, 1urn, 1amp, 1j8m, 1cjl, 1beb, 1OBP, 1b7f, 
1hng, 1agd, 1aye, 1g4t, 1eov, 1bmt 7tim 1ce7, 1hwn, 2AAI, 1fbv, 
1bf5, 1jly, 1dar, 1eun, 1rpx, 1bbp, 1bih, 1psd, 1b8a, 1ava, 1CVJ, 
3eca, 3kbp, 1dio. 
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Figure 2 Link count M, by protein size for GH64 PRNs.  

Search problem and search algorithm 

We define a spin-glass like problem on a PRN and use the 
performance of a local search (a hill-climber in the fashion of 
the Metropolis algorithm with zero probability of assuming a 
higher temperature configuration) to assess the effect of 
changes in network topology, specifically average path length, 
on search performance. Starting at random points in a search 
space comprising {0, 1, 2}N strings3, the problem is to find s, 
the unique globally optimal string defined by the DSSP output 
(Kabsch and Sander 1983) for a PRN reduced with the 
following rules: 0 represents H, I, and G, 1 represents E and 
B, and 2 represents others. The unique global optimum is 
reachable by maximizing the following fitness function which 
is derived from (Bryngelson and Wolynes, 1987): 

∑∑
==

+

M

i

i

N

i

i sefsg

00

),,(),( ss i . Define si as the current value of 

the ith element in string s. g(si, si) = 1 if si = si and 0 otherwise. 

                                                 
3 Incidentally, 3N search spaces are common in discrete models of 
protein folding, e.g. 3 possible peptide bond torsion angles, and 3 
possible bonds between hydrophobic (H) and polar (P) residues. 
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Define ei as the i
th link in a PRN and ei connects nodes j and k. 

f(ei, s, s) = 1 if |sj – sk| = | sj – sk| and 0 otherwise. The g term 
ensures a unique global optimum4 while the f term introduces 
frustration, i.e. the required ruggedness feature into the fitness 
landscape (Dill et al 1995, p.585).  
 The local search algorithm is a hill climber which at each 
time step, the value of a single randomly chosen element 
assumes a different value chosen randomly from {0, 1, 2}, 
and never moves down hill to less fit points. For each run, the 
hill climbing algorithm is iterated until s is found, or the 
fitness function has been evaluated 1 million times. 20 
independent runs are made per PRN. A total of 1280 (64 x 20) 
and 2640 (132 x 20) runs are made for GH64 and EVA132 
respectively.  

Network Characteristics of PRNs 

Node degree measures the number of contacts or direct 
neighbors a node has in a PRN. Gaci and Balev (2009) 
remarked on the homogeneity of node degree in their PRN 
called SSE-IN which only considers secondary structure 
elements. The mean node degree of their SSE-INs increased 
very slightly with protein size and fell within the range of 5 
and 8. The absence of nodes with much higher degrees is 
attributed to the excluded volume effect which imposes a 
physical limit on the number of residues that can reside within 
a given radius around another amino acid. The mean node 
degree (K) of the GH64 PRNs averages at 7.9696 with a 
standard deviation of 0.3126, and is independent of protein 
size (Figure 3). 
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Figure 3 Node degree summary statistics for GH64 PRNs.  

Clustering or transitivity reflects the cliquishness of nodes 
in a network: if node X connects to node Y and to node Z, 
how likely is it that nodes Y and Z are connected to each 
other? A convenient way to measure network clustering is by 
taking the average clustering of all nodes in a network to yield 

the clustering coefficient as follows: ∑
=

−
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where ki is the degree of node i, and ei is the number of links 
that exist amongst the ki nodes (Watts and Strogatz 1998). 
Independent of protein size, the C values for GH64 PRNs 
(CGH64) are significantly higher than CRANDOM, and closest to 

                                                 
4 It also has a separable or a smoothing effect; without the f term, 
there is no interaction between variables. 

CLATTICE4 (Figure 4). LatticeV is a linear lattice with V/2 
nearest neighbours to the left and to the right where possible. 
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Figure 4 CGH64 values (± one standard deviation) compared 
with CLattice8, CLattice4 and the theoretical C values for regular 
(CREGULAR) and random (CRANDOM) networks of the same size 
(same number of nodes). CRANDOM ~ K / N, and CREGULAR = 3 
(K-2) / [4 (K-1)], where K is average degree and N is number 
of nodes (Watts 1999). We use K=8 (see Figure3). 
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Figure 5 Diameter, average (± one standard deviation) and 
median path length for GH64 PRNs. 
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Figure 6 APLs of PRNs are much closer to APLs of random 
networks (APLRANDOM) than to APLs of regular networks 
(APLREGULAR). APLRANDOM ~ ln N / ln K, and APLREGULAR = N 
(N + K-2) / [2K (N-1)], where K is average degree and N is 
number of nodes (Watts 1999). We use K=8 (see Figure3). 

The average path length (APL) of a network is the 
average length of a set of shortest paths between all node-
pairs. The average path length for GH64 PRNs (APLGH64) 
increases logarithmically with increases in protein size 
(nodes) (Figure 5). When compared with average path lengths 
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of other canonical networks, APLGH64 is much shorter than the 
average path lengths of regular graphs (APLREGULAR) and 
approximate the average path lengths expected of random 
graphs (APLRANDOM) of the same size (Figure 6). APLGH64 is 
also much shorter than both APLLATTICE8 and APLLATTICE4 
(Figure 6).  
The small-world property is a combination of high 

clustering and short inter-nodal distances (average path length 
increases logarithmically with network size), two conditions 
that from the above exposition, GH64 PRNs satisfy. 

Assortativity refers to the extent that nodes associate or 
connect with their own kind. A common form of assortativity 
measured for PRNs is node degree. Positive degree-degree 
assortativity refers to the proclivity of nodes with small (large) 
degree to link with other nodes of small (large) degree. Using 
the method in (Newman 2002), Bagler and Sinha (2007) 
report degree-degree correlation coefficients up to 0.58, which 
is considered unusual for networks with biological origins. 
Nonetheless, the positive assortativity values could be 
correlated in a positive manner to protein folding speeds 
(Bagler and Sinha 2007). Similarly, we find positive degree-
degree correlations in the GH64 PRNs independent of protein 
size. The assortativity values average at 0.3387 with a 
standard deviation of 0.0536, which is much higher than 
observed for randomized PRNs (randAll) (Figure 7). For 
randAll networks, PRNs are randomized in the usual manner 
by rewiring nodes while preserving node degrees and without 
introducing multiple links between nodes (Maslov and 
Sneppen 2002).  
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Figure 7 The GH64 PRNs have positive degree assortativity, 
with values closest to those for Lattice4.  

As with clustering (Figure 4), the assortativity values for 
GH64 PRNs are closest to Lattice4 (Figure 7). Bartoli et al 
(2007) commented that links encompassing a protein’s 
backbone (which are short-ranged) is the main source of the 
relatively high levels of clustering in PRNs. We observed that 
short-range links (SE) are also responsible for much of the 
positive assortativity in PRNs. Figure 8 shows the effect of 
randomizing different sets of links in GH64 PRNs. Both 
clustering and assortativity levels show larger decreases when 
only the short-range links are randomized (randSE), compared 
with when only the long-range links are randomized (randLE). 
The APLs of PRNs are significantly reduced in both randSE 
and randLE networks. Hence it is possible, by randomizing 
only the long-range links, to rearrange the links of a PRN such 
that the APL is significantly reduced while preserving 
clustering and positive degree-degree assortativity coefficients 
at levels higher than would be in random graphs. Our question 

is thus: if short inter-nodal distances are important for protein 
folding, why aren’t the average path lengths of PRNs shorter? 
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Figure 8 Effect of randomizing different sets of PRN links on 
Clustering Coefficient (top), Assortativity (middle), and 
Average Path Length (bottom). Error bars denote one standard 
deviation from the mean. 

Results and Discussion 

Both accuracy and speed, i.e. finding the right structure 
consistently in biologically functional time, are important 
criteria in the protein folding problem. We measure accuracy 
of the local search in terms of Success Rate (SR), which is the 
proportion of total runs (20) per PRN where the hill climber 
found the unique global optimum within 1 million 
evaluations. Speed of the local search is accessed by 
avg_evals, which is the number of fitness function evaluations 
averaged over all runs with SR > 0.0 per PRN. Configuration 
A is considered more favorable to protein folding than 
configuration B if the local search algorithm performs better, 
i.e. achieves a significantly higher SR and a significantly 
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lower avg_evals, on A than on B. A configuration refers to a 
combination of network topology and fitness function. Search 
performance is affected by network size, larger networks are 
in general expected to be either more difficult to optimize 
and/or require more function evaluations. To remove this size 
effect, search performances between two configurations are 
compared on the set of common networks with SR > 0.0. The 
largest p-value of the Shapiro-Wilk test for SR and avg_evals 
data is 0.03380715 and 1.072698e-07 respectively. This 
allows us to conclude, with at least 95% confidence, that both 
SR and avg_evals data are not normally distributed, and to use 
the Wilcoxon method (paired) to test SR and avg_evals data 
for significance. Following this procedure, the hypotheses in 
the following discussion are confirmed with at least 95% 
confidence.  

Experiment 1 

The objective is to compare PRNs with lattices (“regular” 
graphs), i.e. how differences in their network topology affect 
search performance given the fitness function stated earlier. 
LatticeV is a linear lattice with V/2 nearest neighbours to the 
left and to the right where possible (V/2 nodes at each of the 
two ends of the lattice chain will have fewer links than the rest 
of the nodes in the middle which will have V links each). The 
GH64 PRNs share several network characteristics with 
Lattice4 and Lattice8. For networks having the same number 
of nodes, PRNs have the same link density as Lattice8, and 
similar clustering and positive degree assortativity levels as 
Lattice4 (Figures 9, 4 and 7 respectively). 
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Figure 9 Link density by size for GH64 proteins on a log-log 
plot, compared with the same for Lattice4 and Lattice8. Link 
density is the fraction of actual links out of all possible links, 
i.e.2M / [N (N-1)]. 

Using the fitness function defined earlier, the hill climber 
performed better when the network topology is PRN than 
when it is Lattice8 (Table 1). However, both are outperformed 
by Lattice4 (Table 1), which has a significantly longer APL 
(Figure 6). Lattice4 also produced twice as many networks 
with SR > 0.5, and seems more conducive to larger networks 
than either Lattice8 or PRN (Table 2). Hence, shorter inter-
nodal distances do not guarantee better search performances. 
The shorter APLs of Lattice8 and of PRN are the result of 
more links (Figure 9), and the fitness function is such that 
additional links can increase frustration (more on this point in 
Experiment 4). Furthermore, the regular connectivity of a 
lattice network probably does not produce suitably functional 
surface structures like those of proteins (but see Table 7). 

Table 1 Result summary for Experiment 1 
A B # SR avg_evals 

Lattice8 PRN 49 A = B  A > B  
Lattice4 Lattice8 53 A > B A < B 
Lattice4 PRN 56 A > B A < B 

# is the number of networks with SR > 0.0, common to both 
configurations A and B. Configurations with better overall search 
performances are bolded. These signs apply to all subsequent 
result tables. PRNs are from the GH64 dataset. Optimal strings 
for PRN and both Lattice4 and Lattice8 come from the DSSP 
output for proteins in the GH64 dataset (as explained earlier in 
the Method section).  

Experiment 2 

The objective is to observe the effect of link randomization on 
search performance. By randomizing different sets of links in 
a PRN, it is possible to rearrange the links of a PRN such that 
the APL is significantly reduced (Figure 8). Further, by 
randomizing only the long-range links (randLE), it is also 
possible to significantly reduce APLs of PRNs and maintain 
clustering coefficients and positive degree-degree assortativity 
at levels higher than would be in random graphs (Figure 8).  

Table 3 Result Summary for Experiment 2 
A B # SR avg_evals 

randSE randAll 64 A = B A = B 
PRN randLE 55 A < B A > B 
PRN* randLE* 115 A < B A > B 

PRNs are from the GH64 and where indicated by *, the 
EVA132 dataset. randLE, randSE and randAll are as 
explained earlier, PRN networks produced by respectively 
randomizing only the Long-range links, only the Short-range 
links and all links. Optimal strings for all networks come from 
the DSSP output for GH64 proteins and where indicated by *, 
the DSSP output for EVA132 proteins. 

 Compared to PRN, randomizing all links (randAll) and 
randomizing short-range links (randSE) increased SR to 
almost 100%, with a considerable decrease in avg_evals 
(Table 2). There is no significant difference in terms of search 
performances between randSE and randAll (Table 3). But 
randAll and randSE networks lose much of the local 
organizational structure of PRN networks (Figure 8), and so 
probably do not produce suitably functional surface structures 
like those of proteins (see Table 7). What is more interesting 
is that randomizing long-range links (randLE) significantly 
improved search performance over PRN (Table 3) for both 
GH64 and EVA132 datasets. We revisit this point in 
Experiment 4, where an adjustment to the fitness function 
restores PRN to a favourable spot in the space of possible 
network configurations considered in this paper. 

Experiment 3 

The objective is to compare the relative importance of short-
range and long-range links to protein folding. There has been 
quite an evolution of thought in this area (Dill et al, 1995; Gō, 
1983) and is by no means a settled issue. All three possible 
perspectives have been contemplated: (i) primacy of short- 
range interactions, (ii) primacy of long-range interactions, and 
(iii) non-dominance of either set of interactions.   
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Table 2 Key summary statistics for results obtained in Experiments 1, 2 and 3 

PRN 
s 

Configuration 
Median, Mean, Sd 
Success Rate (SR) 

Proportion of 
networks 

with > 0.0 SR 

Median avg_evals 
of networks 
with > 0.0 SR 

Proportion of 
networks 

with > 0.5 SR 

Median size 
of networks 
with > 0.5 SR 

GH64 Lattice4 0.6000, 0.5727, 0.3142 62/64 = 0.9688 6158 35/64 = 0.5469 211 
 Lattice8 0.2500, 0.3289, 0.3190 53/64 = 0.8281 7245 15/64 = 0.2344 185 
 PRN 0.3250, 0.3383, 0.2569 56/64 = 0.8750 6264 14/64 = 0.2188 129 
 randLE 0.3750, 0.4000, 0.2772 62/64 = 0.9688 5126 24/64 = 0.3750 134 
 randSE 1.0000, 0.9977, 0.0139 64/64 = 1.0000 3609 64/64 = 1.0000 290 
 randAll 1.0000, 0.9945, 0.0220 64/64 = 1.0000 3541 64/64 = 1.0000 290 
 onlySE 0.0500, 0.1313, 0.2124 33/64 = 0.5156 4115 6/64 = 0.0938 134 
 onlyLE 1.0000, 0.9070, 0.1466 64/64 = 1.0000 4262 62/64 = 0.9688 276 
 delay07 0.3500, 0.3734, 0.2619 58/64 = 0.9063 5703 20/64 = 0.3125 146 
 delay08 0.3500, 0.3703, 0.2735 57/64 = 0.8906 5926 18/64 = 0.2813 146 
 delay09 0.3500, 0.3789, 0.2823 56/64 = 0.8750 5733 21/64 = 0.3281 153 
 delay10 0.0500, 0.1273, 0.2074 33/64 = 0.5156 4115 6/64 = 0.0938 134 
EVA132 PRN 0.2500, 0.3008, 0.2460 119/132 = 0.9015 9976 27/132 = 0.2045 145 
 randLE 0.3500, 0.3553, 0.2508 120/132 = 0.9091 10580 33/132 = 0.2500 226 

The first column gives the source of the PRN and optimal string s. Size of networks in the GH64 dataset has a median of 290 and is 
not normally distributed. The one-sample Kolmogorov-Smirnov two-sided test p-value = 2.220e-16.  Size of networks in the 
EVA132 dataset has a median of 442 and is not normally distributed. The one-sample Kolmogorov-Smirnov two-sided test p-value 
is < 2.2e-16. 

Compared with PRN, the use of only short-range links to 
guide the search (onlySE) reduced SR by 41% while using 
only long-range links (onlyLE) increased SR by 14% to 
almost 100% (Table 2). By examining both GH64 and 
EVA132 PRNs, we found that on average, only about 30% of 
all links in a PRN are long-range. The satisfaction of all links 
(constraints) in a PRN is necessary to achieve the globally 
maximal fitness value, and perfectly relaxed protein 
molecules as described by Gō (1983). Thus, the SR for 
onlyLE is quite remarkable and lends credence to the 
“primacy of long-range interactions” view (Dill et al, 1995). 
In both GH64 and EVA132 PRNs, long-range interactions 
implicate on average about 60% of all nodes in a PRN. 
However, it has been proposed that only 30% of residues are 
crucial for folding (Dill 1999, p.1169).  
 Proteins exist in 3D physical space. The possibility of a 
long-range link may depend on some prior sequence of events 
to bring distant nodes on the polypeptide chain into close 
spatial proximity with each other. Hence, there is some 
dependency between links. But long-range links are not mere 
corollaries to short-range links. Gō (1983) argues that 
“…folding cannot be a simple unidirectional sequence of 
events going from smaller to larger structures; long-range 
interactions also play a determining role in secondary 
structures and there should be feedback of logic between the 
levels of organization”.  
 In our experiments, we observed that a slight delay in the 
use of long-range links to guide the hill climber significantly 
improved search performance (Table 4). In delayZ, the use of 
long-range links is delayed until the fraction of satisfied short-
range constraints reaches Z/10. However, if long-range links 
are included only after all short-range links are satisfied, as in 
delay10, SR drops to levels similar to SR for onlySE (Table 
2), i.e. it is as though long-range links are ignored in the 
search process completely. These results show that long-range 
links do help the satisfaction of short-range links in PRN 
(illustrating Go’s point), but the involvement of long-range 

links in the search is more productive once some level of 
satisfaction (> 50%) in short-range links have occurred.  

Table 4 Result Summary for Experiment 3 
A B # SR avg_evals 
PRN delay07 54 A < B A > B 
PRN delay08 54 A < B A > B 
PRN delay09 53 A < B A = B 

# is the number of networks with SR > 0.0, common to both 
configurations A and B. Configurations with better overall 
search performances are bolded. PRNs are from the GH64 
dataset. delay07, delay08 and delay09 are, as explained in the 
text, PRN networks produced by delaying the consideration of 
long-range links when computing the fitness function until a 
proportion of short-range links are satisfied. Optimal strings 
for all networks come from the DSSP output for proteins in 
the GH64 dataset.  

 We collected the search points (strings) at the end of failed 
runs for one PRN (1wba) which failed fairly evenly under the 
different scenarios tested, and summarized their fitness values 
and Hamming distances from the global optimum. There is a 
negative correlation between fitness and distance. We find 
that runs which did not have enough opportunity to use long-
range links to guide the search (onlySE, delay10) produced 
strings which are most distant and also least fit at the end 
(Figure 10). Even though the PRN strings are from failed 
runs, they are still more fit and closer to the global optimum 
than strings from delay10 or from onlySE. 

Experiment 4 

The objective is to observe the effect of varying fitness 
contribution of links by link length on search performance, 
given the previous findings. To incorporate the outcome of 
experiment 3 into the optimization function, we added a 
weight factor into the f term for the experiments in this section  
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Figure 10 Summarized fitness and hamming distance from 
global optimum (optimum) of strings produced by failed runs 
for 1wba PRN. Number of strings in PRN, delay07, delay08, 
delay09, delay10 and onlySE are 18, 16, 17, 18, 20 and 20 
respectively. 

as follows: ∑∑
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00

),,(),( ω ,ss i . There are three 

options to ω: (i) eq which assigns equal weight or fitness 
contribution to all links (this is the option used so far); (ii) bh 
which assigns more weight to links with shorter range; and 
(iii) th which assigns more weight to links with longer range. 
Let ei link nodes j and k, d = |j – k| and |sj – sk| = | sj – sk|. If ω 
= eq, f(ei, s, s, ω) = 1. If ω = bh, f(ei, s, s, ω) = 1/d. If ω = th, 
f(ei, s, s, ω) = d. However, ω = th produced 0.0 SR for GH64 
PRNs, and therefore is clearly not a viable fitness function 
(This outcome is not contradictory to the onlyLE result in 
Experiment 3 because there, the fitness function assigns equal 
weights to all links). As such we restrict the following 
discussion to bh and eq options. 
Compared with the eq option (Table 2), the bh option 

significantly improved search performance when PRN is used 
as the underlying network (Table 6). For both GH64 and 
EVA132, the number of networks with SR > 0.5 increased by 
at least 2.5 times (36/14 and 77/27), and there is also an 
increase of at least 55% in the median size of networks with 
SR > 0.5. Putting more weight on short-range than long-range 
links introduces a bias towards the satisfaction of short-range 
links and is akin to putting a delay on long-range links as we 
did in the delayZ runs where Z < 1.0 (Experiment 3). 
However, with the bh option, both sets of interactions are 

present right from the start, so they have more interplay 

opportunities. And from the results just discussed, there 

appears to be a payoff to this. Also, PRN_bh produced 
significantly better search performance than delay07_eq 
(Table 5). Hence, the fitness function with the bh option 
appears to be more compatible to the suitability of PRNs to 
protein folding.  
When ω = bh, as in Experiment 1, search performance is 

still better when the underlying network topology is PRN than 
when it is Lattice8 (Table 5). However, unlike Experiment 2, 
search performance is no longer significantly better with 
randLE than with PRN. For both GH64 and EVA132, when ω 

= bh, there is no significant difference between PRN and 
randLE in terms of search performance (Table 5). Hence, the 
shorter APLs that randLE can produce (Figure 8) do not 
confer a search advantage. With this finding, we observe as in 
Experiment 1, that shorter APLs do not necessarily guarantee 
better search performance. However, in this case, no 
additional links are involved. 

Table 5 Result Summary for Experiment 4 
A B # SR avg_evals 

PRN_bh PRN 56 A > B A < B 
PRN*_bh PRN* 116 A > B A < B 
PRN_bh delay07 58 A > B A < B 
PRN_bh Lattice8_bh 56 A > B A < B 
randLE_bh Lattice8_bh 56 A > B A < B 
PRN_bh randLE_bh 61 A = B A = B 
PRN*_bh randLE*_bh 122 A = B A = B 

The ‘_bh’ suffix is used to mark configurations which use the bh 
option; otherwise the default eq option is used. PRNs are from the 
GH64 and where indicated by *, the EVA132 dataset. Optimal 
strings for all networks come from the DSSP output for GH64 
proteins and where indicated by *, the DSSP output for EVA132 
proteins. 

Summary and Conclusion 

In experiment 1, we observed that PRN is a more favourable 
network topology than Lattice8 for protein folding, but that 
shorter average path lengths (APLs) need not imply better 
search performance. In experiment 2, we reported that 
randomizing long-range links of protein residue networks 
(randLE) significantly improved search performance over 
(non-randomized) PRNs. In experiment 3, we found that long-
range links play an important role to global optimization and 
that adding a delay to the involvement of long-range links in 
the search improved search performance. In experiment 4, we 
use a modified fitness function which assigns more fitness 
contribution to shorter links and found that indeed PRN is a 
more favourable network topology than randLE for protein 
folding even though PRN has a significantly longer APL than 
randLE. 
Shorter APLs in PRNs imply more compactness in native 

state proteins. That PRNs do not have minimal or at least 
shorter APLs than they do agrees with the notion that native 
state proteins are not in the most compact conformation 
possible (Dill et al, 1995 p. 568).  
With ω = bh in Experiment 4, PRNs appear to occupy a 

sweet spot between complete order and total randomness 
PRNs outperformed Lattice8 in terms of search  performance, 
and random graphs (e.g. randSE and randAll networks) are  
unlikely to produce viable protein structures  (Vendruscolo et 
al 1999). What about randLE which produced a comparable 
search performance to PRN? randLE represent less plausible 
3D structures than PRNs, but more plausible than randSE or 
randAll (Table 7). 
  Randomization of long-range links in PRNs (randLE) was 
performed while keeping node degree of PRNs invariant. 
Hence, our experiments also suggest that there can be 
explanations, other than the popular excluded volume 
argument, beneath the topological limits of PRNs. For
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Table 6 Key summary statistics for results obtained in Experiment 4 

PRN 
s 

Configuration 
Median, Mean, Sd 
Success Rate (SR) 

Proportion of 
networks 

with > 0.0 SR 

Median avg_evals 
of networks 
with > 0.0 SR 

Proportion of 
networks 

with > 0.5 SR 

Median size  
of networks  
with > 0.5 SR 

GH64 Lattice8_bh 0.5000, 0.5023, 0.3281 56/64 = 0.8750 4624 31/64 = 0.4844 203 
 PRN_bh 0.5750, 0.5750, 0.3176 62/64 = 0.9688 4947 36/64 = 0.5625 208 
 randLE_bh 0.5750, 0.5648, 0.3172 62/64 = 0.9688 5336 34/64 = 0.5313 208 
 randSE_bh 1.0000, 0.8773, 0.2047 64/64 = 1.0000 3283 57/64 = 0.8906 213 
 randAll_bh 1.0000, 0.8352, 0.2426 64/64 = 1.0000 3344 54/64 = 0.8438 212 
EVA132 PRN*_bh 0.6000, 0.5614, 0.3176 124/132 = 0.9394 9219 77/132 = 0.5833 226 
 randLE*_bh 0.6000,  0.5492, 0.3197 122/132 = 0.9242 9373 76/132 = 0.5758 274 

The first column gives the source of the PRN and optimal string s. The ‘*’ indicates the use of the EVA132 dataset. The ‘_bh’ suffix 
indicates the use of the bh option in the fitness function. 

Table 7 FT-COMAR results for five random PRNs in GH64 
PID N Lat8 PRN randLE randSE randAll 
153L 185 0 0 196 1501 1543 
1arb 263 0 0 1319 2278 2221 
1cjl 307 0 144 1132 2802 2870 
1rpx 690 0 355 3208 6496 6589 
1psd 808 0 651 4975 7559 7772 

FT-COMAR (Vassura et al, 2008) predicts a plausible 3D 
construction of a given contact map and threshold, and reports 
the Hamming distance between the given contact map and the 
contact map of the predicted structure. Hence, a larger value 
in this table implies that the given contact map is less 
plausible as a 3D structure. FT-COMAR works better for 
thresholds larger than the one we use, i.e. 7 Angstrom, and 
this affects the results for larger PRNs. Nonetheless, the 
results still favor PRN over randLE. 

instance, both local (high clustering and positive assortativity) 
and global (short average path length) characteristics of PRN 
seem necessary to create favorable conditions for protein 
folding. 
Finally, it could be worthwhile, to both protein folding 

studies and systems organization in general, to understand 
how the short-range and long-range links in proteins 
cooperate to create mutual satisfaction without either set 
necessarily dominating the process.  
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Abstract

The nests of social insects are not only impressive because
of their sheer complexity, but also because they are built from
much smaller agents whose work is not centrally coordinated.
A central question is therefore how this coordination can lead
to such large scale structures. In this paper we present an
individual based nest construction model from experimen-
tally inspired rules. The coordination of the building pro-
cess is achieved through three main ingredients: 1) stigmergy,
which implies that the local configuration of the structure is
the stimulus which determines how to continue, 2) body tem-
plate, where the interaction between the ant’s body and the
growing structure determines the proportions of the emerg-
ing pattern, and 3) a construction ”pheromone”, a chemical
compound capable of triggering building actions. Our sim-
ulations show that this simple set of coordination rules can
reproduce the key features observed experimentally in the
ant Lasius niger, notably the emergence of mushroom-like
pillars and layered structures. A sensitivity analysis on the
evaporation rate of the construction pheromone shows that a
large range of architectures, from dynamic multilayered nests
to compact sponge-like structures, can be produced with the
same behavioural rules by simply modifying evaporation rate.
We discuss the relevance of these results with respect to the
variety of nest architectures found in social insects.

Introduction
The nest architectures of social insects (ants, termites, some
bees and wasps species) are among the most impressive and
complex artifacts built by animals with the notable excep-
tion of man (Theraulaz et al., 1998; Turner, 2000a,b). All
along the evolution of social insects, there has been a whole
set of innovations in terms of architectural designs and con-
struction techniques that proved to be very efficient to solve
a large number of problems such as controlling the tempera-
ture inside the nest, ensuring the gas exchanges with the out-
side environment (Bollazzi and Roces, 2007) or adapting the
nest structure when colony size is growing (Hansell, 2005).
More than fifty years after Pierre-Paul Grassé has introduced
stigmergy as a basic principle for the coordination of work
in these societies, we are still very far from having a full un-
derstanding of the mechanisms that shape architecture and
functional designs of the nests (Grassé, 1959). While being

Figure 1: Examples of nest architectures built by ant
colonies. (a) Detail of a nest in wood pulp sculpted by the
ant Lasius fuliginosus. (b) Detail of the nest structure built
by the ant Lasius pallitarsis c©Alex Wild. (c) A closer look
on the walls and vertical passages connecting chambers in-
side a nest built by the ant Lasius niger.

extremely simple, stigmergy is able to give rise to complex
self-organised patterns (Deneubourg, 1977; Bonabeau et al.,
1998). Moreover stigmergy is often combined with envi-
ronmental templates that modulate the expression of indi-
vidual building rules, thus increasing the range of potential
architectures (Jost et al., 2007). Other factors are also likely
to play a key role in nest morphogenesis such as building
pheromones. Such pheromones have been identified in ter-
mites (Bruinsma, 1979) and are likely to exist in some ant
species (our unpublished data).

In this paper we present an individual-based model of ant
nest construction based on a detailed analysis of individ-
ual building behaviours that take into account the logistic
constraints imposed by the architecture on the movement of
ants. With this model we investigate the role played by the
building pheromone on the resulting shape of the nest.
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The paper is organised as follows: in section two we in-
troduce the experimental results and describe the individ-
ual building rules in the ant Lasius niger. In section 3, we
present an overview of the 3D agent-based model. In sec-
tion 4, we report simulation results that illustrate the impact
of evaporation rate of building pheromone on the resulting
nest architectures. Finally, in section 5, we establish com-
parisons with related work and draw some conclusions and
directions for future work.

Construction mechanisms at the individual
level

We performed a series of experiments to investigate the
mechanisms involved in nest construction in the ant Lasius
niger. These experiments showed that the deposition of ma-
terial in a particular place stimulates the ants to accumulate
more material in that same place, thus creating a positive
feed-back. Experiments also revealed that the workers add a
chemical signal (a building pheromone) to the building ma-
terial. The main action of this chemical signal is to attract
ants, but there are also indications that it stimulates the de-
position of building material.

There was no particular effect of this signal on the extrac-
tion of building material, but it was noticed that ants prefer
to dig where they have already dug, forming a type of quarry.
This may be simply due to physical constraints, in the sense
that it is much harder for an ant to extract a pellet from a
place where the soil has been solidly packed, compared to a
place where the soil surface has been broken (as by a previ-
ously digging ant).

The consequence of all these behaviours is the formation
of pillars. Once pillars have been erected and have reached
a critical height, the workers start to build a canopy on the
sides. The height at which the ants attach the pellets on the
pillars corresponds approximately to the mean body length
of an ant worker. The workers therefore use their body as a
kind of template to decide at which height they will stop to
increase the size of an existing pillar and start to build a roof
from that pillar.

Behaviour-based model of nest construction
We developed a spatially explicit individual-based model in
a discrete 3D cubic-lattice in which we have incorporated
the behavioral rules characterized by the experiments

General principles
The model is stochastic: ant workers are represented by
agents whose behavioural rules are modelled according to
probabilities to perform simple elementary actions. More-
over, the process is Markovian: the probability of perform-
ing a given action is only depending on the current state
of the environment around the agent (spatial configuration,
quantity and age of the building pheromone, number of

empty cells below). Indeed, agents are memoryless and tire-
less.

Following Ladley and Bullock’s work (2005), our model
takes into account the geometric constraints: each pellet
of building material occupies a single cell and the ants
are represented by agents that move randomly in a three-
dimensional discrete cubic lattice (200× 200× 200 voxels).
Each agent occupies a single cell and their movements are
constrained by the structures they build: they cannot walk
through the built structures. The layers on the bottom and on
the sides of the lattice act as borders. Ants simply bounce on
the floor and walls when they come into contact. We choose
a discrete time step approach. At each step, the system is
updated: agents move, then, if they are not already trans-
porting building material, they can pick up a pellet, else
drop it, or simply continue their walk without doing any-
thing else. Each agent can only perceive the first twenty six
neighbouring cells that surround the place where it is located
at a given moment (cell c) . We denote these twenty-six 3D-
neighbours by V26,c, and the influent neighbourhood for cer-
tain behavioural rules may be restricted as detailed below.

Behavioural rules of an ant

Motion The motion of ants is a constrained random walk,
which means that they stay in contact with the outer surface
of the architecture. The building pheromone that will be in-
troduced in dropped pellets doesn’t affect their motion: ants
are not attracted or repelled by it.

Ants may only move to adjacent locations, i.e. the six
orthogonal cells. We call V6,c this reduced neighbourhood
around the cube c. A worker cannot walk through an occu-
pied cell (clay, floor, wall or another worker): only empty
cells of V6,c are really available for moving. The second
constraint prevents flying ants: they must stay in contact
with the surface of the structure. Thus, only adjacent loca-
tions, which have at least one V6,c neighbour cell occupied
by clay, floor or walls, are available for moving. The algo-
rithmic description of the motion rule is summarized below
(Algorithm 1).

Picking-up rule A worker can only pick up a pellet when
it stands atop it. If it does, it takes the location of the pellet.

To compute the picking-up probability, the worker sim-
ply considers the bottom layer of cells in its neighbourhood.
We call V8,c the eight horizontal neighbours of the cell she
is standing on. The probability to pick-up the block she is
standing on is not influenced by the presence of pheromone
in the material but it slightly decreases as the quantity of
building material in this bottom layer increases. This is a
simple consequence of the fact that it is much more difficult
for an ant to extract a pellet when the ground is packed more
solidly. The corresponding picking up probability is shown
in Figure 2 (a).
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Algorithm 1 Motion rule – The algorithm used to simulate
the workers’ random walk. To simulate agents’ diffusion,
one agent performs nbMove elementary moves each time
step. cw is the cube with the worker w. V6,w is the list of the
six neighbours of w that share a face with it. We denote by
Aw the list of the accessible immediate neighbours of w and
by Random the random drawing in a discrete set of cells.

1: // The worker is in cw.
2: for all step ∈ {1; nbMove} do
3: Aw = EMPTY LIST
4: for all ci ∈ V6,w do
5: if (ci == empty) and (one of V6,ci is full )

// The cube ci is accessible.
then

6: Aw ← concat(Aw, ci)
7: end if
8: end for

// Aw contains all the accessible adjacent neighbours
of w.
// Random choice of cr ∈ Aw.

9: cr = Random(Aw)
10: cw ← cr
11: end for

The algorithmic description of the picking up rule is sum-
marized below (Algorithm 2).

Building rule A worker drops its pellet at its current loca-
tion, provided there exists a cell in the neighbourhood V26,c

where it can move after dropping. This building behaviour is
also conditioned by physical constraints, which means that
a building pellet can be added to the previous structure only
if at least one of its faces is in contact with another pellet
located in the neighbourhood (pellets do not stick together
by the cube’s corners or edges).

Since we found experimental evidence that clay which
has been previously manipulated by workers stimulates the
dropping behaviour, we implement a building pheromone.
The building pheromone contained in a pellet is renewed
each time a pellet has been picked-up and dropped. It does
not diffuse to adjacent cells but still undergoes an exponen-
tial decay (at some rate), so it directly delivers a local signal
about the time elapsed since the pellet was deposited. The
probability to drop a pellet or add it to an existing structure
is enhanced by the number of pellets previously dropped in
the neighbourhood but it decreases with time.

Since we found also experimental evidence that ants use
their body as a kind of template to build the canopies on top
of the pillars and prefer to drop their load at some height
(standing upright along the pillar), we also include a modu-
lation of the dropping probability when a worker is moving
over a vertical surface. In those situations, when the poten-
tial dropping site has h empty cells below it, the behavioural

Figure 2: Probabilistic building rules implemented in the
model. (a) Picking-up probability as a function of the
number of cells containing clay in the bottom layer. The
shown curve is implemented as a two-parameter func-
tion of the number of neighbours n, taking the value
spontP ick for n = 0, spontP ick/100 for n = 8 and
spontP ick/(amplifP ick · n) for 1 ≤ n ≤ 7. (b) Drop-
ping probability as a function of the local density (number
of neighbouring cells containing clay, n) and of the age of
the latest dropped pellet in the neighbourhood. It takes the
values spontDrop for n = 0 and (drop1 + amplifDrop ·
(n − 1)) · exp(−(time − latestDropT ime) · evap) for
1 ≤ n ≤ 26, where time is the current time. For param-
eter values and explanations see Table 1. The red, green and
blue lines mark the probabilities where the last dropped pel-
let is younger to older respectively.
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Algorithm 2 Picking-up rule – The algorithm used to esti-
mate the granularity around the worker w currently located
in the cube cw. We denote by tw,p the target cube for the
picking up. Here, the rule Hp,1 is that tw,p is underneath
cw. V8,tw,p is the list of the influent neighbours of tw,p. The
variable nw,p counts the number of full neighbours. pw,n

is the associated picking up probability. Uniform denotes a
random number in [0; 1[.

1: nw,p = 0
2: for all ci ∈ V8,tw,p

do
3: if ci == full then
4: nw,p ← nw,p + 1
5: end if
6: end for

// Calculate the picking up probability, associated to
nw,p.

7: pw,p ← f(nw,p) // According to a decreasing amplifi-
cation curve, see figure 2 (a).

8: if pw,p < Uniform then
9: // Pick-up tw,p.

10: // Move to tw,p.
11: end if

Algorithm 3 Building rule – The algorithm used to estimate
the local density around the worker w which is located in
the cube cw. The influent neighbours are V26,cw . The vari-
able nw,d allows to count the number of full neighbours.
ageOf(ci) corresponds to the date of dropping the pellet ci.
We define by latestDropAge the date of the latest dropped
pellet in V26,cw . Uniform denotes a random number in [0; 1[.

1: nw,d = 0
2: latestDropAge = 0
3: for all ci ∈ V26,cw do
4: if ci == full then
5: nw,d ← nw,d + 1
6: if latestDropAge < ageOf(ci) then
7: latestDropAge = ageOf(ci)
8: end if
9: end if

10: end for
// Calculate the dropping probability, associated to nw,d

and latestDropAge.
11: pw,d ← f(nw,d, latestDropAge) // According to the

increasing curve shown in figure 2 (b).
12: if pw,d < Uniform then
13: // Drop in cw.
14: ageOf(cw) = currentStep
15: // Use OneMove (Algorithm 1) with nbMove = 1 to

escape from cw.
16: end if

algorithm includes a multiplication factor of the dropping
probability, pw,d(h), according to the equation

pw,d(h) = pw,d ·
hn

h̄n + hn
(1)

with h̄ being the mean length of an ant.
The algorithmic description of the building rule is sum-

marised above (Algorithm 3).

Simulation results
We implemented the three behavioural rules in the model
and we run the simulations with the parameters values given
in table 1. The 3D cubic lattice (200 × 200 × 200) was
initialised with 20 bottom layers uniformly filled with pel-
let and 1000 workers randomly placed on the surface. The
maximum value of the spontaneous picking-up probability
is reached when the eight horizontal neighbours on the bot-
tom layer are empty. This is fixed in the picking-up proba-
bility function by the parameter spontP ick which we set to
10−2. The decrease in picking-up rate, specified by param-
eter amplifP ick, is set to 1.

The spontaneous dropping probability spontDrop, when
there is only one pellet in its V26,c neighbourhood, is fixed at
10−4. In case of one additional neighbouring cell we set the
dropping probability to drop1 = 10−3 (Fig 2). Dropping
probability then increases continuously with the number of
pellets in V26,c to the maximum value of drop26 = 0.9.
The evaporation rate is initially set to evap = 1.6 × 10−5

per time step and then modified to explore its impact on the
emerging 3D architectures.

Model param-
eter

Description Value

spontDrop Spontaneous dropping
probability

10−4

drop1 Dropping probability in the
case of exactly one marked
neighbour

10−3

amplifDrop Factor modulating the drop-
ping probability

0.036

evap Evaporation rate of the
building pheromone

3.2×10−4 to
8.0× 10−7

spontP ick Spontaneous picking-up
probability

10−2

amplifP ick Factor modulating the
picking-up probability

1.0

Table 1: Parameters values used in simulations. Rates and
probabilities apply to one time step. See Fig 2 for the use of
these parameters.

Pillars and roofs
When running this model one can observe the formation of
pillars. When the height of the pillars becomes high enough,
pellets are added on the pillars’ sides; this rapidly increases
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Figure 3: A comparison of the structures built in experi-
ments and in a simulation of the model. (a) An arch that
covers a passage between two pillars built by ants in exper-
imental conditions. (b) A close view of a simulation result
with the same initial conditions as the ones used in exper-
iments. The model is able to reproduce the characteristic
shapes observed in these experiments. The parameter values
used in this simulation are listed in table 1.

the surface of the pillar top, leading to the formation of some
kind of hat or roof. These roofs look quite similar to the ones
we got in the experiments (see figure 3). Moreover, when
two roofs are close enough to each other, they can merge.
The result is an arch that covers a passage between the two
pillars.

Physical stress due to gravity and decreasing cohesion due
to evaporating water should finally lead to collapsing roofs
and pillars, an event that was sometimes observed in the ex-
periments. The current version of the model does not in-
clude these processes, but when inter-pillar distance is not
too large this should not be much of a problem.

Effect of the decay of the building pheromone on
3D architectures
To explore the diversity of nest architectures the model is
able to produce, we investigate the role of the decay rate
associated with the building pheromone. This is already
known to be a key ingredient of the self-organization in
social insects, it has a major impact on the collective dy-

namics such as: trail formation and path choice in ants
(Goss et al., 1989; Beckers et al., 1992; Jeanson et al., 2003;
Sumpter and Beekman, 2003), construction of pillars in ter-
mites (Deneubourg, 1977; Franks and Deneubourg, 1997;
Bonabeau et al., 1998), construction of wall in ants (Franks
et al., 1992), digging networks of galleries in ants (Buhl
et al., 2005).

Figure 4 shows that the evaporation rate of the building
pheromone is indeed a highly influential parameter on the
resulting structures.

When there is a strong evaporation rate (evap = 3.2 ×
10−4), the final structure is laminar (figure 4 (a)). In the
early steps, agents begin building several tiny pillars on the
unmarked initial surface. They cover them with thin roofs
or capitals. The surface of these roofs increases, several
roofs merge, forming a thin first layer that becomes the first
floor. In the next steps, the construction dynamics undergo
the same cycle of events, leading to a new floor. Moreover
agents can enlarge the pillars by adding new pellets on their
sides.

When the evaporation rate is smaller (evap = 1.6×10−5),
the structure is still laminar, but the layers are less plane than
in the previous case (figure 4 (b)). The initial phase is sim-
ilar to the previous condition, but there is a larger number
of pillars and the capitals are thicker. After the completion
of the first floor, the construction of new pillars occurs at a
faster rate than with the higher evaporation rate. A closer
look at the growth and the evolution of the nest structure re-
veals that while the whole structure remains quite similar in
time, it is constantly destroyed and rebuilt. The consequence
of this remodelling process, in which the ants destroy what
they have built previously, is a progressive drift of all the lay-
ers from the top to the bottom. It seems that a kind of wave
runs though the whole structure. These traveling waves are
indeed the simple consequence of the fact that the only place
where the ants can pick up some building material is the bot-
tom layer. So it quite naturally induces a kind of symmetry
breaking in the remodelling process.

Finally when the evaporation rate is very low (evap =
8 × 10−7, figure 4 (c)), the model leads to a sponge-like
structure that looks similar to the nest built by Lasius niger.
In a first step, pillars also emerge and are covered with cap-
itals that are more spherical than in the two previous cases.
Thus, when the capitals merge, the layer is thicker. In a sec-
ond step, pellets can be dropped anywhere on the new floor.
No pillar emerges in this case, the layer is just thickened.
Sometimes, a little heap appears by chance, a new pillar
is built and starts to grow. This new pillar merges quickly
with the structure in its vicinity, leading to the formation of
a chamber. The next floor is built when many chambers have
been created and closed. In the next steps, the construction
dynamics undergoes the same cycle of events: (1) thicken
the floor ; (2) emergence of few little pillars ; (3) fusion of
the roofs, which leads to the formation of chambers.
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Figure 4: The influence of the evaporation rate of the building pheromone on the nests structure. Left : 3D structure. Right
: Vertical cut (x ∈ [98; 101]. (a) With a strong evaporation rate (evap = 3.2 × 10−4), the construction process leads to the
formation of a laminar structure. The horizontal layers are connected with thick pillars. (b) With an intermediate evaporation
rate (evap = 1.6× 10−5), the structure is still laminar, but sometimes two successive layers can intersect and form a ramp that
connects successive floors (c) When the evaporation rate is very low (evap = 8× 10−7) we get a sponge-like structure.
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Figure 5: A closer look on the building dynamics in the case
of a very weak evaporation rate (8 × 10−7). (a) to (c) show
three successive steps of a simulation. The circle marks a
chamber ”moving” downwards.

Discussion and conclusion
In this paper we introduced a 3D model of collective ant nest
construction. This model is based on stochastic individual
rules derived from the experimental analysis of building be-
haviour in the ant Lasius niger. The model also integrates
logistic constraints, that is physical limitations on the move-
ment of ants imposed by the nest architecture. Such con-
straints have been previously implemented by Ladley and
Bullock (2005) to simulate the formation of the royal cham-
ber and covered lanes in termites.

There are two main differences with this previous work.
First, in our model there is no chemical template created by
the diffusion of pheromones. This contrasts with termites,
because the queen releases a pheromone that controls the
distance at which workers start to build. At the very begin-

ning, this chemical template strongly interacts with the self-
organizing building processes. And this combination gives
rise to pillar-like structures formed at roughly regular spatial
intervals, but at a specific distance from the queens body.
In ants, the effect of the body-template begins to work later
in the construction process, when the pillar-like structures
have reached a critical size. The consequence is the forma-
tion of a double regular spatial pattern: the first one charac-
terizes the spatial distribution of the pillars and the second
one characterizes the layered structure of the nest. The sec-
ond difference is a constant remodelling process that results
from the ants activity. In our model, ants continuously de-
stroy what they have built previously. Once a layer is in
place, all its surface is eroded as a consequence of the ants
digging activity and rapidly the material accumulates on the
underneath surface. As a main consequence all the layers
drift progressively downwards. And the speed of the travel-
ling and remodelling wave results from a balance between
the net deposition rates of building material at the upper and
lower surfaces of a layer.

Sometimes, ants may accumulate by chance a little bit
more material on the underneath surface of an existing layer.
This gives rise to a new pillar growing from top to bottom.
Once this pillar is built, it remains in place because the vir-
tual ants can only dig on the bottom layer and not on the
sides. This creates a kind of defect that propagates within the
structure as the remodelling process goes on. The same pro-
cess also produces connection areas between different layers
close to these pillars. The motion of ants is in turn channeled
by the spatial distribution of these connection areas. Then,
depending on the evaporation rate, this channeling process
may also promote the deposition of building material on the
edges of the pillars, thus changing their size and shape.

Our model showed that the resulting nest structure
strongly depends on the evaporation rate of the building
pheromone. When the evaporation rate is very high (evap =
3.2× 10−4), only the very latest depositions of material can
enhance the accumulation of more material. In these condi-
tions, only a small number of pillars can be built, there is a
strong competition among pillars to attract builders and the
distance between pillars increases. The second consequence
is a much more important enlargement of the capitals on top
of the remaining pillars. As soon as a capital is built, the ma-
terial is deposited at a faster rate on its border and the result-
ing shape of the roof becomes flat and thin. When the evap-
oration rate is less important (evap = 1.6×10−5), the num-
ber of pillars increases and the enlargement of the capitals on
top of the pillars is also much more important. Each pillar
becomes a seed from which a new layer is growing. Since
at each level there exist several seeds from which different
layers are growing, it may happen that one of these layers
collides with another one that is a part of the next level be-
low. This results in the formation of inter-crossings of ceil-
ings and floors belonging to two successive layers, leading
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to the formation of ramps. Finally, when there is a very weak
evaporation of the building pheromone (evap = 8× 10−7),
the enlargement of the capitals becomes even more impor-
tant. After having merged the capitals still increase their size
and the floor of the new layer is so attractive that the deposi-
tions of building material occur more or less uniformly over
the whole surface. Instead of well-defined pillars and floors,
ants build globular structures enclosing empty and irregular
chambers. The whole structure adopts a sponge-like struc-
ture.

The same kind of architectural diversity is observed in La-
sius species. The ant Lasius fuliginosus builds a sponge-like
nest (Figure 1 (a)), whereas Lasius pallitarsis and Lasius
niger nests show layered structures (Figures 1 (b) and (c)).
Our model shows that the same mechanisms can account for
significant changes in the nests shape.

These variations may have several origins: it might be
a consequence of the variation of environmental conditions
(e.g. temperature and humidity levels). If these conditions
change, the same species will be able to build nest structures
that look very different, for example in Acromyrmex ants
(Bollazzi et al., 2008) or in Macrotermes termites (Korb,
2003). But this variation may also result from the physi-
cal properties of the building pheromone itself. In particular
one may imagine that different species of ants or termites
can use similar building rules but different chemical cues.
Physical and chemical properties of the building pheromone
could thus play a key role in the diversity of nest architec-
tures built by ants and termites. This is an important issue
that needs to be addressed in future experimental work.
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Grassé, P. (1959). La reconstruction du nid et les coordinations
inter-individuelles chez Bellicositermes Natalensis et Cu-
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Abstract 

Forest ecosystems play a critical role in the cycles of carbon 
and water from local to global scales. These cycles and their 
variability, in turn, play an important role in the non-trivial 
emergent and self-organizing interactions between forest 
ecosystems and their environment. Observational evidence, 
based on micrometeorological eddy covariance measurements, 
suggests that heterogeneity and disturbance (both human and 
natural) in forest ecosystems in monsoon East Asia may 
facilitate to build resilience for adaptation to change. Yet, the 
principles that characterize the role of variability in these 
interactions remain elusive. A process network is defined as a 
network of feedback loops and the related time scales, which 
describe the magnitude and direction of the flow of energy, 
matter, and information between the different variables in a 
complex system. We attempt to delineate and interpret such 
process networks by analyzing multivariate ecohydrologic and 
biogeochemical time series data based on information flow 
statistics. 

Introduction 
Complex systems are systems in which large networks of 
components with no central control and simple rules of 
operation give rise to complex collective behavior, 
sophisticated information processing, and adaptation via 
learning or evolution (Mitchell, 2009). Thus, the science 
underlying complex systems should focus not only on the 
concepts of energy, force and matter, but also on those of 
feedbacks, information, communication, and purpose.   
 In Asia, it is of great concern that ecosystem services are 
being degraded by natural disturbance such as monsoon 
activity accompanied by typhoons reinforced by 
anthropogenic factors in a changing climate. Recent finding 
suggests that under projected climate scenarios, terrestrial 
carbon sinks in monsoon Asia will decline if the monsoon 
disturbance will exceed its natural range of variation and if 
there is no enhancement in the resilience of the ecosystems in 
this region (e.g., Kwon et al., 2010; Hong and Kim, 2011). 
 Resilience-based system approach suggests that complex 
systems evolve through active adaptive cycles to cope with 
change. Ecohydrologic and biogeochemical processes 
associated with water and carbon cycles in complex forest 

ecosystems can be viewed as a network of processes of a wide 
range of scales involving various feedback loops.  
 Finding such networks of feedback loops for key 
ecosystems in monsoon Asia is of great value and concern. 
However, the traditional correlation-based analysis cannot 
delineate such complex processes with detailed information 
on direction and strength of the coupling between the 
variables. Following Ruddell and Kumar (2009), we examined 
the dependence between a series of variables measured at the 
flux towers in AsiaFlux by quantifying the information flow 
between the different variables along with the associated time 
lag. The objective of our study is to test the applicability of 
information theory to ecohydrologic and biogeochemical 
systems with the datasets obtained at various forest sites in 
East Asia with different levels of complexity and 
heterogeneity. 

Methods and Materials 
We used Shannon’s information entropy as our methodology 
(Shannon, 1948) and calculated the transfer entropy (TE) to 
measure the reduction in the entropy of the current state of a 
measured variable Xt

(j) due to the knowledge of prior state in 
another variable Xt

(i), which is in addition to the information 
provided by the immediate prior history of Xt

(j) (e.g., Ruddell 
and Kumar, 2009). We normalized TE using m (set at 11) 
discrete bins to estimate the probability distribution function. 
The information flow process network consists of the 
asymmetric pair wise TE between the ith and jth variable from 
the set of nv observed variables and is represented as an 
adjacency matrix (Kumar and Ruddell, 2010).  

We used the time series data in 2008 from two adjacent 
KoFlux tower flux sites (in deciduous and coniferous forests) 
located in Korea. The description of the sites and the data can 
be found in AsiaFlux homepage (http://www.asiaflux.net). In 
this analysis, we selected 15 variables associated with 
ecohydrologic and biogeochemical processes in forests, which 
are atmospheric pressure (PA), net ecosystem CO2 exchange 
(NEE), gross primary productivity (GPP), ecosystem 
respiration (RE), latent heat flux (LE), precipitation (Precip), 
solar radiation (Rg), air temperature (T), vapor pressure deficit 
(VPD), soil temperature (Ts), soil water content (SWC), 
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sensible heat flux (H), canopy temperature (Tc), wind 
direction (WD), and wind speed (WS). We computed process 
networks for each of thirty-six sub-daily time lags between 30 
minutes and 18 hours. Our spectral analysis shows that this 
subdaily time scale explained more than 30% of the variances 
of the above variables associated with carbon and water 
cycles, reflecting that this range is an important scale of land-
atmosphere interactions. In this process, the complexity and 
heterogeneity embedded in the observed flux data may hinder 
the application and interpretation of such information flow 
statistics. Therefore, estimation and methodological issues 
were examined by comparing these two adjacent forests with 
different levels of heterogeneity and complexity. 

Preliminary Results 
The adjacency matrix for the 15 variables results in 210 
potential pairwise couplings, about 25% out of which were 
found to be statistically significant at one or more time lags 
for both deciduous and coniferous forests. Preliminary results 
on network matrix are presented in Tables 1-4.  
 
  Table 1. Network matrix for mutual information 

 
Table 2. Network matrix for uncertainty percentage 

 
 Table 1 shows the matrix for the mutual information 
between pairs of variables at zero time lag. Source variable X 
index i is in rows; sink variable Y index j is in columns. 
Matrix is symmetric. Italics indicate matrix diagonal. All 
values are in percent. The values before and with parenthesis 
are for deciduous (GDK) and coniferous forest (GCK), 
respectively.  
 Table 2 shows the matrix for the percentage of uncertainty 
of each Y explained by X. Table 3 shows the matrix for the 
ratio of the maximum lag to mutual information for all 
significant couplings. Table 4 shows time lags of significant 

information flow on the interval, including the first significant 
lag, last significant lag, number of significant lags, and peak 
time lag. Significant lag times are [first-last (number), max]. 
 
Table 3. Network matrix for the ratio of the maximum lag to 
mutual information 

 
Table 4. Network matrix for time lags of significant 
information flow on the interval 
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Abstract

We report here the use of Aevol, a software developed in our
team to unravel the indirect selective pressures (i.e. pressures
for robustness and/or evolvability) that act on the genome
and transcriptome structures. Using Aevol, we have shown
that these structures are under strong – although indirect –
pressure due to the mutagenic effect of chromosomal rear-
rangements. Individuals undergoing high spontaneous re-
arrangement rates show more compact structures than indi-
viduals undergoing lower rates. This phenomenon concerns
genome size and content (non-coding DNA, presence of oper-
ons, number of genes) as well as gene network (number of
nodes and links) thus reproducing parsimoniously a large
panel of known biological properties. The results reported
here have been published in Mol. Biol. Evol. (Knibbe et al.,
2007), Biosystems (Beslon et al., 2010) and Alife XII (Par-
sons et al., 2010).

Introduction
Largescale comparative analysis of sequenced genomes has
revealed that several molecular traits follow characteristic
scaling laws. For instance, the genome size has been shown
to scale as a power-law of the spontaneous mutation rate in
DNA-based microbes (Drake, 1991). More recently, differ-
ent genomic properties have been shown to follow power-
law distributions (Luscombe et al., 2002). In prokaryotes
for instance, it was shown that the number of genes in each
functional category scales as a power-law of the total num-
ber of genes and that the exponent of this law depends on
the functional role of the family: The number of transcrip-
tion factors, in particular, scales quadratically with the total
number of genes while metabolic genes scale linearly (van
Nimwegen, 2003). This increase is also correlated with the
size of the genome (Konstantinidis and Tiedje, 2004).

The origins of such scaling laws remain an open question.
Actually, despite the tremendous advance in the fields of ge-
nomics and transcriptomics, it is still not clear whether these
“molecular allometric laws” result from selective constraints
(e.g., selection for short genomes or integrated networks) or
from the neutral dynamics of the evolutionary process.

An original approach to study the origins of genomic
structures is to use in silico models of evolution. In such

models, the evolutionary forces are precisely tuned and it is
possible to test experimentally how they shape the organ-
isms’ structure. In silico evolution has already shown that
darwinian evolution can have counter-intuitive effects, due
to indirect selective pressures. For example, using the avida
framework, Wilke et al. (2001) have shown that the long-
term survival of a lineage not only depends on its fitness,
but also on its mutational robustness. However, most digital
genetic frameworks lack a precise description at the molec-
ular level. That is why we have developed Aevol (“Artifi-
cial Evolution”) and its extension R-Aevol (“Regulation in
Aevol”). It specifically focuses on the molecular level in or-
der to unravel the evolutionary pressures that act on genomes
and transcriptomes. We report here the main results we got
with Aevol. These results have been published in Molecu-
lar Biology and Evolution (Knibbe et al., 2007), Biosystems
(Beslon et al., 2010) and Alife XII (Parsons et al., 2010).
Aevol is freely available upon request from the authors.

The Aevol model
In Aevol, organisms own a circular, double-stranded genome
of binary “nucleotides”. Predefined signaling sequences as
well as an artificial genetic code allow to detect the coding
sequences and to translate them into abstract “proteins”. We
defined an artificial chemistry that describes the metabolism
in a mathematical language: We assume that there is a one-
dimensional space of all possible metabolic functions in
which proteins are represented by a subset describing their
metabolic contribution. This subset is described by param-
eters encoded in the coding sequence of the protein. Mu-
tations in this sequence change these parameters, hence the
metabolic activity of the protein.

In Aevol, the transcription rate of a given gene depends
only on its own promoter sequence. In R-Aevol, proteins
may have a regulatory activity besides their metabolic ac-
tivity, thus being able to enhance or inhibit the transcription
of other genes by binding to their promoters. The result-
ing transcription level is used to scale up or down both the
metabolic and the regulatory activities of the protein. Due to
this regulatory process, the transcription levels of the genes
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vary during the organism life and so do the protein activities.
In Aevol as well as in R-Aevol, the global metabolism is

computed by combining all the proteins’ activities and the
phenotype represents the degree of realization of each pos-
sible metabolic function. The fitness of the organism is then
computed as the distance between the phenotype and a pre-
defined target. The fittest organisms are allowed to repli-
cate, with small mutations and large rearrangements (dupli-
cations, deletions, inversions, translocations) occurring ran-
domly during the replication. Thus the genome size, gene
number and gene order are free to evolve. In R-Aevol, mu-
tations and rearrangements can also modify the regulatory
network by either duplicating/deleting genes or promoter re-
gions or by modifying their binding potentials.

Results
Digital genetics models are experimental models: Popula-
tion of individuals evolve in different conditions and, by
observing the genomic and transcriptomic structures of the
evolved organisms, one then links the structures to the evo-
lutionary conditions. Analysis of the lineages then enables
to unravel the origins of the observed structures, ideally by
discovering invariant properties in all simulations. In Aevol,
we classically explore the influence of mutation rates, rear-
rangement rates and selection strength. The most striking re-
sults were obtained by exploring the influence of rearrange-
ment rates on the different organization levels of the model:

I) By observing the genome length of evolved organ-
isms, we observed a linear scaling between the rearrange-
ment rate and the length of the non-coding sequences in
Aevol’s genomes. We have shown that this scaling is due
to an indirect selective pressure acting on the non-coding se-
quences: Due to chromosomal rearrangements, non-coding
sequences have a mutagenic effect on the surrounding genes.
This long-term selective pressure offers a new explanation to
variability of genome size and content (Knibbe et al., 2007).

II) By reproducing in R-Aevol the same experiment, we
have shown that this pressure also acts at the transcriptomic
level. Regulation networks evolved under different rear-
rangement rates show huge structural differences, ranging
from very small hardly connected networks (high rates) to
large and densely connected ones (low rates). Moreover, like
in prokaryotes, the number of transcription factors scales
quadratically with the number of genes (Beslon et al., 2010).

III) Finally, we showed that this indirect pressure induces
many side effects. In particular, under high rearrangement
rates, genome compaction causes a fusion of transcribed se-
quences favouring operons (Parsons et al., 2010).

Thus, by changing a single parameter in the simulations
– the spontaneous rearrangement rate – we were able to
reproduce genomic and transcriptomic structures ranging
from virus-like structures to prokaryote-like and, ultimately,
eukaryote-like ones. Moreover, we were able to show that
the best final organisms obtained in all these simulations

share the same variability level. If we measure the prob-
ability for the best final organisms to reproduce neutrally
(i.e. the product of its offspring number W by its fraction
of neutral offspring Fν), we always observe that FνW ∼ 1,
showing that these very different organisms all share a same
exploration-exploitation compromise, an evident hallmark
of indirect selection.

Of course, in Aevol many selective and non-selective ef-
fects have been neglected (energetic costs, mutational bi-
ases...) that may interact with the indirect selective pressure
we isolated. However, in the model, this indirect selective
pressure appears to be strong enough to overcome direct se-
lective pressure (high rearrangement rates forbidding organ-
isms to increase their gene repertoire). Thus it is likely to
have an effect in real organisms. We now use Aevol to bet-
ter understand the traces that indirect selection may leave in
genomes. We will then be able to search for these traces in
the sequences that accumulate in databases.
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Abstract

One of the outstanding challenges in soft robotics is the
chicken-and-egg problem of body/brain design: generation
of locomotion is predicated on the existence of a locomotion-
capable body, and generation of body plans is predicated
upon the existence of effective locomotion. This problem is
compounded by the high degree of coupling between the ma-
terial properties of a soft body (such as stiffness or damping
coefficients) and the effectiveness of a gait. In this work we
describe a means by which the material properties of a sim-
ulated soft body co-evolve alongside locomotive gaits. Im-
provements in simulation time, with no loss of overall fitness,
are obtained by incrementally increasing mesh density over
the course of evolution.

Introduction
Imagine a soft, resilient and deformable robot able to change
shape and squeeze through small apertures. The idea of us-
ing such a robot for urban search and rescue holds great
appeal, particularly in light of recent tragic earthquakes in
China, New Zealand, and Japan. Once the domain of sci-
ence fiction, soft robots are approaching reality – thanks to
recent advances in engineering and material science. Unfor-
tunately, the very properties which make soft robots so ap-
pealing also introduce significant obstacles, especially in the
domains of design and control. Elasticity and deformability
come at the cost of resonances and tight dynamic coupling
between components (Trimmer, 2007) – properties which
are often assiduously avoided in conventional engineering
approaches to robotic design. Small changes to the elastic-
ity of a soft robot can cause unexpectedly large changes in
performance.

Absent the analytical design methodologies available to
conventional rigid robots, one compelling approach lies in
evolutionary design, a field which has had considerable suc-
cess in other complex design domains ranging from satellite
antennae (Lohn et al., 2005) to telescope lenses (Al-Sakran
et al., 2005) to elaborate tensegrity structures (Rieffel et al.,
2009b).

The problems of soft robot design can be summarized
with three questions:

• What should a soft robot look like? (Morphology)

• What physical properties should a soft robot have? (Ma-
terial)

• How should a robot move? (Locomotion)

Of course, these are not independent variables: solving
each problem is predicated upon, and sensitive to, the pre-
existence of solutions to the corresponding problems. The
design of a soft robot’s locomotive gait, for instance, de-
pends upon both its morphology and properties such as elas-
ticity and friction.

This is in a sense an elaboration on the chicken-and-egg
problem posed by body/brain design in more conventional
robots (Pollack et al., 1999, 2001), with the added com-
plexities which come from the effects of material properties
upon a soft body’s dynamics. In light of that, our approach
to solving the problem will be similar: co-evolution. Ear-
lier work has focused on co-evolving soft robot morphology
with gaits (Rieffel et al., 2009a; Rieffel, 2010), and so this
research focuses on the related problem of co-evolving ma-
terial properties alongside gaits.

This paper describes how, given a specific soft robot’s
shape, we are able arrive at effective locomotion by co-
evolving gaits – muscle firing patterns – alongside finely
tuned material properties such as stiffness and damping co-
efficient. In doing so, we demonstrate a connection between
material properties and gaits. Furthermore, in order to ad-
dress the computational overhead imposed by soft body sim-
ulation, we introduce a method which scales model mesh
resolution over the course of evolution, such that a large
early portion of evolutionary time is devoted to low resolu-
tion models of the robot, and as evolution progresses mesh
resolution increases. This resolution scaling achieves fit-
nesses comparable to those achieved by fixed high resolution
while reducing overall computation time.

Simulating Soft Robots
Once the domain of Finite Element Analysis (FEA) and
Computational Fluid Dynamics (CFD), physics simulation
is now much more accessible thanks to recent advances in
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commercial off-the-shelf video-game physics engines accel-
erated by massively parallel graphics cards (GPUs). This
General Purpose Computing on Graphics Processing Units
(GPGPU) can provide speedups of several orders of mag-
nitude over software-only simulation. (Banzhaf and Hard-
ing, 2009). In particular, our research uses NVidia’s PhysX
engine because of its ability to simulate complex three-
dimensional soft bodies.

Soft Bodies in PhysX
Soft bodies in PhysX are represented as tetrahedral meshes,
where single tetrahedra (Figure 1) are connected to their
neighbors at their common vertices. The material properties
of a soft body mesh can be tuned by varying a set of con-
straints placed upon the tetrahedra within a mesh. Two val-
ues, stretching stiffness and damping co-efficient, tune the
parameters of a spring-and-damper system along each edge
of the tetrahedron. A tetrahedral mesh with high stretch-
ing stiffness will try hardest to maintain its shape, while
one with a low stiffness will flop to the floor like a deflat-
ing balloon. The damping coefficient of a soft body changes
how fast it returns to equilibrium after a perturbation. A low
damping co-effient allows soft bodies in motion to oscillate
more. A third constraint, volume stiffness, determines how
hard each tetrahedra attempts to maintain a constant volume
– a mesh with low volume stiffness will resemble a flat pud-
dle more than a balloon. Changing each of these values af-
fects the softness of all tetrahedra in a soft body, although
not necessarily in a linear manner. As illustrated by Fig-
ure 3, by varying these material properties, the behavior of
soft bodies in PhysX can range from a near fluid, to rubbery
Jell-O to a semi-rigid plastic. Finally, we also chose to vary
the friction of the crawling surface, within a relatively nar-
row range, in order to be able to change how well the soft
material gripped the substrate.

The bottleneck for soft bodies simulation is the density of
the underlying tetrahedral mesh: simulation slows dramati-
cally as the number of tetrahedra in a mesh grow (Figure 2).
The trade-off is that low-resolution meshes, by modeling
fewer nuances of the soft body, such as body wall folding,
risk having lower fidelity to the real-world behavior of the
corresponding soft body.

Soft Body Gaits One of the more interesting conse-
quences of soft robotics is the lack of conventional actuators.
Because suppleness and deformatility are important, devices
like servos and stepper motors are not viable. Absent those,
one valuable alternative is nitinol “memory wire” (Trimmer,
2007). These artificial muscles act essentially as linear ac-
tuators, and can be modeled as applying equal and opposite
force vectors to their two attachment points.

Given a fixed set of muscles in a soft robot, a simple way
to represent their firing patterns is through a square wave
characterized by a duty cycle, a phase offset, and a period

Figure 1: Soft bodies in PhysX are built out of tetrahedral
meshes. Each tetrahedron is defined by four vertices and
four corresponding faces. The material properties of a mesh
can be tuned by changing the stretching and damping coef-
ficients of spring-and-dampers systems along the edge, and
by changing the tetrahedron’s resistance to volume changes.

(Figure 4). The period of the firing pattern represents the
time between the square wave’s rising edges. Duty cycle
corresponds to the percent of time that a muscle is “on” dur-
ing that period. Finally, the phase of the firing pattern repre-
sents the delay before the first rising edge.

Figure 4: Soft robot gaits are composed of firing patterns
for a set eight symmetrical muscles (four per side). Each of
the eight patterns is described by a unique duty cycle, phase,
and period.

Figure 5 shows the layout of the eight muscles on our
model robot. It is worth emphasizing that although the mus-
cle placement is bilaterally symmetric, in our genetic algo-
rithm we place no such constraints on the eight matching
firing patterns.

Co-Evolving Gaits and Material
Our goal was to simultaneously discover a suitably matched
gait/property pair, and so it seemed natural to gauge fitness
by the linear distance traveled by the soft body over a fixed
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Figure 2: The same robot model with low mesh resolution (left) and high resolution (right).

Figure 3: Changing the underlying material properties can drastically affect both the shape and the behavior of a soft body.
Images of the same soft body with high (left) and low (right) stretching stiffnesses.

Figure 5: An illustration of the linear actuator “muscles” of
the simulated soft body. Although muscles are aligned with
bilateral symmetry, no symmetry constraints were placed on
the underlying firing patterns.

Figure 6: Evolution occurs in two parallel populations: the
population of gaits uses the current-best set of material prop-
erties, while the set of population of properties uses the cur-
rent best gait.

number (8000) of simulator time steps. However, the fit-
ness of a specific gait can vary greatly depending upon the
underlying material properties, and, similarly, the fitness of
a material property set depends greatly upon the gait it is
tested against.

Our solution was to co-evolve a population of gaits in
lock-step with a population of material properties, each with
a common fitness function (but separate fitness values). Fig-
ure 6 illustrates our approach. One population was com-
posed of soft body gaits, where a gait genome is composed
of eight phase/duty/period tuples, one for each muscle. No
other information, such as muscle location, is encoded in the
genome.

Values for the properties were limited to keep results re-
alistic. Ranges are as follows (note that in PhysX, like most
physics simulators, these properties are unit-less):

Property Min Max
Volume Stiffness 0.1 1.0
Stretching Stiffness 0.3 1.0
Friction 0.5 1.0
Damping 0.0 1.0

Initially, a fixed “best guess” of material property values
(those which were used to produce the results of our earlier
work in Rieffel (2010)) was used for evaluating the fitness of
each gait. The second population evolved soft body material
properties, where a single genome contained values for a
specific set of stretching stiffness, volume stiffness, damping
co-efficient and body friction. Initially, for this population’s
fitness evaluations, a fixed “best guess” of firing patterns –
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in this case arrived at via human trial and error – was used.
Every tenth generation, the gait used for material prop-

erty fitness evaluation was updated with the current highest-
fitness gait from the gait population, and the material prop-
erties used for gait population evaluation were updated from
the highest-fitness property values.

With population sizes of 40, a typical run took approxi-
mately 24 hours to evaluate 100 generations of each popula-
tion on a 2.66 GHz Core i7 processor with 6 GB of RAM.

Results and Discussion
We have two analyses of our experiments to offer. The first
is a more qualitative description of the gaits produced by our
system and some insight into how changing material proper-
ties affect fitness. The second more quantitatively explores
the effect of scaling the mesh resolution over the course of
an evolutionary run.

Gaits and Material Properties
Our experiments consistently produced interesting and ef-
fective gaits, and this suggests that being able to change
material properties alongside firing patterns has a positive
effect upon the outcome. A qualitative and visual represen-
tation lies in videos of the actual gaits, which can be seen a
the following URLs:
http://www.youtube.com/watch?v=dOV33dHRaD8
http://www.youtube.com/watch?v=1fJ4lHni5p0

The first video shows a bilaterally asymmetric gait. Fir-
ing patterns on each side of the body co-ordinate in a rough
front-to-back wave pattern in order to collectively lift the
limbs upwards and forwards during the upswing, before re-
laxing into the downswing to pull against the ground. The
relative softness of the material can be seen in the amount
of flexing undergone by each leg. The second video, by
comparison shows a more symmetrical gait achieved by a
forward-moving wave which produces what almost looks
like a gallop.

There were some distinct differences in material property
values across these two runs, as summarized below:

Property Bipedal Wave
Volume Stiffness 0.986 0.996
Stretching Stiffness 0.982 0.998
Friction 0.598 0.804
Damping 0.0004 0.0

The most notable difference is the friction – correspond-
ing to the stickiness of the robot’s feet, however when watch-
ing the videos, the relatively minor numerical differences in
the other property values appear, at least qualitatively, to be
reflected in the behavior of the soft bodies.

Of further interest is the change in best-of material values
properties which occur over the course of an evolutionary
run, as shown in Figure 8. While damping coefficient and

volume stiffness show relatively monotonic progress toward
a fixed value, stretching stiffness and friction vary consis-
tently across a relatively wide range during evolution. The
effect of material property changes on fitness is even more
apparent when shown alongside the corresponding fitness
graph (shown on the bottom of Figure 8). The large swing in
damping co-efficient at generation 7 corresponds to a match-
ing significant rise in fitness. Other, smaller, fitness gains
also appear to have corresponding material value changes.

Scaling Mesh Resolution
Our second analysis is of the benefits offered by scaling
mesh resolution over the course of evolution. Recall that the
number of tetrahedra in a mesh are the determining factor
in simulation run time, as well as in simulator fidelity. We
ran a suite of experiments exploring the effects of different
scaling schemes, as summarized in Table 1.

Our intuition was that the the bulk of early evolutionary
time, which largely consist of the soft robot flailing around –
that is attempting to achieve non-zero fitness, could be per-
formed on relatively low meshes, and then as evolution and
fitness progressed, mesh resolution could be scaled upwards
to raise the emphasis on fidelity at the cost of longer evalu-
ation times. A similar approach, with rigid-bodied multi-
resolution robots, is discussed by Auerbach and Bongard
(2010).

There were five mesh resolutions available to the system:
low, medium low, med, high, and maximum. Runs could
switch 0,1,2 or 4 times. All of the non-static runs shown
began on the low mesh – runs that are listed with a mesh
switch count of one, for instance, changed from the low
mesh to their end mesh. Runs listed with a mesh switch
count greater than one ran on an intermediate mesh(es) be-
fore reaching their end mesh. All other properties, such as
population size, remained constant across experiments. Res-
olution changes occurred every 30 generations.

Fitness Hours Mesh Sequence
40.16 34 Low
46.94 42 Low
24.61 72 Max
14.86 25 MedLow
21.47 25 Low,MedLow
11.97 24 Med
12.86 24 Low,Med
15.99 48 Med
16.65 48 Low,Med
15.91 48 Low,MedLow,Med
6.18 46 Low,Medlow,Med,MedHi,Max

Table 1: A summary of results from resolution scaling

Figure 7, which compares evolution with a single (low-
to-medium-low) switch to that with a fixed (medium-low)
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Figure 7: A comparison of co-evolutionary progress on a static mesh resolution (bottom) vs. a single resolution switch. The
sudden drop in fitness corresponding to resolution change is caused by the low-resolution gait working less well on the higher
resolution mesh.

mesh resolution show the consequences of this process: fit-
ness in the scalable evolution during its “low” phase pro-
gresses much more rapidly during the first 10 hours of sim-
ulation. Once the phase change into a higher mesh density
occurs, however, there is a dramatic drop in fitness, and the
scalable run loses much of the ground it had gained (though
it still remains above the fixed resolution result). During the
following 15 hours, the scalable run is able to make up much
of the lost fitness, and improves more rapidly than the static
mesh.

This steep loss in fitness is due to the large extent to which
the success of a gait is highly tuned to its specific mesh reso-
lution. The same actually holds true of the evolving material
properties as well. Gaits and physical properties evolved at
one mesh resolution simply do not translate perfectly when
placed in a higher resolution simulation.

This dependence on mesh resolution also has a clear effect
upon the the maximum obtainable evolutionary fitness: over
similar time scales, even the static meshes show significant
differences in final fitness.

The last entry in Table 1 illustrates the cost of switching
clearly: the final fitness is less than half of that achieved by
any other run. This suggests that, in its current form, some-
times the cost of resolution scaling can be too high. Figure 9
shows a case where even a single switch in resolution results
in an equivocal, at best, improvement in overall fitness.

The source of this loss in fitness can possibly be illustrated
with an interesting qualitative distinction of gaits evolved at
varying resolutions: gaits evolved in a low resolution mesh
tended to produce bi-pedal gaits, whereas gaits produced in
the “maximum” mesh tended to be more bilaterally sym-
metric, involving instead a forward-propagating wave-like
motion. In other words, sauce for the (low-resolution) goose
may not be sauce for the (high-resolution) gander. A high-
fitness bipedal gait evolved a low mesh resolution ceases to
be competitive when placed in a higher-resolution body.

Mesh scaling certainly holds promise, and in a few
cases illustrated above, offers an improvement over static-
resolution evolution, despite the large fitness drops associ-
ated with resolution switches. While it remains to be seen
if this is a viable way to address the issue of long simula-
tion times, we are hopeful of its prospects. In future work,
we hope to develop a method which allows for more smooth
transitions between mesh resolutions.

Conclusions
In this work we have illustrated the tight coupling which ex-
ists between soft body gaits and the body’s underlying ma-
terial properties. We have also demonstrated how material
properties can be fine-tuned to a gait (and vice versa) via co-
evolution. Finally, we have explored a method of reducing
simulation time by scaling soft body mesh resolution over
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Figure 9: Results comparing the consequence of switching mesh resolution multiple times over the course of evolution. Each
time resolution changes there is a dramatic drop in fitness due to the relatively poor translation of gaits and material properties
into the higher mesh.

the course of evolution. Collectively, this approach holds
promise as a way to discover gaits for dynamically complex
soft robots.

This work leaves several compelling unanswered ques-
tions which we look forward to addressing. Among them:
the mechanisms behind the coupling of material properties
and evolved gaits; a comparison to encoding both gait and
material properties in a single monolithic genome within
a one-population system; an analysis of material property
evolutionary trends across resolutions (e.g. a trend toward
stiffer bodies as robot speed increases).

Ultimately we are interested in the trifecta of simulta-
neously evolving material properties, gaits, and large-scale
morphology (S. Smith and Rieffel, 2010).

In concluding, it is worth emphasizing that this work,
while performed in simulation, is grounded in real-world ap-
plications. Many ongoing efforts at developing physical soft
robots employ silicone elastomers, whose material proper-
ties can be changed quite significantly during the mixing
process (Trimmer, 2007). Furthermore, this bio-inspired re-
search also ties back into understandings of the incredibly
sophisticated biomechanics of completely soft organisms,
such as the Manduca Sexta caterpillar (Simon et al., 2010).
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Abstract

Identifying and understanding modular organizations is cen-
trally important in the study of complex systems. Sev-
eral approaches to this problem have been advanced, many
framed in information-theoretic terms. Our treatment starts
from the complementary point of view of statistical model-
ing and prediction of dynamical systems. It is known that
for finite amounts of training data, simpler models can have
greater predictive power than more complex ones. We use the
trade-off between model simplicity and predictive accuracy
to generate optimal multiscale decompositions of dynami-
cal networks into weakly-coupled, simple modules. State-
dependent and causal versions of our method are also pro-
posed.

Introduction
The study of complex dynamical systems – such as gene
regulatory networks (Han et al., 2004), structural and func-
tional brain networks (Bullmore and Sporns, 2009), ecolog-
ical food webs (Krause et al., 2003), and others (Hartwell
et al., 1999, Schlosser and Wagner, 2004) – has frequently
uncovered the presence of modularity. Broadly speaking,
modular systems are composed of tightly-integrated subsys-
tems, called modules, which are in turn weakly coupled to
one another.

Numerous explanations have been proposed for the func-
tion of modularity in complex systems, only a few of which
are mentioned here. Simon (1962) suggested that modular-
ity can contain the effects of harmful perturbations and lead
to greater developmental and operational robustness, espe-
cially when modules are hierarchically arranged. Kashtan
and Alon (2005) argued that modular systems can take ad-
vantage of reusability when adapting to changing combi-
nations of fixed environmental tasks. Tononi et al. (1998)
proposed that modularity balances the conflicting needs for
subsystems that are functionally specialized but also inte-
grated into globally coherent states. Notably, it has also been
shown to arise as a result of non-adaptive processes, such as
neutral evolution of gene regulatory networks (Force et al.,
2005, Solé and Valverde, 2008) and stochastic fluctuations
in network connectivity patterns (Guimera et al., 2004).

Though the concept of modularity has acquired a central
place in the study of complex systems, its meaning and op-
erationalization varies widely between scientific paradigms,
fields, and processes of interest. In the biological sciences
alone, one can find references to structural, developmen-
tal, physiological, variational, and functional modularity
(Winther, 2001, Wagner et al., 2007), among others. In this
work, we propose a formal notion of modularity based on
statistical modeling. Our approach applies to a broad class
of discrete-time multivariate dynamics, whether represented
by dynamic models, such as Boolean or dynamic Bayesian
networks, or empirical distributions estimated from time se-
ries recordings. Unlike much recent work on community-
structure in static graphs, we identify modularity in the or-
ganization of dynamically interacting components. We ar-
gue that in addition to being useful for analysis of real-life
dynamical systems, our approach can shed light on connec-
tions between notions of modularity utilized in different do-
mains, as well as the general role of modularity in modeling.

The next section provides a brief background on infor-
mation theory. We then outline traditional information-
theoretic approaches to modularity in dynamical systems,
and develop our own treatment in terms of statistical mod-
eling. After applying it to an example dynamical system,
we consider state-dependent and causal versions of modular
decompositions. We conclude by discussing issues of pa-
rameterization, directions for further work, and connections
between our method and broader questions of modeling.

Information theory
Information theory provides principled measures of infor-
mation transfer and statistical dependence in distributed sys-
tems. As such, it is well-suited for quantifying measures of
coupling and modularity.

To review, Shannon entropy measures the uncertainty in
the measurement outcomes of a random variable. If X is a
discrete random variable with an associated probability dis-
tribution P (X), then its entropy is:

H(X) = −
∑
x∈X

P (x) logP (x)
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A random variable that takes a single value with probabil-
ity 1 has an entropy of 0, while an equiprobable random
variable assumes the maximum entropy of log |X|, where
|X| is the number of possible outcomes. When the base of
the logarithm is 2, as in this work, the units of entropy are
bits (1 bit is the uncertainty in the choice between 2 equally
possible outcomes). Because measuring a variable reduces
uncertainty about its value, entropy can also be considered a
measure of information.

When provided with a joint distribution over two random
variables such as P (X,Y ), conditional entropy measures
the expected uncertainty in the value of one variable given
that the value of the other is known:

H(X|Y ) = H(X,Y )−H(Y ) = −
∑
x,y

P (x, y) logP (x|y)

Mutual information is a symmetric measure of nonlinear
correlation between two random variables. Expressed as the
difference between entropy and conditional entropy, it can
be interpreted as the reduction in uncertainty about the value
of one random variable provided by knowledge of the other:

I(X;Y ) = H(X) +H(Y )−H(Y,X)
= H(X)−H(X|Y ) = H(Y )−H(Y |X)

=
∑
x,y

P (x, y) log P (x, y)
P (x)P (y)

Mutual information captures the amount of constraint in
the joint distribution of two variables not present in their
marginal distributions. It is equal to 0 when two variables
are statistically independent, and reaches its maximum pos-
sible value of min{H(X), H(Y )} when one variable is a
function of the other.

Mutual information can be extended to the case
of more than two variables. Let random vector
X=(X1, X2, . . . , XL) with distribution P (X) represent the
state of a system composed of L distinct variables. The total
constraint in this system not present in any single variable
is measured by a multivariate version of mutual informa-
tion, often called multi-information (Studeny and Vejnarova,
1998) or integration (Tononi et al., 1994):

I(X) =
L∑
i=1

H(Xi)−H(X) (1)

=
∑

x
P (x) log P (x)∏L

i=1 P (xi)

Kullback-Leibler (KL) divergence is a measure of the dif-
ference between two distributions:

KL(P‖Q) =
∑
x

P (x) log P (x)
Q(x) (2)

It is always positive and 0 iff P = Q, though it is not a

distance because it is not symmetric. Importantly, many
information-theoretic measures can be restated in terms of
KL divergence. For example, the multi-information of eq. 1
is equal to the KL divergence between the distribution of X
and a product of the marginal distributions over the individ-
ual variables of X.

Modularity in multivariate dynamics
As previously mentioned, multi-information measures the
total amount of higher-order constraint present among the
variables of a multivariate system. It is 0 when these vari-
ables are independent, and increases when more statistical
interaction between variables is present (Studeny and Vej-
narova, 1998). For this reason, many formal approaches to
modularity search for system transformations that minimize
this measure.

Several kinds of transformations can be investigated. In-
dependent component analysis attempts to minimize multi-
information over the space of linear mappings (coordi-
nate changes) of a multivariate system (Hyvärinen and Oja,
2000). A different approach, closer to the one pursued
here, looks for partitions of system variables with low multi-
information.

A partition π of set S is a set of mutually exclu-
sive, nonempty subsets B ⊆ S, called blocks, such that⋃
B∈π B = S. For example, {{1}, {2, 3}} and {{1, 2, 3}}

are two possible partitions of the set {1, 2, 3}. We also use
a more concise notation: the two partitions above, for ex-
ample, can be referred to as 1/23 and 123 respectively. Ad-
ditionally, π0 is used to indicate the total partition, which
includes the entire set in a single block, i.e. π0 ≡ {S}.

We look at partitions of V = {1, . . . , L}, the set of in-
dexes of the variables of random vector X. For partition π
and block B ∈ π, P (XB) indicates the marginalization of
P (X) onto the variables whose indexes are in B. For exam-
ple, P

(
X{1,2}

)
is the marginal distribution of the first two

variables of X.
We define the multi-information of partition π as:

Iπ(X) =
∑
B∈π

H(XB)−H(X)

This measure quantifies the amount of constraint holding
among the blocks of π. Finding partitions with low multi-
information corresponds to identifying weakly-coupled sub-
systems. Variations on this theme appear in information-
theoretic treatments of modularity starting from early cyber-
netics (Conant, 1972) to more recent approaches in compu-
tational neuroscience (Tononi and Sporns, 2003).

Multi-information is defined over a time-invariant distri-
bution of system states. Though it does not account for the
dynamic flow of information within a system, it can be gen-
eralized to this case. Assume a multivariate system with
Markovian dynamics represented by P (X′ = x′|X = x),
the conditional probability distribution of transitioning to
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1 (OR)

2 (AND)

3 (2+/3)

4 (OR)

Starting
state

Future
state

0000 0000

0001 0001

0010 0001

0011 0011

0100 1000

0101 1011

0110 1011

0111 1011

1000 1000

1001 1001

1010 1001

1011 1011

1100 1100

1101 1111

1110 1111

1111 1111

π Iπ(X′|X)
1234 0.00

12 / 34 0.50
1 / 234 1.00
123 / 4 1.00
134 / 2 1.25
124 / 3 1.31

12 / 3 / 4 1.31
1 / 2 / 34 1.50
14 / 23 2.00

1 / 23 / 4 2.00
13 / 24 2.16

13 / 2 / 4 2.16
14 / 2 / 3 2.31
1 / 24 / 3 2.31

1 / 2 / 3 / 4 2.31

Figure 1: A simple four node Boolean network (nodes 1, 2,
3, and 4 perform OR, AND, majority, and OR update func-
tions respectively). Its full state transition table is shown in
center. On the right, the stochastic interaction of every pos-
sible partition of the network.

each future state x′ given starting state x, as well as
P (X = x), the distribution over starting states.1 The
amount of information flowing dynamically among the
blocks of π is called stochastic interaction (Ay and Wen-
nekers, 2003). It is a conditional version of KL divergence
between the transition distribution of the whole system and
the product of marginal transition distributions of the vari-
able blocks specified by partition π:

Iπ(X′|X) =
∑
B∈π

H(X′B |XB)−H(X′|X) (3)

= KL
[
P (X′|X)

∥∥∥∥∥∏
B∈π

P (X′B |XB)
]

These kinds of dynamic generalizations of multi-
information have recently been proposed as measures
of system-wide coupling in brain dynamics (Balduzzi and
Tononi, 2008, Barrett et al., 2011).

A simple demonstration is provided by the Boolean net-
work in fig. 1. It has four nodes, whose update functions are
OR, AND, majority rule, and OR respectively. The stochas-
tic interaction of each possible partition is provided, assum-
ing a uniform distribution over starting states. For exam-
ple, the partition 12/34 is the bi-partition having the lowest
stochastic interaction: the block {1, 2} has conditional en-
tropy H

(
X′{1,2}|X{1,2}

)
= 0 (nodes 1 and 2 do not depend

on the rest of the system, so their marginalized dynamics
are deterministic), while block {3, 4} has conditional en-
tropy H

(
X′{3,4}|X{3,4}

)
= 0.5. Because the system as a

1We assume that the dynamics are stationary, in that the tran-
sition probability distribution does not change through time. Our
analysis can also be applied to higher-order Markovian systems,
though for simplicity they are not considered here.

whole is deterministic, H(X′|X) = 0 and the total stochas-
tic interaction of partition 12/34 is H

(
X′{1,2}|X{1,2}

)
+

H
(
X′{3,4}|X{3,4}

)
−H(X′|X) = 0.5.

Unfortunately, stochastic interaction is not a suitable cost
function for identifying modular partitions of a multivari-
ate dynamical system (similarly for multi-information and
multivariate non-dynamical systems). In any such system,
a minimal stochastic interaction of 0 will be assigned to the
total partition π0, and generally a partition will never have
a greater stochastic interaction than any of its refinements
(where one partition is a refinement of another if every block
of the former is a subset of some block of the latter). Select-
ing partitions using stochastic interaction will thus favor par-
titions with large blocks, the total partition being a (possibly
non-unique) global minimum.

Due to this, several authors have proposed normalizing
factors that penalize large partitions (Conant, 1972, Balduzzi
and Tononi, 2008). However, the derivation and justification
of these normalizing terms is ad hoc. In this work, we ap-
proach the problem of identifying modules from the point
of view of statistical prediction. This yields principled pe-
nalization terms for large partitions and leads us to uncover
modular decompositions with clear interpretations in terms
of statistical modeling.

Statistical modeling and modular
decompositions

Information theory is intimately connected with statistical
modeling (Rissanen, 2007). For example, assume a model
that assigns a probability value to data x:

Q(x) =
ˆ

Θ
Q(x|θ)ω(θ)dθ (4)

This term, called the marginal likelihood in the Bayesian
literature, is the expectation of the likehood functionQ(x|θ)
with respect to distribution ω(θ) over parameter values.
Q(x) is a measure of predictive fit to data, and its log-

arithm is often maximized over parameter distributions or
model choices. Equivalently, one can minimize the negative
of its logarithm, a measure of predictive error called log loss.
If data samples are drawn from some true probability distri-
bution P (X = x), then the expectation of the log loss of the
marginal likelihood is:

−
∑
x∈X

P (x) logQ(x) = KL(P‖Q) +H(P (X))

The KL term (from eq. 2) is non-negative, and reaches its
minimum of 0 when the model is perfectly fit, i.e. Q =
P . It is a measure of excess prediction error of the model
above the minimum possible. This minimum is specified by
the entropy term, and depends only on the true distribution
P (X) and not on model or parameter choices.

A similar situation holds in the dynamic setting. We call

425ECAL 2011



dynamic models those that generate conditional distributions
of multivariate future states x′ given starting states x:

Q(x′|x) =
ˆ

Θ
Q(x′|x, θ)ω(θ)dθ

We look at statistical prediction of dynamical systems from
the perspective of an agent who does not possess a perfectly
fit model, but must learn a dynamic model given previous
observations. The agent is provided with a set of factorized
models: for each partition of system variables π, there is
a dynamic model Qπ whose parameters and marginal like-
lihood obey the independence conditions imposed by the
block structure of π:

Qπ(x′|x) =
∏
B∈π

Qπ(x′B |xB) (5)

The predictive performance of our agent depends on the
chosen model and the amount of previously observed data.
It can be quantified with a risk function, which here is the
KL divergence between the true distribution P (X′|X) and
the distribution predicted by a dynamic model (Haussler and
Opper, 1997). The risk of model Qπ on the next sample,
after observing N previous samples, is:

rN,Qπ = KL
[
P (X′|X)

∥∥Qπ(X′∣∣X,X′1..N ,X1..N)] (6)

The expectation in the KL term is taken over the next sample
of X′,X, as well asN previous i.i.d. samples X′1..N,X1..N .
The Bayesian posterior predictive distribution:

Qπ
(
x′
∣∣x,x′1..N,x1..N)=

ˆ
Qπ(x′|x,θ)Qπ

(
θ
∣∣x′1..N,x1..N)dθ

is the marginal likelihood of eq. 4, with the distribution over
parameter values conditioned on N previous data samples.
From the point of view of machine learning, such Bayesian
updating of parameters in light of observed data corresponds
to model training, while evaluating the expected model risk
on new samples corresponds to model testing. More con-
cretely, our dynamic models can be considered supervised
learners: given data, they infer probabilistic mappings from
inputs (starting states X) to outputs (future states X′).

Given the independence assumption of eq. 5, risk rN,Qπ
becomes:

Iπ(X′|X)+
∑
B∈π

KL
[
P(X′B |XB)

∥∥Qπ(X′B∣∣XB ,X′1..NB ,X1..N
B

)]
This form draws attention to the two components that con-
tribute to risk (that is, predictive error). The stochastic inter-
action term (see also eq. 3) arises as a consequence of ignor-
ing dynamic coupling between variables in different blocks.
It is the minimal excess error of a factorized model (in which
the dynamics of the variable blocks induced by partition π
are independent) above an optimally fit whole-system model
(where interactions between all variables can be captured).

The second term, called the complexity term, reflects the
excess predictive error of a trained model above the min-
imum possible. It arises because a model trained on a fi-
nite amount of data maintains some uncertainty about opti-
mal parameter values. For a given amount of training data,
complex models (with larger parameter spaces) will have
greater parameter uncertainty than simpler models, resulting
in more excess predictive error. AsN →∞, the complexity
term can be asymptotically approximated by dπ

2N , where dπ
refers to the number of parameters of model Qπ (Komaki,
1996, Barron and Hengartner, 1998). This yields:2

rN,Qπ ≈ Iπ(X′|X) + dπ
2N (7)

For a given amount of training dataN , the model with the
lowest risk,

Q?(N) = arg min
Qπ

rN,Qπ

corresponds to the partition providing an optimal predictive
decomposition of the system. Models that minimize risk of-
fer a balance between two conflicting constraints: on one
hand, low stochastic interaction (better predictions under op-
timal fit), on the other, low model complexity (easier param-
eter estimation with limited training data). Because parti-
tions with smaller blocks (which have smaller-state-space
dynamics representable by fewer parameters) generally in-
duce simpler models, risk presents a principled cost function
for identifying small, weakly-coupled modules. The amount
of data N parameterizes this trade-off: as N increases, em-
phasis is shifted from the complexity term to the stochastic
interaction term, and groups of variables whose dynamic in-
teractions carry the most information while being easiest to
learn are first to coalesce into multivariate blocks of the op-
timal model.3 Thus, selecting optimal decompositions while
increasing the amount of training data generates a modular
multiscale decomposition of system variables. In the infinite
data limit, the risk of each modelQπ reaches its minimum of
Iπ(X′|X), and the partition corresponding to Q? becomes
the one with lowest stochastic integration (the total partition
being a possibly non-unique minimum).

Decomposing a dynamical system
The complexity term in eq. 7 depends on the parametric
form of the dynamic model. Though a variety of possibili-

2This approximation assumes continuously-parameterized
models and standard regularity conditions. It also assumes that,
for all π, some parameterization of Qπ offers a perfect fit to the
factorized ΠB∈πP (X′

B |XB). It is possible to generalize beyond
this case, where the factorizations of the true distribution are ‘out-
of-class’ of the models Qπ .

3Minimizing risk can be seen as a form of information bottle-
neck (Tishby et al., 1999): it searches for factorized models whose
parameters minimize information about training data while maxi-
mizing information about system dynamics; the size of the training
data serves as a trade-off parameter.
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Figure 2: Top: approximate risk for optimally-predictive
models of the Boolean network from fig. 1. Dots mark
switches of the optimal model Q?; inset shows first two
switches. Bottom: cumulative risk, or total accumulated
prediction error for models plotted in the top graph. Total
modularity (T ) is asymptotic difference between cumulative
risks of Q1234 and Q? or, alternatively, area between lines
corresponding to (non-cumulative) risks of Q1234 and Q?.

ties exist, here our dynamic models are assumed to be prod-
ucts of first-order Markov chains with Dirichlet priors. The
number of parameters of model Qπ from this class is:

dπ =
∑
B∈π
|XB |(|X′B | − 1) (8)

where |XB | is the number of supported starting state out-
comes and |X′B | is the number of possible future state out-
comes of the variables with indexes in block B. For ex-
ample, for a single block of Boolean variables with a fully
supported starting state distribution, these are both equal to
2|B|. For this model class, the complexity term scales expo-
nentially with the number of variables in each block.

As an example, we look at optimal decompositions of the
network in fig. 1. Its risk, calculated using the approxima-
tion of eq. 7 and parameter counts of eq. 8, is shown at the

top of fig. 2.4 The risk is plotted for those models which
reach minimum risk at some point of the training process,
as well as that of the overall minimal risk model Q? at each
N . Predictive power is initially optimized by the model cor-
responding to partition 1/2/3/4 (the simplest model which
treats all nodes independently). At N ≈ 3 (inset), it is re-
placed by the model corresponding to partition 12/3/4 (vari-
ables 1 and 2 now merged into a single block); at N ≈ 4
(inset), by the model corresponding to partition 12/34; and
finally at N ≈ 215, the most predictive model becomes the
one corresponding to the total partition 1234.

Total modularity
So far, our measure of modularity has been parameterized by
N , the amount of training data. Here, we derive a parameter-
free measure of the total modularity in a dynamical system.

In our definition of risk (eq. 6), we used the posterior
predictive distribution Qπ

(
X′
∣∣X,X′1..N ,X1..N), the prob-

ability assigned to the next data sample by a model trained
onN previous data samples. Given our assumptions, the fol-
lowing relationship holds between the prior predictive dis-
tribution, the probability an untrained model assigns to N
data samples, and the posterior predictive distribution:

Qπ
(
X′1..N

∣∣X1..N)=
N−1∏
n=0

Qπ
(
X′n+1∣∣Xn+1,X′1..n,X1..n)

This suggests the prequential interpretation of Bayesian
prediction (Dawid, 1992): the expected predictive error of a
model on N samples is the sum of the expected predictive
errors on each successive sample after training on the pre-
vious samples. This accumulated prediction error is termed
cumulative risk (Haussler and Opper, 1997):

RN,Qπ =
N−1∑
n=0

rn,Qπ

The risk of eq. 6 can be seen as the rate of change of the
cumulative risk as the amount of training data grows.

Total modularity is the total gain in predictive accuracy
(i.e., decrease in cumulative risk) provided by the optimally
predictive models Q?(N) versus the unfactorized, total-
partition model Qπ0 . Let RN,Q? =

∑N−1
n=0 rn,Q?π(n) be

the cumulative risk of an agent who selects the risk-minimal
model at each N . The total modularity is then:

T = lim
N→∞

(
RN,Qπ0

−RN,Q?
)

(9)

Total modularity measures the overall predictive advan-
tage gained by using factorized models, and is not a function
of a particular N . High values of total modularity indicate

4In general, the approximation of eq. 7 is only accurate for large
N . However, it suffices for our explanatory purposes.
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Figure 3: Total modularity of two binary variables which
copy each others’ state with probability p and maintain their
own state with probability 1− p. Total modularity increases
as coupling decreases, and diverges as p→ 0.

that simpler models have significantly improved predictive
performance during earlier stages of the learning process.5

To use the previous example, the cumulative risk of the mod-
els plotted at the top of fig. 2 is shown at the bottom of that
figure. The total modularity of the dynamic network shown
in fig. 1 is equal to the asymptotic difference between the
cumulative risks of Q1234 (= Qπ0 ) and Q?. Equivalently, it
is also the total area between the lines corresponding to the
(non-cumulative) risks of Q1234 and Q?.

For another illustration of total modularity, we consider a
simple dynamical system composed of two binary variables.
Each variable is parameterized in the following manner: at
each time step, with probability p it assumes the value of
the other variable in the previous time step, and with prob-
ability 1 − p it maintains its own value from the previous
time step. The amount of dynamic coupling between the
two nodes increases with p: at p = 0 the variables have no
interaction, while at p = 1 their values are completely cor-
related (with a one timestep lag). This dynamic coupling is
illustrated in fig. 3, which plots the total modularity of this
system against the coupling parameter p. The total modu-
larity monotonically decreases as p increases, showing that
greater coupling leads to lower total modularity. As p → 0,
the two variables become completely independent and total
modularity diverges (in this case, it grows without bound at
a rate proportional to logN ).

State-dependent and causal modularity
The way information flows within a dynamical system can
depend on the system’s state. For example, a partition’s
stochastic interaction can be different in different attractors.
We can quantify this by different choices of the starting

5Minimization of accumulated error by online switching from
simpler to more complex models is related to a learning framework
recently proposed by van Erven et al. (2007)
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Figure 4: Risk for two systems, each having two binary vari-
ables: in system A (left column) each variable copies previ-
ous value of the other, in systemB (right column) each vari-
able takes opposite of its own previous state. a) and d): Risk
under uniform starting state distribution. Lowest risk model
of A becomes the total one, while factorized model remains
optimal for B. b) and e): Risk and optimal decompositions
depend on the starting state distribution. Computed over
P (X=(0, 1))= 0.5, P (X=(1, 0))= 0.5, risk and optimal
decompositions become the same for A and B, though their
causal organization is different. c) and f): Causal risk leads
to different decompositions of A and B, even when com-
puted over same starting state distribution as in b) and e).

state distribution, P (X). Though we have generally taken
P (X) to be a fully-supported uniform distribution, it can be
weighted preferentially over some subset of starting states.

For example, consider two systems, each composed of
two binary variables. In system A, each variable copies the
previous value of the other, while in systemB, each variable
takes the opposite of its own previous state. Fig. 4 shows
the risk plots for both A (left column) and B (right col-
umn), where 4a and 4d are calculated for a uniform starting
state distribution. The risk, as well as the optimal decom-
positions, is different between the two systems: A (which
performs the copy operation) eventually chooses the total
partition {{1, 2}} as the most predictive, while B (whose
variables perform independent state flips) never does.

If, however, a non-uniform starting state distribution
is chosen, risk and optimal decompositions can change.
The risk for starting state distribution P (X=(0, 1)) =
0.5, P (X=(1, 0)) = 0.5 are shown in fig. 4b and 4e (for
systems A and B respectively). Different parts of the start-
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ing state space induce different risk values and optimal de-
compositions: for this distribution, fig. 4b shows that the
total partition {{1, 2}} is never chosen as the optimally pre-
dictive one for system A.

Additionally, for these starting states the transition distri-
butions of A and B are identical: if either system is started
in state (0, 1), it deterministically transitions to state (1, 0),
and similarly for the transition from (1, 0) to (0, 1). Because
the observed dynamics of the two systems are identical, the
risk functions and optimal decompositions are also equal.
Though systems A and B are defined using different causal
architectures, here their modular organizations are indistin-
guishable. Specifically, A is postulated to have a causal con-
nection among its variables but – for this starting state dis-
tribution – they display no stochastic interaction.

This example highlights the difference between statisti-
cal correlation and causal interaction. To properly handle
the latter, we utilize a notion of causality based on seman-
tics of intervention (Pearl, 2000), recently developed in an
information-theoretic direction by Ay and Polani (2008). In
Pearl’s treatment, conditional probability distributions rep-
resent not only correlations, but also responses of variables
to externally-imposed interventions. This is especially natu-
ral when dynamics of interest are generated by causal mod-
els, such as dynamic causal Bayesian or Boolean network
models frequently used in artificial life and systems biology.

In our example, the functional organization of systems A
and B can be differentiated – even within the non-uniform
starting state distribution mentioned above – if the starting
states of the systems can be intervened upon. This is because
in system A – but not system B – changing the starting state
of one variable can change the other variable’s future state.

We consider interventions formally by noting that the risk
rN,Qπ of eq. 6 need not take the same starting state distribu-
tion for training data as for the testing data. Instead, we take
the starting state distribution for training data to be drawn
i.i.d. from a fully-supported and uniform distribution P̂

(
X
)

(the distribution of interventions), while the testing starting
states can be drawn from any P (X) of interest. We refer to
risk evaluated under this learning scenario as causal risk:

r̂N,Qπ =
∑
x,x′

P (x)P (x′|x)
[

logP (x′|x)−

∑
x1..N,x′1..N

P̂
(
x1..N)P (x′1..N∣∣x1..N)logQπ

(
x′
∣∣x,x′1..N,x1..N)]

As N → ∞, the posterior predictive distribution of model
Qπ approaches

∏
B∈π P̂

(
X′B |XB

)
, where P̂

(
X′B |XB

)
is the whole-system transition distribution P

(
X′|X

)
marginalized onto variables in block B using P̂

(
X
)
. Then,

r̂N,Qπ can be approximated by:

Iπ(X′|X) +
∑
B∈π

KL
[
P (X′B |XB)

∥∥∥P̂ (X′B |XB)
]

+ dπ
2N

where Iπ , dπ , and the expectations in the KL terms use the
testing starting state distribution. The KL divergence be-
tween P

(
X′B |XB

)
(the whole-system transition distribution

marginalized onto variables in block B using P
(
X
)

) and
P̂
(
X′B |XB

)
reflects the amount of extra perturbation that

active interventions inject into block dynamics. The two
distributions need not be equal, unless P (X) = P̂

(
X
)

or
the partition under consideration is the total one. Because
KL divergence is non-negative, causal risk r̂N,Qπ is not less
than the statistical risk rN,Qπ (compare above to eq. 7).

Fig. 4c and 4f show the causal risk for systems A and
B (respectively) with P (X=(0, 1)) = 0.5, P (X=(1, 0)) =
0.5. In 4c – but not 4f – the total partition model assumes a
lower risk than the factorized model, indicating that for the
starting states in question, system A – but not system B –
has causal interactions between its variables.

Conclusion
Modularity is normally treated as an objective property of a
system’s organization. Our approach instead considers from
the perspective of modeling and prediction. In the context
of inferring dynamic models from limited data, modularity
allows for models that are predictive but simple, with the
amount of training data controlling the trade-off. Our sta-
tistical treatment connects to previous information-theoretic
approaches, but goes further by providing principled terms
for identifying small modules.

Our approach can also be used to find state-dependent
modular organizations, both in statistical and causal (inter-
ventional) senses: models trained on interventional dynam-
ics but tested on arbitrary distributions give rise to a mea-
sure that identifies causal modules. This is related to ex-
isting information-theoretic measures of causal interactions
between subsystems (Tononi and Sporns, 2003), but here
emerges naturally from the framework of statistical model-
ing. This framework also produces a measure of total mod-
ularity present in the system, which quantifies the overall
predictive advantage that modularity provides through the
entire model inference process.

As a side note, if the learning of real-world cognitive sys-
tems (such as scientists or organisms) proceeds in a man-
ner somewhat similar to the statistical framework presented
here, our approach suggests why such systems may infer
modular organizations in the external world: under condi-
tions of limited data, this assumption can simplify learning
and lead to gains in predictive power.

One important issue with our treatment is its model-
dependence. The complexity penalization term of eq. 6 de-
pends on the model class, and different model classes may
have different parameterizations and functional forms. Our
examples employed products of Markov chain models, a
rather general dynamic model class but one heavily parame-
terized; others could be used. The choice of model class can
be thought of as a null model of system dynamics.

429ECAL 2011



Several generalizations suggest themselves. For example,
it is possible to infer module timescales by searching not
only over decompositions, but also model orders (numbers
of previous states on which transition probabilities depend;
for inferring Markov chain order, see Strelioff et al., 2007).
Fuzzy modular organizations, in which a variable can be-
long to more than one module, can be accommodated by
allowing partially-overlapping blocks. More generally, the
model search space could include other structures besides
partitions (e.g. trees or networks) to impose independence
constraints on information flow between blocks.

Identifying modularity in dynamical systems is important
in complex systems research in general, and biological sys-
tems modeling in particular. Our method differs from recent
community-detection methods that find modularity in static
graphs, in that it focuses on the organization of interactions
between dynamic system components. In future work, we
hope to apply it to the analysis of regulatory and signal-
ing control in biochemical networks, as well as inference
of functional neural organization from brain recordings.
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Abstract

Artificial chemistries have been analysed mostly under the
precondition of a well-stirred reaction vessel. In other words,
the localisation of molecules is ignored for simplicity. Here
we drop this assumption and replace it with a spatial distri-
bution of molecules given by a flow, i.e. molecules move ac-
cording to a given vector field. This can be seen as a par-
ticular type of dynamics. It also gives additional parame-
ters to the control over the development of the chemistry
over time. In particular, the modelling of membranes and
transport processes which occur in cells, for example, can be
described using continuous vector fields instead of giving a
discrete formulation. We give some examples and ideas for
analysing such chemistries via a stochastic simulation, a PDE
and chemical organisations.1

Introduction
So far many artificial chemistries assume a well-stirred re-
action vessel (Speroni di Fenizio, 2002). This is a special
type of dynamics for the application of rules of the chem-
istry. In particular, it means that any molecule in the reac-
tion soup can potentially react with any other molecule in
the soup at any time. Or in other words, there is no localisa-
tion of molecules taken into account. On the one hand, this
is easier to handle from a technical point of view (Dittrich
et al., 2001). In a well-stirred reactor the change of concen-
tration of molecules in the vessel is often seen as a stochastic
process and can be simulated using the Gillespie algorithm
(Gillespie, 1977, 1976) or can be approximated using or-
dinary differential equations (ODE), e.g. with the assump-
tion of mass action kinetics. On the other hand, thinking of
molecules as not being localised is unrealistic in many sit-
uations, e.g. in living cells with their compartments, mem-
branes and transport processes, or when modelling the origin
of life (Fishkis, 2010).

There are several approaches to include the spatial organ-
isation or localisation into artificial chemistries. Some of

1further information and videos available at http:
//www.biosys.uni-jena.de/Research/Projects/
Reaction+Flow+Artificial+Chemistries.html

them employ means of discrete spatial structures, like P sys-
tems (Pǎun, 2000), vessels with dynamic compartments us-
ing Gillespie’s algorithm (Versari and Busi, 2007) or MGS
(Giavitto and Michel, 2001), some work with continuous
additions to the dynamics, like reaction diffusion systems
(Adamatzky, 2005). In the first case compartments and
their creation and dissolution operations structure the reac-
tion vessel. This gives a discrete description of geometrical
information, where the definition of the chemistry is sepa-
rate from the membrane structure, i.e. the membranes are
not formed by molecules. Each of the compartments is sub-
ject to a well-stirred stochastic or deterministic dynamics. In
the later case, molecules are localised in a Euclidean space.
The assumption of a well-stirred domain is replaced by a
diffusion process which results in a PDE model. This model
describes the dynamics of the artificial chemistry accounting
for the reactions and the movement by diffusion. This means
that there is no further control over the behaviour possible
except of the choice of diffusion constants.

The two examples show that including space into the dy-
namics brings more complexity with it. Still, there is ex-
tensive theory at hand for both of them. Going a step fur-
ther in terms of complexity, we loose this advantage of rigid
theoretical descriptions. For example, we have molecu-
lar dynamics simulations which can also be combined with
rule-based spatial models (Grünert et al., 2010). They use
the full generality of possible movement and reactions of
molecules at the price of computational costs, predictabil-
ity and controllability. Furthermore there are approaches,
like the swarm chemistry (Sayama, 2009) using space for
the representation of molecules.

Here we propose using vector fields for modelling spatial
organisation and transport processes in artificial chemistries.
By this we mean that molecules move along the flow lines of
the vector field of a region in RN (most of the time N will
equal to 2 or 3). Reactions are only applicable if enough
molecules of the left hand side can be found together close
enough. In other words, we do not intend to stir the reac-
tor with our molecules well, but just stir in a particular way
defined by a vector field. We can still formulate this as a
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stochastic process and approximate it with a partial differen-
tial equation (PDE). Another advantage is the gain of control
over the behaviour of the chemistry by using different types
of vector fields in contrast to, for example, diffusion, where
we only have the diffusion coefficients as parameters.

The description of transport processes and membranes
with vector fields, i.e. continuous objects, rather than dis-
crete structures, does not seem to be as convenient or pow-
erful at a first glance. To our understanding membranes
and transport are integral part of the dynamics and should
therefore be handled with continuous objects fitting in with
the usual modelling via ODEs, for example. Therefore we
would like to give a proof of concept for non-discrete mem-
branes, compartments and transport. Also we focus here on
the spatial aspect rather than on the artificial chemistries and
their reactions used.

The paper is organised as follows. First we give the defi-
nition of a general reaction flow artificial chemistry. Then a
differential model, using a PDE and Mathematica for a nu-
merical computation of solutions is presented. We also de-
scribe a stochastic simulator providing us with a tool to run
example chemistries. Then we show how to analyse the be-
haviour of reaction flow artificial chemistries with the help
of chemical organisations (Dittrich and Speroni di Fenizio,
2007; Speroni di Fenizio and Dittrich, 2007). Finally we
give more examples.

Reaction Flow Artificial Chemistries
LetM be a set andR be a subset of Pmult(M)×Pmult(M)
where Pmult(M) denotes the set of multisets over M . The
pair (M,R) is called reaction network and we call M the
set of molecules and R the set of reactions.

By applying a reaction (l, r) ∈ R to a multiset overM we
mean replacing the subset l by the subset r. To be able to do
so, we assume that the multiset considered is large enough,
i.e. that it consists of enough molecules as required on the
left hand of the rule.

For (l, r) ∈ R we also write l −→ r or∑
m∈M

lmm −→
∑
m∈M

rmm

where we denote by lm, rm ∈ N0 the multiplicity of m in
l, r respectively. This resembles notation from chemistry.
Furthermore the support and the product of (l, r) are

supp(l, r) := {m ∈M | lm > 0},

prod(l, r) := {m ∈M | rm > 0}.

Let A be a subset of M . We define RA, the set of reaction
applicable to A, by setting

RA := {(l, r) ∈ R | supp(l, r) ⊆ A}.

Abusing notation we use a reaction (l, r) ∈ R as an index as
well and define the stoichiometric matrix SA ∈ R|A|×|RA|

for A by

(SA)a,(l,r) = ra − la, a ∈ A, (l, r) ∈ R.

If we add to a reaction network (M,R) a domain for the
molecules and an algorithm that determines how the rules
are applied to the molecules within the domain, we get an
artificial chemistry (Dittrich et al., 2001). For a reaction
flow artificial chemistry we choose a region U in RN as the
domain. The elements of an initial multiset are placed in this
region. Molecules can then only react if they are “suitably”
close. What this means exactly is of course to be defined
from case to case. Here, we will always choose a small num-
ber for the maximum distance in which molecules can still
react. Additionally, molecules change their position accord-
ing to the flow lines of a given vector field V : U → RN .
This means that in one iteration of the algorithm a molecule
at position x ∈ RN changes to the position x + V (x). We
assume that the new position is again in U . The described
way of movement can be interpreted as mixing molecules
according to a fixed scheme or algorithm. In contrast to a
reaction diffusion system even after a long time period there
is no guarantee that the multiset of molecules will be stirred
well.

Figure 1: Stochastic simulation of the reaction flow artificial
chemistry (M1, R1) in the region U1 with vector field V1
after 400 iterations, for details see Section II. Species are
marked with colours from black for a to yellow for d.

Figure 1 shows the state of the following reaction flow ar-
tificial chemistry after 400 iterations. The reaction network
we chose is M1 = {a, b, c, d} with

R1 = {a+ b→ a+ 2b, a+ d→ a+ 2d, b+ c→ 2c,

c→ b, b+ d→ c, b→ ∅, c→ ∅, d→ ∅}.
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As a domain U1 = [−1, 1] × [−1, 1] is used and a start-
ing set of molecules of size 2500 is placed randomly around
(0, 0). The vector field responsible for the movement is a
swirl given by

V1(x, y) =
1√
2

((
1−
√
2
)
x− y, x+

(
1−
√
2
)
y
)
,

see Figure 2.

Figure 2: The vector field V1 in the region U1 = [−1, 1] ×
[−1, 1]. The length of vectors is scaled by 0.3 for a better
readability.

The parameters of the simulation (for the detailed de-
scription see Section IV) we set to n = 1600, s = 400,
rad = 1.0, u = 1.0 and r = 0.1.

We see a development of patches of the species b over
time. This is a rather different behaviour compared to the
same reaction network, when investigated using a well-
stirred system or diffusion. When we do a simulation using
these dynamics in our particular case of the reaction network
(M1, R1), the system is completely described by concentra-
tion alone without taking position of molecules into account.

We give some ideas for slight generalisations of this ap-
proach, though they are not used here. Separate flows for
different molecular species can be used, i.e. there is a set of
fields Vm1 , . . . , Vm|M| such that each field is responsible for
the movement of a single species. Maybe this makes sense
if, for example, taking the different weight of molecular
species or semi-permeable membranes into account. Also
the vector field(s) could be time depended, i.e. there is a
dynamical change of the transport of molecules over time.
Another interesting way of extending the concepts is by let-
ting the underlying reaction network influence the vector
field, e.g. particular types of (bigger) molecules could block
(smaller) other ones.

We investigate two models for this kind of artificial chem-
istry. The first one is a PDE describing the continuous
change of concentration of the molecules. The second one
is a stochastic simulation of the movement of molecules in
the flow and the reactions they take part in.

Differential Model
We concentrate on the case N = 2 to keep it simple, but
still easily generalisable. For the differential model we as-
sume that every point (x, y) ∈ R2 bares concentrations of
all the species M = {m1, . . . ,m|M |}. The concentration of
a species mi, i ∈ {1, . . . , |M |} in (x, y) at time t ≥ 0 is
[mi](x, y, t), so

[mi] : R× R× R+ → R.

For readability we omit the coordinates and write simply
[mi].

We describe the change of concentration over time with
two summands. The change of molecule concentration
given by the vector field V is the directional derivative of
[mi] · ||V || in the direction of V . This is exactly the for-
malisation of the statement that molecules follow the flow
lines of the vector field. The change caused by the reactions
is summarised in the reaction terms Rk,i. They depend on
the concentrations of all molecules [m1], . . . , [m|M |] and the
constant reaction rates k ∈ R|R|.

When assuming the mass action kinetics for the dynamics
of the reaction network (M,R), we can write down the reac-
tion terms as follows. Let us denote the flux vector function
by

vM,k : R|M |≥0 → R|R|≥0 .
Still abusing notation we use a reaction (l, r) ∈ R as an
index as well and define

(
vM,k([m1], . . . , [m|M |])

)
(l,r)

= k(l,r)

|M |∏
i=1

[mi]
lmi .

The ith reaction term is the ith component of the vector
yielded by the product of the stoichiometric matrix with the
flux vector function,

Rk,i([m1], . . . , [m|M |]) =
(
SM · vM,k([m1], . . . , [m|M |])

)
i
.

The equation defining the behaviour of the reaction flow
artificial chemistry is

∂[mi]

∂t
= − 1

||V ||
〈∇ ([mi]||V ||) , V 〉+Rk,i([m1], . . . , [m|M |])

where the gradient ∇ = ∇(x,y) is taken for (x, y), ||V || =
||V (x, y)||2 is the Euclidean norm of the field and 〈·, ·〉 de-
notes the Euclidean scalar product.

In the case of an integrable field, i.e. there is f : R2 → R
with ∇f = V , the molecules follow a gradient flow to the
sinks of the function.

As a simple example we numerically solve the equation
for the reaction flow artificial chemistry given by the reac-
tion network (M1, R1) as defined before with the radially
symmetric field

V2(x, y) =
cos 10r

10r
(x, y),
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i.e. the above case with f(x, y) = −0.01 sin 10r, where we
abbreviate r = ||(x, y)||2 =

√
x2 + y2. We assume mass

action kinetics with all reaction constants equal to 1.
Since the directional derivative is independent of the cho-

sen coordinate system and since our field is radially sym-
metric, it suffices to solve the equation for one spatial di-
mension. Therefore we solve the equation dependent on r.
The solution on R2 is then the solution we get in the one
dimensional case extended to R2, i.e. we apply it to the dis-
tance

√
x2 + y2. We arrive at the equations

∂[a]

∂t
= −0.1∂[a] cos 10r

∂r
∂[b]

∂t
= −0.1∂[b] cos 10r

∂r
+ [a][b]− [b][c] + [c]− [b][d]− [b]

∂[c]

∂t
= −0.1∂[c] cos 10r

∂r
+ [b][c]− [c] + [b][d]− [c]

∂[d]

∂t
= −0.1∂[d] cos 10r

∂r
+ [a][d]− [b][d]− [d].

This can be numerically solved. We assume an initial con-
stant concentration of 1 for all species and use Mathemat-
ica’s NDSolve to get Figure 3 compared to the stochastic
simulation Figure 4.

Figure 3: Numerical solution to the equation system at time
0.4 in one dimension.

Stochastic Model
Additionally to the rather theoretical approach via a PDE we
also implemented a stochastic simulator for the reaction flow
artificial chemistries. This allows us to run some concrete
examples.

We assume a reaction network (M,R) is given. As the
domain or region the set [−1, 1] × [−1, 1] ⊂ R2 is used
for all our examples even though the size of the square is
variable.

Different ways of initially placing molecules can be used.
In the examples shown here, we initially place n molecules
randomly around the origin in a circle of radius rad . More
precisely, in Figure 4 we choose random coordinates x and y
such that

√
x2 + y2 < rad to achieve a uniform distribution

of molecules. In the other examples we choose a random

Figure 4: Stochastic simulation of the reaction flow artificial
chemistry (M1, R1) in the region U1 with vector field V2
after 0, 1, 2 and 3 iterations. Parameters are n = 10000,
rad = 1.0, u = 1.0 and r = 0.01.

angle between 0 and 2π and a random length between 0 and
rad to position them. Each starting molecule is assigned a
random type of species.

For s simulation steps we apply the vector field V and the
rules of R in the following manner. A molecule at position
(x, y) is moved to position (x, y) + V (x, y). As mentioned
before, we assume that the new molecule position is again
in our region [−1, 1] × [−1, 1]. If this is not the case, we
can use cyclic or solid boundary conditions or increase the
size of the region. Typically several vector fields are added
up or are applied at suitable parts of the domain region to
account for different effects in time and space to generate
the required behaviour.

Then the reaction rules are applied to a randomly chosen
u percent of the molecules present in the domain. For each
chosen moleculemwith, we assume, position (x, y) we look
at neighbouring molecules, i.e. molecules with no more than
distance r to m. Let Ar(m) be this multiset of molecules
found in

Ur(m) = {(x′, y′) | dist ((x′, y′), (x, y)) < r} ⊂ R2.

There are several different ways of applying rules to Ar(m)
possible. For the examples given here only the following
is used. A number of |R| reaction rules are randomly cho-
sen from R. It is checked whether they are applicable and
if so applied to the multiset Ar(m). By this we mean that
if molecules have to be removed, they vanish from the do-
main and if they are added they are positioned randomly in
Ur(m).
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Analysis through Chemical Organisations
A subsetA ofM is closed if for all reactions (l, r) ∈ RA we
have prod(l, r) ⊆ A, i.e. if (A,RA) is a reaction network.
A being closed means that by applying reactions from RA

to multisets over A we do not get molecules outside A.
A subset A of M is self-maintaining if there is a vec-

tor v ∈ R|RA| with strictly positive entries such that
SAv ∈ R|A| has only non-negative entries. A being self-
maintaining means that applying reactions from RA at cer-
tain rates to a multiset over M does not reduce the number
of molecules of any species of A.

A subset of M is a chemical organisation (Dittrich and
Speroni di Fenizio, 2007) if it is closed and self-maintaining.
The set of organisations is called O.

As proposed in (Speroni di Fenizio and Dittrich, 2007)
we can look at the chemical organisations at different spatial
scales at different times. The idea is to identify functional
units when looking at the development of a chemistry in the
domain over time. Only the organisations, as the closed and
self-maintaining sets, are able to stay in the domain for a
longer time period. Therefore persistent structures should be
an organisation. This can also be interpreted as identifying
higher level units.

In the described stochastic model we looked for organ-
isations in the following way. The domain is divided into
squares of size orgRad . The species present in each square
are collected and then the biggest organisation contained in
this set is computed. In the examples presented here orgRad
is 0.1.

As an example for this analysis via organisations we
demonstrate the formation of a membrane, see Figure 5.
The used reaction flow artificial chemistry is defined by
M2 = {m, p1, p2, p3},

R2 = {αp1+βp2+γp3→ m, p1+p2+p3→ 4p1+p2,

p1 + p2 + p3→ 2p1 + p3, p1 + p2 + p3→ 4p2 + p1,

p1 + p2 + p3→ 2p2 + p3, p1 + p2 + p3→ 4p3 + p1,

p1 + p2 + p3→ 2p3 + p2, | α, β, γ ∈ {0, 1}}.

This reaction network is constructed such that arbitrary
combinations of the producer molecules p1, p2, p3 build
the membrane molecule m. The other reactions account
for the rebuilding of the producers over time if enough
of all three different species p1, p2, p3 are present. The
desired behaviour corresponds to the organisations O =
{∅, {m}, {m, p1, p2, p3}} the reaction network (M2, R2)
exhibits. In this example we can think of {m} as the rep-
resentation of the membrane and of {m, p1, p2, p3} as the
membrane producing core. The vector field is defined by

V2(x, y) =

{
0.0005 e5r

r (x, y) 0.2 < r < 0.8

V1(x, y) else

where r =
√
x2 + y2 and V1 is the earlier defined field.

The field accounts for a mixing close to the origin, a trans-
port away from it and a movement of the membrane. All
molecular species are transported by the field, but the rules
are constructed such that most of the producer molecules
p1, p2, p3 are destroyed on their way to the membrane. Of
course, we cannot guarantee that none of them appears in
the membrane built by molecules of type m. The analysis
via chemical organisations suggests that even if they make it
to the membrane, they will not be able to stay for long, see
Figure 6. When using separate flows for different molecular
species, the formation of a membrane is even easier realised.

Figure 5: A core emitting molecules which form a mem-
brane around the core. State after 100 iterations. Parameters
are n = 2500, rad = 0.2, u = 1.0 and r = 0.15.

Figure 6: Analysis via chemical organisations. The biggest
organisation {m, p1, p2, p3} (yellow) shows primarily in the
core, the smaller one {m} (red) as the membrane. State after
100 iterations.
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Further Experiments and Examples

Figure 7: Formation of two compartments. State after
5, 15, 30 and 150 iterations. Parameters are n = 2500,
rad = 0.8, u = 1.0 and r = 0.1.

Formation of Compartments. This example shows the
slow formation of two compartments in a domain for a re-
action network of three competing species. Initially the
molecules are distributed over the region. Due to a vector
field pushing them to the left and right hand side respectively
they gather in two different areas where they are stirred by
another two fields, see Figure 7. The parameters for the sim-
ulation are as follows. The network is taken from (Neumann
and Schuster, 2007) as a model for the rock-scissor-paper
game. There are three different competing species present
M3 = {s1, s2, s3} with the reactions

R3 = {si → 2si, 2si → si,

si + sj → si, si + sj → sj | i 6= j}.

The vector field, see Figure 8, is given by

V3(x, y) =

{
−0.01e5x(x, 0) + V1(x+ 0.4, y) x < 0

0.01e−5x(x, 0) + V1(x− 0.4, y) x > 0

Similar to V2 in the last section the first part of V3 accounts
for the pushing of molecules away from the centre. The sec-
ond part is a shifted swirl, as described in Section II.

Emergent Behaviour. In this example we use the same
vector field V3 as before, but with a different reaction net-
work (M4, R4) and parameters. The network is the cen-
tral sugar metabolism of Escherichia coli as described in
(Puchalka and Kierzek, 2004) with the adaptations made in
(Centler et al., 2007). We do not give the full definition here
due to the size of the chemistry, |M4| = 92 and |R4| = 198.

Figure 8: The vector field V3 in the region [−1, 1]× [−1, 1].
The length of vectors is scaled by 0.3 for a better readability.

Figure 9: Emergent behaviour. State after 5, 15, 65 and 70
iterations. Parameters are n = 2500, rad = 1.0, u = 1.0
and r = 0.15.

Here due to the movement of molecules an unexpected ef-
fect happens, in particular unexpected from the chemical or-
ganisation point of view. From Figure 9 we see that after 15
iterations (second picture) the chemistry seems to stabilise
since till iteration 65 (third picture) no qualitative change
happens. There are formed two rings of many molecules of
one species. Then, due to the transport, there are reactions
possible again, so that a qualitative change seems to happen
(fourth picture). Molecules of other species are build again
swirl around the ring and vanish after some more time.

Conclusion and Outlook
We suggested a new approach for introducing a structured
space into the dynamics of an artificial chemistry. This is
done by using a vector field to generate a flow of molecules

436 ECAL 2011



located in a Euclidean space. The introduction of vector
fields as defining part for the movement of molecules in
space gives additional parameters for the control of the dy-
namics. We have shown that by this means we can describe
membranes, membrane channels and transport processes.

Our system can now be applied to study the influence of
different flow structures on the evolvability of a chemical
system. It is known that compartmentalisation is in a cer-
tain sense beneficial for pre-biotic (chemical) evolution (Fer-
nando and Rowe, 2007). Since in a pre-biotic scenario vari-
ous flow structures were likely present (Martin et al., 2008),
it would be interesting to study whether and how particular
flow structures can lead to “improved” chemical evolution.
Note that space has already a positive effect when just as-
suming diffusion by counteracting on parasitism (Boerlijst
and Hogeweg, 1991; Fishkis, 2010). But could a flow struc-
ture add further evolutionary benefits?

Another direction of research could investigate the role of
different flow structures for bio-chemical information pro-
cessing. Does a particular flow contribute additional infor-
mation processing capability to those of reaction-diffusion
systems (Adamatzky, 2005)? For a given (artificial) chem-
istry, we could evolve the flow instead of the chemistry it-
self. By doing so, we could study the role of flow for certain
functions, separated from the reactions going on. This could
have practical implications in the development of novel bio-
chemical information technologies, since, it should be easier
to change the flow, e.g. within a microfluidic system, than
the chemistry.

Finally we can use the scenario presented here to extend
the notion of a spatial chemical organization (Speroni di
Fenizio and Dittrich, 2007) including flow and diffusion.

Acknowledgement
We thank Gabi Escuela, Stephan Peter and Gerd Grünert
very much for helpful discussions and support. We also ac-
knowledge financial support by the German Research Foun-
dation (DFG) Grant DI 852/4-3.

References
Adamatzky, A. (2005). Programming reaction-diffusion proces-

sors. Unconventional Programming Paradigms, pages 33–46.

Boerlijst, M. C. and Hogeweg, P. (1991). Spiral wave structures
in prebiotic evolution: Hypercycle stable against parasites.
Physica D, 48:17–28.

Centler, F., Fenizio, P., Matsumaru, N., and Dittrich, P. (2007).
Chemical organizations in the central sugar metabolism of
Escherichia coli. Mathematical Modeling of Biological Sys-
tems, Volume I, pages 105–119.

Dittrich, P. and Speroni di Fenizio, P. (2007). Chemical organisa-
tion theory. Bulletin of Mathematical Biology, 69(4):1199–
1231.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial
chemistries–a review. Artificial Life, 7(3):225–275.

Fernando, C. and Rowe, J. (2007). Natural selection in chem-
ical evolution. Journal of Theoretical Biology of the Cell,
247(1):152–167.

Fishkis, M. (2010). Emergence of Self-Reproduction in Coopera-
tive Chemical Evolution of Prebiological Molecules. Origins
of Life and Evolution of Biospheres, pages 1–15.

Giavitto, J. and Michel, O. (2001). MGS:: A Rule-Based Program-
ming Language for Complex Objects and Collections. Elec-
tronic Notes in Theoretical Computer Science, 59(4):286–
304.

Gillespie, D. T. (1976). A general method for numerically simu-
lating the stochastic time evolution of coupled chemical reac-
tions. J Comp Phys, 22(4):403–434.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled
chemical reactions. J Phys Chem, 81(25):2340–2361.

Grünert, G., Ibrahim, B., Lenser, T., Hinze, T., and Dittrich, P.
(2010). Rule-based spatial modeling with diffusing, geomet-
rically constrained molecules. BMC Bioinformatics, 11:307.

Martin, W., Baross, J., Kelley, D., and Russell, M. J. (2008). Hy-
drothermal vents and the origin of life. Nat. Rev. Microbiol.,
6:805–814.

Neumann, G. and Schuster, S. (2007). Continuous model for
the rock–scissors–paper game between bacteriocin producing
bacteria. Journal of Mathematical Biology, 54(6):815–846.
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Abstract 
Autonomous production of biological energy is one of 
the primal processes in living cells. In cells, the 
bio-energy presents as adenosine or guanosine 
triphosphate (ATP or GTP) is used for the most of 
cellular reactions. ATP is produced through the 
glycolytic cycle by a series of dedicated enzymes in 
cytosol, or through the oxidative phosphorylation of 
adenosine diphosphate (ADP), operated by ATP 
synthase, which is located on lipid membrane. For 
instance, in mitochondria, the proton potential across the 
membrane, generated by an electron transport chain, is 
eventually dissolved through FoF1-ATP synthase 
(FoF1). The flux of protons drives FoF1 and activates 
the synthesis of ATP, from ADP and Pi. On the other 
hand, bacteriorhodopsin (bR) is widely known as proton 
pump machinery that transports the protons to the other 
side of membrane due to light stimulation. Therefore, 
our idea is that if the bR and FoF1 were synthesized on a 
liposome membrane, the resulting liposome is able to 
generate ATP (see Figure 1).  

Figure 1. Schematic of bR-FoF1 liposome. Light induced 
bacteriorhodopsin pumps H+ into liposome and produced H+ 
gradient is used for FoF1-ATP synthase to synthesize ATP. 
 
Racker and Stoeckenius (1) have studied a model system by 
combing purple membrane, which contains bR, and isolated 
ATP synthase in phospholipid vesicles. In order to design 
and construct a synthetic cell in the synthetic biology 
context, this kind of “bioreactor” should be autonomously 

built up through an internal metabolic process such as gene 
expression. If both bR and FoF1 proteins were synthesized 
in the presence of organelle-sized vesicles, it would be 
possible to construct in vitro the bR-FoF1 liposomes as a 
consequence of the artificial protein synthesis and the 
self-organization of the synthesized proteins. Additionally, 
so produced bR-FoF1 liposomes can be applied as a 
bioenergy-producible plant that activates further biological 
reaction. For instance, if the produced ATP could be used 
for protein synthesis reaction, the whole system would 
represent an energetically independent autonomous system.  
 In the ECAL11 meeting, we present some experimental 
achievements toward the construction of bR-FoF1 liposome 
(2, 3). Our recent results show that bR was synthesized in a 
cell-free protein synthesis system (4) in the presence of 
liposomes and all-trans retinal. Fo complex, the membrane 
integrated part of FoF1, was synthesized in situ and formed 
the desired FoF1 complex in combination with a supplied 
F1. FoF1 complex was fully functional, by showing ATPase 
driven H+-translocation activity. These results imply that the 
bottom up construction of an artificial organelle, which is 
capable of generating the bioenergy, is experimentally 
feasible. We believe that our bR-FoF1 liposomes will be 
essential machinery for constructing artificial cells.  
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Abstract 

Genetic transposition (GT) is a process of moving sequences of 
DNA to different positions within the genome of a single cell. 
It is recognized that the transposons (the jumping genes) 
facilitate the evolution of increasingly complex forms of life by 
providing the creative playground for the mutation where the 
latter could experiment with developing novel genetic 
structures without the risk of damaging the already existing, 
well-functioning genome. In this work we investigate the effect 
of a GT-inspired mechanism on the efficiency of genetic 
programming (GP) employed for coevolution of locomotion 
gaits and sensing of the simulated snake like robot (Snakebot). 
In the proposed approach, the task of coevolving the 
locomotion and the sensing morphology of Snakebot in a 
challenging environment is decomposed into two subtasks, 
implemented as two consecutive evolutionary stages. At first 
stage we employ GP to evolve a pool of simple, sensorless bots 
that are able to move fast in a smooth, open terrain. Then, 
during the second stage, we use these Snakebots to seed the 
initial population of the bots that are further subjected to 
coevolution of their locomotion control and sensing in a more 
challenging environment. For the second phase the seed is used 
as it is to create only part of a new individual, and the rest of 
the new individual’s genetic makeup is created by a mutant 
copy of the seed. Experimental results suggest that the 
proposed two-staged GT inspired incremental evolution 
contributes to significant increase in the efficiency of the 
evolution of fast moving and sensing Snakebots. 

Introduction 

Snake-like robots feature potential robustness characteristics 
beyond the capabilities of most wheeled and legged vehicles, 
such as: the ability to traverse challenging terrain and 
insignificant performance degradation when partial damage is 
inflicted. Some useful features of snake-like robots include 
smaller size of the cross-sectional areas, stability, ability to 
operate in difficult terrain, good traction, and complete sealing 
of the internal mechanisms (Dowling, 1999; Hirose, 1993). 
Moreover, due to the modularity of their design, the snake-
like robots feature high redundancy and fault tolerance (Tanev 
et al. 2005). Robots with such properties can be valuable for 
applications that involve exploration, reconnaissance, 
medicine and inspection. 

Designing a controller that can achieve optimal locomotion 
of a modular Snakebot is a challenging task due to the large 
number of degrees of freedom in the movement of segments 
of a Snakebot. The locomotion gait of such bots is often seen 
as an emergent property; observed at a higher level of 
consideration of complex, nonlinear, hierarchically organized 
systems, comprising many relatively simply-defined entities 

(morphological segments). In such complex systems the 
higher-level properties of the system and the lower-level 
properties of comprising entities cannot be directly induced 
from each other (Morowitz, 2002). Therefore even if an 
effective incorporation of sensing information in fast and 
robust locomotion gaits might emerge from intuitively defined 
sensing morphology and simple motion patterns of 
morphological segments, neither the degree of optimality of 
the developed code nor the way of how to incrementally 
improve this code is evident to the human designer (Koza et 
al. 2000). The previous research demonstrates that the control 
for a fast moving modular robotic organism could be 
automatically developed through various nature-inspired 
paradigms, based on models of learning and evolution. The 
earlier work demonstrates the use of GP (Koza, 1994) for 
evolution of sensorless sidewinding Snakebots in various 
environmental conditions (Tanev et al. 2005). Furthermore, 
the coevolution of active sensing and the control of the 
locomotion gaits of Snakebots was achieved (Tanev and 
Shimohara, 2008). The morphology of the sensors, attached to 
each of the segments of the bot, coevolve with the way to 
incorporate the sensory readings into the control of 
locomotion of the bot. The genetically optimized 
morphological traits of the bot include the initial orientation, 
the timing of switching on, and the range of the simulated 
laser range finders (LRF) attached to each of the segments of 
the bot. The emergent features of the evolved gaits include 
both the contact and contactless wall-following navigation 
accomplished via adaptive, sensory-controlled differential 
steering of the fast moving sidewinding bot. Despite the 
abovementioned evidence of the feasibility of coevolution of 
active sensing and the locomotion, the resulting wall-
following behavior is achieved in an environment that is too 
simplified, and therefore too distant from the real-world 
applications: a simple curved corridor with a plain, smooth 
surface. 

In this work we further investigate the coevolution of the 
active sensing and locomotion control of sidewinding 
Snakebot in a more complex environment that, in addition to a 
narrow corridor, features several large obstacles and many 
randomly placed small obstacles constituting a rugged terrain 
within this challenging environment. The sensors on the 
Snakebot used in this paper follow the same model as 
proposed in (Tanev and Shimohara, 2008): each segment of 
the Snakebot is provided with a fixed, immobile LRF with 
evolvable initial orientation, range and timing of firing. Thus 
the evolutionary task is not only to determine the time patterns 
of turning angles and the incorporation of sensor values for 
effective sensing and locomotion, but also to optimize the 
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initial orientation, effective range and the timing of activation 
of module sensors. Hence, the Snakebot genotype is 
represented as a triple consisting of a linear chromosome 
containing the encoded values of the three relevant parameters 
of LRF, and two parse trees corresponding to the algebraic 
expressions of the temporal patterns of the desired turning 
angles in horizontal and vertical directions (further detailed in 
Section ―Algorithmic Paradigm‖). The most efficient 
locomotion gaits of Snakebot are not necessarily associated 
with the forward, rectilinear motions (and sidewinding might 
emerge as a fast and robust locomotion). Therefore, the 
eventual fusion of the readings of many sensors mounted in 
all the segments of the bot would provide Snakebot with the 
capability to perceive the features of surrounding environment 
along its whole body. In addition to the widening of the area 
of the perceived surroundings, multiple sensors offer the 
potential advantages of robustness to damage of some of 
them, dependability of the sensory information, and an ability 
to perceive the spatial features of the surrounding 
environment due to the motion parallax. 

The poor scalability is a common problem in the 
simultaneous evolution of multiple features of simulated 
creatures, as the search space of evolution increases faster 
than linearly with the increase of the number of 
simultaneously evolved features. The considered case of 
Snakebot implies that the size of evolutionary search space 
can be seen as a multiplication of the sizes of the search 
spaces of the following interdependent evolutionary subtasks: 
 Evolution of control of locomotion: the time patterns of 

turning angles of actuators that result in a fast locomotion 

of the bot, 

 Evolution of the morphology of the active sensing – initial 

orientation of the sensors, their range, and timing of their 

activation, and 

 Evolution of the incorporation of the sensor signals into 

the control of locomotion of the bot. 
The large search space of the evolution of the considered 
Snakebot results in an intractable computational effort. 
Therefore, we propose an approach of decomposing the 
initially defined task into two subtasks, implemented as two 
consecutive evolutionary stages. As the first stage we employ 
GP to evolve a pool of simple, generic sensorless bots that are 
able to move fast in a smooth, plain terrain. During the second 
stage, we use these Snakebots to seed the initial population of 
the bots that are further subjected to coevolution of their 
locomotion control, sensing morphology, and the method of 
incorporating the sensor signals into the locomotion of the bot 
in the given environment.  

In this paper we propose an incremental evolution through 
the elaborated two stages, interfaced by a new approach to 
seeding. Inspired by genetic transposition (GT), we use the 
seed from the bots evolved during the first stage to create only 
a part of a new individual in the second stage. The rationale 
for proposing such an approach is based on the observations 
that the evolved fast moving Snakebots with sensory abilities 
exhibit some emergent locomotion traits that are pertinent to 
the generic, sensorless sidewinding locomotion (Tanev and 
Shimohara, 2008). We speculate that a better computational 
efficiency of evolution can be achieved if we first allow these 
generic features to evolve in sensorless bots moving in a 
smooth, plain terrain (with the task featuring a narrow 

evolutionary search space), and then–incorporating the 
genotypes of these bots into the evolution of the 
morphologically more complex bots (with sensors) in a 
challenging environment. The proposed mechanism of 
incorporation of these generic features of locomotion is based 
on seeding the initial population of GP (employed for the 
evolution of the bot with sensors) via the GT-inspired 
mechanism. Using the proposed mechanism of GT, the seed 
does not form the whole genome of an individual Snakebot, 
but only a part of it. We believe that, similar to the nature, the 
latter would offer the opportunity to preserve the genetic 
makeup of the generic locomotion features intact, while 
incrementally ―upgrading‖ it with the new sensing abilities. 

From another perspective, our work is inspired by the 
discoveries in the neurobiology suggesting that the complex 
navigation behaviors of species in nature can be achieved 
through an appropriate real-time modulation, controlled by the 
sensory inputs, of the generic neural signals produced by 
sensorless central pattern generators (CPG) (Levitan and 
Kazczmarek, 2002). Within this context, we would like to 
investigate whether (i) the separation of the genotype into two 
parts, mimicking the natural CPG and its modulation via 
sensory processing, respectively, and (ii) evolving these two 
parts in two consecutive stages would contribute to the 
improvement of the efficiency of evolution of the Snakebot.  

In the remaining of this document we will provide a brief 
background related to GT, followed by a section elaborating 
on both the evolutionary and the experimental frameworks 
used in this paper. Next, we will discuss the obtained 
experimental results, and finally draw the conclusions of the 
work presented and detail future work. 

Genetic Transposition in GP 

Discovered by Barbara McClintock in maize (Zea mays), the 
transposons (jumping genes) are sequences of DNA that can 
move around to different positions within the genome of a 
single cell, in a mechanism called transposition (McClintock, 
1950). In the process, they can cause mutations and change 
the amount of DNA in the genome. It is recognized that the 
transposons, facilitate the evolution of increasingly complex 
forms of life by providing the creative playground for fast 
mutations where the latter could experiment with developing 
novel genetic structures without the risk of damaging the 
already existing, well-functioning genome (Nowacki et al. 
2009; Strand and McDonald, 1985).  

The related transposition-inspired research in evolutionary 
computation (EC) started by the work of Simoes and Costa 
(Simoes and Costa, 1999; Simoes and Costa, 2000) on the 
favorable effect of transposition on the performance of genetic 
algorithms (GA). The first of their methods is intended to 
enhance the crossover operation in GA by exchanging only 
the genetic material that is specifically marked as a transposon 
(Simoes and Costa, 1999). Their second approach, (termed 
―asexual transposition‖) models the mutation of GA as a ―cut 
and paste‖ operation observed in biological GT (Simoes and 
Costa, 2000). Chan et al demonstrate a successful 
implementation of a GT inspired mechanism in multi-
objective optimization, which is shown to have superior 
performance in achieving pareto optimal solution in 
comparison to multi-objective optimization without the GT 
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mechanism (Chan et al, 2008). Liu et al employ a similar GT 
inspired mechanism in a clonal selection algorithm, which is 
shown to provide improved performance in automatic 
clustering problem (Liu et al, 2009). In a related research, 
McGregor and Harvey use a mechanism similar to 
transposition which they termed as ―plagiarism" (McGregor 
and Harvey, 2005). The ―plagiarism‖ copies one part of the 
genotype into another, replacing the latter completely. The 
authors demonstrated that the proposed mechanism improves 
the performance of the evolution of solutions to the Boolean 
logic problems. Spirov et al. also develop an original 
implementation of artificial transposition, used as a form of 
mutation operator for the simulated evolution of evolving a 
finite state machine as a solver of the artificial ant problem 
(Spirov et al. 2009).  

In these aforementioned works, as well as in the biology, 
GT can occur frequently during the evolutionary cycle (just 
like other common evolutionary operations, such as 
crossover). In the approach we propose, however, GT occurs 
only once for each ―seeding phase‖ (which, in turn, is only 
once per evolutionary run – at the stage of creating the initial 
population), and not invoked during the evolutionary run. 
Therefore, although the source of inspiration is the same, the 
implementation of the proposed model differs significantly 
from the previously developed GT-inspired mechanisms in 
EC. However, for the rest of the paper, we will refer to the 
GT-inspired mechanism introduced here as genetic 
transposition (GT) for simplicity and succinctness.  

In our work we are especially interested in achieving higher 
efficiency in GP for coevolution of locomotion gaits and 
sensing of the simulated Snakebot. At the initial stage of the 
proposed approach, we evolve a pool of generic fast-moving 
sidewinding bots in a flat, smooth terrain. Then, during the 
second stage, we use these Snakebots to seed the initial 
population of the bots that are further subjected to coevolution 
of their locomotion control and sensing in a more challenging 
environment. During the seeding process the generic, fast 
moving, sensorless bots are subjected to genetic retro-
transposition (i.e., duplicated within the same genome).  The 
resulting transposon (connected with the seeding genome via 
a randomly initialized ―control gene‖) is subjected to 100% 
random mutation in order to allow for the incorporation of the 
sensing information into the locomotion control of the bot. 
The schematic parse tree of the genotype of Snakebot, created 
during the initialization of GP via the GT-inspired mechanism 
is illustrated in Figure 1. 

Seeding of the initial population by means of including the 
previously evolved successful (or partially successful) 
solutions has been shown to be an effective way of improving 
the efficiency of simulated evolution. For example, Nolfi et al. 
(Nolfi et al. 1994) evolve the controller of simulated robot and 
then re-evolve (or, adapt) the obtained results on real robots to 
accelerate the evolutionary process. Other examples of 
successful seeding include the work of Vassilev et al. 
(Vassilev et al. 2000) on the optimization of the existing 
digital circuit design; Thomsen et al. (Thomsen et al. 2002) on 
the use of solution obtained from a domain-neutral algorithm 
as a seed to evolve an even better performing solution; 
Langdon et al. (Langdon and Nordin, 2000) on seeding the 
evolutionary population with hand-coded solutions that allow 
a better generality of the evolved results.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: The mechanism of proposed genetic transposition in 
GP (Stage 2b) and the typical seeding process (Stage 2a). Both 
of these cases need to make use of a preliminary seed, and in the 
proposed approach this seed comes from a previously evolved 
sensorless Snakebot (Stage 1) that achieves fast locomotion on a 
smooth open terrain. In either of the Stages 2a and 2b, the 
resulting genome from Stage 1 is used as a seeding individual 
and further evolved, with additional sensory abilities (illustrated 
by the terminal symbol LRF) in a more challenging terrain. For 
Stage 2a the seed from Stage 1 makes up the whole genome of 
the initial Snakebot. For Stage 2b, the seed from Stage 1 is only 
a part (Part A) of the initial genome of the Snakebot. The rest of 
it contains a clone of the seed that has gone 100% mutation 
(Part B), and a randomly initialized group of control gene (Part 
C) which connects Parts A and B. 

In addition, by utilizing the previously evolved solutions, 
seeding has also been applied to improve the performance of 
evolution of solutions from scratch. This technique, termed by 
Perry as ―population enrichment‖ (Perry, 1994), has been 
demonstrated to be more efficient in discovering solutions in 
GP.  ―Population enrichment‖ is a form of seeding that is 
closest to the GT technique described in this paper. The main 
difference in these methods is the form of initialization, where 
in the ―population enrichment‖ the seed is used to create the 
complete individual (see Stage 2a in Figure 1), while in GT 
the seeded genotype only forms a part of the genetic makeup 
of the newly created individual in the initial evolutionary 
population (see Stage 2b in Figure 1). 

Evolutionary Framework and             

The Simulation Environment 

In the experiments presented in this work we employed a 
DOM/XML-based implementation of GP (Tanev, 2004). The 
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benefits of representing the genetic programs as DOM-parse 
tree featuring text-based XML-representation of genetic 
programs are (i) fast prototyping of GP by using standard 
built-in API of DOM-parsers for traversing and manipulating 
genetic programs, (ii) generic support for the representation of 
grammar of strongly-typed GP using W3C-standardized 
XML-schema; and (iii) human-friendly, text-based 
representation of the evolved solutions. 

Representation of the Snakebot 

We employ open dynamics engine (ODE) as a simulation 

platform for the Snakebot. ODE is a free, industrial quality 

software library for simulating articulated rigid body 

dynamics (Smith, 2004). It is fast, flexible and robust, and it 

has built-in collision detection. Therefore, ODE is suitable for 

a realistic simulation of the physics of an entire Snakebot 

when applying actuating forces to its segments. The ODE 

related parameters of the simulated Snakebot are same as 

elaborated in (Tanev et al. 2005).  

Snakebot is simulated in ODE as a set of 15 identical 

spherical morphological segments (―vertebrae"), linked 

together via universal (Cardan) joints (Figure 2). All joints 

feature identical angle limits and each joint has two attached 

actuators (―muscles"). A single LRF sensor, with a limited 

range is rigidly attached to each of the segments. 

The functionality of the LRF can be defined by the values 

of the following set of parameters: (i) orientation, measured as 

an angle between the longitudinal axis of the sensor and the 

horizontal axis of the joint, (ii) range of the sensor (in cm), 

and (iii) the timing of activation, expressed as a threshold 

value of the turning angle of the horizontal actuator. The 

reading of LRF is a scalar value which corresponds inversely 

to the distance between the sensor and an object (if any within 

the sensor's range), measured along the longitudinal axis of 

the LRF. In the initial standstill position of Snakebot the 

rotation axes of the actuators are oriented vertically (vertical 

actuator) and horizontally (horizontal actuator) and perform 

rotation of the joint in the horizontal and vertical planes 

respectively. 
 

 

 

 

 

 

 

 

 

Figure 2: Horizontal and vertical actuators attached to the 

joint perform rotation of the segment #i-1 in vertical and 

horizontal planes respectively. 
 

Considering the representation of Snakebot, the task of 
designing the fastest locomotion can be rephrased as 

developing temporal patterns of desired turning angles of 

horizontal and vertical actuators of each segment that result in 

fastest overall locomotion of Snakebot. The proposed 

representation of Snakebot as a homogeneous system 

comprising identical morphological segments is intended to 

significantly reduce the size of the search space of the GP. 

Since the size of the search space does not necessarily 

increase with the number of morphological segments of the 

Snakebot, the proposed approach offers a favorable scalability. 

Algorithmic Paradigm 

For the evolution of the Snakebot, the genotype is represented 
as a triple consisting of a linear chromosome containing the 
encoded values of the three relevant parameters of LRF, and 
two parse trees corresponding to the algebraic expressions of 
the temporal patterns of the desired turning angles of both the 
horizontal and vertical actuators, respectively (Figure 3).  

The encoding of the parameters of LRF is as elaborated in 
Figure 3. The same figure also illustrates the function set and 
the terminal set of the GP, employed to evolve the control 
sequences of both actuators. Because the locomotion gaits by 
definition are periodical, the periodic functions sine and 
cosine are included in the function set of GP in addition to the 
basic algebraic functions. Terminal symbols include the 
variables time, segment_ID, an automatically-defined function 
(ADF), the reading of the sensor (LRF), and two constants: Pi, 
and a random constant within the range [0, 2]. The 
incorporation of the terminal symbol segment_ID (a unique 
index of morphological segments of Snakebot) allows GP to 
discover how to specialize (by phase, amplitude, frequency 
etc.) the  
genetically identical motion patterns of actuators of each of 
the morphological segments of the Snakebot.  

The rationale of employing ADFs is based on the 
observation that the evolvability of straightforward, 
independent encoding of desired turning angles of both 
horizontal and vertical actuators is rather poor. Even without 
ADFs, GP is able to adequately explore the potentially large 
search space and ultimately discover the areas that correspond 
to fast locomotion gaits in the solution space. However, it was 
observed in the previous  work of Tanev et al (Tanev et al. 
2005) that not only  the  motion  patterns  of adjacent 
segments  are  correlated,  but the motion patterns  of 
horizontal  and  vertical actuators  of each  segment in 
fast locomotion gaits are highly  correlated too. Moreover, 
discovering and preserving such correlation by GP is 
associated with enormous computational effort. ADFs, which 
provide a way  of introducing modularity and reuse of code 
in GP  (Koza, 1994), are employed  in  our  approach to 
allow GP to explicitly evolve the correlation between  
motion  patterns of horizontal and vertical actuators as 
shared fragments in algebraic expressions of desired  turning  
angles of both actuators. Furthermore, we observed  that the 
best results are obtained by;  (i) allowing the use of ADF as a 
terminal symbol in algebraic expression of  desired  turning  
angle  of vertical actuator only,  and  (ii) evaluating the  
value of ADF by equalizing it to the value of currently 
evaluated algebraic expression of desired turning angle of 
horizontal actuator. The main GP (hence the EA) parameters 
are summarized in Table 1. 

Genetic Operations. We employ a binary tournament 
selection and a single point crossover. The crossover point is 
randomly selected between the three components of the 
genotype (as shown in Figure 3). The mutation randomly 
alters either a value of an allele in the linear chromosome 
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representing the parameters of LRF, or a sub-tree in one of the 
two parse tress that correspond to the temporal patterns of the 
control sequences of actuators. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Genotype of the Snakebot, represented as a triple 
containing the values of the parameters of LRF and two 
algebraic expressions of the temporal patterns of the desired 
turning angles of horizontal and vertical actuators, 
respectively. 

Fitness Evaluation. The fitness function is based on the 
average velocity of Snakebot, which is estimated from the 
distance traveled during the trial. As we shall elaborate later in 
the ―Experimental Setup‖ section, the confined environment 
used in the trial is a narrow corridor covered with obstacles of 
various sizes (Figure 4). The velocity of locomotion needed to 
clear the final obstacles towards the end of the corridor for the 
given time of the trial (16s) corresponds to a fitness value of 
100. The evolution is terminated if the bot reaches the fitness 
of more than 120 (fitness required to clear the whole corridor) 
or if the maximum accumulative number of 80 generations is 
reached. 80 generations was set as the cumulative maximum 
as a result of the experience from earlier experiments. Earlier 
experiments used in achieving locomotion of modular 
Snakebot had used 40 generations, which was a sufficient 
limit for the evolution of locomotion. Ideally, addition of a 
new feature should not require a much larger computational 
effort. Therefore, 40 generations per individual feature of the 
Snakebot was decided to be an acceptable cost. 
 
Experimental Cases. In order to investigate comparatively 
the efficiency of proposed approach, we used three methods to 
evolve the locomotion of Snakebot with sensors: 

 Table 1: The GP-related parameters. 

I. Canonical GP (single stage approach): In this case the 

evolution of the Snakebot is done from scratch; i.e. 

evolution starts with a population of randomly created 

individuals and optimizes these individuals to satisfy the 

target fitness. The limit of the evolutionary generations of 

GP is set to 80. 

II. Typical seeding (two-staged approach): The genotypes of 

six best sensorless Snakebots that have already been 

evolved to achieve fast sidewinding locomotion in a plain, 

smooth terrain (Figure 1, Stage 1), is used to create the 

initial population. This evolved genotype is used as an 

elite individual to seed the initial population, where the 

exact copies of these six sensorless bots are used to form a 

small part (6 bots) of the initial evolutionary population. 

The remaining part of the population (194 bots) is 

randomly generated. This seeded population is then 

evolved to fully satisfy the target fitness (Figure 1, Stage 

2a). The limit of the generations of both stages of 

evolution is set to 40. 

III. GT (two-staged approach): The first stage of the proposed 

approach is identical to that of the typical seeding method. 

Similarly, the six best sensorless genotypes are used as 

elite individuals in the initial population of the second 

evolutionary stage. To create the remaining 194 bots of 

the initial population, however, we use the evolved best 

sensorless genotypes to form only part of these newly 

created individuals. The remaining parts of these 

individuals are created randomly, as elaborated in the 

section titled ―Genetic Transposition in GP‖. These 194 

partially seeded and partially random individuals and the 

six fully seeded individuals are used to form the initial 

evolutionary population (Figure 1, Stage 2b). The created 

population is evolved to fully satisfy the target fitness. 

Similar to the typical seeding, the limit of the generations 

of both stages of evolution is set to 40. 

Experimental Setup 

The experimental environment (Figure 4a and 4b) is formed 
of a straight narrow corridor (the width is the same as the 
length of the Snakebot) that has two groups of tall boxes that 
protrude to about 40% of the width of the corridor. In 
addition, part of the corridor is covered by many, randomly 
located and sized, small boxes that are designed to create a 

Category Value 

Population Size 200 

 
Selection 

Binary  Selection  ratio:  0.1 
Reproduction ratio:  0.9 

Elitism 4 

Mutation Rate 1% 

Trial  Interval 16s (400 time  steps  of 40 ms per step) 

Termination 
Criterion 

(Fitness=120) or  
(Num. of Generations=80) 

Desired turning angle 
of horizontal actuator 

Desired turning angle 
of vertical actuator 

LRF0 
LRF1 

LRF14 

Range 

Orientation  

Desired_Angle_H Desired_Angle_V LRF_Parameters 
 

Linear chromosome comprising three alleles: 
(1) Orientation 

Encoded value:  
An integer O within the range [ -6 … 6 ]. 

Interpretation: 
An angle A is set to (45+O*6) degrees. 

(2) Range 
Encoded value: 

An integer r within the range [ 1 … 8 ]. 
Interpretation: 

Range R is set to (r*d*2.5), where d=6cm is  
the diameter of the spherical segment of the  
Snakebot. 

(3) Timing of Activation 
Encoded value: 

 An integer T within the range [ 0…50 ] 
Interpretation:    

Activating the LRF in the current time step if 
the ascending actual turning angle of hori-
zontal actuator had just exceeded the value 
of T in degrees. The reading of LRF is set to 
0 if there is no object within its range R and 
to ( R – D + 1 ) otherwise, where D is the 
measured distance to the detected object 

Algebraic expression (parse tree) 

Function set:   
{sin, cos, nop, +, -, *, /  } 

Terminal set:  
{time, segment_ID, Pi,  

random constant, LRF} 

Algebraic expression (parse tree) 

Function set:   
{sin, cos, nop, +, -, *, /  } 

Terminal set:  
{ADF, time, segment_ID, Pi,  

random constant,  LRF} 
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rough terrain and noisy environment for the sensors. The 
length of the corridor is set to seven times the length of the 
Snakebot. Starting from one end of the corridor, the aim of the 
bot is to reach the other end within the given time-span. We 
designed this environment with the intention to encourage the 
evolving bot to develop the following abilities: (i) fast 
locomotion (long enough corridor), that is (ii) not hindered by 
rugged terrain (small boxes), (iii) following of obstacles that 
cannot be overcome (walls), and (iv) circumnavigating 
obstacles that cannot be overcome (tall boxes). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: The experimental setup of the scenes. 

For experimental case I and Stage 2 of experimental cases II 
and III, the Snakebot is initialized with 15 modules, on full 
stretch at the dead end of the corridor with its longitudinal 
axis perpendicular to the intended direction of movement 
(Figure 4a, and 4b). Initially, the rough terrain is not present 
to facilitate the evolution of basic locomotion on smooth 
terrain. After a fitness value of 60 is reached (i.e. the first set 
of large obstacles can be cleared by the Snakebot), a large 
portion of the corridor is filled with randomly initialized 
boxes (random size and location). The initial orientation of the 
Snakebot and the corridor is influenced by the previous work 
suggesting that sidewinding is the fastest and most robust 
locomotion gait for a Snakebot. Therefore, the Snakebot 
would be expected to enter a corridor featuring a similar 
orientation. 

For Stage 1 of experimental cases II and III, a plain surface 
with no obstacles is used as the environment (Figure 4c), and 
the LRF is excluded from the GP function-set. 

Experimental Results 

The Snakebot is evolved applying the three different 
evolutionary approaches as described in the ―Experimental 
Cases‖ section, and under the experimental conditions as 
outlined in the ―Experimental Setup‖ section. For each 
approach we executed 38 independent runs. The fitness 
convergence characteristics of these runs are shown in Figure 
5. As Figure 5a depicts, the canonical GP features average 
fitness (over all independent runs) of about 40, which 
corresponds to the 40% of the length of the corridor, which 
also corresponds with the position of the first set of tall 

obstacles. The pace of the improvement of the fitness is rather 
slow, with average value of about 30 at generation 40. These 
results suggest that the bot is struggling to discover the 
generic locomotion gaits that can result in a fast enough 
locomotion even in the absence of obstacles. The large search 
space of the evolution, caused by the need to additionally 
evolve the sophisticated morphology sensing (LRF), and the 
way to properly incorporate the sensing signals into the 
locomotion control is one of the reasons for the poor 
efficiency. Another reason is the challenging environment–the 
walls and various obstacles, which implies that the fitness 
landscape of evolution features fewer (compared to the 
previously tested cases [Tanev et al. 2005; Tanev and 
Shimohara, 2008]) and narrower optimal areas. Indeed, even 
if fast locomotion emerges during the initial stages of 
evolution, its survival value could be easily ―underestimated‖ 
by evolution because the bot gets stuck at the first obstacle. 
Hence the large difference between the progression of the 
results displayed in Figures 5a and 5b. 

Table 2: Statistics of the experimental results. 

Conversely, the results of the first stage of both the typical 
seeding and GT (Figure 5b) indicate that the evolution of the 
locomotion of a Snakebot is more efficient, when relieved 
from the burden of dealing with the sensors and the 
sophisticated environment. The velocity of 100, which would 
be sufficient to clear the obstacles, is now easily achievable 
within 10 to 36 generations.  

Then, when six of these best moving generic bots are 
incorporated via typical seeding into the initial population in 
the second stage of evolution (Figure 5c), and allowed to 
evolve for additional 40 generations, the average fitness value 
is 1.6 times higher than the result obtained by canonical GP 
(Table 2). However, the best efficiency of evolution is 
achieved when GT is used–the average fitness is more than 90 
with 8 successful runs, and a smaller deviation in the fitness 
values achieved (Figure 5d and Table 2). 

The proposed approach of employing GT allows the 
evolution to experiment with the way of processing the 
sensory signals without the risk of damaging the already 
evolved, fast locomotion control. Therefore, the transposition 
could facilitate the protection of the already evolved 
beneficial building blocks from the destructive effects of 
genetic operations. Conversely, since the locomotion control 
comprises 100% of the genotype of the bots created via 
typical seeding, any incorporation of the sensing information 
as a result of the genetic operation would most likely result in 
damage of this control. Indeed, the genotypes of the 
successful results achieved via GP with GT, the resulting 
genotype always had a portion in the form of Equation 1. 
Equation 1 (with C1 and C2 being constants) is the general 
form of the controllers achieved via the evolution experiments 
for the locomotion of a Snakebot on a smooth, empty terrain, 

 Canonical Seeding GT 

Average  Fitness 43 69.3 91.2 

Median  Fitness 37 67 91 

Std Dev. of Avg. Fitness 23.5 27.2 19.4 

Runs with Fitness >100 1 (2.6%) 3 (7.9%) 8 (21%) 
b) 

a) 

c) 
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i.e. Figure 5b. The resulting genotypes were simply the 
modulation of these controllers via the LRF signals. On the 
other hand the successful solution achieved by canonical GP 
and typical seeding runs did not have an exclusive part of their 
genotype that resembles Equation 1; instead a large, 
complicated equation that is hard to comprehend was the 
result. 

 
)2sin(*1 CtimeIDC           (1) 

 
In fact, when re-run on maps with differently arranged 
obstacles (to that of the environment present during 
evolution), the most robust Snakebots are observed to be from 
the GP runs using GT. We believe that the following are the 
reasons for the significant improvement in the efficiency 
(computational effort) of evolution due to GT: 

 A wider spread of the initial seed into the population (than 

the typical seeding) of genotype that features generic 

ability to move, 

 A better value of the initial fitness of the bots as they 

already feature the generic ability to move in their 

genotypes, and 

 A separation of the sensing and locomotion parts of the 

genome, which may create a more efficient control 

mechanism for the bot. 

We would like to point out that latter of the above mentioned 
arguments might provide a further insight into the design of 
robotic control systems and their sensorimotor control. The 
locomotion property of the Snakebot can be viewed as a 
continuous process that needs to be applied regularly under 
normal conditions, and the sensing property of the Snakebot 
can be viewed as a reflex that only needs to affect the actions 
of the bot when an event occurs. Such a concept might be seen 
as analogous to the reactive behavior related to the reflexes 
observed in biological organisms. For example, the collision-
free flight of locusts in a crowded swarm is recognized to be 
achieved by direct, real-time input of the sensory signals into 
the wings muscles. The latter serve as a mediator for both the 
(i) ―default‖ oscillating signals (generated by CPG) and (ii) 
the visual sensors (Uvarov, 1977).  

From another viewpoint, our results can be seen as an 
evidence of the computational benefits of mimicking the 
neurobiological concept of achieving complex navigation 
behaviors of species in nature through sensory-controlled 
modulation of CPG. The moving trajectory of a sample best of 
run bot (Figure 6) illustrates the emergence of the following 
abilities of the bot: (i) fast locomotion (clearing the corridor), 
that is (ii) not hindered by rugged terrain (overcoming small 
boxes), (iii) following obstacles that cannot be overcome 
(walls), and (iv) circumnavigating obstacles that cannot be 
overcome (two groups of tall boxes). 

The successful Snakebots from the results presented 

demonstrate the incorporation of sensor information within 

the control mechanism of the Snakebots for steering the 

Snakebot away from the large obstacles. The evolved 

Snakebots use the sensor signals as repulsive forces on the 

individual modules, which gradually change the course of the 

whole Snakebot. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Fitness convergence characteristics of the three 
approaches used to evolve the Snakebot in the confined 
environment: single-staged canonical GP (a), and incremental 
two-staged typical seeding (b then c) and GT (b then d), 
respectively. The graphs show the fitness convergence of all 
38 runs from each experiment.  

Conclusions 

We demonstrated that the evolution of a modular sidewinding 
Snakebot in a challenging environment with multiple forms of 
obstacles is a computationally demanding task. Dividing this 
task into two subtasks, implemented as two consecutive 
evolutionary stages, contributes to the significant 
improvement in the efficiency of evolution. 

We introduced a genetic transposition inspired seeding 
technique to further improve both the quality of the bots and 
the computational effort required to evolve them. The 
proposed technique offers a significant improvement over 
typical seeding when applied to the evolution of an active 
sensing of fast moving Snakebot. The presented technique 
could be seen as a promising approach to incremental 
coevolution of multiple features of morphologically and 
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behaviourally complex bots situated in challenging 
environments. 

 
 
 
 
 
 
 
 

Figure 6: The moving trajectory of the central segment and 
the center of gravity (COG) of a sample best-of run Snakebot, 
evolved by incremental GP with GT. 

In biology it is recognized that the transposons (the jumping 
genes) facilitate the evolution of increasingly complex forms 
of life by providing the creative playground for the mutation 
where the latter could experiment with developing novel 
genetic structures without the risk of damaging the already 
existing, well-functioning genome. The results shown in this 
paper demonstrate that this biological occurrence is also 
applicable to EC, and the proposed genetic transposition 
inspired seeding mechanism also facilitates the artificial 
evolution of increasingly complex systems. 

As part of future work, we aim to analyze the Snakebots 
evolved in detail in order to gain an understanding of how the 
sensory signals are integrated with locomotion, and to infer 
the definition (understandable by human designers) of the 
control mechanism of the Snakebot. Furthermore, we plan on 
studying and designing mechanisms that can accompany 
genetic transposition in bringing a more efficient and robust 
evolution of complex robotic systems with multiple evolving 
features. Finally, we aim to generalize the proposed technique 
and define the properties of the tasks in evolutionary robotics 
that can be efficiently solved via this approach. 

References 

Chan, T.; Man, K.; Tang, K. & Kwong, S. (2008). A Jumping Gene 
Paradigm for Evolutionary Multiobjective Optimization 
Evolutionary Computation, IEEE Transactions on, 12, 143-159  

 
Dowling, K. (1999) Limbless locomotion: learning to crawl In 

Robotics and Automation. Proceedings. 1999  IEEE  
International Conference on, volume  4, pages 3001 –3006 
vol.4, 1999  

Hirose, S. (1993) Biologically Inspired Robots:  Snake-like 
Locomotors and Manipulators. Oxford University Press. 

Koza, J. R. (1994) Genetic programming II: automatic discovery 
of reusable programs. MIT Press, Cambridge, MA, USA. 

Koza, J. R., Keane, M.A., Yu J., Bennett, F.H., and Mydlowec W. 

(2000) Automatic creation of human-competitive programs 
and controllers by means of genetic programming. Genetic 

Programming and Evolvable Machines, 1:121–164. 

10.1023/A: 1010076532029. 

Langdon, W.B. and Nordin, P. (2000) Seeding genetic programming 

populations. In Proceedings of the European Conference on 
Genetic Programming, pages 304–315, London, UK. 

Springer-Verlag. 

Levitan, I.B. and Kazczmarek, L.K. (2002). The Neuron—Cell and 
Molecular Biology. Oxford University Press. 

Liu, R.; Sheng, Z. & Jiao, L. (2009). Gene Transposon Based Clonal  

Selection Algorithm for Clustering. Proceedings of the 11th Annual 

conference on Genetic and evolutionary computation, 1251-1258.   
McClintock, B. (1950) The origin and behavior of mutable loci in 

maize.  Proc Natl.   Acad.  Sci. USA, 36:344–355. 

McGregor, S. and Harvey, I. (2005). Embracing plagiarism: 
Theoretical, biological and empirical justification for copy 

operators in genetic optimisation. Genetic Programming 
and Evolvable Machines, 6:407–420. 

Morowitz, H.J. (2002). The Emergence of Everything:  How the 
World Became Complex. Oxford University Press. 

Nolfi, S., Floreano, D., Miglino, O. and Mondada, F. (1994). How 
to Evolve Autonomous Robots: Different Approaches in 

Evolutionary Robotics. In 4th International Workshop on 

Artificial Life. MA: MIT Press, 1994. 

Nowacki, M., Higgins, B.P., Maquilan, G.M., Swart, E.C., Doak, 
T.G., and Landweber, L.F. (2009). A functional role for 

transposases in a large eukaryotic genome. Science, 324 

(5929): 935–938. 

Perry, J. (1994). The effect of population enrichment in genetic 

programming. In Evolutionary Computation. IEEE  
World  Congress  on Computational Intelligence., 

Proceedings of the First IEEE  Conference on, pages 456 

–461 vol.1, June  1994. 

Simões, A. and Costa, E. (2000). Using genetic algorithms with 

asexual transposition. In Proceedings of the Genetic and 
Evolutionary Computation Conference (GECCO’00), 

pages 323–330. Morgan Kaufmann. 

Simões, A. and Costa, E. (1999). Transposition: A biologically 
inspired mechanism to use with genetic algorithms. In the 
Proceedings of the Fourth International Conference on 

Neural Networks and Genetic Algorithms (ICANNGA’99), 

pages 612–619. Springer-Verlag. 

Smith, R. (2004). Open Dynamics Engine. 

Spirov, A.V., Kazansky, A.B., Zamdborg, L., Merelo, J.J., and 
Levchenko, V.F. (2009). Forced evolution in silico by 

artificial transposons and their genetic operators: The John 
Muir Ant Problem. Technical Report, Oct 2009. 

Strand, D.J. and McDonald, J.F. (1985). Copia is transcriptionally 
responsive to environmental stress.  Nucleic Acids 

Research, 13(12):4401–4410. 

Tanev, I., Ray, T., and Buller, A. (2005). Automated evolutionary 

design, robustness and adaptation of sidewinding 
locomotion of simulated snake-like robot. IEEE 

Transactions on Robotics, 21:632–645. 

Tanev, I. and Shimohara, K. (2008). Coevolution of active 

sensing and locomotion gaits of simulated snake-like robot. 

In Proceedings of the 10th annual conference on Genetic 
and evolutionary computation, GECCO ’08, pages 257–264, 

New York, NY, USA. ACM. 

Tanev, I. (2004). Dom/xml-based portable genetic 
representation of the morphology, behavior and 

communication abilities of evolvable agents. Artificial Life 
and Robotics, 8:52–56. 

Thomsen, R., Fogel, G., and Krink, T. (2002).  A clustal 
alignment improver using evolutionary algorithms. In 

Evolutionary Computation. CEC ’02. Proceedings of the 
2002 Congress on, volume 1, pages 121 –126, May 2002. 

Uvarov, B. (1977). Grasshoppers and Locusts, volume 2. 1977. 

Vassilev, V.K., Job, D., and Miller, J.F. (2000). Towards the 

automatic design of more efficient digital circuits. In 

EH’00:  Proceedings of the 2nd NASA/DoD workshop on 

Evolvable Hardware, page 151, Washington, DC, USA. 

IEEE Computer Society. 

2 4 6 8 10 12 14 16

Time, s

Segment #7 (Central segment) COG

446 ECAL 2011



Multi-Agent Systems and Heterogeneous Scales Interactions.
Application to Pharmacokinetics of Vitamin K Antagonists
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Abstract

The study of complex systems consists in considering entities
submitted to interactions which define the dynamics of the
system. Virtual reality opens the way to interactive simulation
of complex systems, so called the in virtuo experimentation.
For that purpose we use multi-interactions systems, based
on the reification of interactions and multi-agent systems, in
a phenomenological approach. Interaction agents represent
the modeler understanding of the relations between the
constituents of the system. Such descriptive models lead us
to define parameters a priori. Moreover these parameters
can be fluctuant, or even unknown, during a simulation in
relation to the system dynamics or user interventions. To
respond to this problem, we expose in this paper a redundant
multiscale architecture which rests upon the fact that we can
establish models of a same phenomenon at heterogeneous
time and space scales. Heterogenous Multiscale Methods
provide a general framework to mix levels of description of
a system. Our intention is to implement this framework in
multi-interactions systems by means of a Scale-Interaction
agent. Then we illustrate our architecture through a
pharmacokinetics application. Indeed biochemical kinetics
abounds of parametric phenomena. Finally we discuss
about some questions raised by this methodology, such as
synchronicity, organization detection and genericity.

Introduction
The study of complex systems consists in considering
entities in interaction. These interactions affect the entities
behaviors and then change the system dynamics. The
entities are most often heterogeneous by their natures, their
interactions and their scales. Moreover, their great number
is a major obstacle to their understanding. Thus we have to
model these systems, even roughly, in order to get out some
new knowledge. It’s generally difficult formally to prove
that a model is exact. That’s why we need to experiment our
models so as to compare simulations and observations.

Virtual reality enables us to manipulate these models
(Fuchs et al., 2006). An expert can be immersed in real
time within a virtual laboratory, mock up the system he
wants to study and experiment it, without any danger or
consequences. This is called the in virtuo experimentation
by analogy with in vivo and in vitro methods. It allows

the modeler to build his model incrementally, by successive
additions of phenomena. This is a “phenomenological
approach” for modeling (Parenthoën, 2004).

For that purpose we use multi-interactions systems (MIS),
based on the reification of interactions and multi-agent
systems. It consists in changing our point of view to describe
phenomena just as we observe them. Thus agents are not
the entities anymore but the interactions binding them. This
method has been repeatedly successfully applied, validated
(Redou et al., 2007) and today, there are several models
and methodologies that can be used to experiment complex
systems with multi-agent systems (Desmeulles et al., 2009).

In addition, this kind of modeling has the advantage
of reducing the computation time because phenomena
are described macroscopically with the help of ordinary
differential equations (ODE). The price is that we often have
to define parameters in models, like diffusion coefficients
for instance. Moreover these parameters can fluctuate, or
even unknown, during a simulation in relation to the system
dynamics or user interventions (Béal et al., 2010).

To respond to this problem, we propose in this article
to make maximum use of the knowledge we have about
the phenomena. We expose then a redundant multiscale
architecture which rests upon the fact that we can establish
models of the same phenomenon at heterogeneous time and
space scales. Parameters of a macroscopic model are in
fact related to the system dynamics at microscopic scale.
For instance, diffusion rate of a chemical concentration can
be determined using brownian motion of molecules and
statistical physics (Frenkel and Smit, 2001).

Therefore, our idea is to run parallel simulations
of multiple description scales in order to parameterize
phenomena. Interactions between the scales will be
supported by agents, which is the core of this article.

We will illustrate our architecture through a
pharmacokinetics / pharmacodynamics (PK / PD) model
of the vitamin K antagonists (VKA). Chemical kinetics is
indeed a perfect example of parametric phenomena. For
this occasion we will discuss about some questions raised
by our method.
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Heterogeneous multiscales modeling
In the perspective of a phenomenological approach, we are
interested in the effects of the phenomena over entities.
These effects are usually described by differential equations
at a macroscopic scale. This approach is very successful
for large classes of problems but it favours efficiency over
accuracy introducing empirical closures and parameters in
equations that are often partially known or understood.
Besides, the system dynamics can be unpredictable. So
an acceptable closure or parameter at a given instant could
become wrong at the next one. In the case of more complex
systems it seems to be necessary to call upon different
methods, particularly by coupling models with different
levels of description in order to achieve a balance between
accuracy and efficiency. We talk then about multiscale
methods.

Multiscale methods have been existing for a long time,
such as adaptative mesh refinement methods (Debreu et al.,
2008). Their purpose is to mix different scales, solved
separately, into a global simulation. Such an idea can be
applied in the context of stiff ODEs resolution using splitting
methods (Le Bris, 2005; Guibert, 2009).

Let us consider the example of a system z composed of
C operators where A (resp. B) are non-stiff (resp. stiff)
operators :

dz

dt
= Cz = Az +Bz (1)

We can solve z over each time step [n∆t, (n+1)∆t] with
dz∗∗

dt
= Bz∗∗

z∗∗(n∆t) = z∗((n+ 1)∆t)
(2)

A different solver could be used for each part of the
system in this way, potentially with a smaller time step for
the stiff one.

Classical multiscale methods are extremely accurate but
their cost can be huge. Indeed, their efficiency is closely
dependent on the smaller time step used in the simulation.

That’s why recently developed multiscale methods aim at
one step further : in order to cut down the computing time,
they try to capture the macroscale behavior of the system
from local microscale simulations run over a limited time
(Horstemeyer, 2009).

Heterogeneous multiscale method (HMM) (Weinan et al.,
2007) relies on the following concept : coupling redundant
scales in order to take into consideration possible variations
of the system. In some cases, the macroscopic model is
not explicitly available or is invalid in some part of the
domain. The microscopic model is used then to supply the
necessary data for the macroscopic model. Scale separation
is exploited so that coarse-grained variables can be evolved
on macroscopic scale using data that are predicted based on
the simulation of the microscale ; see figure 1.

Figure 1: Schematics of HMM framework (Weinan et al.,
2007)

We consider a macroscale with a state variable U . We
have seen that this state depends on the system dynamics
and / or parameters. We have at our disposal a microscopic
model, such as molecular dynamics, that describes the
microscopic state variable u of the same system. Let’s not
forget that we are dealing with different levels of description
of an unique system.

The two scales are related one to each other by the use of
reconstruction (Q) and compression (R) operators :{

Q.u = U

R.U = u
(3)

with the property Q.R = I , where I is the identity
operator. The role of these operators is to translate
the system structure and dynamics from a scale to the
other. The main difficulty lies in the definition of these
operators. Indeed it would be naı̈ve to think that a
macroscale phenomenon could be the result of an unique
microscopic one. Most often we would be interested in
a group of local interactions from which emerge a global
behavior. This underlines one of primary interests of
multiscale and complex systems simulation : we may
increase our understanding of phenomena by observing their
entanglements (Lesne, 2003).

Finally the idea is to make round-trips between the two
scales regarding to the system dynamics. As soon as there
is a lack of data in the macroscale ensued from a dynamics
variation, we use Q to rebuild a microscale which we run
and observe over a given duration. Thus we can make data
estimations with the help of R so as to set new parameters
in the macroscale.

HMM give guidelines on how to design redundant
multiscale systems. It is a general framework which is
lacking implementation. We intends in this paper to fill this
lack by the use of multi-agent systems.

We saw that HMM deduce the macroscale behavior
according to emergent processes and data from the
microscale. Concept of emergence is one basis of multi-
agent systems (Demazeau, 1995). Into such systems,
autonomous entities evolve with only a partial knowledge
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of their environment. The addition of their individual
interactions results in a collective behavior. Then multi-
agent systems appear as very good tool to model complex
systems by the way of splitting the whole problem in
smaller subparts. Today, it has been successfully applied to
molecular dynamics for instance (Parisey, 2007). However,
it implies to simulate each entity separately which is a very
costly method. That’s why we can say that classical multi-
agent systems match much more to a microscale method.

As we have seen before, multi-interactions systems offer
an original approach to model efficiently the links between
entities. We can also discern that HMM operators could be
considered as links between scales. That’s why we propose
in the following section to implement this process into multi-
interactions framework which we use to perform in virtuo
experiments.

Virtuo framework : MIS implementing HMM
Multi-interactions systems were first presented in the
RéISCOP meta-model (Desmeulles, 2006). The motivation
was to enable an expert to describe a system as he observes
it in the nature, usually with the help of ODE. Subsequently,
we pursued this work bringing the reification of numerical
methods of solving used to make the system evolve during
the simulation (Le Yaouanq, 2010). This allows us to keep
control over the convergence and stability of the system.
This modification and others prompted us to propose a new
framework that implements MIS : we called it Virtuo.

Our will is now to take the advantage of redundant
multiscale methods in order to parameterize macroscopic
descriptions of phenomena. In virtuo experimentation puts
interactivity first. It implies to consider some constraints
such as real-time computing and reactivity of the simulation.
In this context, we can not use classical multiscales methods
which impose the choice of small time steps. That is where
we join the HMM framework. Our idea is to simulate critical
phenomena at a microscale selectively and for a limited
duration so as to complete their description.

In this section, we detail Virtuo architecture and how
it makes possible to model multiscale systems taking
inspiration from HMM.

How to design the model of a given scale ?
As said above, we are interested in systems composed of
numerous entities. They are represented by the Entity class
in our model ; see figure 2. To fit reality, we introduce a
concept of hierarchy between entities. Thus an entity can
contain other entities. It is important to note that we are
still talking about a same level of description. This ability is
just a way of considering spatial organizations into a system.
For instance, from a macroscopical point of view, a human
body is composed of organs. But it doesn’t mean that there
are two different levels of description. The decisive element
that will encourage us to consider multiple scales into a

Figure 2: Class diagram focusing on Scale designing
(Le Yaouanq, 2010)

simulation is the time / spatial reach of interactions. This
will be discussed thereafter.

Multi-interactions systems argue in favour of considering
that active agents in the system are the interactions between
passive entities. So an Interaction agent associates one
or many entities and compute their local effects on each
other. The systems’s dynamics is the addition of these local
modifications.

An Interaction computing consists in solving
independently a part of an ODE system. For this we
use numerical methods to make the system evolve on each
time step (Ascher and Petzold, 1998). Even if they have
been validated in the context of multi-interactions systems,
they force us to take care of the system convergence and
stability (Redou et al., 2010). Actually, if the time step
is chosen too large, some interactions could induce an
irreversible instability of the whole system. That is why
we add the Integrator agent whose job is to manage the
interactions. It would be able to control Interactions actions
and order them to recompute more precisely if needed.

The desynchronization of interactions eases a modular
and incremental building of the numerical model. Firstly,
this is especially useful for online models building, since
the modeller usually selects, subjectively, the phenomena
that are most likely involved, and runs the model. If
results are not correct enough, the model is incremented
with other interactions, etc., until a satisfying model is
obtained. Secondly, the need of Interaction instantiation
could emerge from the system’s dynamics. There we
introduce the Phenomenon agent which will create or delete
interactions in certain conditions. It leads us to consider that
an interaction is the manifestation of a phenomenon.

Let us consider two empty compartments (Entities)
A and B related by a DiffusionPhenomenon. If
we add a concentration of a chemical species C in
compartment A, the Phenomenon automatically instantiates
a DiffusionInteraction between A and B to diffuse C. As
soon as concentration ofC is equal in the two compartments,
the DiffusionPhenomenon destroys the DiffusionInteraction.
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Figure 3: Diagram of threads distribution.

No useless calculation is done this way. Modularity
makes this process natural and doesn’t require to stop the
simulation to modify the code of equations.

Until now, we detailed the different pieces we use to
design a single Scale using the Virtuo framework. It is time
to explain how we proceed to make multiple scales interact
into a simulation.

Multiple interacting scales
Virtuo framework offers the possibility to build simulations
composed of several Scales. Each one can be run
independently in relation to each other. This allows us to
improve performances by means of parallelization. As we
can see it on figure 3, each Scale is distributed into separated
threads. They are managed by the ScalesManager class that
plays the role of a server on which a client Scale can log.
Once again modularity enables this process to be done while
the simulation is running.

We have seen before that multiscale modeling is a
useful tool which may be used when a phenomena is not
understood or when there is a lack of essential data in a
macroscopical model. That is the point that leads us to make
multiple Scales coexist. These Scales must of course be
connected so that they can communicate. So we plan to
implement this link thanks to a Scale-Interaction agent, as
well as Entities are connected with Interactions

This new agent manages exactly two different Scales.
It is in charge of doing translation work of structure
modifications that may appear in each one. There we
meet again HMM operators. A Scale-Interaction agent
provides the two of them : compression from microscale
to macroscale and reconstruction from macroscale to
microscale. It does itself the translation and acts directly on
the two Scales components, both Entities and Interactions.

Such a process requires to ensure data consistency. Indeed
Scales are not paused and their structures still independantly
change in course of the simulation. So we have to use
locking mechanisms on Scales constituents such as any
multi-threaded model. However, they can’t guarantee the

system’s coherence alone. In fact the autonomy of Scales
raises some questions about the Scale-Interaction action.
The following exposes a first and non-exhaustive list of these
questions and preliminary answers.

When should we introduce new microscales ?
As said previously, we need microscales because of a
lack of data for solving interactions into the macroscale.
This can appear further to a structural evolution induced
by the system’s dynamics or an intervention from the
user. However, microscale simulation implies the choice
of a very small time step in relation to spatial units
and interactions intensities. Obviously, we can’t simulate
microscale permanently. So we would only introduce
microscales selectively and for a limited time.

What should we observe to make data estimation ?
Given that a microscale is built from a need to explain
explicit parts of a macroscale, the observation is inevitably
directed. Thus the microscale’s initial state does only
contain Entities and Phenomena we choose to describe
it. Though its dynamics could change and drive to take
into consideration emerging behaviors then data estimation
would mainly be done watching to the Entities states and
their evolution through the observation duration. But in
every instance, it seems that the rules and structure of the
microscale must be defined a priori and on ad hoc basis, in
the same way as the macroscale.

How long should we observe a microscale ?
Since microscales are simulated for a limited time, the
observation duration must be short regarding to the
macroscale time step. Additionally, the macroscale isn’t
turned off while the microscale is running. In most cases,
the observation would be done until an equilibrium state
which can be defined a priori or detected as a decrease of
interactions intensity.

How and when to reflect the data estimation ?
Once data estimation is done, Scale-Interaction have to
reflect it on the macroscale by affecting its structure. This
process must be done carefully in order not to provoke
instabilities in case of too brutal variations. Sometimes it
would be executed progressively and at the right moment
which could be difficult to identify.

We have explained principles and problems of the Virtuo
framework, from “how to design the model of a scale ?”
to “why and how to make scales interacting ?”. In the
next section, we illustrate our modeling method through a
pharmacokinetics / pharmacodynamics application.

Application to PK / PD of VKA
Our objective on the long term is to provide a virtual
laboratory for complex systems in which experts could
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build models and conduct experiments. The domain of
biochemical kinetics lends itself perfectly to this vision.
Moreover, a lot of chemical phenomena involve multiple
levels of description. That is why we chose to exemplify
the Virtuo framework by means of a PK application.

Context
The development of a new medicine is very long process
which requires clinical trials. They are divided into several
stages and lead to identify pharmacokinetics properties of
the substance :

• Absorption : how it enters the blood circulation
• Distribution : how it is disseminated throughout the

fluids and tissues of the body
• Metabolism : how it is transformed by the body
• Excretion : how it is eliminated from the body

Pharmacokinetics may be simply defined as what the
body does to the drug, as opposed to pharmacodynamics
which may be defined as what the drug does to the body
(Benet, 1984). Such practicals aim at measuring adapted
dose which should be administered to the patient. They
are very expensive and not totally safe. Thus biologists are
more and more interested in numerical simulations. The
in virtuo method allows to be ahead of classical in silico
simulations thanks to the interactivity with model (Tisseau,
2001). Indeed, multi-agent systems used in the context
of a phenomenological approach allows to add sense on
phenomena to observe their individual and coupled effects
on the system.

Figure 4: Simplified coagulation cascade (Kerdélo, 2006)

Our study focuses on vitamin K antagonists, a kind of
medicine used to cure thrombosis. This work follows
those done in the context of in virtuo blood coagulation
in (Kerdélo, 2006). Blood coagulation, or clotting, is
the outcome of a complex reactions cascade that implies
coagulation factors ; see figure 4. Generally it arises when
a blood vessel is damaged in order to stop the blood loss.
Sometimes, this process can be thrown off balance due
to a dysfunction of coagulation factors synthesis, which
results in clots occuring without any necessity obstructing

the flow of blood through the circulatory system (Abgrall
et al., 2004). This synthesis should be regulated in another
reactions sequence which can be affected by an excess of
vitamin K (figure 5). VKA are prescribed in this instance
so as to balance this problem. The chemical reactions
entanglements and individual variations of patients make
the right dose hard to define (Siguret, 2007). That’s why
biologists are looking for tools to simulate this process.

Figure 5: Coagulation factors synthesis (Siguret, 2007)

Macroscopic model
Classically, PK analysis consists in compartmental models
which use kinetics to predict the concentration-time curve
in each compartment. More complex PK models, called
physiologically-based pharmacokinetics (PBPK) models,
rely on the use of physiological information to ease
development and validation ; see figure 6. The body is
divided into linked compartments that can be associated with
black boxes. Inputs and outputs are kinetics parameters
which are most often identified by stochastic simulations
(Brochot, 2006). It is therefore difficult to understand the
various phenomena acting inside this boxes.

We proposed a first MIS implementation of PBPK models
in (Le Yaouanq, 2010). We derived the Virtuo framework so
as to be able to design chemical systems.

Each compartment is represented by an Entity. We linked
them by Diffusion-Phenomena as in PBPK model. The
first novelty of our model comes from the insertion of
Reaction-Phenomena which operate between concentrations
of chemical species inside the compartments. Relations
between kinetics and dynamics are evidenced in this way.
Our second contribution is based on a realistic identification
of parameters of the model. This is where multiscale
modeling gets involved. The idea is to simulate redundantly
some phenomena in a microscale in order to parameter the
macroscale. For the sake of clarity, we only outline our
problems on the diffusion rate example.
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Figure 6: PBPK model (Igari et al., 1983)

Theorical elements Diffusion phenomenon is described
by the Fick’s laws of diffusion in macroscale (Fick, 1855).

Fick’s first law
Fick’s first law relates the diffusive flux to the
concentration, by postulating that the flux goes from
regions of high concentration to regions of low
concentration, with a magnitude that is proportional to the
concentration gradient. In the one dimension case we can
write

J = −D∂C
∂x

(4)

where :

• J is the diffusion flux,
• D is the diffusion coefficient,
• C is the concentration,
• x is the position.

Fick’s second law
Fick’s second law predicts how diffusion causes the
concentration to change with time, on the hypothesis of
the matter conservation. Thus the diffused concentration
can be computed with :

∂C

∂t
(x, t) = D

∂2C

∂x2
(x, t) (5)

This gives rise to the following formula, in the biology
perspective, considering two compartments separated by
a membrane :

∂C

∂t
(x, t) =

D · S
L
·∆C (6)

where :

• D is the diffusion coefficient of a given chemical
species at a given temperature,
• S is the surface area over which diffusion is taking

place,
• ∆C is the difference of concentration across the

membrane,
• L is the membrane thickness.

Implementation A Diffusion-Interaction, manifestation
of a Diffusion-Phenomenon, operates between two
compartments. It computes on each time step the diffused
concentration from a compartment to the other and applies
the modifications.

Let us consider two compartments A and B with the
diffusion of a chemical species C from A to B. The
concentrations of C in A and B from a given instant t to
the instant t+ 1 will be altered in this way (using an explicit
Euler method for numerical integration){

[C]t+1
A = [C]tA − d.δt

[C]t+1
B = [C]tB + d.δt

(7)

where

d =
D · S
L
· ([C]tA − [C]tB) (8)

is the diffused concentration. The figure 7 illustrates this
simulation in the context of VKA diffusion.

Figure 7: Physiologically-based simulation of VKA
diffusion. Colors represent the medicine’s concentration and
goes from blue (lower) to red (higher).

In this equation, all the parameters can be measured
in the simulation except the diffusion coefficient. This
piece of data is generally determined with in vivo or in
vitro experimentations for a given temperature and fixed
conditions. It is therefore often a missing value in our
models. That is why we would like to define this
parameter automatically in virtuo by the use of a microscale
simulation.
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Microscopic model
Diffusion phenomenon at microscale is generally described
with the help of stochastic processes (Karatzas and Shreve,
2000). There exist several methods more accurate than
the one we expose in the following, but we chose to
focus on the principle. We remind in this section some
theoritical elements about the Brownian motion and how it
is implemented in the Virtuo framework.

Theoritical elements Brownian motion, first observered
by Robert Brown in 1827, is the random movement of
particles suspended in a fluid. It is provoked by collisions
of the considered particles with the molecules of fluid which
are exposed to thermal agitation.

This random movement leads to a diffusion process which
coefficient is given by the Stokes - Einstein law, in case of
spherical particles :

D =
kBT

6πηR
(9)

where :

• kB is the Boltzmann constant,
• T is the temperature,
• η is the fluid viscosity,
• R is the particle radius.

Thus the quadratic displacement of a particle on a x axis
during a time interval ∆t is denoted by :√

∆x2 =
√

2D∆t (10)

Implementation The Brownian-Interaction takes place
within a fluid in which particles are immersed. We consider
spherical Entities which are moveable. The interaction
uses then a Gaussian distribution, with a null average
and a variance σ2 = 2D∆t, to randomly compute their
displacement on each time step (Coulon, 2010).

Scale interaction
We now have two different levels of description of the
diffusion phenomenon. Our aim is to observe the microscale
in order to deduce the value of the diffusion coefficient we
need in the macroscale. Here’s how we proceed.

We introduce a new microscale, based on the state of the
macroscale. We arrange randomly particles in a volume
according to their concentration in the macroscale. It is the
HMM reconstruction operator. We place side by side an
empty volume. We add a Scale-Interaction agent between
the two scales. It counts how many particles crossed
from the first to the second compartment, estimates then
a diffusion coefficient and sends it to the macroscale ; see
figure 8. This is the HMM compression operator. We stop
the microscale simulation and continue the macroscale’s
simulation with the new parameter.

Figure 8: Microscale simulation of diffusion phenomenon
using Brownian motion

Conclusions
We use in virtuo experimentation and multi-interactions
systems, in the context of complex systems simulation. They
enable us to describe phenomena and their actions on the
entities composing the system always keeping interactivity
with the simulation. This phenomenological approach
induces the use of parametric models which parameters are
often partially available. This assessment leads us to use
multiple levels of description for the phenomena. Thus we
simulate redundantely some phenomena at different scales
in order to identify the missing parameters.

We propose to implement heterogeneous multiscale
methods into the MIS by the introduction of a Scale-
Interaction agent which plays the role of a translater
between the simulated scales.

We illustrate our modeling method through a
pharmacokinetics application and a diffusion coefficient
identification process. This example points up some
remarks and questions we have to answer more precisely in
a future work.

Firstly, our will is to parameter a model from observations
made on another model. Nevertheless, models aren’t perfect
by definition. Thus we should keep in mind that what we
observe could be imperfect as well.

We can do the same comment about the observation
method and data estimation. We inject the macroscale with
estimated parameters which could introduce instabilities
into the simulation. We need then to define a control
mechanism or / and a more developped method to apply
observation results.

Secondly, observations are made in the microscale on a
very short time window. Indeed, it is generally impossible to
run a microscale as fast as a macroscale due to the huge time
step difference. But we need results almost immediately to
meet the requirements of interactivity with the system. So
we are often forced to infer that the observation remains
valid for a larger period. It would be satisfactory for
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some phenomena but we need to define another observation
methodology to be more accurate. For instance, we could
try to detect equilibrium states and organizations of Entities
into the microscale (Ferber et al., 2003). Thus we should be
able to partially generalize the observation process even if it
seems difficult to define a totally generic method because of
the nature of modeling.
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Abstract 
We propose a motifs seeding method to encourage the 
emergence of modular structure during network evolution. 
Previous studies fail to trigger modularity on freeform evolving 
ANNs either when varying environmental factors or the 
evolutionary process itself. We extracted statistical profiles of 
3-node and 4-node motifs from evolved networks, and then 
generated new networks by seeding the most useful 3-node 
motif (feed-forward loop, ID:38). A series of retina recognition 
experiments was conducted using the seeded networks. The 
performance of different algorithms was measured. Our results 
indicate that modularity could be encouraged under certain 
conditions. We were able to build networks meeting a desired 
Z-score. 

Introduction 
Modularity is a common property of natural and artificial 
complex systems. Networked modular structures commonly 
arise in biology, computer science, social sciences as well as 
many other disciplines. One can recognize modularity by the 
presence of clusters of highly interconnected nodes that are 
sparsely connected to the remaining ensembles of a networked 
structure (Newman, 2006). Although it is known that 
modularity is beneficial for the evolvability and robustness of 
complex systems, its origin remains to be uncovered. The 
questions of how modularity emerges in complex systems and 
how it affects the system’s performance during development 
have been frequently addressed (Wagner and Altenberg, 
1996). 

Artificial evolution provides an excellent platform for 
exploring the above questions. A variety of systems have been 
evolved, including simple equational models, expressed by 
linear matrix transformations, artificial neural networks 
(ANNs) (Haykin, 1994), representing complex nonlinear 
phenomena (Yao, 1999), physical simulations involving 
complex machines and even real robotic systems (Lipson, 
2000).  

It is generally believed that modularity should be an 
outcome of an evolutionary process itself. Some experiments 
have shown that modularity might speed up an evolutionary 
process (Lipson et al., 2002). Apparently the mechanisms of 
selection (adequate choice of fitness function), environment 
variation and noise generation might play a key role in the 
emergence of modular structures.  

Most of previous models used in artificial evolution are 
relatively simple. Linear models have been used to simplify 

the simulations; the nonlinear ANNs models have also been 
constrained by predefined structures or given building rules. 
Such limitations could significantly decrease the space of 
evolutionary search, and simulation results consequently lack 
of generality. 

Freeform ANNs have been employed to increase the 
generality of systems, but modular networks have not been 
found under similar experimental conditions at all. 
Fortunately, further experiments show that the modularity has 
no conflicts with the evolution of these complex networks (Li 
and Yuan, 2011). Therefore more effective and general 
methods have to be designed to encourage the emergence of 
modularity. 

Network motifs are small-scale sub-networks which 
frequently appear in complex networks, and they have been 
found in many systems. A network motif can be understood as 
a pattern or unit of a particular information-processing task. It 
has been suggested that in many systems the motifs and 
modularity emerge spontaneously and simultaneously during 
evolution (Kashtan and Alon, 2005). 

Based on these results, we are interested in making use of 
the coupled mechanism between motifs and modularity, more 
specifically, in this study we attempt to trigger the appearance 
of modularity by seeding motifs into ANNs. At first, the 
motifs’ characteristics are extracted from well evolved 
modular ANNs, and then a series of algorithms is proposed to 
construct networks with those characteristics. In addition, the 
well studied retina recognition experiment is conducted in 
order to make comparisons with previous work.  

Background and Previous Work 
A common approach to investigate modularity and its effects 
on complex systems is to use a computer based simulation of 
an adaptive system. A model represents the system-
environment interplay and a fitness function governs species 
survival. This computer based method can be seen as a 
simulation of natural evolution.  

Lipson et al. presented a linear matrix abstraction of an 
adaptive system (Lipson et al., 2002). The linear system 
represents the transformation of resources and functional 
requirements for the survival of certain life-form. By 
randomly varying the elements of a matrix representing the 
environment, it was possible to observe an increase in the 
system’s modularity. The relation between varying rate and 
modularity has also been studied by experiments. The authors 
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claimed that modularity arises in evolutionary systems in 
response to variation.   

Following previous suggestions, research on environment 
variation was further pursued in (Kashtan and Alon, 2005).  
A simple feed-forward ANN was used to perform the retina 
pattern classification task, which had limited connections and 
a small range of weights. The general structural constraints for 
evolving the networks were also given. The results show that 
modularity and motifs spontaneously evolved in networks 
when the goals were switched in a modular manner during 
evolution. Their later work also suggested that varying 
environment could speed up the evolution under certain 
conditions (Kashtan et al., 2007). 

To validate whether HyperNEAT could evolve modular 
neural networks, Clune et al. investigated a series of retina 
recognition experiments (Clune et al., 2010), which were 
similar to those used in previous studies (Kashtan and Alon, 
2005). Their results show that HyperNEAT has the potential 
to produce modular structures in some simple cases, but 
unfortunately it was unsuccessful in more complex problems. 
In order to enable HyperNEAT to foster modular networks 
Verbancsics and Stanley presented a seeding method toward 
local connectivity, which successfully encouraged the natural 
emergence of modular structures accelerating the simulations 
as well (Verbancsics and Stanley, 2010). 

Instead of changing the environment, HØerstad proposed 
the method of adding noise to the genotype-phenotype (G-P) 
mapping (HØerstad, 2010). He used the same retina 
recognition experiments to test the noised based methods. The 
ANNs and their encoding method were similar to those used 
by Kashtan and Alon (2005). Based on a large amount of 
simulation experiments, he gave a statistical result, showing 
that the novel method could trigger the appearance of 
modularity and finally speed up evolution, however, the 
switch-goal method does not show the same abilities, which 
are totally against the conclusions of previous study (Kashtan 
and Alon, 2005).   

Recently, a freeform ANN model has been proposed to 
investigate the mechanism of modularity and their responses 
to the variation of environment and evolutionary process. 
Varying scenarios have been experimented, the results show 
that the evolution performance has been improved in most 
cases, however, the modularity never appeared among those 
scenarios. Further experiments show that the proposed 
networks have the potential to produce modular networks but 
more advanced methods are still needed to encourage the 
emergence of modularity on complex networks (Li and Yuan, 
2011). 

Models, Algorithms and Tools 

The ANN Model and Evolutionary Algorithms  
To better understand the geometrical properties of complex 
networks, such as modularity and motifs, we have presented a 
pure topological ANN (Li et al., 2010), which has binary 
connection weights and free form directed connections at the 
hidden layer (Fig. 1). As the architecture shows (Fig. 1), there 
are three groups of neurons: input neurons, hidden neurons 
and output neurons, represented as I, H and O respectively. 

Therefore, all hidden neurons’ and output neurons’ values are 
updated by equation (1) and (2) respectively. The overall 
model can be given as: 

( ) sin( ( 1) ( ) ( ))i j f r
j i f i r

H t H t H t I t
> <

= − + +∑ ∑ ∑     (1) 

1( ) (1 exp( ( )))k i
i

O t H t −= + −∑                  (2) 

where Hi denotes the current state of the ith hidden neuron, 
which is relative to the other hidden neurons (Hj  and  Hf) and 
the input neurons (Ir) that connect to Hi. Ok is the kth neuron’s 
state of all n output neurons. Due to the characteristics of 
activation functions, we need to normalize all input raw data 
into range of [0, 2π ] before computation. Accordingly, we 
have to scale the output value from [0, 1] to the target range as 
a final step. 

We use the graph encoding method, which directly encodes 
connections between two nodes in a “from-to” fashion, and 
then organize all those connections as a graph vector structure. 
Five evolutionary operators, elitist replication, roulette wheel 
selection, sub-graph crossover connection mutation and 
transposing mutation have been have been used to evolve our 
networks. 

Modularity Measurement by Artificial Tracer 
 
We measured the modularity of our ANNs using the artificial 
tracer method (Li and Yuan, 2011), which is inspired by the 
chemical, isotopic and radioactive tracers. We created the 

Figure 1: Pure topological neural networks 

Figure 2: Artificial tracer method 
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digital tracer elements using different markers, such as 
positive and negative tracers. To measure the modularity, we 
first injected the different tracers into each input node of 
network according to their attributes. All tracers are then 
passed through other nodes along the directions of information 
flow. The output connection will pass a tracer to next node 
with the same marker as the parent node. Annihilation takes 
place if two tracers with different markers meet at one node. 
Then we could roughly calculate the modularity using the 
following equation: 

0

n

i
i

t

R
M

C
==
∑

               (3) 

where M represents the degree of network modularity, ranging 
from 0 to 1. Larger values are assigned to networks with 
higher degree of modularity. Ri denotes the number of 
remaining tracers at the ith node after annihilations. We 
summarize their values as the equivalent of total amount of 
remaining connections. One should notice that the Ri does not 
include all input nodes, since the index i starts counting from 
the first hidden node. Ct is the total number of connections 
within this network. This computation shows the essence of 
modularity, which is defined as a relation between the inter-
connections and intra-connections of elemental modules. An 
illustration of this procedure is shown in Fig. 2. It should be 
noted that this method has a limitation for measuring the 
feedback loop structure. 

The Retina Pattern Recognition Task 
We investigated all the scenarios using a classic retina pattern 
recognition test. The retina pattern recognition experiment has 
been frequently used in previous studies as a challenging 
benchmark. Usually, ANNs have been evolved to recognize 
and classify an artificial retina. Each retina consists of eight 
pixels (4-pixel wide by 2-pixel height), equally divided into 
left and right sides, four pixels per side. The goal is to use an 
ANN to recognize objects in the left and right sides of this 
retina (Fig.3). As defined in (Kashtan and Alon, 2005), a left 
object is defined by three or more black pixels or one or two 

black pixels in the left column only. A right object is defined 
in a similar way, with one or two black pixels in the right 
column only. Those eight pixels each could be abstracted as 1 
or 0, then those eights binary values could be treated as a 
group of input signals for the ANN. Finally, the single output 
(0 or 1) of the ANN is used to decide whether the retina fits 
the given Boolean logic questions “L AND R”, or “L OR R”. 
The “L AND R” is true only if the object exists at both sides 
of the retina, whereas if the object appears in left side or right 
side or even both sides, the “L OR R” function is then true. 

Motifs Analysis and Seeding  
We used the software tools Mfinder (Kashtan et al., 2004) and 
Fanmod (Wernicke and Rasche, 2006) for extracting the 
motif’s feature from evolved networks. MDRAW (Kashtan et 
al., 2004) was used to display the global network topological 
architecture. As we know (Kashtan and Alon, 2005), a motif’s 
statistical significance can be described quantitatively using 
the Z-score.  
        ( ) /score real randZ N N STD= −              (4) 
where Nreal is the number of times the sub-graph appears in the 
original network, and Nrand and STD are the mean and standard 
deviation of its frequency of appearances in the randomized 
networks respectively. 
 

Algorithm 1:  
SeedMotifs (Motif_ID, Target_Z-score, Net_size ,Max_refine_times)
1: Net_pop ← RandomNetworks(Pop_size) 
2: for each Neti ∈ Net_pop  do 
3: Appi ← EnumerateMotifs(Neti, Motif_ID)  
4: end for  
5: Mean_app ← Average of Appi in Net_pop 
6: STD_app ← Standard deviation of Appi in Net_pop 
7: Target_app ← Target_Z-score*STD_app + Mean_app 
8: Seeding_ model←Initial 
9: Net← Ø; Current_links ← 0; Current_app← 0 
10: while Current_links < Net_size do 
11: if  Seeding_model= Initial  then 
12: Net← MotifSeedInitial (Net, Motif_ID) 
13: else 
14: Net← MotifSeedRefine (Net, Motif_ID) 
15: Refine_count ← Refine_count +1 
16:   end if 
17: if  Current_links ≥ Net_size  then 
18:   if  Refine_count > Max_refine_times then 
19:        return Net 
20:   else 
21:        Current_app ←EnumerateMotifs (Net, Motif_ID) 
22:        if  Current_app < Target_app then 
23:           Reduce_ratio ← 1- Current_app / Target_app 
24: Net← ReduceLinks (Net, Reduce_ratio) 
25: Seeding_model← Refine 
26: else 
27: return Net 
28: end if 
29:      end if 
30: end if 
31: Current_links ← LinksCount(Net). 
32: end while 
33: return Net Figure 3: Retina recognition mission 
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Here we propose a series of algorithms to seed motifs into 
ANNs and then construct the whole network with expected 
characteristics. We define the network as Net (N, E), where N 
(ni , i∈[1, Net_size]) is the set of all nodes in this network and 
E (et , t∈[1, Net_links]) represents the set of edges. Each 
edge et {From_node, To_node} consists of a connection 
between two nodes. Net_pop is defined as a group of Net. The 
App indicates the appearance time of specific motifs in 
network. As the algorithm 1 shows, given the motifs’ ID and 
expected Z-score, the function SeedMotifs() is able to 
construct a network by repeatedly seeding single type motifs. 
The feedback of current network’s motifs could be obtained 
by calling the function EnumerateMotifs(), which will return 
the appearance time of the motifs, the details of this function 
are given in algorithm 2. Two types of seeding operators have 
been designed, which will be used in different stages of 
seeding. The MotifSeedInitial() starts at the beginning of the 
process, whereas, the refining model MotifSeedRefine () will 
be executed after reducing the relatively useless links by  the 
ReduceLinks(). It should be noted that the Algorithm 2 shown 
here is just for enumerating 3-node motifs, but it can be easily 
adapted for detecting other motifs. Other major algorithms 
could be found at the end of this paper. 

 
Algorithm 2: EnumerateMotifs(Net, Motif_ID)  

1: Net_size ← the size of current Net  
2: En ← the edge number of current Motif  
3: E ← Ø  
4: Motif_app ← 0 
5: for each Ce∈Net.E do 
6: Ce.degree ← 0 
7: end for 
8: for i=1 to En do 
9:   Emi  ← false    

10: end for 
11: for a=1 to Net_size-2  do 
12:    for b=a+1 to Net_size-1  do 
13:       for c=b+1 to Net_size  do 
14:          E ← MotifExample(Motif_ID, na , nb, nc)  
15:          for t=1 to En  do 
16:             Emt=EdgeMatch(Net, Met) 
17:          end for 

18:          if all Emt = true then 
19: Motif_app ← Motif_app+1 
20:   for each Ce∈Net.E do 
21:      Ce.degree ← Ce.degree +1 
22:   end for 
23:          end if 
24:   end for 
25:     end for 
26: end for 
27: return Motif_app 

Experiments and Results 

Experiments on Performances of Algorithms 

In order to assess the performance of motifs seeding method, 
we pursued a group of experiments. We used target networks 
having 30 nodes and 120 links. We focus our study on seeding 
3-node motifs, especially the feed-forward loop motif (ID:38). 
Given a target Z-score of 10 we have executed 10 independent 
tests to see the capabilities of seeding speed and convergence, 
the average Z-score and its standard deviation are shown in 
Fig.4 (a). It is easy to observe that under limited refining times 
(10), the Z-score mean rapidly approaches to 10 with a small 
standard deviation. Furthermore, different Z-score 
requirements have also been tested, and the 10-times average 
results are compared with other motif detecting tools as shown 
in Fig.4 (b).  As it can be seen the algorithms perform better 
on the larger Z-score (5 and 10) targets. 

Experiments on Motifs Extraction 
Before seeding the motifs, we have analyzed the modular 
ANNs by the Fanmod software. All networks were evolved 
from our previous experiments (Li and Yuan, 2011), resulting 
in high values of modularity. We extracted all 3-node motifs 
and some significant 4-node motifs form 10 networks, the 
statistical results are shown in Fig. 5 and Table.1. From these 
results, we could observe some simply statistical attributes 
among all networks. As for 3-node motifs, the motifs with ID 
of 38 have a mean Z-score of about 20. This means that motif 
38 appears significantly more times than others, whereas the 
motifs 6, 12 and 36 detected from modular ANNs are less than 

Figure 4: Performances of algorithms: (a) speed and 
convergence; (b) accuracy 

(a) 

(b) 

458 ECAL 2011



in random networks, we name those 3-node motifs as binary 
tree motif (ID:6), three-chain motif (ID:12) and reverse binary 
tree motif(ID:36) respectively. Moreover, the 4-node motifs 
also show very interesting features. The motifs 2254(tetrad-
feedforward loops motif) and 2252(bi-feedforward loops 
motif) appear with highest Z-score among all networks. In 
contrast, the motif 140(counter-links four-chain motif) seems 
to emerge much less than others with a smaller mean Z-score 
of about -13.66 

Experiments on Retina Recognition 
As for the evolutionary simulation, we first constructed a 
population of 600 candidate networks by seeding the motifs 
38 with a target Z-score of 10 and number of links limited to 
120. To reduce the computational complexity, we also 
constrained the network size to 30 nodes from which 8 nodes 
were assigned as input pixels’ values. One node defined as 

output, and the remaining nodes (up to 21) were free to build 
any structures through evolution towards a given task. We set 
the maximum generation as 5,000 then the modularity was 
estimated as well as the fitness, and the best networks’ 
structures of each generation were recorded also. In most of 
our retina recognition experiments, the data set used for 
training consisted of 100 independent retina patterns which 
were randomly generated at startup. The general fitness was 
designed to reflect the ratio of correct recognition over all 100 
samples. We evolved the ANNs under a group of different 
regimes, and we run each test 10 times independently for 
various experimental scenarios, a list of experiments is shown 
in Table 1. 

We first evolved the networks to recognize the patterns of 
“L AND R” from the predefined data set. Then, similarly as in 
previous work, we pursued an interesting MVG regime, in 
which the recognition goal switched between “L AND R” and 

 
Fig.5. The 3-node motifs’ significance profile of networks 

 

 

 Top two 4-node motifs Last two 4-node motifs 

Network ID Motif ID Z-score Motif ID Z-score Motif ID Z-score Motif ID Z-score 
1 2254 9 2252 9.02 2124 -6.73 140 -9.65 
2 2254 37.35 2252 20.65 392 -6.71 140 -15.99 
3 2254 22.68 2252 18.55 142 -6.79 140 -14.41 
4 2254 54.72 2252 40.55 142 -11.89 140 -22.62 
5 2254 68.96 2252 46.06 2124 -9.48 140 -24.25 
6 2254 6.84 2252 6.18 2124 -4.53 140 -4.88 
7 2254 14.26 2252 14.56 2124 -6.92 140 -10.43 
8 2254 12.87 2252 11.03 2124 -6.48 140 -12.21 
9 2254 7.42 2252 11.13 2124 -5.98 140 -4.362 
10 2254 71.7 2252 38.67 2184 -8.49 140 -17.84 

Probability P(2254) =100% P(2252) =100% P(2124) =60% P(140) =100% 

Average Z-
score  

ID:2254 
A(2254) = 30.58 

 
ID:2252 

A(2252) = 21.64 

 
ID:2124 

A(2124) = -6.67 

 
ID:140 

A(140) = -13.66 

Table 2: The 4-node Motifs’ Significance Profile of Networks
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“L OR R” every 50 generations. A varying environment 
regime (VE) was also tested. We temporally changed the 
dimension of the data set as a practical method to introduce 
environment change. Additionally, following the suggestions 
of (Lipson et al., 2002), we designed the VS scenario as the 

variations of selection process, the proportion-based roulette 
selection mechanism sometimes got a failure during evolution, 
and then the random selection played a key role for producing 
offspring. The VM scheme temporally applied the mutational 
operators after the performance evaluation; it thus reversed the 
traditional sequence between the selection/replication and the 
mutation every 50 generations. 
  The comparisons of results on different regimes are shown 
in Fig.6, results correspond to the average values over 10 runs. 
Fig.6 (a) shows the best networks’ fitness records over all 
regimes, as we can see, the MVE exhibit a significant higher 
fitness than others, and it approaches 0.95 within 4,000 
generations, whereas the MVG does not show any advantages 
either in fitness value or evolution speed, its fitness value 
stays under 0.9. 

Fig.6 (b) presents the resulting modularity estimation 
results for the best evolved networks of all regimes. The 
figure shows a result that a highly modular structure (>0.8) 
which never arose among all previous tests. For most of 
regimes, the modularity values keep under a low level of 0.5.  

Although the mean values of VM cases do not show much 
advance than others, one of VM tests evolved a highly 
modular structure and with a high correct ratio about 0.9, the 
correct ratio and modularity are shown in Fig.6 (c). 

Figure 6: Results of different experiments

Experiment Description 

FG-AND Evolving networks to solve the fixed goal 
L AND R 

MVG The goal switched between “L AND R” 
and “L OR R” every 50 generations. 

MVE 
The date set changed between 100 
samples and randomly selected 50 
samples every 50 generations. 

VS 
The selection mechanism alternated 
between proportion-based roulette 
selection and random selection. 

VM 
The order of mutation operation and 
selection operation reverse d every 50 
generations. 

FG-M 
Same as FG-AND, but the fitness 
function coupled with the value of 
modularity 

Table 2: The List of Experiments 
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As for the FG-M cases, the comparison between random 
based evolution and motifs-seeding based evolution is shown 
in Fig.6 (d). It could be easily found that the correction ratio 
and modularity, they both approach a relative high level at 0.9 
and 0.95 respectively. More importantly, these results indicate 
that the motifs seeding method brings an improvement on the 
speed of evolution for both correct ratio and modularity.  

Discussion 
We have proposed a novel method to construct networks by 
seeding single type motifs. The performances have been tested 
by two experiments. Compared to other motifs-detecting tools, 
our method is able to construct networks with predefined Z-
score. The seeding algorithms seem relatively accurate for a 
higher Z-score (≥5) and the target Z-score could be quickly 
achieved within limited iterations. This is mainly attributed to 
the operators of refining, after reducing the lowest-degree 
edges, the remaining edges have the opportunities to be reused 
in new motifs, and then the density of motifs becomes higher. 
Since we are aiming at seeding a large population, thus the 
current method is accurate enough, however, we have to admit 
that the seeding method still have space to be improved on its 
accuracy, a real-time feedback mechanism might be useful for 
a more precise seeding. 

After analyzing the well evolved modular networks, we 
have found that for 3-node motifs, the feed-forward loop motif 
(ID:38)seems very useful for constructing a modular 
architecture, but the binary tree motif (ID:6), three-chain motif 
(ID:12) and reverse binary tree motif(ID:36) conflict with 
modularity. Similar phenomenon was also found for 4-node 
motifs, where the tetrad-feedforward loops motif (ID:2254) 
and bi-feedforward loops motif (ID:2252) always appear 
much more times than others but the counter-links four-chain 
motif (ID:140) is useless for a modular structure. These results 
match with previous work very well, it again validates the 
idea that motifs could emerge spontaneously as the modularity 
arises, but the hidden mechanism between them still 
unrevealed. These phenomenons are probably due to the 
natural feed-forward information processing of retina 
recognition tests, and the inherited relations between full-loop 
structures (motifs) and their sub-structures (motifs).   

According to the analysis of our results, we ran various 
tests after seeding the feed-forward loop motifs into networks, 
however in most of cases, the modularity of networks have no 
improvement compared to our previous work. Fortunately, 
one of the VM tests has evolved a relatively higher modularity 
than others. As for all the FG-M cases, the performance of 
modularity and correct ratio have been both improved, the 
evolved network (Fig.6(d)) presents a nearly perfect modular 
structure with a high correct ratio. It is obvious that the 
emergence speed of modular structures is higher than previous 
results. These results might be attributed to the motifs seeding 
mechanism, which offers well organized networks for 
evolution.   

Could the motifs seeding method generate highly modular 
networks regardless the objective of evolution? Since we just 
simply seed single motif type into a network, the side-effects 
of seeding have been ignored, however they might be essential 
for global performances of networks. Based on this 

hypothesis, the multiple-types or hybrid motifs seeding 
method is needed in the future study. 

Conclusion and Future Work 
It is still an open question whether the modularity of ANNs 
could be encouraged by varying the environment or the 
evolution process, however, previous work has experimented 
that the freeform ANNs have difficulty to evolve modular 
structure under simple variation of external environment.  

In this study we try to encourage the networks’ modularity 
by seeding motifs into networks. The motifs statistical features 
have been extracted from a group of well evolved modular 
networks. The motif seeding algorithms are proposed and the 
performances have been evaluated by experiments. We then 
seeded the network populations by the feed-forward loop 
motifs and conducted classic retina recognition tests by 
proposed evolutionary simulation. The modular networks have 
been discovered during one of tests under varying mutation 
scenarios. By introducing modularity into fitness function, the 
modular structures have emerged during evolution; 
experimental results show that after seeding motifs to initial 
networks, this emergence process could be accelerated further. 
These results open the door for triggering modular structure 
through seeding motifs.  

In future, the statistical result will be given based on more 
experiments under different scenarios. The hybrid motifs 
seeding algorithms are expected to further encourage the 
appearance of modularity with a higher success ratio. 

Appendices 

Algorithm 4: MotifSeedInitial (Net, Motif_ID)  

1: Net_size ← the size of Net  
2: Success← false 
3: while Success=false do 
4: N ← Random generate different na , nb, nc  

(a,b,c [1,∈  Net_size]) 
5: E ← Ø 
6: En ← the edge number of current Motif  
7: for i=1 to En do 
8:        Emi  ← false    

9: end for 
10: E ← MotifExample(Motif_ID, na , nb, nc)  
11: for t=1 to En  do 
12:        Emt← EdgeMatch(Net, Met) 
13: end for 

14: if all Emt = true then 
15: Success← true 
16: Net.E ← E 
17: end if 
18: end while 
19: return Net 
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Algorithm 3: ReduceLinks (Net, Reduce_ratio)  
1: Current_links ← LinksCount(Net) 
2: Net.E← ranked edges by their degrees as a descending order  
3: Reduce_start←Current_links* (1-Reduce_ratio) 
4: for i = Reduce_start  to  Current_links do 
5:    Cei ← Ø   (Ce i∈Net.E) 
6 : end for 
7: return Net 

 
 
Algorithm 5: MotifSeedRefine (Net, Motif_ID)  
1: Net_size ← the size of Net  
2: Success← false 
3: Total_degree← degree sum of all edges Ce∈Net.E 
4: for each Ce∈Net.E do 
5:    Ce.s_ratio← Ce.degree/ Total_degree 
6: end for 
7: while Success=false do 
8: Se ← the edge Ce selected by  

roulette mechanism based on s_ratio 
9:        na←Se.from_node ; nb←Se.to_node; 
10: nc ← Random generate nc (c∈[1, Net_size], nc ≠ na or nb) 
11: E ← Ø 
12: En ← the edge number of current Motif  
13: for i=1 to En do 
14:        Emi  ← false    

15: end for 
16: E ← MotifExample(Motif_ID, na , nb, nc)  
17: for t=1 to En  do 
18:        Emt=EdgeMatch(Net, Met) 
19: end for 

20: if all Emt = true then 
21 Success← true 
22: Net.E ← E 
23: end if 
24: end while 
25: return Net 
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Abstract

We discuss an ensemble investigation of the computational
capabilities of small-world networks as compared to ordered
and random topologies, using random Boolean functions to
provide dynamics of the nodes. We find that the ordered
phase of the dynamics (low activity in dynamics) and topolo-
gies with low randomness are dominated by information stor-
age, while the chaotic phase (high activity in dynamics) and
topologies with high randomness are dominated by informa-
tion transfer. Information storage and information transfer
are somewhat balanced near the small-world regime, provid-
ing quantitative evidence that small-world networks do in-
deed have a propensity to “combine” comparably large infor-
mation storage and transfer capacity.

Introduction
It is often suggested that the prevalence of small-world net-
works in nature is due to an inherent capability to store and
transfer information efficiently (Watts and Strogatz, 1998;
Latora and Marchiori, 2001). Yet while these claims are all
based on quantitative results, they are not based on direct
measurement of the relevant dynamic information quanti-
ties, either relying on measurements of topological features
or on equating perturbation or damage-spreading type re-
sults to information transfer. A recently published frame-
work (Lizier et al., 2008, 2010) affords the opportunity to
directly measure these computational properties or informa-
tion dynamics.

We discuss our previously published ensemble investi-
gation (Lizier et al., 2011) of the information dynamics of
small-world Boolean networks, from the perspective of the
distributed computation undertaken by the nodes of the net-
work in the transient computation of their attractor. We show
that small-world networks exhibit something of a balance
between information storage and transfer capabilities, with
the capability for apparent (or coherent) information transfer
being maximized near the small-world state.

Small-world Boolean Networks
The small-world network model (Watts and Strogatz, 1998)
specifies how to tune networks with N nodes (with K̄ near-
est neighbors each) from ordered, lattice-like structures, to

fully-random topologies using a level of random rewiring of
edges γ. There is a significant intermediate range of values
γ for which networks exhibit both high clustering (typical
of ordered networks) and small average path length (typical
of randomized networks); networks in this range are labeled
small-world networks.

We generate time-series activity for the networks by as-
signing synchronous random Boolean functions to the nodes
(with a bias probability r for each input configuration of
each node to produce a “1” output). This equates to com-
bining random Boolean networks (RBNs) (Kauffman, 1993;
Gershenson, 2004) with small-world topologies. We select
RBNs due to the very large sample space they provide, and
their use as models of Gene Regulatory Networks (GRNs).
They display a well-known phase transition from ordered
dynamics (at low connectivity K̄ and activity r) to chaotic
dynamics (at high connectivity and activity), as measured by
damage spreading with the normalized Hamming distance
δ (Gershenson, 2004). We identify the critical state in fi-
nite networks where the standard deviation σδ of δ is max-
imized. Finally, other recent studies combine RBNs with
small-world topologies, e.g. (Lu and Teuscher, 2009).

Information dynamics
The active information storage (Lizier et al., 2010) for a
node X is defined as the average mutual information (MI)
between its semi-infinite past x(k)n (as k → ∞) and its next
state xn+1 at time step n+ 1: AX(k) = 〈i(x(k)n ;xn+1)〉.

We note that the local entropy for X is the sum of AX(k)

and the local entropy rate HµX(k) = 〈h(xn+1 | x(k)n )〉; i.e.
HX = AX(k) + HµX(k). In a deterministic system such
as RBNs, there is no intrinsic uncertainty in HµX(k) so it
represents the joint contribution or transfer from the causal
information sources to the destination (Lizier et al., 2010).

The information transfer (formulated in the apparent
transfer entropy (Schreiber, 2000; Lizier et al., 2008)) from
one source Y to a destination X is the average MI between
the previous source state yn and the next destination state
xn+1, conditioned on the semi-infinite past of the destina-
tion x(k)n (as k →∞): TY→X(k) = 〈i(yn;xn+1 | x(k)n )〉.
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Figure 1: Measures of dynamics versus r and γ for K = 4
(color online). Ordered dynamics occur for low r and γ (bot-
tom left), and chaotic dynamics for high r and γ (top right);
the critical regime at the maxima in (a) separates these.

Results and discussion
We examine ensembles of networks of size N = 264 as a
function of K̄, r and γ (sources of links only rewired; other
details in (Lizier et al., 2011)) using extensions to RBNLab
(Gershenson, 2003). We use K̄ = 4: the small-world region
then occurs approximately for 0.03 ≤ γ ≤ 0.1.

Using σ (not shown) and σδ (Fig. 1a, Fig. 2) we see that
(i) for fixed γ an ordered phase exists for low r, with the
chaotic phase for large r. Crucially, a similar transition oc-
curs (ii) with respect to γ for fixed r, with ordered dynamics
for small γ (more ordered networks), and chaotic dynamics
for large γ (more randomized networks). The critical region
in dynamics has much similarity to the small-world regions
of γ (however this is highly dependent on activity r).

The ordered phase of these dynamics (low r and γ) is
dominated by information storage AX (Fig. 1b), while the
chaotic phase of the dynamics (high r and γ) is domi-
nated by information transfer (captured in total in HµX in
Fig. 1c). The critical regime exhibited a balance between
these two operations (Fig. 2), and since this was near to the
small-world topology regime, it could be said that small-
world networks have a propensity to combine compara-
bly large information storage and transfer capabilities.

This balance can be explained by considering how the
topological features related to the information dynamics. In-
formation storage is strongly correlated to the clustering co-
efficient: locally clustered structure appears to strongly sup-
port storage operations. In contrast, information transfer was
anti-correlated with average path length: long links appear
to be a crucial facilitator of transfer across the network.
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Figure 2: Measures of dynamics versus γ, for K = 4 and
r = 0.36. σδ is plotted against the right y-axis. Error bars
indicate standard deviation across 250 sampled networks.

Additionally, Fig. 1d shows apparent information transfer
TY→X is maximized slightly inside the chaotic phase of dy-
namics (near to the small-world regime). The capacity for
coherent computation is eroded as too many random links
promote interactions and make the dynamics more chaotic.

These results add evidence that small-world networks
hold computational advantages over other topologies.

References
Gershenson, C. (2003). RBNLab. Online software:

http://rbn.sourceforge.net.

Gershenson, C. (2004). Introduction to random Boolean networks.
In Bedau, M., Husbands, P., Hutton, T., Kumar, S., and
Suzuki, H., editors, Proceedings of the Workshops and Tu-
torials of the Ninth International Conference on the Simula-
tion and Synthesis of Living Systems (ALife IX), Boston, USA,
pages 160–173.

Kauffman, S. A. (1993). The Origins of Order: Self-Organization
and Selection in Evolution. Oxford University Press, New
York.

Latora, V. and Marchiori, M. (2001). Efficient behavior of small-
world networks. Physical Review Letters, 87(19):198701.

Lizier, J. T., Pritam, S., and Prokopenko, M. (2011). Information
dynamics in small-world Boolean networks. Artificial Life.
to appear.

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2008). Local in-
formation transfer as a spatiotemporal filter for complex sys-
tems. Physical Review E, 77(2):026110.

Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2010). Informa-
tion modification and particle collisions in distributed com-
putation. Chaos, 20(3):037109.

Lu, Q. and Teuscher, C. (2009). Damage spreading in spatial and
small-world random Boolean networks. arXiv:0904.4052.

Schreiber, T. (2000). Measuring information transfer. Physical
Review Letters, 85(2):461–464.

Watts, D. J. and Strogatz, S. (1998). Collective dynamics of ‘small-
world’ networks. Nature, 393:440–442.

464 ECAL 2011



Controlling Legged Robots with Coupled Artificial Biochemical Networks

Michael A. Lones1,2, Andy M. Tyrrell1,2, Susan Stepney1,3 and Leo S. Caves1,4

1York Centre for Complex Systems Analysis (YCCSA)
2Department of Electronics, 3Department of Computer Science, 4Department of Biology

University of York, Heslington, York YO10 5DD, UK
{mal503,amt}@ohm.york.ac.uk, susan.stepney@cs.york.ac.uk, leo.caves@york.ac.uk

Abstract

Artificial biochemical networks (ABNs) are computational
architectures motivated by the organisation of cells and tis-
sues at a biochemical level. In previous work, we have
shown how artificial biochemical networks can be used to
control trajectories in discrete and continuous dynamical sys-
tems. In this work, we extend the approach to the control
of a hybrid dynamical system: a legged robot. Taking in-
spiration from biological cells, in which complex behaviours
come about through the interaction of different classes of bio-
chemical network, we develop the notion of a coupled artifi-
cial biochemical network, in which an artificial genetic net-
work controls the configuration of an artificial metabolic net-
work. Using a higher-level robotic control task, we show how
the coupled network finds solutions which can not be read-
ily expressed using the artificial genetic network or artificial
metabolic network alone. Our results also show the impor-
tant role that non-linear maps can play as a natural source of
complex dynamics.

Introduction
The structure and function of biological organisms emerges
from the action and interaction of biochemical networks op-
erating within cells. There are three main types of biochemi-
cal network: the metabolic network, comprising the protein-
mediated chemical reactions that take place within the cell;
the signalling network, composed of the protein-mediated
responses to chemical messengers received by the cell; and
the genetic network, which emerges from the regulatory in-
teractions between genes.

From a computational perspective, biochemical networks
are interesting for a number of reasons. This includes their
ability to express complex behaviours, their compactness,
their ability to adapt to changing environments, their robust-
ness to environmental perturbation and—from the perspec-
tive of evolutionary computation—their evolvability. Such
reasoning has motivated a host of computational models
whose architectures are based upon the structure and func-
tion of biochemical networks. We refer to these collectively
as artificial biochemical networks, or ABNs (Lones et al.,
2010).

Perhaps best known of these are Boolean networks
(Kauffman, 1969) and other kinds of artificial genetic net-
works (e.g. Reil, 1999; Banzhaf, 2003). By modelling
the regulatory interactions which occur between genes,
these models attempt to capture the dynamics of genetic
networks, using these to generate complex, robust, be-
haviour. Another class of models, which includes P Systems
(Pǎun, 2000) and artificial chemistries (e.g. Fontana, 1992;
Banzhaf, 2004), can be categorised as artificial metabolic
networks. These mimic the self-organising behaviour of bi-
ological metabolisms, and attempt to capture the manner in
which complex behaviour can emerge from interactions be-
tween simple computational components. There has also
been some work on artificial signalling networks, including
early work on perceptron-like feed-forward networks (Bray,
1995) and more recent work on signalling-based classifier
systems (Decraene et al., 2007).

ABNs have been used to implement a range of com-
putational behaviours, including those required for robotic
navigation (Ziegler and Banzhaf, 2001; Taylor, 2004), clas-
sification (Banzhaf and Lasarczyk, 2005), pole balancing
(Nicolau et al., 2010) and image compression (Trefzer et al.,
2010). In our research, we are interested in the ability of
ABNs to control the kind of dynamics found in complex real
world systems. In (Lones et al., 2010), we applied ABNs to
the control of two numerical dynamical systems: the Lorenz
equations, a continuous-time dissipative dynamical system;
and Chirikov’s standard map, a discrete-time conservative
dynamical system. These both model complex dynamics
found within real world systems, and also lie at opposite
ends of the dynamical systems spectrum. In both cases, we
were able to evolve ABNs capable of controlling trajectories
in a prescribed manner.

However, many real world systems do not have purely
continuous or discrete dynamics, but rather a hybrid of the
two (Branicky, 2005). These often occur on different time
scales, such that continuous state flow is occasionally inter-
rupted by jump discontinuities caused by the occurrence of
discrete events. Two common examples of this are physical
systems with impact, such as a bouncing ball, and switched
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systems, where a signal change causes a discrete change
in behaviour. In this paper, we consider a problem which
combines both of these: controlling the gait and direction of
movement of a simulated legged robot.

Coupling between different classes of biochemical net-
work plays an important part in the functioning of biolog-
ical cells. The coupling between a genetic network and a
metabolic network, in particular, is central to a cell’s ability
to both specialise and adapt to a changing environment. Tak-
ing inspiration from this biological behaviour, we investigate
a hybrid ABN architecture, in which an artificial genetic net-
work controls the expression of an artificial metabolic net-
work. Results on the robot locomotion tasks suggest that
such an architecture is particularly suited to problems that
require reconfigurable dynamical behaviour.

The paper is structured as follows: We first introduce the
ABN models used in this work. We then describe how these
models are evolved. Finally, we introduce the robotic loco-
motion tasks to which they were applied, and present results
and conclusions.

Artificial Biochemical Network Models
In this section, we describe the three ABN models used in
this work: an artificial genetic network (AGN), an artificial
metabolic network (AMN), and a hybrid ABN formed from
the coupling of an AGN and an AMN. In addition to ex-
pressiveness and evolvability, our choice of models is also
influenced by a desire for efficiency and simplicity. For this
reason, the models use discrete-time rather than continuous-
time updates (unlike, for instance, Banzhaf, 2003). Since
continuous-time dynamical systems can often be reduced to
discrete-time equivalents by taking Poincaré sections (Kantz
and Schreiber, 2004), this arguably makes little difference in
terms of expressiveness, but does considerably reduce exe-
cution time.

Artificial Genetic Network (AGN)
In general, the complex behaviour of biological genetic net-
works stems not from the complexity of their component
parts, but from the complexity of their dynamics. Hence, a
simple abstraction such as the Boolean network can display
complex behaviour without the need to model biological de-
tails such as continuous-valued expression, asynchronous
updates, continuous-time, and the presence of transcription
factors. Nevertheless, there are advantages to using more
complicated models, and in this work we use a continuous-
valued generalisation of the Boolean network.

Continuous values have two main advantages. First, they
make it easier to interface with external systems, since inputs
and outputs do not need to be encoded in binary. Second,
the size of the state space is not limited by the number of
genes in the network. In a Boolean network, the number
of possible states is 2N , where N is the number of genes,
meaning that small networks are always attracted to a limit

cycle. When continuous values are used, the state space is
infinite (within the limits of representation), meaning that
small networks have the potential to exhibit more complex
behaviours.

Formally, an AGN consists of an indexed set of genes,
G. Each gi ∈ G has an expression level λi, an indexed set
of regulatory inputs Ri, and a regulatory function fi, which
maps the expression levels of its regulatory inputs to its own
expression level. The first time the AGN is executed, its ex-
pression levels are initialised from an indexed set of initial
values, LG. External inputs can be delivered to the network
either by explicitly setting the expression levels of certain
genes, or by introducing new regulatory inputs with fixed
values. After iterating the network a specified number of
times, tG, outputs are captured from the final expression lev-
els of designated genes.

Artificial Metabolic Network (AMN)
The artificial metabolic network complements the AGN de-
scribed in the previous section. It is a simple artificial chem-
istry with continuous-valued chemicals and continuous-
valued reactions. Formally, it consists of an indexed set of
enzyme-analogous elements E which transform the concen-
trations of an indexed set of real-valued chemicals C. Each
enzyme has a set of substrates Si ⊆ C, a set of products
Pi ⊆ C, and a reaction mi which calculates the concen-
trations of its products based upon the concentrations of its
substrates.

The first time the AMN is executed, its chemical concen-
trations are initialised from an indexed set of initial values,
LC . External inputs are delivered to the network by ex-
plicitly setting the concentrations of certain chemicals. At
each time step, each enzyme ei applies its reaction mi to
the current concentrations of its substrates Si in order to de-
termine the new concentrations of its products Pi. Where
the same chemical is produced by multiple enzymes, i.e.
when ∃j, k : j 6= k ∧ ci ∈ Pj ∩ Pk, the new concentra-
tion is the mean output value of all contributing enzymes:
ci =

∑
ej∈Eci

ci
ej/|Eci | where Eci are enzymes for which

ci ∈ Pi and ciej is the output value of ej for ci. After it-
erating the network tM times, outputs are captured from the
final concentrations of designated chemicals.

Coupled Artificial Biochemical Network (CABN)
Biological biochemical networks interact with one another
in a number of ways. Perhaps most significantly, the genetic
network controls when and where proteins are expressed.
This determines which enzymes are present in the metabolic
network, and hence which reactions can take place within a
cell. In effect, the genetic network is able to reconfigure the
cell’s processing machinery over the course of time. This
behaviour occurs extensively in both single-celled and mul-
ticellular organisms. In the former, it allows the metabolism
to be changed in order to react to the presence of different
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Figure 1: Coupled artificial biochemical network.

kinds of nutrients in the organism’s environment. In the lat-
ter, it underlies the processes of cell specialisation and devel-
opment which are fundamental to multi-cellular organisms.

In the coupled artificial biochemical network (CABN)
model, we capture this idea of a genetic network controlling
the expression of a metabolic network (See Fig. 1). For-
mally, a CABN comprises an AGN, an AMN, and an injec-
tive coupling function χ : GC → E where GC ⊆ G is the
set of enzyme coding genes, i.e. each enzyme is coupled to
a single gene, and some genes may not be enzyme coding
(yet are still involved in regulating other genes). Coupling
is carried out by giving each enzyme an expression level, ξi,
and setting this to the expression level of the gene to which
it is coupled, i.e. ∀(gi, ej) ∈ χ : ξj := λi. This expression
level then determines the relative influence of each enzyme
when calculating the new concentration of a chemical:

ci =
∑

ej∈Eci

ξici
ej∑

ej∈Eci
ξi

(1)

i.e. the new concentration is the mean of each enzyme’s
output value weighted by its relative expression level. This
captures the idea that changes in the genetic network lead
to changes in the balance between competing pathways in a
metabolism.

Regulatory functions and enzyme reactions
Table 1 lists the mathematical functions from which regula-
tory functions (f ) and enzyme reactions (m) are chosen.

Sigmoids model the switching behaviour of many non-
linear biological systems, making them a good choice for
approximating the behaviours of genetic and metabolic path-
ways. We use the logistic function, where s determines the
slope and b the slope offset (or bias). For multiple inputs,
x =

∑n
j=0 ijwj , where i0...in are inputs and w0...wn ∈

[−1, 1] are corresponding input weights, with negative val-
ues indicating repression.

The remaining functions, all of which are discrete non-
linear maps, are motivated by our earlier work (Lones et al.,

Table 1: Mathematical functions used within ABNs.

Logistic (Sigmoidal) function:

f(x) = (1 + e−sx−b)−1, where s ∈ [0, 20], b ∈ [−1, 1]

Logistic map:
xn+1 = rx(1− x), where r ∈ [0, 4]

Arnold’s cat map:
(xn+1, yn+1) = ([2xn + yn] mod 1, [xn + yn] mod 1)

Baker’s map:

(xn+1, yn+1) =

{
(2xn, yn/2) 0 ≤ xn ≤ 1

2

(2− 2xn, 1− yn/2) 1
2
≤ xn < 1

Chirikov’s standard map:
pn+1 = (pn +K sin θn) mod 2π, K ∈ [0, 10]
θn+1 = (θn + pn+1) mod 2π

2010) in which we found that the use of logistic maps within
ABNs could lead to the evolution of more effective con-
trollers. We hypothesised that this was due to evolution
taking advantage of the complex dynamical behaviours dis-
played by non-linear discrete maps.

In this work, we extend the approach by using four
well-known discrete maps that capture the natural dynam-
ics present in a range of biological and physical systems.
The logistic map is a model of biological population growth.
Depending on the value of parameter r, the system is at-
tracted to either a fixed-point, cyclic or chaotic orbit (May,
1976). Arnold’s cat map (Arnold and Avez, 1968) is a ge-
ometric transformation of the unit square with interesting
periodic behaviour. The baker’s map is an archetypal model
of deterministic chaos, capturing the exponential sensitivity
to initial conditions that results when kneading bread (Silva,
2008). Chirikov’s standard map (Chirikov, 1969) captures
the behaviour of dynamical systems with co-existing or-
dered and chaotic regimes. Its dynamics are ordered for low
values of parameter K and become increasingly chaotic for
higher values. The parameterised maps (the logistic map and
Chirikov’s map) can be used either with an evolved parame-
ter value or with an extra input, whose current value is used
to set the parameter. The latter is referred to as a tunable
map, since its dynamics can be modified by the ABN during
execution.

Evolving Artificial Biochemical Networks
Our ABNs are evolved using a standard generational evo-
lutionary algorithm with tournament selection (size 4),
uniform crossover (p=0.15), and point mutation (p=0.06).
Crossover points always fall between gene or enzyme
boundaries. Inputs and outputs (Ri, Si and Pi) are repre-
sented by absolute references to indices. Function parame-
ters (e.g. slopes, input weights) and initial values are rep-
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Figure 2: Genetic encoding of an artificial biochemical network.

Figure 3: Quadruped robot simulated in Open Dynamics Environ-
ment. Arrows indicate the direction of movement along the x-axis
plane.

resented as floating-point values and are mutated using a
Gaussian distribution centred around the current value.

We use a standardised genetic encoding for all ABN types
(see Fig. 2). This represents the ABN as a sequence of
genetic units, where each genetic unit has an optional reg-
ulatory region and an optional coding region. In a coupled
network, the regulatory region encodes the gene and the cod-
ing region encodes the enzyme which it expresses. Where a
gene does not express an enzyme (such as in an AGN), the
coding region is empty. For an AMN, where there are no
genes, the regulatory region is empty. The genetic encod-
ing also includes the initial gene expression and chemical
concentrations (where applicable) and timing information.

Controlling Legged Robot Locomotion
Legged robot locomotion is a challenging problem. In (Beer
and Gallagher, 1992), the authors summarised the challenge
by stating “A locomotion system must simultaneously solve
the two tightly coupled problems of support and progres-
sion.” In this paper, we address the locomotion of a simu-
lated quadrupedal robot. There have been a number of previ-
ous attempts to evolve quadrupedal locomotion (e.g. Hornby
et al., 2005; Kamio et al., 2003; Seo and Hyun, 2008; Clune
et al., 2009). Since functional gaits can be generated by
tapping sinusoidal functions at appropriate phase offsets,

a common approach is to use genetic algorithms (Hornby
et al., 2005) or genetic programming (Seo and Hyun, 2008)
to generate sinusoid-based controllers. Another, potentially
more robust, approach is to evolve neural networks (Beer
and Gallagher, 1992; Clune et al., 2009).

Since our focus is upon using legged robot locomotion
as a test bed for comparing the expressiveness of different
ABN models, the robot (see Fig. 3) is purposely very sim-
ple in design, comprising a square top section with four legs
connected by actuators at the corners. The actuators are lim-
ited to movement in the x-axis plane, with a maximum ele-
vation of 60◦ from vertical. The robot was simulated using
the Open Dynamics Engine (ODE) physics engine, with a
step size of ∆t = 0.05s, friction of 200N, CFM (an ODE
parameter) of 10−5, and standard gravity. Actuators have a
maximum angular velocity of 3m/s and a maximum torque
of 150Nm. These values are sufficient to enable dynamic
gaits, but not large enough to allow the body to be dragged
by the front legs without the involvement of the rear legs.
The ABN is executed every 10 simulation steps.

Generating Quadrupedal Gaits
The first task was to evolve ABNs capable of generat-
ing quadrupedal gaits, i.e. patterns of actuator movements
which would cause the robot to move away form its starting
position. The aim of this task was to determine whether the
different ABN types and configurations were able to gener-
ate appropriate patterns of movement.

Experimental Settings A controller’s fitness is the Eu-
clidean distance moved by the robot within an evaluation
period of 500 time steps. The population size is 200, with
a generation limit of 100. ABNs have four inputs, corre-
sponding to the actuator angles, and four outputs, which are
used to set the torques of the actuators during the next 10
simulation steps. Note that the requirement to map angles to
torques adds a degree of difficulty to this task. All inputs and
outputs are linearly scaled to the interval [0, 1]. For AMNs
and CABNs, inputs are delivered via initial chemical con-
centrations. For AGNs, inputs are delivered via initial gene
expression levels.

Results Figure 4 compares the fitness distributions of
evolved controllers. This shows that all three classes of ABN
are capable of generating gaits which solve the movement
task. It also indicates that there is no significant difference
in the median performance of the AGN, AMN and CABN
models. However, for all ABN models, the best controllers
use Sigmoidal functions rather than non-linear maps. So-
lution length (i.e. network size) has relatively little impact.
Examples of evolved behaviours are shown in Figure 5.

These results demonstrate that effective controllers can be
expressed using any of the ABN models, although good con-
trollers are more readily found when using Sigmoidal func-
tions. It is interesting to note that there is no observable
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Figure 4: Controlling legged robots using coupled and uncoupled
ABNs with sigmoids (Sig) or discrete maps. Summary statistics
for 50 runs are shown as notched box plots. Overlapping notches
indicate when median values (thick horizontal bars) are not signif-
icantly different at the 95% confidence level. Kernel density esti-
mates of underlying distributions are also shown (in grey), show-
ing that some of the distributions are multimodal. The notation
Fn1 7→ Fn2 denotes a genetic network with Fn1 regulatory func-
tions coupled to a metabolic network with Fn2 enzyme functions.
Coupled networks comprise 10 genes (expressing up to 10 en-
zymes) and 10 chemicals. For uncoupled genetic and metabolic
networks, results are shown for solution lengths of both 10 and 20
(genes, or enzymes and chemicals, respectively), to allow fair com-
parison with the coupled networks.

penalty to using the structurally more complex coupled net-
works.

Higher Level Control of Locomotion
The second task introduced an extra level of difficulty, re-
quiring the ABNs to control the robot’s direction of move-
ment in addition to its gait. The aim of the task was to test
not only the ABNs’ abilities to express suitable patterns of
movement, but also their ability to switch between different
patterns as required.

Objective function The robot is required to change direc-
tion by 180◦ when signalled to do so, whilst still moving as
far as possible in the given direction. Controller fitness is
measured over a sequence of epochs< e0, ..., eN−1 >, each
with a random duration between 300 and 600 time steps,
with the required direction of movement reversing during
subsequent epochs. The fitness function f is defined:

f =
tmax − tmin

N
min{

∑
n∈Neven,n<N

p(n),
∑

n∈Nodd,n<N

p(n)}

(2)
where tmax and tmin are the maximum and minimum
bounds on epoch duration and p(n) is the progress made
during epoch n, defined:

(a) Sigmoid AGN

(b) Sigmoid AMN

(c) Discrete-map AMN

Figure 5: Time series plots of ABNs generating quadrupedal gaits.
Actuator angles are input via the first four gene expression levels
(G0–G3) or chemical concentrations (C0–C3), and new torque set-
tings are read from the last four (G6–G9, C6–C9). White represents
0, black represents 1, greyscales represent intermediate values.

p(n) =
dn
tn

(2
ηb(en, en+1)

π
− 1)(1− ηw(en)

π
)σn (3)

where dn is the distance travelled during epoch n, tn is the
duration of epoch n, ηb is the difference in mean heading
between two epochs, ηw is the difference in heading within
an epoch (as measured during the first and last 50 time-steps
of the epoch), and σn is a penalty for non-movement: equal
to 1 if the robot has not moved for 100 subsequent ABN
updates in epoch n, and 0 otherwise.

In effect, progress is the mean velocity in the required di-
rection, with penalties for turning during an epoch and for
non-movement. Assuming movement in a straight-line and
no stopping, fitness is equivalent to the expected distance
covered during an epoch in the forward or backward direc-
tion, whichever is shortest.

Experimental Settings A population of 500 is used for
this task, to reflect its greater difficulty. In addition to the
four actuator angles, the ABN also receives a direction in-
put. This has the value 0 during even-numbered epochs and
1 during odd-numbered epochs. In addition to delivering
this signal with the actuator angles, for AGNs and CABNs
we also look at the effect of delivering the signal separately
through the first regulatory input of one or more genes.
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Figure 6: Controlling direction and movement of legged robots.
For each function set (or pair of function sets in the case of the
coupled network), results for the best-performing combination of
solution size and (for genetic and coupled networks) regulatory
signal destination are shown. For the latter, g0 indicates that the
control signal was delivered as a regulatory input to the first gene,
all indicates that the control signal was delivered as a regulatory
input to all genes.

Figure 7: Comparing the effect of delivering the direction signal to
different locations within the Sig 7→ Maps coupled network. grall
indicates a regulatory input to all genes, gr0 is a regulatory input to
the first gene, ge0 is the initial expression of the first gene, and c0
is the concentration of the first chemical.

Results Well-behaved controllers (i.e. those which cor-
rectly respond to the direction signal and produce effective
gaits) generally have a fitness greater than about 1.5: those
with lower fitnesses tend to have periodic or inconsistent be-
haviours.

Figure 6 compares the fitness distributions of evolved con-
trollers, suggesting that most combinations of ABN model
and function set choice do not lead to well-behaved con-
trollers. In fact, the majority of evolved Sigmoidal AGN
and AMN were only capable of movement in one direction,
giving them a median fitness of zero. Discrete-map AGNs
and AMNs achieved higher fitness, but generally did not re-
spond to the direction signal, displaying a range of periodic

Table 2: Occurrence of discrete maps within final solutions from
all Sig 7→ Maps CABN runs where fitness is greater than 1.5.

Maps In solutions Mean occurrences
per solution

Baker’s map 100% 2.3
Tunable standard map 78% 1.6
Standard map 78% 1.6
Tunable logistic map 72% 1.2
Arnold’s cat map 61% 1.5
Logistic map 50% 1.7

and aperiodic behaviours.
Notably, only coupled networks comprising a Sigmoidal

AGN and a discrete-map AMN (denoted Sig 7→ Maps) were
able to consistently generate competent controllers1, and
only when the direction signal was delivered as a regulatory
input to each gene. Figure 7 shows the effect of delivering
this signal to other locations within the Sig 7→ Maps coupled
networks; showing that delivering the direction signal via a
gene’s initial expression or a chemical’s initial concentration
was generally ineffective.

Figure 8 shows some representative examples of how
these Sig 7→ Maps networks control gait and respond to
the direction signal. In most evolved networks, the AMN
is responsible for generating appropriate patterns of actua-
tor movements and the AGN is responsible for switching
between different patterns by regulating the influence of dif-
ferent enzymes. It is interesting to note that their behaviour
over time resemble the dynamics of biological biochemical
networks, in that a slow-changing genetic network controls a
fast changing metabolic network. This may also explain why
Sigmoidal functions, which are more amenable to produc-
ing slow-changing dynamics, play a productive role within
coupled controllers but not within the stand-alone AMN and
AGN controllers.

We can hypothesise that there are two reasons why dis-
crete maps are useful for this task. First, they can individ-
ually carry out behaviours which would require a number
of interconnected Sigmoids to implement—to use a biolog-
ical analogy, they are the equivalent of a whole biochemical
pathway. Arguably, this entails that certain pattern genera-
tors can be evolved more readily than in a Sigmoidal net-
work, and using fewer genes. Second, all the discrete maps
we use have chaotic phases. When in this phase, their dy-
namics are highly sensitive to small perturbations, meaning
that relatively small changes in gene expression can lead to
rapid switching between different attractor states—precisely
the behaviour we are looking for in many control tasks.

Table 2 lists the relative occurrence of the different dis-
118 of the 50 runs generated solutions with fitness greater than

1.5, compared to only a handful for all the other ABNs.
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(a) In this example, the AMN generates a single cyclic pattern (C5) which is then scaled and propagated to the outputs (C6–C9).
The scaling for each output (and hence the direction of the resulting gait) is determined by the current gene expression pattern.

(b) In this second example, the AMN generates two different cyclic patterns (bunny hopping and a four-legged wading move-
ment), which the AGN switches between in response to changes in the direction signal.

Figure 8: Time series plots of Sig 7→ Maps coupled ABNs controlling the direction and gait of a legged robot. The Signal input specifies
the required direction of movement. GO–G9 are the expression levels of the genes in the AGN. C0–C9 are the concentration levels of the
chemicals in the AMN.

crete maps in the final solutions of successful runs. All of the
maps are used by evolution, with most of them appearing in
the majority of solutions. The baker’s map, in particular, ap-
pears in all of the successful controllers, and usually occurs
multiple times in these solutions. Since the baker’s map is
a model of deterministic chaos, this supports our hypothesis
that chaotic dynamics are useful. The standard map is also
well-represented in evolved solutions, perhaps reflecting its
relatively high degree of expressiveness and configurability.
It is also notable that the tunable versions of the logistic and
Chirikov’s maps are often used.

Conclusions
In this paper, we have shown that artificial biochemical net-
works can be evolved to control the locomotion of a simu-
lated legged robot. We used two artificial biochemical net-
work models—an artificial genetic network and an artificial
metabolic network—and looked at how these models can be

used both individually and when coupled together.
For a simple movement task, where the robot was required

to move as far as possible from its starting position, both in-
dividual and coupled networks could be evolved to generate
suitable gaits. However, for a harder task, where the robot
was required to reverse its direction of movement when
given a signal, only coupled networks could be evolved to
express suitable behaviours. Analysis of the resulting con-
trollers suggests there is a clear separation of effort, with the
artificial metabolic network generating patterns of actuator
movements and the artificial genetic network switching be-
tween different patterns as appropriate.

We found that non-linear discrete maps play an impor-
tant role in solving the harder of the two problems. When
used as functional elements within artificial biochemical net-
works, these maps provide a useful source of configurable
pre-packaged dynamics. Of the maps used in this study, the
chaotic baker’s map occurred most within evolved solutions.
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This finding supports the idea that the inherent instability of
chaotic maps makes them useful for rapidly switching be-
tween different behaviours.

We also found that the destination of the direction signal
has a large effect upon the ability of the networks to solve
the harder task. This may reflect the important role that sig-
nal recruitment plays within the evolution of biological bio-
chemical networks. Rather than pre-specifying the destina-
tion of signals, as we have done in this work, in future work
we will look at whether an artificial signalling network can
be used to deliver signals to appropriate parts of the genetic
and metabolic networks.
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Abstract 
Although the emergence of communication has been the topic 
of various Artificial Life experiments, the study of underlying 
representational processes finds little discussion.   We have 
previously differentiated between symbolic and indexical 
interpretation and proposed that symbolic interpretation may 
act as a shortcut to cognitive traits already acquired. Here we 
evaluate conditions of this acquired cognitive trait for the 
emergence of different modalities of sign interpretation. Results 
show that symbolic processes may act as a cognitive shortcut to 
a previous acquired cognitive competence even if minimally 
functional or initially not available. 

Introduction 
Computational simulation approaches, such as Artificial Life 
experiments, are considered to have an important role in the 
study and modeling of general semiotic processes (see 
Christiansen and Kirby, 2003, Noble et al., 2010, Cangelosi 
and Parisi, 2001, Steels, 2003). Communication, vocabulary, 
grammar are among the processes that have been studied by 
this synthetic approach (for a review, see Nolfi and Mirolli, 
2010, Wagner et al. 2003).  In these experiments, semiotic 
processes are simulated in a social context, involving multiple 
agents.  The process in focus is not pre-defined, but it rather 
emerges during and by means of agents’ interactions.  As the 
main form of interaction between agents, in most of these 
synthetic experiments, communication has, particularly, been 
a significant research subject. It depends on the production of 
representations (by an utterer) and the interpretation of them 
(by an interpreter). Nevertheless, we find little discussion 
around representation processes underlying communication 
such as the types of representations involved and how they 
can represent something to the agents. If agents communicate, 
the underlying representational processes are an essential 
issue to be addressed. 

We have previously modeled the emergence of two 
different types of representational processes (symbols and 
indexes) and how they emerge in a community of simulated 
creatures (Loula et al., 2010a).  We proposed that a symbolic 
interpretation process can act as a cognitive shortcut to a 
cognitive competence that is hard to acquire.  Here we 
propose to assess further this hypothesis and evaluate 

cognitive conditions to the emergence of interpretation 
processes, varying availability and reliability. We apply the 
same scenario previously used, which involves empirical 
constraints from studies of animal communication and also 
theoretical constraints from Peircean pragmatic theory of 
signs.  

In the next section, we review related work in the context 
of the emergence of communication in Artificial Life 
research. Next, we briefly describe the theoretical principles 
and biological motivations that guided our experimental 
design. We then describe the experiment involving the 
emergence of different interpretational processes in 
communication events. Results are presented next, 
summarizing previous results and exhibiting news ones on the 
conditions for the emergence of sign interpretation. We 
discuss achievements and draw conclusions and future 
directions, in the end. 

Related work 
The simulation of the emergence of communication is the 
topic of various works, but discussions on the underlying 
semiotic processes finds little space in such literature. 
Therefore, we will review two representative works that deals 
with the emergence of communication that are relevant in the 
context of this work. 

Robots were evolved by de Greeff and Nolfi (2010) to 
execute a navigation task in which two robots had to exchange 
places in two target areas. The robots could use wireless 
sensors for an ‘explicit signal’ communication or they could 
use their spatial position as an ‘implicit signal’. At the end of 
an evolution process of neural networks that control the 
robots, de Greeff and Nolfi (2010) described that the robots 
were able to use 2 or 3 explicit signals to execute the 
proposed task, but also used one implicit signal to achieve 
that. They state that explicit signals codify certain conditions 
in which the emitter robot finds itself and that the implicit 
signal is a visual perception of the position of the other robot, 
and that each signal produces a different reaction. Signals are 
said to be deictic, dependent of spatial-temporal context, but 
there was no further discussion on what   and how robots 
representationally interpret such signals. 
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In an experiment with artificial creatures in a grid world, 
Cangelosi (2001) simulated the emergence of communication 
systems to name edible and poisonous mushrooms. He had 
relied on biological motivations to define a food forage goal 
for the creatures.  He proposed the emergence of different 
modalities of representations in this experiment on the 
evolution of communication. To classify communication 
systems, Cangelosi (2001) differentiated signals, with direct 
relation with world entities, from symbols, also with relation 
with world entities but also related to other symbols. In his 
experiments, neural networks were both evolved and trained 
in various tasks, and, at the end, a shared communication 
system emerged, involving signals and symbols, according to 
Cangelosi. But he did not describe how these signals and 
symbols were interpreted by the creatures and what they 
actually represented. 

Other works have also studied the emergence of 
communication traits and the acquisition of vocabulary or 
language among artificial agents (see Nolfi and Mirolli, 2010, 
Wagner et al. 2003). Nevertheless, we have not found works 
that have studied the emergence of different types of 
interpretations processes and differentiated the interpretation 
processes that emerged. 

Theoretical and Empirical Constraints 

Synthetic experiments such as Artificial Life ones are heavily 
influenced by theoretical principles and biological 
motivations, and that such background should be an essential 
part of any synthetic experiment (Parisi, 2001, see also Noble 
1997, Loula et al., 2010b). Theoretical principles and 
biological motivations act as requirements and constraints 
during the design of the experiments, and influences modeling 
on different degrees depending on how it constrains the model 
being built and what decisions it leaves to the experimenter. 

To model the emergence of communication processes 
based on different types of representation, it is certainly 
important to look at theoretical models and principles, and 
also look for biological motivations, and avoid arbitrary or 
naïve assumptions about the underlying processes.   

Sign-mediated processes, such as the interpretation of 
representations in communicative contexts, show a 
remarkable variety. A basic typology (and the most 
fundamental one), proposed by Peirce (1958; see Short 2007), 
differentiates between iconic, indexical, and symbolic 
processes. Icons are signs that stand for their objects by a 
similarity or resemblance, no matter if they show any spatio-
temporal physical correlation with an existent object. In this 
case, a sign refers to an object in virtue of a certain quality 
which is shared between them. Indexes are signs which refer 
to their objects due to a direct physical connection between 
them. Since (in this case) the sign should be determined by the 
object (e.g. by means of a causal relationship) both must exist 
as actual events. Spatio-temporal co-variation is the most 
characteristic property of indexical processes. Symbols are 
signs that are related to their object through a determinative 

relation of law, rule or convention1. A symbol becomes a sign 
of some object merely or mainly by the fact that it is used and 
understood as such by the interpreter, who establishes this 
connection.  

Communication is a process that occurs among natural 
systems and as such we can employ empirical evidences on 
building our synthetic experiment. Animals communicate in 
various situations, from courtship and dominance to predator 
warning and food calls (see Hauser, 1997). And following 
Peirce’s definition of symbols, many animals can actually be 
capable of communicating by means of symbols (Ribeiro et 
al., 2007). 

To further explore the mechanisms behind communication, 
a minimum brain model can be useful to understand what 
cognitive resources might be available and process 
underlining certain behaviors. Queiroz and Ribeiro (2002) 
described a minimum vertebrate brain for vervet monkeys 
predator warning vocalization behavior (Seyfarth et al 1980). 
It was modeled as being composed by three major 
representational relays or domains: the sensory, the 
associative and the motor. According to such minimalist 
design, different first-order sensory representational domains 
(RD1s) receive unimodal stimuli, which are then associated in 
a second-order multi-modal representation domain (RD2) so 
as to elicit symbolic responses to alarm-calls by means of a 
first-order motor representation domain (RD1m).   

Our objective is to model the emergence of indexical and 
symbolic interpretation competences, so the first step is to 
specify the requirements for each and also how to recognize 
each of them in the experiment. Indexical interpretation is a 
reactive interpretation of signs, such that the interpreter is 
directed by the sign to recognize its object as something 
spatio-temporally connected to it, so for our creatures to have 
                                                             
1 Differently from Cangelosi’s (2001) definition of symbol, based on 
Deacon’s approach (1997), Peirce (1958) did not require symbols to be 
related to each other to be called symbols. 

Figure 1: Cognitive architectures for representations 
interpretations. Left: Type 1 architecture, RD1s are connected 
directly to RD1m. Right: Type 2 architecture, data from visual 
RD1s and auditory RD1s can be associated in RD2 before 
connecting to RD1m. 
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this competence, they must be able to reactively respond to 
sensory stimulus with prompt motor answer. In the minimum 
brain model, this corresponds to an individual capable of 
connecting RD1s to RD1m without the need for RD2. But a 
symbolic interpretation undergoes the mediation of the 
interpreter to connect the sign to its object, in such a way that 
a habit (either inborn or acquired) must be present to establish 
this association. Thus, in symbolic interpretation, RD2 must 
be present once it is the only domain able to establish 
connections between different representation modes. Thus, 
our artificial creatures must be able to receive sensory data, 
both visual and auditory, in its respective RD1s, that can be 
connected directly to RD1m, defining motor actions (Type 1 
architecture), or connected to RD1m indirectly, through the 
mediation of RD2, that associates auditory stimulus to visual 
stimulus acting as an associative memory module (Type 2 
architecture) (see figure 1). To evaluate what conditions might 
elicit each response type – indexical or symbolic –, we 
implemented these two possible cognitive processing paths as 
mutually exclusive paths: either the creature responds to 
auditory events indexically and reactively responds with 
motor actions, or the creatures responds to auditory events 
symbolically and associates them with a visual stimulus and 
responds as if that was really seen. For an external observer, 
who only watches the information available to the creature 
and its motor responses, it may not be possible to see changes 
in the interpretation process. But the underlying mechanisms 
behind each semiotic process are qualitatively different. 

 The experiment 
The scenario to test the conditions for the emergence of 
semiotic processes is inspired by food foraging behavior of 
animals. One way animals cooperate in such task is by 
vocalizing for food quality, recruiting other group members to 
feed. Inspired by such biological motivation, we simulate a 
scenario of artificial creatures evolved to collect resources in a 
virtual environment.  

Lower quality resources are scattered throughout the 
environment and a single location receives highest quality 
resources. One creature (vocalizer) is placed in this high 
quality resource position, vocalizing a sign continuously. At 
the start of simulation, the other creatures (interpreters) do not 
know how to respond appropriately to sensory inputs and 
neither recognizes the sign vocalized as a sign. But an 
evolutionary process of variation and selection is applied, 
allowing the evolution of individuals to better accomplish the 
task of resource foraging. During the evolutionary process, for 
each start-up conditions, we observe the emergence of 
indexical or symbolic interpretation for the vocalizations. 

The environment is a 50 by 50 grid world (figure 2) and 
there are 20 random positions with only one resource unit 
each. There is also one position with 500 resource units, 
where an immovable vocalizer creature is placed. The 
vocalizer’s sole behavior is to produce a single vocal sign, 
reproduced at every instant. Fifty interpreter creatures are 
randomly placed in this grid. 

Interpreter creatures are capable of visually sensing food up 
to a distance of 4 positions and sensing vocalizations up to a 
distance of 25 positions. This sensory range difference models 

an environment where vision is limited by the presence of 
other elements such as vegetation, restraining far vision such 
as in an open field. These creatures can either see a resource 
and its position or hear a vocalization and its position, if any 
of them is within range. 

Interpreters are controlled by finite state machines (FSM), 
with up to 4 states (see figure 3). An FSM was chosen as the 
control architecture because the analysis of how it is 
functioning is quite simple and direct, permitting direct 
identification of the processes underlying the creatures’ 
cognition. Input events to the FSM include 5 visual events for 
resource in 5 different positions (ahead, left, right, back, or 
same position), 4 auditory events for vocalization in 4 
positions (ahead, left, right, back), and 1 event for nothing 
seen or heard. Outputs from FSM can be one of the 5 motor 

Figure 2: The grid environment. Creatures are blue circles, low 
quality resource positions are in green cells, and high quality 
one in the cyan cell in the center. 

Figure 3: State diagram of a sample FSM that controls the 
creatures. The circles are states and a double circle marks the 
start state. Arches represent transitions and are labeled 
according to the sensory event and the action to take over 
when that event occurs. This FSM has only visual inputs and 
2 states to simplify the diagram, but there can me more arches 
for auditory inputs (vocalization and its position) and up to 4 
states. 
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actions for creatures: move forward, turn left, turn right, 
collect resource, or do nothing. 

The creatures can respond to visual inputs with one of the 
motor actions, and can also respond to auditory input with a 
direct motor action (a reactive, indexical process) (Type 1 
architecture). Alternatively, before an input is sent to the 
FSM, they can also choose to establish an internal association 
between the heard stimulus and the visual representation 
domain (Type 2 architecture). This internal association links 
what is heard with the view of a collectible resource, i.e. the 
creature can interpret the sign heard as a resource and act as if 
the resource was seen. As a result, an auditory input is 
exchanged by an equivalent visual input and the FSM is 
executed with that input. Additionally, the creature may also 
ignore the sign heard, interpreting it as nothing and acting as 
if no sensory data was received. 

At start, creatures are controlled by randomly constructed 
FSMs, and are all placed at random in the environment. They 
are allowed to collect resources for 10 trials of 100 iterations 
each trial. Creatures collect resources by executing the 
specific action, removing one unit from the resource at each 
time step. When no more units are available at the resource, it 
disappears.  

Creatures evolution 
At the all trials, the 10 best creatures in the foraging task 

(those that collected the most resource units) are selected to 
create next generation. These 10 individuals are copied to the 
next population and the 40 remaining individuals are a 
product of mutations and crossovers of the FSMs of the best 
individuals.  

The mutations can be of changing an action in transition, 
changing the next state after a transition, changing the start 
state, add a state and remove a state. There can also be a 
mutation of the cognitive architecture type, as described 
below. The number of mutations is selected from a Poison 
probability distribution with an expected value of 3. The 
crossover has a 50% chance of occurring and it exchanges 
states and transitions originating from the selected states 
between two FSM in a uniform way. All FSM undergo a 
correction process to fix error that might occur during these 
operations, such as a transition pointing to a non-existing 
state. 

The experiment runs for 500 generations, normally with 
two distinct moments. In the first 200 generations (cycle 1), 
the vocalizer creature is not present and interpreters do not 
have an auditory sensor, but this first cycle will be omitted in 
one of the simulation scenarios. In the 300 subsequent 
generations the vocalizer creature is present and interpreters 
are able to hear (cycle 2).  

At the start of cycle 2, all creatures are set to ignore the 
vocalizations, as if it was not relevant, however, there is also a 
small mutation probability for changing the type of response 
to vocalizations. These can be of reacting to them by moving 
towards the resource, or to linking it with the view of a 
resource. This corresponds to a change to a Type 1 cognitive 
architecture (indexical) or to a Type 2 cognitive architecture 

(symbolic). The probability of going from Type 1 architecture 
to Type 2 architecture is lower than the other way around to 
simulate the fact that such a significant cognitive change is 
not that easy to happen. 

We expect that creatures adapt to the foraging task by 
responding to the auditory input of vocalizations. Since they 
can not see the high quality resource position, they must rely 
on the vocalization to guide their movements in this direction. 
We are interested in observing the overall adaptation process 
to the foraging task, and are specially focused on the type of 
interpretation process, related to the cognitive architecture 
type, that might result.  

Results 

In previous work, we have run two initial experiments to 
evaluate the emergence of either an indexical interpretation or 
a symbolic interpretation of vocalizations (Loula et al., 
2010a). Such experiments involved 2 cycles as described 
above, varying the way motor actions needed to be 
coordinated. In the first experiment, creatures just had to have 
the specified action as output of the FSM to execute that 
action. In this scenario, we observed that indexical 
interpretation was the competence acquired by creatures to 
deal with communication, with direct association between 
auditory signs and motor actions. But in a second experiment, 
for motor actions to be executed, the creatures needed to first 
output a null action before any movement action, that way it 
would be harder to learn motor coordination. In this 
alternative scenario, symbolic interpretation was the emerging 
competence, instead of an indexical one like it happened in 
the previous case. We made the hypothesis that acquiring 
symbolic competence would act as a cognitive shortcut, by 
reusing a previously acquired ability in cycle 1: to 
appropriately respond to visual data with motor actions. We 
proposed that a symbolic interpretation process can happen if 
a cognitive trait is hard to be acquired and the symbolic 
interpretation of a sign will connect it with another sign for 
which the creature already has an appropriate response.  

Single cycle scenario 
In face of the fact that there should be a previously 

acquired competence for symbolic interpretation to benefit 
from, a subsequent question is to ask what would happen to 
sign interpretation if such previous competence is not present. 
If the creature does not respond in a proper manner to visual 
input, a cognitive shortcut to this uncoordinated competence 
would not help the foraging success. As cycle 1 acts as a first 
step in which creatures are dedicated to learn visual-motor 
coordination, we removed this cycle in a new scenario, in 
which the simulation begins in cycle 2 with the vocalizer at 
the center and interpreter creatures able to hear but starting 
with random FSMs. The need to first output a null action 
before any movement action remains, so it is hard to learn 
motor coordination. Figure 4 shows the performance of 
creatures in foraging and the type of interpretation used. 
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ANCHOR 

Figure 4: Evaluation of foraging task and type of response to vocalizations along the generations for the one cycle only experiment. 

Figure 5: Evaluation of foraging task and type of response to vocalizations along the generations for the 20% failure experiment. 

Figure 6: Evaluation of foraging task and type of response to vocalizations along the generations for the 50% failure experiment. 

477ECAL 2011



As we can see from the graphs, the experiment had three 
phases. At first, no resources were collected and creatures 
opted to ignore signs produced by the vocalizer. Then there 
was a transition phase, where the amounts of resources 
increased rapidly along generations and creatures gave up 
ignoring signs and started an indexical interpretation of them. 
Then creatures turn to a symbolic interpretation of sign and 
the amount of resources collected further increases and then 
stabilizes. To better understand what happened in such 
transitions, the FSMs of creatures have to be further detailed. 

From the first generation until generation 25, creatures did 
not demonstrate any motor coordination and were not able to 
collect resources, and most creatures just ignored signs. In 
generation 26, one creature was able to move forward and 
collect when a resource was in front of it, but it still ignored 
signs.  

This remained the same until generation 39, where one 
creature was able to turn right when a resource was seen at 
right side, and this creature was also responding indexically to 
signs, by going towards the vocalizer when a sign was heard 
in front of it. By generation 40, half of the population is 
interpreting signs indexically and the other half is ignoring it. 
Most of the creatures could move towards a seen resource, but 
there were still some useless outputs from the FSM, 
state/transition combinations that would make a creature stop 
responding effectively, and they still would not move when 
nothing is seen.  

At generation 44, one creature starts interpreting signs as 
symbols, relating the sign heard with the view of a resource, 
able to collect 67 resource units, while the best performing 
creature collected 77, but interpreting signs as index. 
Nevertheless, creatures still had problems in motor 
coordination. By generation 46, half of the creatures were 
symbolically interpreting signs, and by generation 50, almost 
all of them did so. From there on, all 10 best performing 
creatures used symbolic interpretations (and most of the 
others too), and the number of collected resources increased 
rapidly as creatures acquired a best performing FSM, that 
would always respond effectively to the inputs received.  

So even though, there was no cycle dedicated to acquire a 
previous competence that could be re-used by a symbolic 
interpretation, the evolution process allowed first for visual-
motor coordination to appear before sign interpretation (either 
as index or symbol) started. Thus, there was at least a little 
visual-motor competence to be re-used by symbolic 
interpretation. 

Cognitive module malfunction scenario 
To further evaluate the way symbolic interpretation acts as 

a cognitive shortcut, we set up one more scenario. Since there 
is re-use of a previous acquired cognitive competence, we 
tested how reliable should this competence be for this new 
symbolic process to connect to it. The scenario is similar to 
the one above, but we brought back cycle 1 before cycle 2, so 
the creatures had time to acquire visual-motor coordination. 
However, in this reliability test, we introduced a failure 
chance in the visual-motor coordination after cycle 1, 
simulating a malfunctioning cognitive module. Given an 
output from the FSM in response to a visual input, this output 
(an action) would have a chance of changing to a different 

one. If the input is ‘Resource Left’ and the output from the 
FSM is ‘Turn Left’, for example, it could be changed to ‘Turn 
Right’. Outputs that are responses to auditory inputs are not 
subject to such changes. This way visual-motor coordination 
would be defective and processes relying on it would be 
jeopardized.  

The first simulation of this malfunctioning in visual-motor 
coordination applied a 20% chance of output change. The 
results are presented in figure 5. Compared to a previous 
experiment with 2 cycles but no malfunction (Loula et al., 
2010a), it is possible to notice that the number of collected 
resources during cycle 1 is similar in both experiments, but in 
the second cycle it is quite different: while in the previous 
experiment the best creature collected between 500 and 600 
units, in this unreliable module experiment, the best creature 
collect only around 300 units. This shows that the foraging 
efficiency has dropped down with the imposed 
malfunctioning. Looking at the type of response, signs ended 
up having a symbolic interpretation, thus the unreliable 
visual-motor connections were in fact reused, despite the fact 
that it was not an efficient module. Comparing with the cited 
previous experiment, the interpretation type graph is quite 
similar.  

Taking a closer look at simulation outcome, results show 
that from generation 200 to 210 the foraging performance did 
not improve. Initially creatures ignored signs, but by 
generation 202, a few creatures start trying to respond to signs 
in an indexical manner. These creatures with type 1 
architecture, nevertheless, are not able to move towards the 
vocalizer and still rely in the defective visual-motor 
coordination. In generation 208, almost all creatures are 
ignoring signs again. 

By generation 210, a symbolic interpreter appeared and it 
was able to collect more than 200 resource units. Even though 
visual-motor coordination was degraded, it still performed 
better than the random actions of a creature trying an 
indexical response. From this generation on, the number of 
creatures interpreting signs symbolically increased and, by 
generation 218, almost all creatures followed this type of 
interpretation.  

To further test the effects of a malfunctioning of a 
cognitive module, the chance of changing actions was 
increased to 50% in a new simulation, with the expected 
effect of turning the visual-motor coordination so unreliable 
that its reuse would be not be possible. Results of this 
simulation are shown in figure 6. 

In this new simulation run, we observe that after cycle 1 the 
number of collected resources dropped considerably more, to 
about half of the amount at the end of cycle 1. This was 
expected since the creatures are using a quite defective control 
model that is not able to cope with the task of foraging 
resources efficiently anymore.  

Until around generation 250, creatures had this bad 
performance, but in the meanwhile sign interpretation was 
varying from ignoring signs to indexical response. The best 
performing creatures were most ignoring sign, though, 
indicating that indexical interpreters were not able to 
successfully respond to signs. One or two creatures with 
symbolic response were created but disappear right after as its 
performance was not consistent, due to the dependence on 
visual-motor coordination.  
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At generation 258, there appeared a creature with indexical 
interpretation, able to collect 210 resource units. This creature 
was able to effectively respond to signs by going towards the 
vocalizer when it was located ahead or to the left. Therefore, 
this indexical interpreter was able to rely on a direct 
connection between auditory input and motor actions, and 
avoided using the faulty cognitive module. The number of 
collected resource units along generations increased fast, and 
the best creature (an indexical interpreter) on generation 270 
was collecting almost 600 resource units and this performance 
was consistently kept until the end of simulation. Notice that 
if we compare the efficiency of creatures in the 20% failure 
chance simulation with this 50% failure chance simulation, it 
is clear that even though the second simulation had a worst 
damage to the visual-motor module, it was able to achieve 
better performance at the end.  

Discussion 
In this paper, we continue investigating conditions for 

qualitative different interpretation processes to emerge in a 
communicational context. Previous results showed that 
symbolic interpretation can emerge when the appropriate 
motor coordination is a hard skill to acquire, and therefore 
symbolic processes can act as a cognitive shortcut, mapping 
auditory signs to visual input and reusing visual module 
mapping to motor actions. Here we test other conditions for 
this cognitive shortcut to be established. 

First we removed the first cycle, when creatures were 
allowed to acquire visual-motor coordination, which could be 
reused through a cognitive shortcut. Consequently, adequate 
auditory and visual responses needed to be acquired at the 
same time. From this single cycle experiment, it is possible to 
observe that even though the vocalizer and the hearing sensor 
were available from start, creatures did not use signs at all in a 
first moment. It was necessary to first have minimum visual-
motor coordination for signs to start being interpreted by 
creatures. Indexical interpretation was the first attempt as a 
response to signs. As trying to acquire visual-motor 
coordination and also a sign-motor coordination is a tough 
route, the symbolic interpretation diminished this effort and 
became the dominant strategy. 

To further evaluate the cognitive shortcut stability, we 
imposed a variable malfunctioning to the visual-motor 
connections. At first, a 20% of changing actions specified by 
the visual module still conducted to the establishment of 
symbolic processes, with reuse of a degraded module, but that 
still allowed a relative increase in foraging efficiency. A 
higher failure of 50% proved to worsen the performance of 
the visual control module considerably more, and allowed 
indexical interpretation of sign to be established, as a way to 
avoid reusing it. And, even though symbolic processes were 
established in the 20% failure scenario, it seems that creatures 
got trapped in a ‘local maximum’ performance, as the 
foraging efficacy of creatures in the 50% failure scenario was 
much better. 

Conclusion 
Communication necessarily involves an utterer, who produces 
a sign, conveyed to an interpreter, in whom the sign produces 
its effect. And signs can be of different types according to the 
way it is connected during interpretation process to its 
referent. We proposed that, for two types of signs – indexes 
and symbols – to be interpreted, different cognitive paths had 
to be followed, one with direct mapping of signs to motor 
actions (indexical interpretation) and another one with a 
mapping of signs into another representation form (symbolic 
interpretation) and then to motor actions.  

We proposed that a cognitive shortcut can be established by 
symbolic interpretation processes, by establishing bridges to 
reuse previous acquired competences. We confirmed here that 
the cognitive module to which the symbolic interpretation is 
connecting to must be already established, otherwise there is 
no advantage in such connection. But it does need to be fully 
functional, as minimal visual-motor coordination is sufficient 
to begin a symbolic interpretation process, according to the 
single cycle experiment, and even a moderately damaged 
module can also be reused as a cognitive shortcut. 

Even further investigations on differentiating indexical and 
symbolic processes have to be done. Other aspects and 
conditions should be tested to better understand what leads 
sign interpreters to each of them, for example, how can an 
agent handle both of them at the same time or how does other 
cognitive competences influence this process. We expect that 
the discrimination of these semiotic processes and the 
cognitive apparatus necessary for each of them will bring 
forth more discussion on representation process in 
experiments on the emergence of communication and 
language. 
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Abstract 
As part of our research on <programmed self-decomposition>, 
we formed the hypothesis that originally immortal terrestrial 
organisms evolve into ones that are programmed for 
autonomous death. We then conducted simulation experiments 
in which we examined this hypothesis using an artificial 
ecosystem that we designed to refer to a terrestrial ecosystem 
endowed with Artificial Chemistry (AChem). Our findings 
suggest that, in the case of a mortal organism appearing among 
a population of immortal organisms as a mutant which 
evolutionarily acquires a genetic program for death by means 
of self-decomposition, this organism and its surviving offspring 
surpass immortal organisms and eventually prosper with 
adaptive divergence under various environmental conditions 
within a certain probability. 

Introduction 
We modeled autonomous death, which is the significant and 
universal attribute of terrestrial life, as <programmed self-
decomposition> (Oohashi, et al. 1987, 2009). Our research has 
proceeded through a series of studies that look into the 
existence of autonomous death by means of experiments in the 
field of molecular cell biology with existing living organisms 
as subjects; concurrently, by means of evolutionary 
simulations of Artificial Life (ALife), we raise the possibility 
that mortal organisms having autonomous death are superior 
to immortal organisms (Oohashi, et al. 1987, 1996, 1999, 
2001, 2009, 2011). 
Throughout this study, we take note of the fact that mortal 
organisms endowed with programmed self-decomposition are 
more complex than immortal organisms in both structural and 
functional aspects, and that the former can better increase the 
prosperity of their offspring than the latter can. Therefore, we 
formed the hypothesis that [originally immortal terrestrial 
organisms evolved into ones capable of autonomous death.] 
We then conducted a preliminary investigation using an 
artificial ecosystem SIVA-III (Oohashi et al. 1996) of our own 
design and obtained results that suggest the robustness of our 
hypothesis (Oohashi et al. 2001). 
Thereupon, we constructed a more sophisticated model for a 
more detailed investigation making use of an artificial 
<AChem> ecosystem SIVA-T05. The essential questions we 
sought to answer are as follows: Would an individual mortal 
organism, overwhelmed by immortal organisms, become 
extinct, or could such an individual survive and produce 

offspring? If it survived and produced offspring, what kind of 
power relationships would be established between such mortal 
organisms and the immortal ones? 
Our findings suggest that a mortal organism, born among a 
population of immortal organisms, cannot reproduce and 
becomes extinct in many cases. Nonetheless, a number of 
mortal organisms did manage to survive at a small but 
significant rate. Moreover, once a mortal organism survives, it 
extends its habitation area, surpasses immortal organisms and 
prospers without exception. This paper provides details of the 
above findings. 

Methods 
1) Programmed Self-Decomposition Model  
We previously designed “Programmed Self-Decomposition 
(PSD) Model” (Oohashi, et al. 1987, 2009) based on a 
hypothesis concerning death universally observed in terrestrial 
life. This hypothesis is summarized below since it constitutes 
the framework of the current study, which examines the 
acquisition of death. The terrestrial ecosystem forms a nearly 
closed system in that both its space and substance are limited. 
Accordingly, to maintain the stability of terrestrial life 
activities, the space and substance of the environment used by 
life activities have to be returned to the environment. That is 
to say, the ecosystem must return to its original state. The 
mechanism for restoring the terrestrial ecosystem has 
conventionally been explained by the principle of biological 
circulation called the food chain (Odum, 1971), which is a 
biomolecular recycling mechanism for terrestrial life. We set 
forth a new hypothesis complementary to that of the food 
chain. In our view of the terrestrial ecosystem, besides the 
restoration of the environment due to the food chain, another 
hidden mechanism is fundamentally built into every life 
individual, by which it autonomously decomposes itself so as 
to contribute to the restoration of the environment. We regard 
the phenomenon of decomposition based on the life 
individual’s own effort, called self-decomposition, to be a 
controlled biochemical process of returning the substance and 
space that that individual possesses to the environment for the 
purpose of restoring the environment to its original state. We 
call this programmed self-decomposition (PSD) (Oohashi, et 
al. 1987, 2009). We posit that the effect of the mechanism of 
self-decomposition does not directly accord benefits to the 
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decomposing individual itself, but rather it enhances benefit to 
the species sharing its genetic lineage as well as to the 
ecosystem as a whole. It is necessary to conduct experiments 
to determine whether such a phenomenon is evolutionarily 
selected or not. We have developed a self-reproductive, self-
decomposable (SRSD) automaton, on the basis of which we 
have been examining the PSD model, using von Neumann’s 
self-reproductive automaton model (Neumann, 1951) as a 
prototype (Figure 1) (Oohashi et al., 1987, 2009). 
 
2) Architecture of SIVA-T05  
We developed a virtual ecosystem series SIVA (Oohashi, et 
al. 1996, 2001, 2009) configured with Oohashi’s SRSD 
automaton installed in a finite, heterogeneous environment 
consisting of virtual biomolecules having chemical reactivity. 
Since constructing SIVA-III, a pioneering prototype for an 
AChem system, in 1996 (Oohashi et al. 1996), we have 
continued to develop SIVA as a virtual ecosystem based on 
AChem. To promote the main purpose of AChem, namely, the 
achievement of a closer relationship with existent terrestrial 
life, SIVA-T05, a new version of SIVA, has been developed 
to have a biomolecular hierarchy, as put forth in Network 
Artificial Chemistry (Suzuki, 2004), which is an AChem 
system that succeeds in simulating molecular conformation 
and reactivity by arranging the strength of cohesion between 
elements into a hierarchy. SIVA-T05 was adopted as a 
simulator in this paper. 

A) Environmental Design of SIVA-T05.   To simulate the 
characteristics of a terrestrial environment with limited 
amounts of materials and energy distributed in a finite space, 
the virtual space of SIVA-T05 is designed to be a two-
dimensional lattice consisting of 16 x 16 (= 256) spatial 
blocks. A single spatial block is defined as 8 x 8 (= 64) pixels 
for habitation points. One habitation point is occupied by one 
virtual life individual (VLI) and vice versa [Figure 2(A)]. 
Environmental conditions can be independently defined for 
each spatial block, and those of the 64 habitation points in the 
same spatial block are configured to always be homogeneous. 
VLIs change the quantity of available substances in the 
environment by importing them into their bodies as materials 
for self-reproduction and by exporting them through self-
decomposition. Since all VLIs in one spatial block share the 
same environmental conditions, the population of VLIs in that 
block significantly affects local conditions. Consequently the 
divergence of local environmental conditions across the whole 
ecosystem is gradually emphasized along with the 
proliferation of VLIs, as would also occur in a terrestrial 
ecosystem. 
The temperature gradient and the initial distribution of virtual 
energy and four kinds of virtual inorganic biomaterials (see 
the next section) consisting of VLIs are heterogeneous across 
the whole ecosystem as shown in Figure 2 (B). No substances 
other than virtual inorganic biomaterials exist in the initial 
environment. To simulate the effects of solar energy and its 

Figure 1. Von Neumann’s self-reproductive automaton and Oohashi’s self-reproductive, self-decomposable automaton. 
(A) Von Neumann’s self-reproductive automaton model. This is an immortal type model without an autonomous mechanism for the 
restoration of the environment to its original state. (B) Oohashi’s self-reproductive, self-decomposable (SRSD) automaton model. 
This model uses von Neumann’s self-reproductive automaton model as its prototype. It has a programmed mechanism contributing to 
the restoration of the environment to its original state through autonomous individual death with self-decomposition, which is an 
essential feature of terrestrial life. Two activation modes are defined for the self-decomposition automaton FZ. The first one is 
activated by a signal input from outside, indicating unconformity between the life and its habitation environment. The second mode 
constitutes the end of the life span. 
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diffusion and radiation in the terrestrial ecosystem, a 
predefined amount of energy per time unit is refilled, and the 
total amount of energy in each spatial block must not exceed a 
predetermined threshold. The amount of refilled energy and 
the upper limit of total energy are set at appropriate levels so 
that a simulation does not become meaningless, that is, not so 
small that no VLI can live stably and not so large that all VLIs 
can always live without any failure. 
 
B) Design of Virtual Life in SIVA-T05.  In SIVA-T05, we 
have designed a new type of virtual life based on the 
hierarchical biomolecular covalent bond (HBCB) model 
(Oohashi et al. 2009). Table 1 shows the design of the 
hierarchical structure of virtual biomolecules based on the 
complexity of the interatomic network of actual biomolecules 
that compose terrestrial life.  
Virtual biological polymers (VPs) and virtual biological 
monomers (VMs) are categorized into two groups: the 
functional module group and the constitutive information 
group, which in terrestrial life correspond to the phenotype 
and the genotype respectively. 
Basically each substance in a certain class consists of several 
elements belonging to the next lower class. For example, a 
virtual organic biomaterial (VO) consists of several virtual 
inorganic biomaterials (VIs), and a VM consists of several 
VOs. Several VMs constitute a functional unit, which is a 
subclass of its VP class, and several functional units constitute 
a larger VP. In the present simulation experiments, we 
designed five VMs as a single functional unit. A functional 
unit serves as one word in the SIVA language in the 
functional module group and also constitutes a virtual codon 
(Vcodon) in the constitutive information group. Oohashi’s 
SRSD automaton is installed as an artificial life form in 
SIVA-T05 (Figure 3). The VLI consists of a virtual genome 
and functional automata. The virtual genome is a VP of the 
constitutive information group and corresponds to instruction 

tape I in Figure 3, whereas the functional automata are VPs 
belonging to the functional module group and correspond to 
automata A, B, C, and FZ in Figure 3. The virtual genome 
encompasses the functions of preservation, replication, and 
transcription of structural and functional information about a 
VLI, while the functional automaton encompasses various life 
activities of the VLI, such as synthesis, decomposition, and 
reproduction. 
The virtual genome consists of a sequence of four kinds of 
VM (W, X, Y, Z in Table 1) corresponding to the nucleotide 
in terrestrial life (Figure 3). In the virtual genome, five VMs 
constitute a functional unit, which serves as a Vcodon. 
Namely, each Vcodon is defined as corresponding to one of 
18 kinds of VM (I, J, K, L; O, P, Q, R; 0–9 in Table 1) of the 
functional module group (i.e., virtual amino acid: VAA). The 
sequence of Vcodons defines the sequence of the VAAs in a 
functional automaton. The sequence information regarding all 
automata is described in the virtual genome. For the 
reproduction of a VLI, automaton B replicates the whole 
virtual genome, and automaton A synthesizes a functional 
automaton. Mutation can occur in either of these processes. 
SIVA-T05 executes the functions of the automata described 
by the SIVA language as an interpreter by which life activities 
of VLIs are expressed. First, a functional unit consisting of a 
sequence of five VAAs serves as a <word> in the SIVA 
language. A <word> can be categorized as a functional word, 
which serves as an executable <command>, or as a temporary 
information word (Table 1). A <command> as a functional 
word covers a substantial part of the life activities of a VLI. 
One or more words constitute a <sentence>,   which has to 
include zero or more <command>s and one <period> at the 
end. Before a <command>, a <sentence> can include one or 
more conditional phrases. When there is no conditional phrase 
in the <sentence>, <command>s are directly executed in the 
order described in the <sentence>. If a <sentence> includes 
any conditional phrases, a <command> is executed only when  
 

 

 
 

Class name Functional module group Constitutive information group 
Virtual biological polymer (VP) Polymerized functional units 

Functional unit Functional word (command) Temporary information word  
(variable, relational operator etc.) Virtual codon 

Virtual biological monomer (VM) O P Q R(4 kinds) I J K L0 1 2 3 4 5 6 7 8 9 (14 kinds) W X Y Z(4 kinds) 
Virtual organic biomaterial (VO) A B C D (4 kinds/upper-case letter) 
Virtual inorganic biomaterial (VI) a b c d (4 kinds/lower-case letter) 

Figure 2. Environmental conditions of the virtual ecosystem SIVA-T05 are designed to be finite and heterogeneous. 
(A) Spatial design. The virtual space of SIVA-T05 is a two-dimensional lattice (B) Spatial distribution of environmental conditions. 
Left: Distribution of environmental temperature. Initial distribution of energy stocked in each spatial block. Right: Initial 
distribution of four kinds of virtual inorganic biomaterials (VI). Each substance flows between adjacent spatial blocks to restore the 
environment to the initial condition when the amount of a substance goes above or below that of the predetermined level. 

Table1: Hierarchization of virtual biomolecules composing virtual life based on the complexity of the inter-atomic network. 
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Figure 3. Relationship between life activities of virtual life 
individuals (VLIs) and the environment in SIVA-T05. 
Oohashi’s SRSD automaton is implemented in the VLI in 
SIVA-T05. Each VLI consists of functional automata for 
self-reproduction [D (=A+B+C)], those for self-
decomposition [FZ], and an instruction tape [ID+FZ] (i.e., 
a virtual genome) that is a blueprint of all the automata. 
Automaton A produces all the functional automata 
described in the virtual genome. Automaton B replicates 
the virtual genome. Automaton C constitutes a daughter 
VLI, combining the automata newly synthesized by 
automaton A and the virtual genome replicated by 
automaton B, and divides it from the parental VLI. 
Automaton FZ decomposes a VLI when the VLI 
encounters environmental conditions unsuitable for 
survival or when it lives out its life span. A VLI can 
reproduce itself by the uptaking of substances and energy 
existing in the spatial block to which its habitation point 
belongs. During self-decomposition, the substances and 
the energy generated by the decomposition of virtual 
biomolecules constituting the VLI are restored to the 
spatial block. The occupied space is also released for 
utilization by another VLI. 

 
all the conditional phrases are true but not when any of the 
conditional phrases is false. On the basis of these rules, a VLI 
can be programmed to undergo individual division when all 
conditions are satisfied, and to decompose itself when 
unfitness for its environment exceeds threshold level, etc. 
Each VLI expresses its life activities by executing all 
<sentence>s during one time count (TC), the unit of virtual 
time in SIVA-T05. The order in which a VLI in the virtual 
ecosystem expresses its life activities within one TC is 
randomly determined at every TC. It takes at least 5 TCs for a 
newborn individual to reproduce itself in our current 
simulation experiments. Therefore, we use <passage duration> 
as a virtual time unit, which corresponds to the value of TC 
divided by 5. 
When a VLI reproduces itself, it chooses a habitation point for 
a newborn VLI adjacent to its own habitation point. If the life 
activities of a newborn VLI fit the environmental conditions 
in the habitation point, it can also reproduce itself. If such 
activities do not do so, the newborn VLI decomposes itself 
prior to reproduction. Since certain mutations may accumulate 
as generation changes recur, certain offspring may emerge 
whose life activities fit environmental conditions differing 
slightly from those existing for their parents. Consequently, 
VLIs increase or decrease the size of their habitation point. 
(Oohashi et. al., 2009) 
 

3) Experimental conditions  
First, we designed a VLI of a mortal organism with a genetic 
program for death. This VLI has Automaton A, B, C and FZ 
as described in Figure 1 and 3, an initialization Automaton 
that produces the initial setting of the VLI, and a virtual 
genome corresponding to these Automata. On the basis of the 
PSD model (see Figure 1), the Automaton FZ, the mechanism 
for death, was designed to be activated when either of the 
following conditions is true: (1) unconformity between the 
VLI and its habitation environment or (2) the end of the life 
span of the VLI. We took advantage of this mechanism to 
design a VLI of an immortal organism, of which the value of 
both the conditional phrases of SIVA language for Automaton 
FZ were kept unchangeable at a false value and accordingly 
the functional words in SIVA language for self-decomposition 
in the FZ automaton were kept unchangeable at an inactivated 
state. If a mutation occurs in one of these conditional phrases 
and the value of either conditional phrase becomes 
changeable, it means that a mortal VLI is evolutionarily born. 
The functional words in SIVA language for self-
decomposition of the mutant VLI will become activated, and 
the VLI will decompose itself when the above conditions 
become satisfied during the life of the VLI.  
We seeded a single VLI that possessed this precursor of a 
genetic program for death in the center habitation point of the 
ecosystem with suitable environmental conditions and then 
conducted simulations of reproduction and evolution. 
In the present simulation experiments, mutation of virtual 
genomes randomly occurs at the probability predetermined as 
a mutation rate. We investigated three mutation rates as 
follows: 0.005, 0.002 and 0.001. Mutation rates of the existing 
terrestrial lives are distributed from 10-4 to 10-10. There is a 
tendency for a living organism with a small genome to exhibit 
a large mutation rate. For example, an organism with a 
genome of 104 molecules has a 10-4 mutation rate. Virtual 
genomes of the VLIs in the present simulation experiments 
consist of 1275 molecules of VM, so we think the above 
configured mutation rates are within an appropriate range. 
Consequently, we conducted 200, 500 and 800 simulations at 
mutation rates of 0.005, 0.002 and 0.001, respectively. The 
simulations were of 800 passage durations. Changes in size of 
the habitation area, number of individuals, and frequency of 
mutation were observed. 

Results 
The rates at which mortal organisms evolutionarily emerged 
and survived are shown in Table 2. The denominators are the 
number of simulation trials including many cases in which no 
valid mutation occurred or no VLI of a mortal organism 
emerged within the 800 passage durations. The rates are 3.5%, 
1.4%, and 0.25% for mutation rates of 0.005, 0.002, and 
0.001, respectively. That is to say, when the genetic program 
for death was evolutionarily acquired, the individual 
possessing the program and its offspring did not always 
become extinct and survived within a certain probability.  
When a VLI of a mortal organism survived, it and its 
offspring surpassed VLIs of an immortal organism and 
became prosperous without exception. Figure 4 shows 
successive  changes  of  VLI  distribution,  number  of 
 

484 ECAL 2011



 
Figure 4. Evolutionarily emerging and surviving VLI of 
mortal organism certainly surpassed VLIs of immortal 
organism and became prosperous with adaptive divergence 
under various environmental conditions. Successive changes 
of individual distribution, the number of individual, and the 
frequency of mutation were illustrated. (A) 0.005 of mutation 
rate. (B) 0.002 of mutation rate. (C) 0.001 of mutation rate. 

 
individuals, and frequency of mutation for each mutation rate. 
For example, for the mutation rate of 0.005 [Figure 4 (A)], a 
VLI with a genetic program for death emerged at the 30 
passage durations’ mark and produced offspring without 
extinction. In the case of 0.002 and 0.001 mutation rates 

[Figure 4 (B), (C)], a VLI with a genetic program for death 
emerged at 11 and 29 passage durations respectively. Both 
produced offspring without extinction.  
Successive changes in the number of individuals and the 
frequency of mutation shown in Figure 4 demonstrate massive 
activities of mortal organisms compared to those of immortal 
organisms. The number of VLIs of a mortal organism grew at 
a sluggish pace shortly after emergence. However the mortal 
organisms extended their habitation area by degree, moved 
ahead of immortal organisms around the 300 or 400 passage 
duration mark, and then continued to extend their habitation 
area.  
There was no difference observed in the number of VLIs of a 
mortal organism introduced by the difference in mutation rate. 
We think the difference in the frequency of mutation of mortal 
organisms is reasonable because it may be introduced by the 
difference in mutation rates. 
 
Table2: Probability of evolutionary emergence and survival of 
mortal organism  

Evolutionary emergence and survival Mutation
 rate Frequency Probability 
0.005 7 times per 200 trial 3.5％ 
0.002 7 times per 500 trial 1.4％ 
0.001 2 times per 800 trial 0.25％ 

Discussion 
1) Mortal organism survived and prospered within a 
certain probability   
We carried out an evolutionary simulation experiment using 
our artificial ecosystem SIVA-T05, modeled for a finite, 
heterogeneous terrestrial environment and arranged in a 
biomolecular hierarchy. In many cases, we observed that 
when a mortal organism endowed with an evolutionarily 
acquired genetic program for death was born in a place in 
which immortal organisms already existed, the mortal 
organism, instead reproducing, became extinct by means of 
self-decomposition, overwhelmed by the indigenous immortal 
organisms.  
Nonetheless, our simulation process also demonstrated that 
some mortal organisms were evolutionarily appeared and 
managed to survive at a probability of 0.25% to 3.5% in 
accordance with mutation rates (Table 2). Furthermore, 
without exception, the mortal organisms that could overcome 
extinction thereafter prospered to the extent that they 
surpassed immortal organisms and continued to prosper, 
thanks to adaptive divergence under various environmental 
conditions. 
Although the probability of the survival and prosperity of the 
mortal organisms as shown in our simulations was low, it was, 
nonetheless, significant. Thus we can expect that mortal 
organisms might evolutionarily emerge, survive and prosper 
with adaptive divergence in other ecosystems under various 
environmental conditions while various ecosystems would 
repeatedly receive not a few opportunities for mutation. 
Considering the result of the experiment that a 0.25-to-3.5% 
probability for simulated ecosystems in which mortal 

0

500

1000

1500

2000

2500

0

200

400

600

800

0 800Passage duration 0 800Passage duration

Passage 
duration 80 200 400 800

(A)Mutation rate 0.005

Immortal 
organism

Mortal 
organism

Frequency of mutationNumber of individuals

Immortal organism Mortal organism

Immortal 
organism

Mortal 
organism

＝0

0

500

1000

1500

2000

2500

0

200

400

600

800

0 800Passage duration 0 800Passage duration

Passage 
duration 80 200 400 800

(B)Mutation rate 0.002

Immortal 
organism

Mortal 
organism

Frequency of mutationNumber of individuals

Immortal organism Mortal organism

Immortal 
organism

Mortal 
organism

＝0

0

500

1000

1500

2000

2500

0

200

400

600

800

0 800Passage duration 0 800Passage duration

Passage 
duration 80 200 400 800

(C)Mutation rate 0.001

Immortal 
organism

Mortal 
organism

Frequency of mutationNumber of individuals

Immortal organism Mortal organism

Immortal 
organism

Mortal 
organism

＝0

485ECAL 2011



organisms prosper within a short duration of 800 passage 
durations applied to the terrestrial ecosystem, we believe that 
scale and heterogeneity of the earth’s environment and length 
of time having elapsed during the evolution of terrestrial life 
and its concomitant ecosystem constitute sufficient probability 
for the possibility that mortal organisms could be 
evolutionarily selected and prosper terrestrially. Hence no 
inconsistency exists between our results and the experimental 
results described in our previous report (Oohashi et al. 2001). 
 
2) Explanation of the superiority of mortal organisms  
The transition of a number of individual organisms (Figure 4) 
indicates that the number of mortal organisms surpasses that 
of immortal organisms at the point in time after which 300-to 
400 passage durations has elapsed, and that mortal organisms 
continue to prosper thereafter. How do mortal organisms 
overwhelm immortal organisms in this process? One 
interpretation of this phenomenon is as follows: 
Immortal organisms dominate space and materials once they 
have been secured while the volume of resources to sustain 
life activities monotonically decreases. With less chance of 
reproduction in association with decrease of resources, 
chances for mutation as well as those for evolutionary 
adaptation are likewise reduced without limit. 
On the other hand, mortal organisms release space for other 
organisms and return optimum parts for them to reutilize 
through self-decomposition upon termination of their mortal 
life. By doing so, equally benign or enhanced habitat 
environmental conditions can thus be secured for the all 
organisms including their own offspring in the ecosystem, 
which, in turn, will repeat the alternation of generation by 
utilizing finite space and materials. It is conceivable that due 
to accumulated mutations through the alternation of 
generations, new organisms emerge as a result of accelerated 
evolutionary adaptation in neighboring areas under 
environmental conditions that had not previously permitted 
the existence of earlier generations.  
Independent of the studies that we have undertaken since 1987 
(Oohashi et. al., 1987, 1996, 1999, 2001, 2009, 2011), Todd 
implemented artificial death in his ALife system (Todd, 1993, 
1994), and those experiments supported the recognition shared 
with us that death affords another entity its space in which to 
exist, and that death, accordingly, is essential throughout the 
ongoing evolutionary process. Nevertheless, the model of 
death constructed by Todd differs from our model of death in 
two patently obvious respects. First, death in Todd’s model 
affords no process by which the organism might decompose 
itself into constituent parts for the efficient and collective 
reutilization of other organisms, which is an essential feature 
of our model. Second, the death of an individual in Todd’s 
model appears as a probabilistic phenomenon, or as a given 
result controlled by the simulation system, in sharp contrast to 
the activation of death in our model, which is a process 
genetically regulated in the individual that starts from 
detection either of the end of its life span or of excess 
unconformity with the environment. Consequently, it would 
be difficult to use the ALife system as constructed by Todd to 
investigate the evolutionary emergence of death itself.  
It is noteworthy that the mechanism of programmed self-
decomposition, observed as being evolutionarily selected in 
this study, accords benefits not only to direct offspring but 

also to all organisms of the entire ecosystem. It is difficult to 
produce a tenable explanation for this phenomenon based only 
on the “selfish gene” paradigm.  
Programmed self-decomposition has been observed as a life 
phenomenon of existent terrestrial life as previously reported 
(Oohashi et al, 1987, 2009). The gradual consolidation of 
these complementary approaches—ALife simulations and 
biological experiments—will likely throw added light on this 
topic in the future. 
 
3) Conclusion  
The evolutionary simulations using our artificial ecosystem 
SIVA-T05 show that, if mortal organisms evolutionarily 
acquire a genetic program for autonomous death and then 
appear among a population of immortal organisms, such 
mortal organisms, endowed as they are with a genetic program 
for autonomous death, can survive and will surpass immortal 
organisms lacking autonomous death and will prosper with 
adaptive divergence under various environmental conditions 
within a certain probability. 
The above results thus support our hypothesis that originally 
immortal organisms evolve into mortal organisms by 
acquiring a new genetic program for autonomous death. 
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Abstract

Partner selection is a mechanism that promotes sustainability
of cooperators in cooperative dilemmas. In this paper we in-
vestigate the conditions that favour the evolution of a particu-
lar partner selection model that can be applied to anyn-player
game. The model allows a player to select partner combina-
tions that satisfy his preferences. A limit case of the model is
random choice of partners. Model parameters are under evo-
lutionary control. We present simulations of our model that
show evidence of the evolution of partner selection instead of
random choice.

Introduction
In social interactions one of the main sources of distress is
the proliferation of non-cooperative elements. A small per-
centage of unsocial behaviour is well accepted or even bene-
ficial (Semmann et al., 2003). However, an unlimited growth
of the percentage of free-riders is detrimental to cooperation
and therefore to the maintenance of a society as a whole.

The study of social interactions has been modelled by
several games presenting social dilemmas. For instance we
have Iterated Prisoner’s Dilemma (IPD), Ultimatum, Invest-
ment, Centipede, Public Good Provision (PGP) and Give-
Take (Gintis, 2000; Fudenberg and Tirole, 1991; Axelrod,
1997; Mariano and Correia, 2002). Theoretical analysis of
these games predicts the prevalence of exploiters or non-pro-
social behaviour in general (Gintis, 2000).

Several approaches have been developed in order to limit
proliferation of free-riders. Some of them use game specific
strategies while others fall into mechanism design. In the
former category, we have tit-for-tat as an example of a strat-
egy to play IPD that in a variety of conditions is able to resist
non-cooperative players. In the latter we have the possibil-
ity of partner selection (Izquierdo et al., 2010; Santos et al.,
2006; Aktipis, 2004).

In this paper we investigate the conditions that favour the
evolution of partner selection in any symmetricaln-player
game. In particular, we examine the model proposed in Mar-
iano and Correia (2010). That model assigns probabilities to
combinations of partners that are updated in a process simi-
lar to Hebian learning. The process motivation is that, in the

long run, cooperative players mostly select partners among
themselves. When a positive interaction occurs, instead of
reinforcing probabilities of combinations, probabilities re-
main unchanged. When a negative interaction occurs, the
combination is replaced and its probability is decreased. As
a result probabilities of combinations with positive interac-
tions absorb decreasing probabilities. By positive interac-
tion we mean that a player considers the result as acceptable
or the interaction as cooperative. The model can be applied
to anyn-player game with any type of strategy (determinis-
tic or stochastic).

Related Work

It has been reported in human experiments (Barclay and
Willer, 2007; Coricelli et al., 2004; Ehrhart and Keser, 1999)
that if players are able to select their partners they will seek
cooperative partners while escaping free riders. In Price
(2006) the author refers that in experiments involving hu-
man subjects, people tend to cooperate more when they can
choose their interaction partners and, in that case, they co-
operate when they perceive altruistic behaviour.

There is research on partner selection (Izquierdo et al.,
2010; Pacheco et al., 2006; Santos et al., 2006; Zimmermann
and Egúıluz, 2005; Aktipis, 2004; Semmann et al., 2003;
Hauert et al., 2002; Stanley et al., 1995; Orbell and Dawes,
1993; Vanberg and Congleton, 1992) but this characteristic
is granted in the model, i.e. players cannot choose between
random partner allocation (Suzuki and Akiyama, 2008; Ax-
elrod and Hamilton, 1981) or having the possibility to select
with whom they will play. Moreover, these models are often
tailored for a specific game such as PGP or IPD (Izquierdo
et al., 2010; Aktipis, 2004).

Research similar to ours is Santos et al. (2006)
and Pacheco et al. (2006) where population structure is able
to evolve. Players are embedded in a network. If a player can
change his links, selection favours cooperators that prefer to
maintain links with their kin and to drop links with defec-
tors. However, their findings were done in 2-player games
and they only considered two types of strategies.
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Model Description
The model of partner selection presented in Mariano and
Correia (2010) is characterised by two vectors. One,p,
contains combinations ofn − 1 partners drawn from a set
of candidate partners, which constitute the player’s neigh-
bourhoodN . Each combination is assigned a probability
stored in vector,c. In that paper three update policies of the
above vectors are compared. In the present paper, we use the
policy that has given the best results. In this policy, after a
player plays a game with a combination drawn from vectorc

it compares the utility obtainedu with parameteru
T

and up-
dates vectorp. The probability of the selected combination,
k, is updated as follows:

pt+1

k =

{

δpt
k if u < u

T

pt
k if u ≥ u

T

. (1)

The probabilities of other combinations are updated as fol-
lows:

pt+1

i =







pt
i +

(1 − δ)pt
k

l − 1
if u < u

T

pt
i if u ≥ u

T

, (2)

wherei 6= k, in order to maintain sum to unit andδ repre-
sents the probability decrease factor.

If the utility is lower than thresholdu
T

, slotk of vectorc
is replaced by a randomly generated combination, different
from the ones in the other slots. Players of the new combi-
nation are randomly selected fromN .

Both vectorsc andp have the same length represented
by parameterl. This model has two particular cases of
partner selection. Whenl = 0 the player randomly picks
n − 1 partners fromN to play a game. The specific case
of l = 1 is similar to the model presented in Aktipis (2004)
and Izquierdo et al. (2010). In these works, which only con-
sider IPD (a game with two players) if a player is not happy,
he moves away seeking a new partner. In our case, a new
random combination of partners is selected.

Player Chromosome
The description of the model has shown that it can handle
random partner allocation as well as selection of best part-
ner combinations. As we are using an evolutionary algo-
rithm, the model parameters, namelyl, δ andu

T
, are part of

the player’s chromosome. In our simulations the domain of
l is {0, 1, . . . , l}, wherel represents the maximum value ofl

and the domain ofδ is [0, 1]. The update policy is based on
private information, namely the utility the player assigns to a
specific partner combination. In this paper we simplify and
assumeu = π, the utility is equal to the payoffπ ascribed
by the specific game used. Therefore the domain ofu

T
is

[π, π], whereπ andπ are, respectively, the lowest and high-
est payoff of the game. Besides these three parameters, the
chromosome also contains the strategy,s, used to play the

s strategy
l size of vectorsp andc

u
T

utility threshold
δ probability decrease factor

Table 1: Player’s chromosome

game. When talking about the chromosome we may des-
ignate the coded parameters as variables or genes. Table 1
summarises player’s chromosome.

Evolutionary Setup
A plain genetic algorithm (Holland, 1975) with players’ fit-
ness as the total payoff obtained by a player favours play-
ers that are select more often, typically cooperators. On the
other hand, if we average players’ payoffs other types of
players are favoured. For instance, an exploiter that played
a single game and obtained the highest payoff is favoured
compared to cooperative players that played more games
among themselves, which produces a lower average.

Artificial Life systems such as AVida (Misevic et al.,
2006), Tierra (Ray, 1992) or Polyworld (Yaeger, 1994) do
not have an explicit fitness function. These systems are con-
sidered when the goal is the simulation of open-ended evo-
lution (Chaumont and Adami, 2010). Individuals must con-
tinuously adapt their strategy to the environment they are
faced with. Typically, individuals must manage their energy
in order to survive and pass their genes to their offspring.

Here we use a similar model but we frame it in the context
of game theory. We consider that players obtain energy by
playing some gameG. A player reproduces when his energy
reaches some threshold. Every newborn player starts with
zero energy. A player’s energy is incremented by the pay-
off π he obtains. In order to avoid negative energies due to
negative payoffs, we adjust the payoff by the lowest payoff
obtained in the game,π. Summing up, the energy,e, of a
player is updated as:

et+1 = et + π − π . (3)

Whenever a player’s energy reaches the reproduction thresh-
old, e

R
, he produces an offspring. Reproduction is asexual

and the offspring is a clone of the parent subject to mutation.
The parent’s energy goes back to zero.

The mutation operator is similar for all genes. Parameter
l is perturbed by a discretized normal distribution with mean
zero and standard deviationl/2. Parameteru

T
is modified

by a normal distribution with mean zero and standard de-
viation (π − π)/2. Parameterδ is perturbed by a normal
distribution with zero mean and standard deviation0.5.

Summarising, a player’s phenotype is characterised by his
strategy, the probability and combination vectors, his neigh-
bourhood and his energy. We also record a player’s age. Ta-
ble 2 shows these parameters. When a player is born, vector
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a age
s strategy
p probability vector
c combination vector
N neighbourhood
e energy

Table 2: Player’s phenotype

c is initialised withl random combinations of partners and
vectorp is initialised with constant valuel−1.

Environment

There are different artificial environments that influence how
players interact. Research on cooperation uses toroidal lat-
tices (Nowak et al., 2004), well-mixed populations (Pacheco
et al., 2006), or small-world networks. Population struc-
ture influences the evolution and stability of cooperation.
We opted for a well-mixed population, which means that
a player can draw a combination from all the other play-
ers. Formally, for every playerα in populationP we have
{α} ∪ Nα = P. This is a typical structure in small commu-
nities (Price, 2006).

A simulation is composed of several rounds,NR. In each
round, all players select a combination of partners from their
combination vectorc using their probability vectorp. They
play the gameG. For each played game, all participants up-
date their energy as defined by equation (3). The player that
selected the partners is the only one that updates his prob-
ability and combination vectors, according to equations (1)
and (2). The other players may not know all their partners.
Only the selecting player has all the players in his combi-
nation vector. This approach prevents players from copying
others’ combinations vectors.

The next step in a round is reproduction. All players that
have reached the reproduction threshold generate one off-
spring. These players have their energy reset to zero.

Since reproduction increments population size, we need a
mechanism to avoid an infinite growth of players. In the end
of each round, a player may die with a probability given by
the following sigmoid function:

P (player dies) =
1

1 + eB−|P|−a
(4)

whereB represents the carrying capacity,|P| is the popu-
lation size anda is the player’s age. Not only a player dies
from overcrowding, but also he dies from old age. This im-
plies that setN may vary from round to round with a strong
dependency onB. Since we considered a well-mixed popu-
lation,N is virtually the size of the population. Parameters
that describe the overall behaviour of a simulation are pre-
sented in table 3.

G n-player game
B carrying capacity
e

R
reproduction threshold

P0 initial population
NR number of rounds

Table 3: Simulation parameters

Comments

Players that are only exploited and cannot find sufficient co-
operators, will not be able to reproduce. Also a population
composed of a majority of exploiters may go extinct if the
reproduction threshold is high.

The ratioR1 = e
R
/(π−π) represents the minimum num-

ber of games a player has to play to reproduce. The higher
the former value, the more pronounced the effect of partner
selection. It takes some time for the probability vector to
converge to a situation where only cooperators are present
in the best combinations of the combination vector. This
was observed in a situation where setN is static (Mariano
and Correia, 2010). In this paper we show that this may also
happen in dynamic populations, meaning with variableN .
Notice that a cooperator will reproduce increasingly faster
until the convergence of the probability vector.

An Evolutionary Stable Strategy (ESS) of some gameG
depends on the evolutionary mechanism. For instance, in a
context of infinite populations where players play infinitely
often (Hofbauer and Sigmund, 1998), defection is the ESS
of the PGP game.

Using the energy model that we presented without part-
ner selection (partners randomly picked) all players will play
approximately the same number of games. If the gameG is
symmetric, its Nash Equilibrium (NE) will be maintained
with this energy model. If some player deviates from the
NE, energy obtained per game diminishes and consequently
he will take longer to reach the reproduction threshold. This
means that he will produce less offspring compared to those
that stick to the NE. Due to the carrying capacity, the de-
viating player and his offspring have more chances of dis-
appearing. The bottom line, is that in PGP with our energy
model defection is still the ESS. However, with partner se-
lection this may change. If a player can choose his part-
ners, there may exist other ESS, namely cooperation, in the
PGP game. This results from cooperators selecting prefer-
ably among themselves.

We have used a well-mixed population. Even in this case,
since players select their partners, they are effectively con-
structing a network of contacts. The minimum and maxi-
mum number of contacts a player may have depend onn

and l. The combination vectorc can havel distinct com-
binations differing in a single partner, yielding a minimum
value ofn + l − 2 contacts. On the other end, all players
in every combination may be unique, yielding a maximum

489ECAL 2011



n 3 4 5 6 7
B 100 110 120 130 140 150
e

R
50 60 70 80 90 100

Table 4: Parameters values used in the simulations.

value of(n − 1)l contacts.
This contrasts with recent work that considered other

types of population structure such as small-world and scale-
free (Pacheco and Santos, 2005). With structure the contact
limits above defined may be further reduced.

Experimental Analysis
The capability of the model we present to evolve partner se-
lection can be assessed by tracking parametersl, u

T
andδ.

On the other hand, sustainability of cooperation can be mea-
sured by counting the number of cooperators that appear in
a simulation.

Game

We have performed simulations using the PGP game (Boyd
et al., 2003; Hauert et al., 2002). This game is commonly
studied to analyse cooperative dilemmas. Moreover, it is
a n-player game. It is considered a generalisation of the
Prisoner’s Dilemma (PD) game ton players. In the PGP
game, a player that contributes to the good, incurs a costc.
The good is worthg for each player. Letx be the proportion
of players that provide the good. The payoff of a player that
provides the good isgx − c while players that defect get
gx. The game has a single iteration. The strategy used by
a player is probabilistic and is defined by probabilitys to
provide the good. We assume that the utility of a player is
equal to its payoff. In the simulations we setg = 1 andc =
0.4. The number of players in a game varied between three
and seven. In this game, defection is the Nash Equilibrium
and it is also the unique ESS.

Tested Parameters

We have varied the carrying capacity and some parameters
that influence the number of games a player has to play in
order to reproduce. The latter is directly influenced by the
reproduction thresholde

R
but also by the number of players

per game,n. Table 4 shows the values of the tested param-
eters thus giving an overview of the conditions where the
evolution of partner selection was tested.

The size of initial population is 20. Those players all have
the same chromosome:(s = 1, l = 0, u

T
= π, δ = 0),

i.e. players are cooperative but perform random selection
of partners. Whenever a new offspring is born, mutation
occurs with probability0.1. Mutation of genesl, u

T
andδ

has already been described. The maximum value of gene
l was 10. Genes is altered by a normal distribution with
mean zero and standard deviation0.1. Each simulation run
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(b) 4-player PGP.

Figure 1: Average number of cooperators in the last round.
e

R
is the energy required for reproduction andB is the car-

rying capacity.

consists ofNR = 105 rounds. For statistical purposes, each
result was taken from 30 independent runs, except otherwise
noted.

Results

One major outcome was the identification of conditions for
the survival of cooperators. This is important because in the
plain PGP defection is the ESS. The use of partner selec-
tion modified this situation. Since we are using probabilistic
strategies, we classified a strategy as cooperating if it coop-
erates more than90% of the time. This is a strict threshold
and results could improve if it was lower.

The survival of cooperators depends mostly on the num-
ber of players in a game. With 3-player PGP cooperators
survive, but not with 4 or more players per game (see fig-
ure 1). It has been shown in Mariano and Correia (2010)
that the number of possible combinations of partners grows
exponentially with the number of players per game,n, and
the number of candidate partners,N , which is the size of the
neighbourhood. Now, in a well-mixed population (N is the
size of the population) withn = 4, the difficulty to find a
favourable combination is already too high for cooperators
to survive. In general, if the set of candidate partners is big
and the number of players in a game is high, there are more
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#C=n #C=n−1 #D=1
n π π π − π ∆e C ∆e C ∆e D
3 −.27 .67 .93 .67 .33 .93
4 −.35 .75 1.10 .75 .50 1.10
5 −.40 .80 1.20 .80 .60 1.20
6 −.43 .83 1.27 .83 .67 1.27
7 −.46 .86 1.31 .86 .71 1.31

Table 5: Payoff range and energy obtained per number of
players. The last three columns contain the energy obtained
by a cooperator, represented by letter C, and by a defec-
tor, represented by letter D. In the first situation (#C=ncol-
umn) alln players cooperate, while in the second (last two
columns) all but one player cooperate.

combinations of players to explore. In these cases, the part-
ner selection model requires more time to find the correct
partner combination, which may not be available even with
large life span and low reproduction threshold.

Results also show that there are conditions where the pop-
ulation decreases until there are not enough players to play a
game. Such occurrence of extinctions depends on the num-
ber of players, energy required to reproduce and parameter
B, as shown in figure 2. Extinctions increase with increasing
e

R
and decreasingB. While parameterB can be interpreted

as a carrying capacity, it can also be interpreted as a player’s
average life span (see equation (4)). With lowB values, high
e

R
and smalln it is improbable that a player can attain suffi-

cient energy to reproduce during his life span. This situation
leads to high extinction rates.

We have already seen that 3-player PGP is the only case
where cooperators survive. When we go to 4-or-more-player
PGP the only survivors are defectors. In 4-player PGP, co-
operators are early on wiped out by exploiters and the re-
maining exploiters cannot obtain sufficient energy to repro-
duce and die of old age. However, with growingn the prob-
ability of extinctions diminishes. This is due to the fact that
each player is chosen more often to play by his neighbours.
Therefore he may be able to attain the reproduction thresh-
old,e

R
, even when parameterB is low. In a population com-

posed of only defectors, the payoff obtained by each one is
zero. However, even in this situation, due to how energy
is calculated (see equation (3)), defectors gain some energy.
The more players in a game the more energy defectors ob-
tain. Table 5 shows minimum and maximum payoff values
for the tested number of players.

In the case of 3-player PGP, we analysed the evolution
of the other three variables (genes) of the partner selection
model, see figure 3. The pool size,l, increases from zero
and stabilises around five. Variableδ also increases from
zero and stabilises around0.5. As for u

T
it increases, sta-

bilising just under the Pareto payoff obtained by a cooper-
ator playing with only cooperators. The fact that these pa-
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(d) 6-player PGP.

Figure 2: Percentage of simulations without extinctions.e
R

is the energy required for reproduction andB is the carrying
capacity.
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Figure 3: Example of a single simulation run (3-player PGP, carrying capacityB is 150, reproduction thresholde
R

is 50)
where cooperators are able to persist. In the cooperators plot, red solid line is population size and blue dashed line is number of
cooperators (which fluctuates significantly without a corresponding influence on the average). In the plot ofu

T
the horizontal

dashed line corresponds to the Pareto payoff. Results are plotted every 50 rounds.

rameters stabilise around some values means that there is no
random drift. We confirmed such finding by measuring the
variables under differente

R
andB values, see figure 4. Re-

markably, these variables are almost constant across all the
values experimented for reproduction threshold,e

R
, andB.

Moreover, the memory length for partner combinations,l,
is approximately 5, which is a quite small value. The fact
these variables remain constant under different conditions
reflects that a cooperator doing partner selection can find an
adequate choice of partners, given time to achieve it.

Conclusions
We have analysed the conditions for the evolution of a part-
ner selection model. With such a model, the average number
of games played by some player depends on his character-
istic. Cooperators that select among themselves play more
often compared to defectors. Reproduction was based on
an energy model. Players reproduce when they attain some
reproduction threshold. In order to contain the population
under some limits, players die from overcrowding and old
age.

The results show that cooperators are able to persist in
a population even if with low percentages. These results
were only possible due to partner selection. Cooperators
persistence was only observed in some conditions, namely,
3-player PGP, high carrying capacity and small reproduction

threshold. In other conditions, we observed that defection,
which is the ESS, was the sole strategy present in the pop-
ulation. The evolutionary dynamics of partner selection did
not show any random drift in its variables. In fact the model
is quite robust since the memory of partner combinations,l,
the probability decrease factor,δ, and the utility threshold,
u

T
, are virtually independent of the carrying capacity,B,

and the reproduction threshold,e
R

.
We have shown the evolution of cooperators in the PGP.

In contrast with others, (Izquierdo et al., 2010; Pacheco
et al., 2006; Santos et al., 2006; Aktipis, 2004), this was ob-
tained with stochastic strategies. Previous work has focused
in specific games with only two strategies.

We are currently investigating how cooperators can persist
in games with more than three players. Preliminary results
show that with increasing carrying capacity cooperators live
longer. Another possibility is to decouple the chance of
player survival in two events: one for overcrowding and an-
other for old age.

The fact that players are able to select with whom they
play means that this model is suitable to study the emer-
gence of niches. Suppose a game has multiple strategies to
cooperate. This model of partner selection may favour the
emergence of groups of players, where each group uses one
of the different cooperating strategies available.

We have used a well-mixed population. However, this
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Figure 4: Plots show average data per simulation round
across reproduction threshold (drawn on horizontal axis) and
parameterB (each value has a specific point). Data are taken
from simulations with 3-player PGP.

does not preclude the appearance of a network of players.
With partner selection, a player is restricted to interact only
with the partners in his combination vector. The use of an-
other population structure, such as small-world, for instance,
reduces the number of players available to form partner com-
binations. Consequently the number of partner combina-
tions will be more limited. If we take into consideration the
results with 3-player PGP partner selection may not evolve
in some situations. This occurs specially for small popula-
tions (smallB) and high reproduction energy,e

R
. However,

this is one avenue for future work.
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Abstract 
A metabolism-first scenario for the origin of life entails that as 
early as replicating entities have emerged prebiotically, they 
must have constituted relatively complex molecular networks, 
arising via spontaneous accretion of assemblies of simpler 
organic molecules. While it is widely accepted that self-
catalysis is a prerequisite for life, considerably less attention 
has been devoted to network-based mutual-catalysis and its 
effect on evolution. To remedy this, we have used the graded 
autocatalytic replication domain (GARD) model, previously 
shown to capture essential features of reproduction, mutation 
and evolution in compositional molecular assemblies. We 
simulated a large ensemble of GARD rate-enhancement 
networks, thus allowing one to better study the crucial network 
properties of the implicated molecular assemblies. We found, 
with high statistical power, that high prevalence of mutual-
catalysis is required for the emergence of appreciable diversity 
and evolvability of the assemblies, as well as for them to have 
significant selection attributes. We suggest that only minimal 
self-catalysis capabilities are needed to facilitate evolution-like 
behavior, and that excess self-catalysis may drive a population 
towards an evolutionary ‘dead-end’. 

Introduction 

A metabolism-first scenario for the origin of life entails that 
as early as replicating entities have emerged in the prebiotic 
soup, they must have constituted relatively complex molecular 
networks, arising via spontaneous accretion of early 
assemblies of simpler organic molecules (Dyson 1982; 
Bachmann et al. 1992; Kauffman 1993; Segre et al. 1998a; 
Luisi et al. 1999; Szathmáry 2000; Segre et al. 2001a; Shapiro 
2006; Barandiaran and Ruiz-Mirazo 2008). In this scenario it 
is further proposed that faithful assembly reproduction 
directly stems from certain network attributes. To provide 
support for this scenario one must better understand the 
network properties of the implicated molecular assemblies. 
The GARD kinetic model for origin of life describes the 
homeostatic growth and evolution of an assembly composed 
out of a repertoire of NG simple organic molecules (Segre et 
al. 1998a; Segre et al. 1998b; Segre et al. 2000; Segre et al. 
2001a; Segre et al. 2001b; Shenhav et al. 2003; Shenhav et al. 
2005; Hunding et al. 2006; Lancet et al. 2006) typically 
assumed to consist of amphiphilic molecules, e.g. lipids, and 
suggests a possible pathway to the formation of a minimal 
protocell (Shenhav et al. 2003; Szathmáry et al. 2005; Lancet 
et al. 2006; Thomas and Rana 2007; Chen and Walde 2010). 
The model is based on a catalytic network, β, usually 
presented in the form of a non-symmetric NG×NG matrix, and 

the system is kept away from equilibrium by imposing a 
fission action once an assembly reaches a size of Nmax. 
Key in GARD are compotypes – clusters of replication-prone 
quasi-stationary states (composomes) appearing during 
GARD dynamics – that make the compositional-genome 
(Segre et al. 2000; Segre et al. 2001b; Lancet et al. 2002; 
Shenhav et al. 2007) – and take an essential role in 
evolutionary processes related to GARD. Here, we used 
GARD simulations to ask how attributes of the mutually 
catalytic network embodied in the β matrix govern the 
evolution-related dynamics of compositional assemblies. We 
further report that GARD compotypes may display 
appreciable selection, contrary to a recent report (Vasas et al. 
2010).  
 

Simulations 
The model is subjected to a kinetic Monte-Carlo simulation 
based on Gillespie's algorithm (Gillespie 1976; Gillespie 
1977; Segre et al. 1998a; Segre et al. 1998b), using parameter 
values similar to those typically employed in previous studies. 
A set of 10,000 GARD instances is generated, each with the 
same parameters and a different β matrix generated by a 
randomization of the same lognormal distribution (with a 
mean value of -4 and standard deviation of 4). Such random 
sampling of the β mutual catalysis network may be perceived 
as representing different possible GARD environmental 
chemistries. 

Compotypal diversity 

Fig. 1 shows the correlation between the number of 
compotypes and the self-catalysis power (Eq. 1). As the 
propensity of self-catalysis increases, the probability of 
networks exhibiting a higher number of compotypes (>3) is 
dramatically reduced, 
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Figure 2: Examples of ‘similarity carpet’ before (A, C) and after (B, D) selection.  The first 
example (A, B) is of a simulation positively responding to selection, as seen by the 
frequency of the target compotype increasing by 75% (SE=1.75) in response to the selection 
pressure, seen as higher preponderance of large overall compositional similarity. The 
second example (C, D) is of negative selection. The frequency of the target is diminished 
(SE=0.83) seen as lower preponderance of large overall compositional similarity 
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Figure 1: A density plot for the correlation between the 
number of compotypes and the self-catalysis power, obtained 
from 10,000 GARD instances. 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
meaning fewer possible targets for selection and therefore 
possibly hindering the selection response. Curiously, even 
among the majority of simulations that show only one 
compotype, a large portion has low self-catalysis strength, 
suggesting that low self-catalysis strength is a necessary but 
not sufficient condition for high number of compotypes. 

Selection in GARD 
In order to asses the selection response of GARD assemblies, 
a ‘selection-GARD’ simulation is performed by choosing a 
target compotype and then running the simulation while 
temporarily biasing the growth of assemblies towards that 
target, based on a slight fitness gain and level of 
compositional similarity between an assembly and the target. 
A ‘selection excess’ (SE) parameter is subsequently defined, 
by comparing the frequencies of the target compotype before 
and after selection. An increase in the target frequency as a 
response to selection pressure means positive selection and is 
represented by SE>1. Similarly SE<1 and SE=1 represents 
negative and no selection, respectively. 
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We used the parameter SE to assess the capacity of GARD 
assemblies to undergo a process akin to Darwinian selection. 
Figs. 2 show examples of how GARD assemblies positively 
and negatively respond to selection pressure. Analysis of the 
entire 10,000 simulation instances reveals that a considerable 
percentage (~30%) of the networks show positive response to 
selection (SE>1, and as large as SE=2).  The mean SE value 
in this range is found to be about 1.4.  
Such observations are contrary to a recent report (Vasas et al. 
2010), where a claim has been made that specific GARD 
compositions show a negligible capacity to respond to 
selective pressure. Moreover, we interestingly find that 
networks with strong self-catalytic power exhibit practically 
no selection, and that the same range of low self-catalysis 
power that allows for high compotypal diversity also displays 
selection (both positive and negative), suggesting that GARD 
β networks must have an optimal ratio of self- to mutual-
catalysis to manifest effective evolution-like behavior. 
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Abstract

We explore self-organizing strategies for role assignment
and strategy selection in a foraging task carried out by a
colony of artificial agents. Foraging strategies are selected
by strategies inspired by various mechanisms of division of
labor (polyethism) observed in eusocial insects like ants, ter-
mites, or bees. Specifically we instantiate models of caste
polyethism and age or temporal polyethism to evaluate the
benefits to foraging in a dynamic or unknown environment.
We focus on the ability of division of labor mechanisms to
self-organize individual strategy selection based on the envi-
ronment.

Introduction
The self-organizing strategies of eusocial insects are now
well known and well studied in biology (Beckers et al.
(1989); Traniello (1989); Robinson (1992); Theraulaz et al.
(1998); Theraulaz and Bonabeau (1999); Gautrais et al.
(2002); Roulston and Silverman (2002); Merkle and Mid-
dendorf (2004); Garnier et al. (2007)) and applications to
computation are abundant (Bonabeau et al. (1999); Panait
and Luke (2004b,a); Schmickl and Crailsheim (2008); Ger-
shenson (2010); Ducatelle et al. (2010)). One of the more
remarkable behaviors observed is the ability of rather sim-
ple, unintelligent agents (individual insects) to coordinate
their behavior to establish a rather fluid and adaptive be-
havior on the colony level. The phenomenon of stigmergy
(communication via the environment) has now been mod-
eled and applied in artificial simulations to achieve similar
results among rather simple artificial agents (Theraulaz and
Bonabeau (1999); Bonabeau et al. (1999); Panait and Luke
(2004b,a); Schmickl and Crailsheim (2008)) cooperating in
multi-agent systems.

However, many of these applications focus on homoge-
neous colonies, where each agent has the same behavioral
capabilities. Nonetheless, observations of insects show that
in many colonies the individuals are not always homoge-
neous. Colonies consist of heterogeneous agents, whether
these agents display morphological differences (i.e. distinct
castes) or merely behavioral differences. The effects of this

stratification of agents in a colony is referred to as divi-
sion of labor (DOL) or by the term polyethism (Robinson
(1992); Traniello and Rosengaus (1997); Theraulaz et al.
(1998); Gautrais et al. (2002); Gordon (2003); Merkle and
Middendorf (2004)). As artificial multi-agents systems grow
larger and involve agents with different roles the problem
of assigning roles to agents becomes increasingly important
(Campbell and Wu (2010); dos Santos and Bazzan (2009)).

Biologists differentiate between at least two means of di-
viding roles amongst workers in natural insect colonies. The
means we select for study are called caste polyethism and
age polyethism. Other types of polytheism are also observed
(e.g. elitism) and the two above types have many possible
underlying mechanisms though these additional types and
subtypes will not be explored in detail in this article. Sim-
ulations have just begun exploring task assignment and het-
erogeneous agent populations (e.g. Schmickl and Crailsheim
(2008); Ducatelle et al. (2010)). Our experiment differs from
these in that our agents are assigned the same task (forag-
ing), but must decide which strategy to adopt to solve the
task (between an individual exploratory strategy and a co-
operative exploitative strategy). Other experiments focus on
simulations of actual natural colony behavior in an attempt
to assess models of those behaviors, whereas while we are
inspired by these models our focus is on polyethism as a
self-organizing strategy selection mechanism.

Polyethism

Caste polyethism occurs when distinct types of individuals
are bred by the colony. An individual is effectively born into
its role, often times displaying morphological differences
from individuals from other castes. The clearest example
of castes is the division between the reproductive caste and
the worker caste in eusocial insects. A single or small group
of reproductive females (called queens) are responsible for
all reproductive tasks in the colony while non-reproductive
workers carry out all other tasks required by the colony
(brood care, nest constructions and maintenance, waste re-
moval, foraging, and defense). In some species workers are
further divided into sub-castes. Differences among workers
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from different castes are particular to the worker’s role. For
instance in some species of ants the workers can be divided
into majors and minors (occasionally with an intermediate
caste as well) where the majors are larger than the minors,
this size being helpful in the task they carry out (primarily
colony defense). Minors are smaller, making them more en-
ergy efficient, and they are relegated to less dangerous tasks
like foraging and nest maintenance. Only in rare occasions
will a worker do a task that is typically assigned to a differ-
ent caste.

Age or temporal polyethism is a type of division of la-
bor where the worker’s role is correlated with its age or
changes over time. Age polyethism is more common than
caste polyethism in natural insect colonies. In colonies dis-
playing age polyethism younger workers commonly carry
out less risky tasks (nursing or nest maintenance allowing
them to stay in the nest) whereas older workers carry out
more dangerous tasks (foraging, defense, or raiding where
the agent must leave the nest). It is hypothesized that this
division of labor allows the colony to maximize the work
carried out by each individual worker (i.e. young workers
will be less likely to die and thus can live longer to carry out
more work). This will be beneficial to the colony since it will
have to breed fewer workers if each worker’s longevity (and
thus productivity) is maximized (Tofilski (2002, 2009)). In
certain cases this progressive role assignment may also al-
low younger and less experienced workers to gain the expe-
rience necessary to carry out more difficult tasks (say at the
very least allowing them to become familiar with the lay-
out of the nest and surrounding environment before having
to venture far from the nest) (Tofts and Franks (1992); Tofts
(1993); Franks and Tofts (1994)). Many mechanisms have
been suggested as the underlying reason for observed age
polyethism. The mechanism we employ is similar to the
response threshold model commonly studied (see e.g. Ther-
aulaz et al. (1998); Garnier et al. (2007)).

Artificial Ants
The experiment detailed below involves a colony of artificial
ants engaged in a foraging task. The colony level task is
to maximize the food intake of the colony (allowing colony
sustenance and growth). On the individual worker level the
task is to explore the environment, find a food object, and
return to the nest with the object.

We consider two different strategies for individual work-
ers inspired by natural ant populations. The first, and sim-
pler, strategy is for workers to forage for the most part in-
dividually. We say “for the most part” here since individual
foragers cooperate at least insofar as they attempt to divide
the environment to be explored equally among them (see
Figure 1). We implement this strategy by having ants leave
a “seeker” trail as they leave the nest. While “seeking” the
ants will avoid other seeker trails, meaning they will travel
away from the nest while avoiding the trail they leave be-

hind them, but they will also avoid trails left by other ants,
helping to divide the area somewhat evenly. Other than this
simple cooperation, workers leave the nest and randomly ex-
plore until they find a food object (or reach the range of their
exploration) and return to the nest. We will call this strategy
the “individual” or “exploratory” strategy, and ants follow-
ing this strategy “explorers”. The seeker path left by these
ants also serves as the ants’ sole means of returning to the
den (i.e. they follow seeker paths back).

Ants that find a food source of sufficient size (i.e. they find
at least one food morsel to carry back to the nest and at least
one more food morsel they will recruit others to seek out) the
ant will leave a second type of trail we call the “carrier” trail.
The second strategy, which we call the “cooperative” strat-
egy or “exploitative” strategy, involves foragers that will fol-
low “carrier” trails to exploit food sources that were already
discovered by other ants. Both explorers and exploiters will
leave “carrier” trails under the conditions listed above, but
only exploiters will follow them to food sources.

Trails in our simulation consist of descrete pheromones.
The trail to be followed is selected randomly from observed
trails with probability weighted relative to the trail’s decay
(newer trails more likely to be followed than older ones).
Trails to be avoided are all considered in avoidance behavior,
however if there is a trail to follow the avoidance behavior is
supressed.

These strategies are inspired by those found in natural
populations, with a correlation of colony size to the strategy
used (Beckers et al. (1989); Traniello (1989)). It has been
observed that smaller colonies tend to use the exploratory
strategy whereas as the larger the colony is the more likely
the colony uses an exploitative strategy. Despite this cor-
relation, upon closer examination larger colonies have for-
agers carrying out both strategies, that is, they engage in
polyethism.

It is known (Roulston and Silverman (2002)) that these
strategies fare differently depending on the environment the
colony is situated in. If food objects are uniformly dis-
tributed around the nest then the individual strategy reaches
near optimal foraging. Over time the workers will clear a
disc shaped area of food around the nest, the radius of the
disc being determined by the frequency of food objects and
by the size of the population. This situation is presented in
Figure 1.

Interestingly, in larger colony sizes the cooperative strat-
egy also fares quite well in environments with uniform dis-
tribution of food, though the foragers carry out a more com-
plex foraging strategy. Cooperative foragers form an “arm”
leading from the nest into the environment and this arm has
been observed to swing in a circle around the nest, clearing
food objects as it goes, or spontaneously dissolving and re-
forming in a more lucrative direction. These strategies have
also been observed in natural ant colonies. While the coop-
erative strategy seems to approach the performance of the in-
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Figure 1: Explorers in a uniform environment. The den is in
the center of the torus. Green squares are food. Red paths
are seeker paths. Blue paths are carrier paths. Recall that
explorers ignore the carrier paths.

dividual strategy in experimentation, the individual foragers
have an advantage in an environment with uniformly dis-
tributed food.

A second environment type we have investigated contains
food isolated in patches. For the sake of comparison among
simulation runs our food patches are always placed equidis-
tant from the nest, though in a random direction. In this en-
vironment the cooperative foragers have a clear advantage.
Once a forager finds a patch of food it recruits other foragers
to help it clear the patch and the colony quickly optimizes
the path to the food patch. Figure 2 shows a typical patch
environment (with 2 patches) and a colony of exploitative
ants foraging from the patches.

Individual foragers are at a significant disadvantage when
faced with an environment with a single patch. Many in-
dividual foragers leave the nest in the wrong direction and
return empty handed.

Given the differential success of these strategies in these
environments it is our hypothesis that polyethism in a colony
will be beneficial if the colony is faced with either an un-
known environment (of one of these two types) or with a
dynamic environment consisting of either a combination of
these types or shifting between these types.

Experimental Setup
In our experiment we consider four different types of
colonies that we will expose to five different types of en-
vironment. We will consider how each colony fares in each
environment, as well as how the colony fares across all en-

Figure 2: Exploiters in an environment with two patches.
The den is in the center of the torus. Green squares are food.
Red paths are seeker paths. Blue paths are carrier paths.
Exploiters use the carrier paths to cooperatively forage.

vironments.
A colony will consist of a queen, a population of workers,

a population of larvae, and a store of food. Workers con-
sume food at a constant rate (about 1 food every 450 simu-
lation rounds) and larvae consume food at a constant rate (1
food for the 100 round gestation period).

The queen lives for the duration of the experiment (or un-
til the colony dies of starvation), though workers and lar-
vae may die. Workers die under two conditions. If they
reach their maximum age (selected uniformly from the range
2750-3250 rounds), or if they run out of food energy. When
a worker consumes a piece of food it gains energy that will
sustain it for 450 simulation rounds. If while foraging the
worker’s food energy reaches 0 (i.e. after 450 rounds) then
the worker attempts to return to the nest (possibly without
food). Upon returning the worker will attempt to consume a
unit of food from the store. If there is no food in the store
the worker dies.

A larvae also consumes food, once upon creation by the
queen and again upon changing into a worker. The food
consumed when the larvae matures forms the initial energy
store of the worker. A queen will never create a larvae in an
instance where the food stores are empty, however, a larvae
may mature and find the store empty. In this case the new
worker dies.

Queens from different colonies have different profiles,
however, they all follow the same rule when deciding to re-
produce. A queen will only create a new larvae if the food
store exceeds the current population of workers plus the cur-
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rent population of larvae.

Colony Types
The first two types of colony will form a control group for
comparison. These two types will not use polyethism and
queens in these colonies will create only explorers or only
exploiters respectively. From the earlier discussion we know
that these colonies will fare well in some environments but
not in others and will not be adaptive to a dynamic or un-
known environment.

The third colony will engage in an adaptive caste
polyethism. Queens in this type of colony produce lar-
vae that can mature into either an individual or cooperative
worker. The queen chooses the type of worker to create in
proportion to the success rate of workers of that type. (The
queen keeps track of food returned by each type of forager
over the last 500 rounds, and of the number of each type of
forager. From this she estimates the efficiency of the aver-
age ant of each type and randomly selects to create a new
ant in proportion to the ratio of success rate.) Thus if ex-
plorers are more successful at foraging than exploiters then
a queen will make an explorer with higher probability (and
vice versa). Queens in this type of colony will ensure there
is always at least one worker of each type so success rates
can be properly estimated.

The fourth colony will engage in one type of temporal
polyethism. Workers in these colonies are homogeneous in
their behavioral repertoire, in that they can act as either ex-
plorers or exploiters. Which role a worker adopts depends
first on their age (for younger workers) and then on the de-
mands of the colony (for older workers). In this colony
new workers adopt an individual foraging strategy, and may
switch to a cooperative strategy (or back again) after reach-
ing a particular age (usually consisting of 1 or 2 full foraging
trips). Workers of this type choose to change roles based on
collective experience, that is, in proportion to the success
rate of workers in the colony similar to the mechanism used
in the third colony.

(The estimation of the success rate of each strategy is
carried out with simple counters in our simulation, though
we believe these correspond to a basic stigmergic strategy.
While we do not use pheromones in our model of this behav-
ior we believe this mechanism is closely related to response
threshold models of behavior selection.)

Environmental Types
We expose these 4 colony types to 5 distinct environments:
uniform, patch, roaming patch, seasonal, and mixed. The
rate at which food drops in each environment is the same (1
food every 5 rounds) and each food will stay in the environ-
ment for exactly 1000 rounds or until picked up by a forager.
The uniform and patch environments were described above
consisting of uniformly distributed food or an isolated patch
of food respectively.

The roaming patch environment has a single patch but this
patch will change location every 1000 rounds (the new loca-
tion will be the same distance from the nest as the old loca-
tion). This means that after the patch has moved new food
will drop in the new patch location, though old food is not re-
moved unless foraged or it reaches its 1000 round limit. As
a result there will usually be two patches in the environment,
one containing old food that is decaying and one containing
new food. Figure 2 displays a typical scenario for this type
of environment.

The seasonal environment is intended to simulate an en-
vironment that changes from a uniform distribution to an
isolated patch with regularity possibly corresponding to the
seasons. We simulate this idea by alternating between the
two distributions every 1000 rounds. Again there will be
a temporal overlap between these two environments mean-
ing that the environment will typically contain food dropped
uniformly and in a patch. Every time the season changes to
the patch distribution a new location for the patch is selected
so in this sense we see the patch as roaming as in the last
environment.

The mixed environment includes both uniform food drops
and an isolated patch at the same time, and the environment
is static (in that the patch does not move). In this environ-
ment the drop rate is the same as previous environments de-
spite there being two active food drop mechanisms operating
simultaneously.

Observations and Data
We choose to analyze the worker population data of our
colonies. This data reflects the colonies’ ability to forage
for food efficiently. Each colony begins with an initial food
store of 32 food and zero ants. The queen will use this ini-
tial food to create 16 initial workers which mature on rounds
101-116 of the simulation. At this point the initial food
stores will be exhausted. Parameters of the simulation de-
termine a maximum colony size, namely the food drop rate
and the energy consumption rate of the workers (as well to
a lesser extent the size of the environment). This maximum
is just above 80 workers, though due to the non-linear dy-
namics of the simulation this maximum can be exceeded for
short periods. We used these parameters to balance compu-
tational time with robust results. A single run with a higher
population suggests that the results scale, but further work
would need to be done to verify this.

The initial stages of the simulation are occupied by rapid
growth of population as the foragers are able to bring in
more food than the colony needs so new workers are created
(exceptions to this are noted below). This rapid growth com-
monly results in too many workers and so is often followed
by a large dip in population and an oscillation is observed
until an equilibrium can be found. This equilibrium depends
on the type of colony and environment.

Figure 3 (left column) displays the worker population data
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Figure 3: Worker Population Data. From the top row the data is presented for each environment: uniform, patch, roaming
patch, seasonal, and mixed. The left column displays worker population over time for the four colony types. The right column
displays the division of labor in the Caste and Age colonies. The worker population of these colonies is contrasted to the
number of workers in the colony assigned to the exploration task. Please note we use ”Solo” to indicate explorers and ”Coop”
to indicate exploiters in the charts.
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gathered from all experimental runs. The data presented in
the figure is the average worker population over time for N
different simulation runs (N = 13).

Population Analysis
In the uniform environment the best performance is achieved
by the explorers, and is closely matched by the caste and
age polyethistic colonies. All three colonies settle around
a population of 80 workers after initial instability. While
the exploitative colony has no trouble surviving in this envi-
ronment its sub-optimal foraging strategy allows it to main-
tain only a population of between 40-60 workers. It’s pop-
ulation is also subject to greater instability as the foraging
arm grows and shrinks in size and changes location. This
is further supported by a greater average standard deviation
(11.06) for exploitative population data compared to explor-
ers, caste and age polyethistic colonies (2.37, 2.76, 2.71 re-
spectively).

In the patch environment we again see expected results.
The explorers are unable to maintain even the low initial
colony size and the colony starves quickly. The coopera-
tive foragers are the quickest to exploit the patch, whereas
the polyethistic colonies are able to quickly adapt to the
environment by producing exploiters instead of explorers.
Both polyethistic colonies still maintain a small population
of explorers. The dip in cooperative population observed
near the end of the simulation is caused by two anoma-
lous colonies from the simulation runs that starved to death.
No such extinctions were observed among the polyethistic
colonies. We observe some population instability in this
environment. The average standard deviation for explorers
(18.34) was about double that of the caste and age polyethis-
tic colonies (9.13, 9.27 respectively) indicating greater sta-
bility from polyethism in this environment.

In the roaming patch environment we see that the
polyethistic colonies are able to maintain a higher pop-
ulation than the purely exploitative colony (the explorers
quickly starve in this environment as well). This implies
a better ability to adapt to the moving patch. The exploita-
tive colony also displays a greater instability in population
though all three successful colonies have greater instabil-
ity than in the stationary patch environment (supported by
higher average standard deviations 22.13, 13.73, 13.25 for
the exploiters, caste and age polyethisitc colonies respec-
tively) however still with greater stability in the polyethistic
colonies. Also noteworthy is that all colonies have trouble
maintaining an optimal population.

In the seasonal environment we again observe better per-
formance from the polyethistic colonies than the purely ex-
plorer and purely exploiter colonies. Further there is greater
stability of population in the polyethistic colonies (aver-
age standard deviations 7.76, 7.24 for caste and age respec-
tively), where the pure explorer and pure exploiter colonies
suffer population oscillations corresponding roughly to the

changing seasons (average standard deviations 13.77, 18.65
respectively). Note in the figures the dotted lines display
the changing seasons. The polyethistic colonies manage to
maintain roughly optimal populations in this environment
while the explorer colony suffers the most in the seasons
when food becomes isolated in a patch.

Finally, in the mixed environment, we again see a popu-
lation advantage to polyethism. While both the purely ex-
plorer and purely exploiter colonies survive in the mixed en-
vironment they are unable to reach the optimal populations
and display a slightly greater instability. The purely explorer
population also maintains a slight population advantage over
the purely exploiter population. Stability is highest in the ex-
plorer and polyethistic colonies (average standard deviations
for this environment are 4.26, 15.74, 5.04, and 3.16 respec-
tively).

Division of Labor
A secondary focus of our simulations was on the division
of labor in the polyethistic colonies. We gathered data on
how many workers of each type were deployed at a given
time by the polyethistic colonies. This data is presented in
Figure 3 (right column) for each environment. We display
only the number of explorer workers in the chart in contrast
to the total worker population, with the number of exploita-
tive workers being the difference. In the caste polyethism
colonies this corresponded to how many workers of each
caste were available. In the age polyethism colonies this
corresponded to how many workers were currently assigned
to each strategy during that round.

In the control environments the polyethistic colonies sta-
bilized around a constant number of explorers. For the uni-
form environment both colonies settled at just over half of
the workers (about 50 out of 80 workers) dedicated to ex-
ploring. It is worth noting that the colonies did not try to
maximize the number of explorers in this environment. In
the patch environment the caste colony settled at around 5
workers dedicated to exploring while the age colony main-
tained a slightly higher number of explorers, typically oscil-
lating between 5 and 15 workers. We note that in these envi-
ronments the age polyethistic colony displayed greater oscil-
lations of worker assignments whereas the caste polyethis-
tic colony tended to stabilize around a particular division of
workers assigned to each task.

In the roaming patch environment more explorers were
maintained than in the stationary patch environment. In the
caste colony just over 10 of the workers were assigned the
exploring role. The age colony still assigned more work-
ers to exploring on average than the caste colony, typically
above 15, but as high as 25. Again the age colony had greater
variation in its division of labor.

The seasonal environment displays distinct performance
differences between the two polyethistic colonies. The caste
colony settles on 30 to 35 workers dedicated to exploring.
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This number is stable when compared to the age colony
which attempted to adjust the worker base to the current
season. Thus we see the number of explorers oscillating be-
tween about 25 workers to as high as 43 workers (excepting
the early spike).

In the mixed environment both polyethistic colonies stabi-
lize their worker base by assigning roughly half the workers
to each task. The age colony again assigns slightly more
workers to exploration than the caste colony and displays
slight oscillations.

Discussion
The data presented suggests that polyethism, regardless of
kind, offers benefits to the foraging task. While both of
the foraging methods studied in this experiment (exploring
and exploiting) can be seen as self-organizing methods, the
colonies benefit if the “higher-level” self-organizing method
of polyethism is applied to select which of the strategies
to engage in (Gershenson (2010)). The clearest advantage
shown by our experiment is the ability for these mechanisms
of polyethism to adjust the ratio of explorers to exploiters
based on the environment.

In the environments where the environment is specifically
created to favor one of the two basic strategies, exploring or
exploiting, we see that polyethism allows the colony to ad-
just the worker base to the environment. The only drawback
in these environments to the polyethistic colonies is that they
require some time to adjust to the environment.

In the more dynamic environments we see that polyethism
is necessary to get optimal or near-optimal performance. We
see that in the roaming patch environment, while exploiters
are well suited for this environment, maintaining a small
population of explorers allows the new patch location to be
found quicker, and more quickly exploited (Roulston and
Silverman (2002)).

In the seasonal and mixed environment polyethism is nec-
essary to have optimal foraging. In the seasonal environ-
ment the non-polyethistic colonies suffer in seasons where
they are not well suited. In the mixed environment the non-
polyethistic colonies are unable to exploit all the food drops
and thus cannot maintain as high a population. In the mixed
environment the polyethistic colonies settle on a division of
workers among the two strategies that allows for exploiting
both food sources. It is interesting to note that the polyethis-
tic colonies still managed to reach optimal population levels
in the mixed environment, implying that the two strategies
did not experience negative interference.

We also note that the polyethistic colonies adopt differ-
ent approaches to the seasonal environment. The caste
colony maintains a constant number of each worker. This
can be seen as the colony being prepared for either sea-
son, but not necessarily specializing for the current season.
This approach may be favored by the caste colony because
the season length (1000) is short compared to the lifespan

of a worker (selected uniformly from the range 2750-3250
rounds). Thus the caste colony will not have the opportunity
to adjust the balance of workers each season since workers
from the previous season will still be present in the work
force. The age colony does adjust its work force to the new
season, albeit only slightly, since the workers in this colony
can switch tasks every round trip which is about 300-400
rounds long, shorter than the season length. Both strategies
allow the colony to maintain fairly stable and nearly optimal
populations.

To test this analysis we conducted a follow up experiment
where the season size was extended to 3000 rounds (see Fig-
ure 4). In this run we saw that the caste colony adopted
the adjustment strategy as well, attempting to match work-
ers to the season instead of opting for an equal distribution.
We observed in this case that the age colony was able to
adapt its workers more rapidly than the caste colony, and
thus had a slightly more stable population. The stability of
both colonies’ populations suffered with the longer seasons
due to more polarization of the workforce and the lag be-
tween the season change and the ability of the colony to ad-
just its workforce.

Conclusion
We conclude that division of labor is beneficial to ant
colonies in that it adds a layer of dynamism to their problem
solving as well as makes the colony more robust. We suggest
that the simple self-organizing methods of assigning work-
ers to tasks can be adopted in artificial systems. These meth-
ods are simple to implement and require a minimal amount
of central planning or control. The methods are reactive and
dynamic and can likely be applied in a variety of situations,
this being the topic of future work.

While we found little evidence favoring one of age or
caste polyethism as a method of assigning workers to tasks
we did find that the caste polyethism appeared to be more
rigid in that it took longer for the workforce to adjust to
new conditions. However, the trade off is that in the age
polyethistic colonies there was a tendency to over adjust to
new conditions, which may not be favorable in all situations.
We believe that more work is required to determine the ben-
efits of each of these methods, given that the distribution of
these methods among natural colonies is not balanced (re-
call age polyethism is more common than caste polyethism).
One aspect that was not considered in this experiment, and
probably plays an important role in natural colonies, is the
variable costs to a colony or species (genetically and in terms
of energy expenditure) in producing workers that either are
specialized for their task (caste polyethism) or are general-
ists able to take on any available task (age polyethism).
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Abstract

We propose a novel approach to learning in autonomous
robots that relies on the dynamical maintenance of an actively
sensitized sensorimotor loop. Very weak learning cues are
sufficient to orient a robot towards the desired behavior which
is then selected from the intrinsic exploratory movements
rather than imposed by a control command. The learning
paradigm is a form of guided self-organization and is comple-
mentary to both active and intrinsically motivated learning.
We present a systematic analysis of the learning algorithm in
a robot control task and demonstrate its remarkable scalabil-
ity with respect to the degrees of freedom of the system.

Introduction
Learning in autonomous agents implies an active involve-
ment of the agent in the acquisition of new behavior. Lopez
and Oudeyer (2010) ask for a unified formalism for ac-
tive and intrinsically motivated exploration and observe
a convergence of approaches from machine learning and
developmental psychology towards a new perspective for
developmental robotics. While a number of examples exist
that impressively demonstrate the virtues of this view, it ap-
pears that a different sets assumptions are required that may
eventually turn out to limit the possibility of on-going learn-
ing, scaling and transfer across domains. Since a more ex-
tended discussion is beyond the present scope we should
mention here merely that the present approach aims at a re-
laxation of some of these assumptions. We will use only a
local world model

While some variants of intrinsically motivated learning
try to extract controllable options (Singh et al., 2004; Mar-
tius et al., 2008; Jung et al., 2011) we will use here a re-
lated approach (Martius and Herrmann, 2010) in order to
improve the sensitivity with respect to given learning signals
(cues). We implement in this way a form of self-organized
curiosity (Schmidhuber, 1991; Herrmann, 2001) for the cues
which substantially improves goal-related learning in an au-
tonomous robot. We will show examples where the learning
time within this approach scales very nicely with the com-
plexity of the problem.

We start from an approach to self-organization of robot
control (Der, 2001; Martius et al., 2011) which aims at
robotic behaviors that are characterized by on-going explo-
ration and that can be called natural for a specific robot
in a particular environment (Der et al., 2006; Hesse et al.,
2009). Animals, including humans, can be assumed to ac-
quire their behavioral repertoire in a similar way: Behavioral
elements are developed autonomously and are composed
and refined later in order to realize more complex goals. The
resulting behavior is, nevertheless, subject to an on-going
developmental modulation throughout the whole life span.

In robotics, many promising examples for autonomous
behavioral adaptation and generation have been studied for
instance by Herrmann (2001); Tani (2003); Der et al. (2006);
Nolfi (2006); Oudeyer et al. (2005). Self-organization of
behavior is, nevertheless, still a field of active exploration.
Further questions such as the interaction of learning by self-
organization and learning by supervision or by external re-
inforcement are just starting to gain scientific interest.

Usually, goal-oriented behavior is achieved by direct opti-
mization of the parameters of a control program such that the
goal is approached more closely. The learning system must
receive information about whether or not the behavior actu-
ally approaches the goal. This information may be available
via a reward signal in reinforcement learning or by a fitness
function in evolutionary algorithms. We will consider simi-
lar types of goal-related information when aiming at a com-
bination of self-organizing control with external drives. For
this combination the term guided self-organization (GSO)
was proposed by Martius et al. (2007); Prokopenko (2009).
In a general perspective, GSO is the combination of goal-
oriented learning and developmental self-organization. Each
of the two learning paradigms bring about their particular
benefits and GSO aims at combining them in an optimal
manner. For instance, self-organizing systems tend to have a
high tolerance against failures and degrade gracefully, which
is also desirable in task-oriented applications. when devel-
oping systems aiming to achieve tasks in practical appli-
cations. We will deal in with a specific approach to self-
organizing control, namely homeokinetic learning.
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Homeokinetic learning generates self-organized behavior
which can serve as intrinsic motivation of the robot to be-
come engaged with its environment. The robot learns to
maintain an active low-level sensorimotor loop without ab-
stract or specific information. Here we will study the possi-
bility of including high-level information into this dynami-
cal systems approach such that the robot can learn to reach
a goal or to optimize its behavior according to external stan-
dards.

What can we expect from a guided homeokinetic con-
troller? It has been shown earlier by Der et al. (2006) and
Hesse et al. (2009) that a variety of behaviors can emerge
from the principle of homeokinesis. The emerging behav-
iors show a coherent sensorimotor dynamics of the partic-
ular robot in its environment. With additional guidance
the exploration of the homeokinetic controller can be chan-
neled around desired or preferred behaviors such that control
modes can be quickly found which match the given robotic
task.

The behavior is essentially driven by intrinsic self-
organization, while the goal is easily taken up by the system
due to the optimal sensitivity of the homeokinetic control.
In a sense, we are not considering here an approach to robot
learning but rather an on-going dynamic realization of the
(external or internal) hints as part of an exploratory regime.

In the present paper, we will advance our study of guided
self-organization of behavior, presented in Martius and Her-
rmann (2010), by an application to a high-dimensional sys-
tem. In order to keep the paper self-consistent, we introduce
the homeokinetic control principle in the next section and
present then the guidance by supervised teaching cues. The
latter are the basis for the guidance by cross-motor teaching
that can be implemented by the specification of abstract mo-
tor relations. We will extend this framework and apply it to
the locomotion of bracelet-like robots with up to 40 DoF.

Self-Organized Closed-Loop Control
Self-organizing control for autonomous robots can be
achieved by an intrinsic drive towards active and predictable
behavior as described by the homeokinetic principle (Der,
2001). We assume that the dynamics of the sensor values
x ∈ Rn of the robot can be written as

xt+1 = ψ(xt) + ξt+1 (1)

where ψ is the internal model maintained and adapted by the
robot to predict future sensor values and ξ is the prediction
error. The motor values (actions) y ∈ Rm are generated
by a controller implemented simply as a parametric map or
one-layer neural network:

yt = K (xt, Ct) = g (Ctxt + ht) (2)

where g(·) is a sigmoid function with gi(z) = tanh(zi). The
controller parameters C consist of a weight matrix C and a

bias vector h. We compose the map ψ from a forward model
M(x, y,A) and the controller K(x, C) (Eq. 2) as

ψ(xt) = M(xt, yt,At) = M(xt,K(xt, Ct),A). (3)

The function M is initially unknown, but the robot adapts it
continuously in order to minimize the prediction error ξt by

At+1 = At − εa
∂

∂At
‖ξt‖2. (4)

If the parameters C were also adapted in this way then sta-
ble but typically trivial behaviors would be produced unless
specific information is given to the robot.

The homeokinetic principle which we are going to use
here normally does not need any specific information in or-
der to produce a variety of elementary behaviors in a robot.
We will show that this principle for the self-organization of
behavior offers also a new perspective for learning in robots.
That is, if additional information is available then a home-
okinetically controlled robot can use this information more
efficiently. This follows from the strongly enhanced sen-
sitivity of the learning system and establishes a novel ap-
proach to learning in robots.

The homeokinetic principle suggests to use the so-called
time-loop error (TLE) which is based on the reconstructed
sensor values x̂t. Using Eq. 1 and assuming for now that ψ
is invertible we define

x̂t = ψ−1 (ψ(xt) + ξt+1) = ψ−1 (xt+1) (5)

which are sensor values that would have made the predic-
tion perfect. Intuitively x̂t is obtained by going forward in
time from xt to xt+1 and then backward in time to x̂t. This
sequence is called the time loop and thus the TLE is

ETLE = ‖vt‖2 with vt = xt − x̂t (6)

which minimizes the mismatch between true sensor values
xt and their reconstruction x̂t.

In linear approximation we obtain vt ≈ L−1t ξt+1, where
the matrix Lt = ∂ψ(xt)

∂xt
is the Jacobian of ψ at time t. Note

that vt can only be calculated after xt+1 is available. We
account for non-invertible L by using a regularized inverse.
The TLE

ETLE = ‖vt‖2 ≈ ξ>t+1

(
LtL

>
t

)−1
ξt+1, (7)

minimizes the norm of v (Eq. 6) and accounts for the error
ξ (Eq. 1) only as much as it is transformed by the inverse
dynamics of the system. This reveals another important fea-
ture of this error quantity, namely to minimize the norm of
the inverse Jacobian. This results in an increase of predom-
inantly the small eigenvalues of L. Therefore, the controller
performs a destabilization in time. This eliminates the trivial
fixed points (in sensor space) and enables spontaneous sym-
metry breaking which shows in the robot e. g. as a transition

507ECAL 2011



from rest to a directed movement. Nevertheless, the system
does not start to behave chaotically or enters uncontrollable
oscillations because the destabilization is limited by the non-
linearity g(·) (Eq. 2). Intuitively, homeokinesis can be un-
derstood as the drive towards non-trivial behaviors that are
still predictable by the internal model. Since the internal
model is simple, smooth behaviors are preferred. Fig. 1 il-
lustrates how the homeokinetic controller is connected to a
robot.
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Figure 1: The homeokinetic controller connected to the
ARMBAND robot. The ARMBAND consists here of m=13
flat segments that are connected by actuated joints. It re-
ceives sensory inputs xi from the joint position sensors. The
control architecture consists of the controller K and the pre-
dictor M which are combined to form ψ, see Eqs. 1 - 2. The
transparent ball indicates the center of mass of the robot. It
is used for evaluation of performance but not for control.

The TLE (Eq. 7) is minimized by gradient descent which
gives rise to a parameter dynamics that evolves simultane-
ously with the state dynamics, see e. g. (Hesse et al., 2009).

Ct+1 = Ct − εc
∂

∂C
ETLE

ht+1 = ht − εc
∂

∂h
ETLE

(8)

The learning rates εc ≈ εA for the controller and the model
are chosen such that the system adapts on the behavioral
time scale. Because of unavoidable sensory noise, the TLE
is never zero, neither does it have a vanishing gradient. The

rule (Eq. 8) produces therefore a continuously itinerant tra-
jectory in the parameter space, i. e. the robot traverses a se-
quence of behaviors that are determined by the interaction
with the environment. These behaviors are, however, wax-
ing and waning and their transitions are hard to predict.

As an example, consider a robot with two wheels that is
equipped with wheel velocity sensors. In the beginning the
robot rests, but after a short time the homeokinetic learn-
ing rule initiates autonomous forward, backward or turn-
ing movements. If a wall is encountered that causes the
wheels to stop, the robot will immediately reduce the motor
speed and change the internal parameter to regain sensitiv-
ity. Eventually it will drive in a free direction. A more com-
plex example for the self-organization of natural behaviors
was provided by a spherical robot (Martius and Herrmann,
2010) that is actuated by movable internal masses. After a
short time the robot starts to roll around one of its internal
axes, but switches to a different axis every so often. Fur-
thermore, high-dimensional systems such as serpentoid or
catenoid robots, quadrupeds, hexapods and wheeled robots
have been successfully controlled (see Martius et al. (2011)).

It is of particular interest that the control algorithm in-
duces a preference for movements with a high degree of
coordination among the various degrees of freedom. All
the robotic implementations demonstrate the emergence of
play-like behavior, which are characterized by coordinated
whole body movements seemingly without a specific goal.
The coordination among the various degrees of freedom
arises from their physical coupling that is extracted and
enhanced by the controller, because each motor neuron is
adapted to be sensitive to coherent changes in all degrees of
freedom due to Eq. 8.

Guided Self-Organizing Control
How can we guide the joint dynamics of state (1) and pa-
rameters (8) in order to realize a given goal by the self-
organizing process? One option is to modify the lifetime of
the transient behaviors depending on a given reward signal,
see Martius et al. (2007). A second and more stringent form
of guidance was proposed by Martius and Herrmann (2010)
and will be augmented and applied to a high-dimensional
system in the present paper. We will formulate the problem
in terms of problem-specific error functions (PSEF) that in-
dicate an external goal by minimal values. A trivial example
of such an error function is the difference between externally
defined and actually executed motor actions. This is a stan-
dard control problem which, however, becomes difficult if
the explorative dynamics is to be preserved.

GSO focuses on this interplay between the explorative
dynamics implied by homeokinetic learning and the addi-
tional drives. The challenge in the combination of a self-
organizing system with external goals becomes clear when
recalling the characteristics of a self-organizing system. One
important feature is the spontaneous breaking of symmetries
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of the system. This is a prerequisite for spontaneous pat-
tern formation and is usually achieved by self-amplification,
i.e. small noisy perturbations cause the system to choose one
of several symmetric options while the intrinsic dynamics
then causes the system to settle into this asymmetric state.
A nonlinear stabilization of the self-amplification forms an-
other ingredient of self-organization. These two conditions
which we will call our working regime, are to be met for a
successful guidance of a self-organizing system. There are
several ways to guide the homeokinetic controller which we
will discuss in the following.

Guidance by Problem-Specific Teaching
First we will describe how problem-specific error functions
(PSEF) can be integrated. Recall that the adaptation of the
controller parameters is done by performing a gradient de-
scent on the time-loop error. The PSEF must depend func-
tionally on the controller parameters in order to enable the
same procedure. Unfortunately, the simple sum of both gra-
dients (of the time-loop error and of the PSEF) is likely to
steer the system out of its working regime. Furthermore,
we cannot easily identify a fixed weighting between the two
gradients that would satisfy an adequate pursuit of the goal
while maintaining explorativity. One reason is that the non-
linearity (Eq. 2) in the TLE causes the gradient to vary over
orders of magnitude. A solution to this problem can be ob-
tained by scaling the gradient of the PSEF according to the
Jacobian matrix (see 7) of the sensorimotor loop such that
both gradients become compatible. This transformation is
essentially a natural gradient with the Jacobian matrix of the
sensorimotor loop as a metrics. The update for the controller
parameters C is now given by

1

εC
∆Ct = −∂ETLE

∂C
− γ ∂EG

∂C

(
LtL

>
t

)−1
, (9)

where EG is the PSEF and γ ≥ 0 is the guidance factor
deciding the strength of the guidance. For γ = 0 there is no
guidance and we re-obtain the unmodified dynamics (Eq. 8).

For clarity we will start with a very simple goal, namely
we want a robot to follow predefined motor actions called
teaching signals in addition to the homeokinetic behavior.
We can define the PSEF as the mismatch ηGt between motor
teaching cues yGt and the actual motor values, thus

EG = ‖ηGt ‖2 = ‖yGt − yt‖2. (10)

Since yt is functionally dependent on the controller pa-
rameters (Eq. 2), the gradient descent can be performed,
i.e. the derivative reads ∂EG

∂Cij
= −ηGi g′i xj , where g′i =

tanh′
(∑n

j=1 Cijxj + hi

)
(all quantities at time t). A sim-

ilarly motivated approach is in linear systems is homeo-
taxis (Prokopenko et al., 2008).

An evaluation of the guidance mechanism has been per-
formed using the TWOWHEELED robot, which was simu-
lated in the realistic robot simulator LPZROBOTS (Martius

et al., 2011). The motor values determine the nominal wheel
velocities and the sensor values report the actual wheel ve-
locities of both wheels. We provided to both motors the
same oscillating teaching signal. The resulting behavior is
a mixture between the taught behavior and self-organized
dynamics depending the value of γ. For γ = 0.01 the teach-
ing cues are followed most of the time but with occasional
exploratory interruptions, especially when the teaching cues
have a small absolute value. In this case the system is closer
to the bifurcation point where the two stable fixed points
for forward and backward motion meet. These interruptions
cause the robot, for example, to move in curved fashion in-
stead of strictly driving in a straight line as the teaching
cue suggest. The exploration around the teaching signals
might be useful in general to find modes which are better
predictable or more active.

Interestingly, we can similarly define a mechanism that
uses teaching cues in terms of sensor values (Martius and
Herrmann, 2010).

Guidance by Cross-Motor Teaching
Guidance mechanism can also use internal teaching signals.
As an illustrative example, consider the mirror-symmetry
that is preferred in many control systems. We will first fol-
low this idea and describe a simple implementation follow-
ing this example before we generalize this scheme later in
order to apply it to high-dimensional systems. In either case,
motor values of some motors will be used as teaching signals
for other motors.

Pairwise symmetries. For two motors, guidance can be
introduced by

yGt,1 = yt,2 and yGt,2 = yt,1, (11)

where yGt is the vector of nominal motor values, see (9, 10).
For experimental evaluation we placed the TWOWHEELED
robot in an environment cluttered with obstacles and per-
formed many trials for different values of the guidance fac-
tor. The robot was rewarded for straight movement and was
therefore expected not to get stuck at obstacles or in corners
and cover substantial parts of its environment. In order to
quantify the influence of the guidance we recorded the tra-
jectory, the linear velocity, and the angular velocity of the
robot. We expect an increase in linear velocity because the
robot is to move straight instead of circling. For the same
reason the angular velocity should be lowered. In Fig. 2
the behavioral quantification and a several sample trajecto-
ries are plotted. Additionally the relative area coverage is
shown, which indicates that much more area of the environ-
ment was covered by the robot with guidance compared to
freely moving robot. As expected, the robot shows a distinct
decrease in mean turning velocity and a higher area coverage
with increasing values of the guidance factor until the guid-
ance becomes dominant and the performance drops. In the
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Figure 2: Behavior of the TWOWHEELED robot when guided to move preferably straight. (a) Mean and standard deviation
(of five runs each 20 min) of the area coverage (area), the average velocity 〈|v|〉, and the average angular velocity 〈|ωz|〉 for
different values of the guidance factor γ. Area coverage (box counting method with 300×300 boxes) is given in percent relative
to case γ = 0 (right axis). The robot is driving straighter and its trajectory covers more area for larger γ. The inset shows a
screenshot of the simulation. (b) Example trajectories for different guidance factors. Note that for γ = 0.1 still many boxes are
visited but less well spread. Parameters: εc = εa = 0.01, update rate 100 Hz.

normal regime the robot is still performing turns and drives
both backwards and forwards and that it does not get stuck
at the walls, as seen in the trajectory in Fig. 2(b), is because
the sensitivity (exploration) and predictability (exploitation)
of the controller remain. If the guidance is too strong the
favorable properties of the self-organizing behavior are lost
such that the robot stalls or performs repetitively the same
motion. Note that already very small values of γ yield a
high effect of the guidance.

Permutation relations. In a more general cross-motor
teaching setup, each motor has one incoming and one out-
going connection, such that there is still only one teaching
signal per motor. The connections can be described by a per-
mutation πm of m motors that assigns each motor a source
of teaching input. The teaching signal is then given by(

ySt
)
i

= (yt)πm(i) for i = 1, . . . ,m. (12)

With a cyclic schema of connections a group of motors can
be synchronized. In the following experiment we use a
rotation-symmetric motor connection setting to show that a
high-dimensional chain-like robot can quickly develop a lo-
comotion behavior.

The ARMBAND robot consists of a sequence of flat seg-
ments placed in a ring-like configuration, where subsequent
segments are connected by motor-operated hinge joints. As
a result we obtain a robot with the appearance of a bracelet
or chain, see Fig. 1. Each joint provides a sensor value of
the current position. The motor values define target joint po-
sitions, which typically cannot be reached due to substantial

physical constraints and underactuation. In this way the con-
troller obtains informative feedback from the robotic body.
Since the robot is symmetric there is by construction no pre-
ferred direction of motion, meaning that the homeokineti-
cally controller robot will move forward or backward with
equal probability. The robot cannot turn or move sideways,
but it can produce a variety of postures and locomotion pat-
terns.

With the method of cross-motor teaching we can select
different symmetries, such that the robot is more likely to
perform a directed motion. For that we define the permuta-
tion used in Eq. 12 as

πm(i) = (i+ k + bm/2c) mod m, (13)

where k ∈ {−1, 0, 1}. Coarsely speaking, this connects mo-
tors on the opposite side of the robot with a shift to one or
the other side in a way that depends on k. The choice of
k reflects the desired direction of motion and depends on
whether the number of joints m is even or odd. If m is even
then k = −1 and k = 1 are used for both directions (for-
ward or backward) and k = 0 represents a point symmetric
connection setup. In the latter case the robot will not pre-
fer a direction of motion and the behavior is similar to the
case without guidance. For odd values of m, which is used
here, k = 0 and k = 1 need to be used, resp., for backward
and forward motion. In the following experiments the robot
has m = 13 motors. The motor connections for k = 1 are
shown in Fig. 3. Each motor connection is displayed by an
arrow pointing to the receiving motor. Note that the connec-
tions are directed and a motor is not teaching the same motor
from which it is receiving teaching cues. For k = 0 (and n
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Figure 3: ARMBAND robot with cross-motor connections.
Links are connected by hinge joints that are actuated by
servo motors. The curved arrows indicate unidirectional
cross-motor connections. For these connections the robot
preferably moves leftwards. All links are identical, but four
links are drawn boldly for better visibility.

odd) all arrows are inverted, meaning that for each connec-
tion the sending and receiving motors would swap roles.

Results
To evaluate the performance we conducted for different val-
ues of the guidance factor γS five trials each 30 min long.
In a first setting the cross-motor connections were fixed
(k = 1) for the entire duration of the experiment. We ob-
served the formation of a locomotion behavior after a very
short time. Note that this behavior requires all joints of the
robot to be highly coordinated. As a quantitative measure of
the performance we calculate the horizontal velocity v us-
ing the center of mass of the robot. Thus, the velocity is a
scalar and we define forward motion if v > 0 and backward
motion if v < 0. In this experiment we expect the robot to
move only forward, because a fixed cross-motor connection
setup was used. The average velocity of the robot increased
distinctively with raising guidance factors, see Fig. 4(a). For
excessively large values of the guidance factor γS the ve-
locity goes down again. This occurs for two reasons: First,
the cross-motor teaching has a too strong influence on the
working regime of the homeokinetic controller and second
the actual motor pattern of the locomotion behavior does not
perfectly obey the relations between the motor values, not
all motor values are exactly equal. Again, already a small
value of γ is sufficient to achieve the goal. It appears the
self-organizing system needs only very little influence to be
guided into the desired regions of the behavior space.

Without guidance the robot moves equally to both direc-
tions but with comparably low velocity. This can be seen at
the mean of the absolute velocity in Fig. 4(a). If the value of
the guidance factor is chosen conveniently, the robot moves
in one direction with varying speed see Fig. 4(b) for 3 ve-
locity traces. The velocity traces are seen to have a peak
followed by a dip before a more steady regime is attained. It
appears that the controller learning surpasses a more optimal

configuration with respect to the velocity, but there the trade-
off between self-organizing and guidance is not met. Later
strong fluctuations may occur that reflect the explorative na-
ture of the homeokinetic part. The locomotive behavior can
also be seen in Video 1, see Ref. (Supplement, 2011), for a
low value of guidance factor (γs = 0.001) and in Video 2
for a medium value of guidance factor (γs = 0.003).

In a second setup, we changed the cross-motor connec-
tions every 5 min, i. e. k was changed from 0 to 1 and back.
A value of k = 0 should lead to a negative velocity and a
k = 1 to a positive velocity. To study the dependence on the
guidance factor and to measure the performance we use the
average absolute velocity (〈|v|〉) and the correlation of the
velocity with the configuration of the connections (ρ(v, k)),
see Fig. 5(a). Without guidance (γS = 0) there is, as ex-
pected, no correlation with the supposed direction of loco-
motion. For a range of values of the guidance factor we
find a high total locomotion speed with a strong correlation
to the supposed direction of motion. Note that the size of
the correlation depends on the length of the intervals of one
connection setting. For long intervals the correlation will ap-
proach one. In Fig. 5(b) the velocity of the robot is plotted
for different runs with the same value of the guidance fac-
tor that was used in the previous experiment (γS = 0.003).
We observe that the robot changes the direction of motion
shortly after the configuration of connections was changed,
see also Video 3 at Supplement (2011).

The locomotion of the robot is essentially influenced by
the number of cross-motor connections. For that we use
again the fixed connectivity. In a series of simulations a
number 0 ≤ l ≤ m equally spaced cross-motor connec-
tions (Fig. 3) are used. With increasing l the robot start to
locomote earlier. Full performance is reached already if 8
out of the 13 connections are used, see Fig. 6(a).

In order to study the scaling properties of the learning al-
gorithm we varied the number of segments m of the robot
and thus the dimensionality of the control problem. The re-
sults are astonishing, see Fig. 6(b): The behavior is learned
with the same speed also for large number (40) of segments.
There is no scaling problem here for the following reason. In
the closed loop with an approximate feedback strength (self-
regulated by the homeokinetic controller) the robot needs
only very little influence to roll. The length of the robot
can even help because other behavioral modes (e. g. wob-
bling) are damped increasingly due to gravitational forces.
For the same reason, small robots are slower than medium
ones. Large robots are again slower because the available
forces at the joints become too weak. The experiment il-
lustrates that specific behaviors can be achieved in a high-
dimensional robot by using cross-motor teachings. Cross-
motor connections can break the symmetry between the two
directions of motion such that a locomotory behavior is pro-
duces quickly. When the connections are switched later dur-
ing runtime, the behavior of the robot changes reliably.
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Figure 4: Performance of the ARMBAND robot with constant cross-motor teaching. (a) Mean and standard deviation of the
average velocity 〈v〉 and the average absolute velocity 〈|v|〉 of five runs for different guidance factors γS . (b) Velocity of the
robot v (average over 1-minute sliding window) for three runs at γS = 0.003, k = 1, εc = εa = 0.1, 100 Hz update rate.
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Figure 5: Performance with switching cross-motor teaching. (a) Mean and standard deviation of the average absolute velocity
〈|v|〉 and the correlation ρ(v, k) of the velocity with the configuration of the connections of five runs for different guidance
factors γS . (b) Velocity (average over 10-seconds sliding window) for three runs of the robot with a supposed direction of
motion D. Parameters as in Fig. 4.

The guidance mechanism can also be transferred to sensor
space using the direct sensor teaching, which was discussed
above and was proposed by Martius and Herrmann (2010).
One obtains a cross-sensor teaching analogously to the defi-
nitions given above. This can become useful, for example, if
a certain behavior is demonstrated by a human operator by
passively moving the robot. In the case of the ARMBAND
robot, one can easily imagine that the robot is pushed along
the ground such that a locomotion pattern is formed. Based
on the sensor readings, the correlations between the sensor
channels can be determined and serve as a basis for the con-
struction of a specific cross-sensor teaching configuration.

Discussion
We have presented here two mechanisms to guide the
homeokinetic self-organization of behavior. The first one
uses desired motor patterns that were introduced into the
learning dynamics by means of an additional error function.
The strength of guidance can be conveniently adjusted. We
have considered also cross-motor teaching as a new way of
using the directed teaching to select desired behaviors. The

approach introduced here is realized by a permutation of the
motors signal for teaching. We applied this algorithm to a
bracelet-like robot (ARMBAND) with many degrees of free-
dom and demonstrated the accelerated development of loco-
motion behavior from scratch. Even the relearning to the op-
posite direction of motion is possible very quickly. Since the
learning is very fast and the performance changes gradually
with changing γ, the guidance factor could be adapted au-
tomatically. Most striking is the scaling of the algorithm to
higher dimensions. In the present case the performance did
not decrease when the robot was enlarged to have 40 DoF.
This is a result of the exploitation of the embodiment by the
self-organization process.

The exploratory character of the controller is retained un-
der guidance and helps to find a behavioral mode even if
the specification of the motor teaching signals are partially
contradictory. For example, the TWOWHEELED robot can
choose freely between driving forward or backward, because
the behavior-space is only partially constrained. Further-
more, it is evident that the robot remains sensitive to small
perturbations and continues to explore its environment. The
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Figure 6: Scaling of learning time and performance for different robot complexity. The plots show mean and standard deviation
of the distance traveled by the robot (‘dist’ in units of 1 segment size) and of the time-to-start (‘tts’ in seconds) of 20 runs à
10 min (γ = 0.003). (a) Performance as a function of the number of cross-motor connections l (equally spaced around a robot
with m = 13 joints). (b) Performance for different numbers of segments m (DoF) with full cross-motor connectivity (l = m).

constraints are not strictly enforced by the algorithm but
the self-organization can find a mode that fits better to the
particular embodiment. The presented experiments with
the ARMBAND demonstrate this effect. The guidance sig-
nal alone would synchronize all motors to the same value
(same phase in the oscillations) which does not lead to a lo-
comotion behavior whereas the combined learning dynam-
ics leads to a smooth and adaptive locomotion, see Video 3
(Supplement, 2011).
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Abstract

Vicarious trial-and-error(VTE) is a type of conflict-like be-
havior, observed in route selection tasks (Tolman (1939)).
Studies of VTE have shown a correlation between the number
of VTEs exhibited by a system with its learning efficiency. At
the onset of learning a task, the number of VTEs increases,
and when the learning reaches its plateau, it decreases.
The question we explore in this paper concerns the role of
VTE. Basing ourselves on a model developed by Bovet and
Pfeifer (2005), we ran robotic experiments to compute the
number of VTEs during the learning of a T-maze task. Our
results first show that what has been found in rats can be repli-
cated in artificial systems. Furthermore, by changing the con-
nectivity pattern of the original model, we discovered that the
connection between VTEs and learning efficiency might not
be necessarily true as our results show that two models ex-
hibiting the same performance can possess a different pattern
of VTEs. By comparing the robustness of the two models un-
der varied conditions, we propose that VTEs are connected to
the adaptivity of a system to environmental changes.

Introduction
In his experiments, Tolman (1939) observed that rats are
seemingly hesitating when they must choose between one
of two rooms, one of which containing a reward while the
other being empty. The only cue differentiating the rooms is
the color of their doors. A black door indicates the room pro-
vides a reward, and a white color indicates an empty room.
To reach the reward, the rats must learn the relationship be-
tween the color of the door and the presence of the reward.
During the learning phase, the rats have been seen moving
their head from one door to another which is referred by
Tolman as a conflict-like behavior named ”vicarious trial-
and-error (VTE)”. In his experiments, Tolman noticed that
the number of VTEs increases at the onset of the learning
phase to start decreasing when the performance reaches its
plateau. From that observation, VTE has been connected to
learning efficiency.

Following Tolman’s observations, other researchers
started paying attention to the presence of VTEs in their
studies. Hu and Amsel (1995) showed hippocampal con-
tribution to VTEs. Johnson and Redish (2007) reported the

presence of VTEs in experiments on rats who were shown
to be simulating their next decisions internally before act-
ing. Tarsitano (2006) found that, in a detour task, jumping
spiders display two phases of action: the inspection phase,
where spiders stop and inspect possible routes toward a tar-
get, and the locomotory phase, where spiders move toward
a single direction. VTEs have been observed during the in-
spection phase. Tarsitano concluded that ”one can speculate
that it is a small but significant jump to use trial and error
vicariously when choosing a goal to approach”. Ikegami
(2007) suggested the relationship between VTEs and pri-
vate simulation. From these researches, VTE seems to have
some essential role in internal reflection and decision mak-
ing. However, the role of the VTEs has yet to be fully inves-
tigated.

The question we explore in this paper concerns the role of
VTE. Using a model developed by Bovet and Pfeifer (2005)
for T-maze learning experiments on robotic platforms, we
study the presence of VTEs during the acquisition of the
task. Our results display the same pattern of increase fol-
lowed by a decrease in the number of VTEs as observed
in the rat. Additionally we vary environmental parameters
as well as the connectivity of the network in order to study
the variations in the number of VTEs. Based on our results
we hypothesize that VTEs might be connected to robustness
and adaptivity. We first detail the environmental setup and
the neural model in the next two sections. Then the results
will be presented with a discussion of their significance.

Methodology

Our work is based on a robotic and neural model developed
by Bovet and Pfeifer. The model combines five types of
modalities to control a robot in a T-maze task. The neural
model is self-organized with no hierarchy between modali-
ties, nor predetermined sensori-motor relationship. Modal-
ities are associated through Hebbian learning only (Hebb
(1949)).
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Figure 1: T-maze environment used for the experiment. At
the beginning of each trial, the robot is placed on the central
arm of the maze. The circle at the choice point represents the
tactile cue, the star at one end of the maze indicates reward,
and the lightning at the other end of the maze stands for pun-
ishment. The back wall is painted black and the other walls
are white, which are detected by the robot’s omnidirectional
camera. Walls of the T-maze are perceived by the robot’s
proximity sensors. The length and the width of the T-maze
are denoted by ’X’ and ’Y’.

Experimental setup
The environment is a T-maze with one central arm and two
side ones (see figure 1). A reward is located at the end of
one arm, and a punishment is placed on the opposite one.
The robot learns to reach the reward following a tactile cue
placed at the end of the central arm, on the same side as the
reward.

The robot is modeled following the e-puck robot (Mon-
dada et al. (2009)) and is equipped with the following sen-
sors and motors:

1) Tactile sensors: Tactile stimulation comes from 32
whiskers attached to the left and right sides of the robot.
The signal is binary, on or off. Whisker sensors detect the
tactile cue at the intersection point of the T-maze. The
walls of the T-maze are low enough so that the whiskers
can only detect the cue.

2) Vision sensors: Visual stimulation reflects the activity of
the omnidirectional camera, which return grayscale val-
ues standardized from 0 to 1. This camera is composed
of 20 pixels aligned horizontally. Everything in the T-
maze is made white or transparent, except for the black
back wall. In other words, the omnidirectional camera
gets positive signals only from the black wall at the back
of the T-maze. By this modality, the robot acquires desti-
nation information.

3) Proximity sensors: Six proximity sensors are regularly
attached to the front half of the body. These sensors detect
the distance from the robot to the walls of the T-maze. The
values are standardized between 0 and 1. These sensors

are attached low enough to only detect the walls of the
T-maze. This modality is involved in the experiment only
indirectly to achieve wall avoidance.

4) Reward sensitivity: The reward sensitivity is usually set
to 0. It is raised to 1 to signal a reward and lowered to -1
to indicate punishment. The value is dependent on which
side of the maze is reached by the robot.

5) Motors: The forward velocity of the robot vf is constant
and positive, and the turning degree v t is determined by
the neural controller of the robot which is explained later.
Both vt and vf are standardized between 0 and 1, and
activate actual left and right wheel velocities, vl, vr, as
following:

(

vl

vr

)

= C ·
(

1 −1
1 1

)

·
(

vf

vt

)

(1)

where C is a constant for converting the standardized
value to the actual motor speed. If vt > 0, then vl < vr,
which makes the robot turn left, and vt < 0 produces a
right turn.

As a training phase, the robot runs randomly in an empty
maze with no tactile cue nor reward signals. Afterward, the
tactile cue and the reward are introduced into the T-maze,
and the robot must complete the task. The robot learns
the correlation between modalities through Hebbian learn-
ing while acquiring a reward seeking behavior (for more de-
tailed explanations, see Bovet and Pfeifer (2005)).

Neural Network - Bovet et al.’s Original Model
The neural network is composed of five modality modules:
tactile, vision, proximity, reward, and motor (figure 2(a)).
Each of them plays a separate role in treating the signals
from its corresponding sensor (or motor) on the robot. Each
modality has five types of neural populations, described in
figure 2(b). These five populations are composed of the
same number of artificial neurons, this number varying de-
pending on the type of modality. For instance, the tactile
modality has 32 neurons for each of the five populations
while the motor modality has only one neuron per popula-
tion. The five types of populations are described as follows:

1) Current state The current state of modality M, xM (t) =
(xM

1 (t), xM
2 (t), ..., xM

m (t)), receives signals from the cor-
responding sensors (or motors). For instance, tactile stim-
uli from 32 whisker sensors activate the corresponding 32
nodes of the current state.

2) Delayed state The delayed state x̆M (t) = xM (t− τ) re-
ceives signals τ timestep in the past.

3) Current state change The current state change yM (t) is
the difference between the current and the delayed state,
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Figure 2: (a) Five sub-systems for each modalities make up
the whole cognitive system of the robots. These modalities
are fully connected with each other. (The original model) (b)
Five types of neural populations, called the current state, the
delayed state, the current state change, the virtual state, the
virtual state change. (c) A new neural network where the five
modalities are sparsely connected sparsely. (The minimal
model)

as described below:

yM (t) := xM (t) − x̆M (t)

= xM (t) − xM (t − τ)
(2)

4) Virtual state The virtual state of modality M, x̃M (t), is
activated by the virtual state change of other modalities:

x̃M (t + 1) := f(ΣN �=MWMN (t) · ỹN (t)) (3)

where W MN is the weight matrix connecting modality
M to modality N and f(x) is a sigmoid function, written
as:

f(x) =
1.0

1.0 + exp(−a · x)
(4)

5) Virtual state change The virtual state change of modal-
ity M, ỹM (t), is the difference between the virtual and the
current state.

ỹM (t) := x̃M (t) − xM (t) (5)

The current state population, delayed state population and
current state change population do not possess any in or
out connections toward other modalities. All virtual state
change populations are connected to virtual state popula-
tions of the other modalities. For instance, the neurons from
the virtual state change population of the tactile modality

are connected to the neurons of the virtual state population
of all the other modalities. Those connections are the only
ones present in the model.

All the connections of the model are tuned using a mod-
ified version of Hebbian learning. The main difference be-
tween Hebb’s version is that the pre and post synaptic neu-
rons are not used to compute the change of the synaptic con-
nections. For the learning, the neurons of the non-virtual
populations are used. Instead of the virtual state population,
the neurons of the current state population are used for the
Hebbian learning. Similarly, the neurons of the current state
change population replace the ones from the virtual state
change population. Mathematically, this corresponds to the
following equations:

∆WMN (t) : = l · (xN (t)yM (t)T − α | yM (t) | WMN (t))

WMN (t + 1) = WMN (t) + ∆WMN (t)
(6)

where l is the learning rate and α is the forgetting rate. Be-
cause of the α, the weight between a pair of neurons is de-
creased if the two neurons are not activated at the same time.
It also prevents the weights from growing to infinity.

To clarify the inner algorithm of the neural model, we de-
tail the steps leading to the generation of the outputs as fol-
lows:

1. Sensory information is transferred to the current state
population.

2. The delayed state population is updated, followed by the
current state change population.

3. Hebbian learning is applied on all the connections of the
model.

4. The activity of the neurons from the virtual state change
populations of all modalities are propagated to the neu-
rons of the virtual state populations using a feedforward
algorithm (see equation 3).

5. The activation of the single neuron of the virtual state pop-
ulation from the motor modality is assigned to the output
vt from equation 1.

For additional details on this model, please refer to the orig-
inal paper Bovet and Pfeifer (2005).

Neural network - Minimal model
In addition to the original neural network invented by Bovet
and Pfeifer, we conducted experiments with a new neural
network model. In the original model, modalities are fully
connected (figure 2(a)), while our new model has only min-
imal connectivity among modalities. By ”minimal” connec-
tivity, we mean connections which have a specific role to
solve the task. Those connections are mentioned in Bovet’s
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paper and stem from his analysis of the neural network, as
shown in figure 2(c). We expect that the behavioral dif-
ference between the original and the minimal connectivity
model will allow us to uncover the role of VTE.

Setup of the Genetic Algorithm
Bovet and Pfeifer’s model relies on the following parame-
ters: learning rates and forgetting rates for each modalities,
update frequency of the neural network, τ for the delayed
state and constants for the sigmoid function in equation 4.
Despite the authors not mentioning how to select those pa-
rameters, we found out that slight differences in their value
can strongly influence the performance of the robot. This is
partly due to our experiments adopting more tolerant con-
ditions than the original experiment, like a broader T-maze.
To tune these parameters and optimize the performance of
the controller, we employ a genetic algorithm (GA)(Holland
(1975)). Our GA possesses a population of 100 individuals
to optimize 59 parameters using tournament selection, sin-
gle point crossover applied with a probability of 70% and a
1% mutation rate. We also use elitism by simply copying the
5 best individuals directly to the next generation. A fitness
function F (t) at generation t is calculated as:

F (t) =











+5 points, if it reaches the reward.

+0.25 points, if it reaches the punishment.

+0 points, if it gets timeout.
(7)

The amount of points assigned is determined arbitrarily. The
trials are repeated 100 times from one fixed initial position,
which gives a maximum fitness value of 500. We conducted
several runs of the GA for the original and the minimal
model respectively.

Results
For each model, we evolved 5 runs of GA. Figure 3 shows 2
out of 5 GA runs get the maximum fitness value (100% suc-
cess) with the original model, and, in the case of the minimal
model, 3 out of 5 GA runs successfully evolved. We selected
one individual for each model from these evolved runs and
counted the number of VTE they displayed.

It is important to notice that evolution produces different
strategies for both models and that not all of them shows
VTEs. For that reason we chose to work on 5 runs of GA
but more have been evolved and analyzed despite not being
presented here.

Our methodology to count the number of VTE in a robot
is similar to the one used by Tolman. In our case, the robot
does not possess a head moving independently from its body
so the whole body movement has to be considered. One
VTE is granted if the turning degree vt from the equation 1
changes its sign. In order to filter small oscillations around a
turning degree of 0, a VTE is only granted if the sign change
is outside the range [−0.3; 0.3].

Figure 3: Fitness values of the five runs of GA. The X axis
represents the number of generations, and the Y axis the fit-
ness of the best individual in each generation. Maximum
fitness value is 500. (a) In the case of the original model.
Two out of five runs of GA get the maximum value. (b) In
the case of the minimal model. Three out of five runs get the
maximum value.

Figure 4 shows the number of VTEs observed for one
evolved individual for each model. We can see from fig-
ure 4(a) that the robot evolved with the original connectivity
model exhibits more VTEs at the beginning of the learning,
to decrease afterward. This observation is similar to Tol-
man’s experiments on real rats (Tolman (1939); Muenzinger
and Fletcher (1934)). On the other hand, the robot with the
minimal connectivity model shows VTEs in a lower amount
while remaining constant during the course of the experi-
ment (figure 4(b)). Despite this difference in the number of
VTEs, both models show a success rate of 100%. This result
implies that VTEs are not directly related to performance in
learning, but might have another purpose.

In order to try to understand what differentiates the two
models, we looked at how the synaptic strengths are chang-
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Figure 4: Change in the number of VTE during learning.
(a) In the case of the original model. (b) In the case of the
minimal model.

ing during 100 trials. Figure 5 presents the variation of
the weights from the minimal model with their equivalent
from the fully connected one. If the weights responsible for
the VTEs were present among those, we would expect the
strength to vary initially to stabilize toward the end of the
trial as a similar observation was done on the VTEs. In the
minimal connection model, no weights show such a pattern
of variation. The strengths of the weights remain periodic
over all the trials. In the case of the fully connected model,
proximity(IR) to motor, touch to vision and vision to motor
display non periodic variations, oscillating initially to stabi-
lize later on. Proximity to motor is even more interesting
as it decreases progressively over all the trials. Those vari-
ations show that the robot is changing its behavior progres-
sively over all the trials. In the case of the minimal model,
the robot does not seem to modify its strategy to reach the
goal as the weights seem to be periodic. This analysis alone
does not explain the source of the VTEs but it implies that
the VTEs are not a random behavior and might be caused by
the dynamics of the neural network.

In order to study if the presence of VTEs could imply
a higher level of robustness for the robot, we analyze the

Fully Connected Model Minimal Model

Figure 5: Comparison between the variations of the weights
from the minimal model with their equivalent in the full
model over 100 trials.

performance under varying initial conditions. During evolu-
tion, the starting position is (x, y) = (29, 20). This experi-
ment explores if the performance of the robot is affected by
a change in its initial position by testing it from every other
starting position inside the central arm of the T-maze. Each
position has been tested 100 times to obtain the final results.

Figure 6 shows the results for each model. The first obser-
vation from this figure is that the performance is not constant
over all starting positions. Some areas lead to higher perfor-
mances. The second observation concerns the comparison
of the variance of the performance between the two models.
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In the case of the original model, the variance remains under
400 while the minimum variance of the minimal model is
around 600 as seen in figure 7. This means that, despite the
two models having a similar average performance, the orig-
inal model seems to withstand changes in starting position.
On the other hand, the minimal model is strongly affected by
the initial position. This result implies that the presence of
VTEs could be associated with a higher level of robustness
to changes in the environment.

Based on the success rate, we observed 5 different types
of behaviors:

Going to the reward As we described above, the robot
successfully reaches the reward side. In the case of the
original model, the number of VTEs becomes higher at
the beginning of the learning, and decrease afterward sim-
ilarly to experiments with real rats (figure 4). But with the
minimal model, we only observed lower and stable VTEs.

Going to the punishment With about 0 % success rates,
the robot learns to reach the punishment side. As the
learning progresses, the number of VTE increases and af-
terward decreases with the original model. In the case of
the minimal model, we did not observe this VTE change.

Going to the same direction The robot learns to go to the
same fixed side (right side or left side) and gets around 50
% success rates. The number of VTE remains high during
the whole experiment.

Behavioral transition The robot transit among the three
previous behaviors - going to the reward, the punishment,
and the one side - and displays success rates between 30
% and 70%. This transition might have some relation-
ship with chaotic itinerancy where the state of a system
oscillates between different attractors. However, this be-
havioral transition cannot be seen in the minimal model.
The number of VTE remains high during the whole ex-
periment.

Random The robot acts seemingly randomly and the suc-
cess rate is around 50 %. The number of VTE remains
high during the whole experiment.

In order to investigate further the robustness of the
evolved controllers against environmental change, we car-
ried out the same experiments with different T-maze sizes.
We varied the width and the length of the T-maze, as drawn
in figure 1, and calculated the average and the variance of
the success rates for every initial positions. With the origi-
nal model, the robot does not change its performance in re-
spect to the average and the variance of the success rates.
The robot with the minimal model gets affected by a slight
change in environmental size (figure 8). This result confirms
that the presence of VTE can be an indicator of the robust-
ness of the neural system.

Figure 6: Average success rates for each starting positions.
(a) In the case of the original model. (b) In the case of the
minimal model.

Figure 7: Average and variance of success rates per starting
position. These graphs show the results of two (or three for
the minimal model) GA runs of the original and the minimal
model respectively. The red graphs present the results for the
original model while the minimal model are in green. (a), (b)
Average of success rates. (c), (d) Variance of success rates.
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Figure 8: Average and variance of success rates per starting
position, for different sizes of the T-maze. The size of the
T-maze indicated by X and Y length corresponds to that of
figure 1. Red and green lines corresponds to each two runs
of GA. (a), (b) Average of success rates, for the original and
the minimal model respectively. (c), (d) Variance of success
rates.

Conclusion
Our experiments aimed at uncovering the roles of VTEs
through robotic experiments. Our work relies on a model
developed by Bovet and Pfeifer where a neural network
equipped with Hebbian learning commands a robot to com-
plete a T-maze task using multiple sensory modalities (Bovet
and Pfeifer (2005)). Unlike Bovet’s work, we composed the
whole setup in a computer simulation, and conducted exper-
iments under varied conditions, while optimizing the param-
eters of the model using a GA. This setup allows us to com-
pute the number of VTEs during the learning of the route
selection task.

We compared two models, one with full connectivity
among modalities, and the other with minimal connectiv-
ity. Although both models exhibit the same performance, or
100% success, the former shows similar VTE curves to ex-
periments with real rats, while the latter does not. This im-
plies that VTE might not be related to performance in learn-
ing but would rather be caused by a redundant connectivity
pattern.

We also noticed the original model, or the model with
redundant connectivity, maintains its success rate to about
50% in most cases, regardless of perturbations to initial
conditions or environmental size, which is accompanied by
more VTEs. On the other hand, the model with minimal
connectivity exhibits a lower robustness against perturba-
tions. This model shows almost no VTEs. In conclusion,
we offer the hypothesis that VTE might be linked to adap-
tivity to environmental changes.

In addition, we observed three seemingly stable behav-
ioral patterns, and behavioral transition among those three
patterns. This transition might have something to do with
chaotic itinerancy (Ikegami (2007)). However, the dynamics
of the neural network has not been studied and the cause of
the VTEs has yet to be uncovered. Additional studies of this
model, such as analyses based on chaos theory (Ogai and
Ikegami (2008); Nakajima and Ikegami (2008)), or analyses
from the field of differential topology (Thom (1972)), could
shed some lights on the mechanisms of VTEs.
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Abstract

Computational modeling is an important tool in the study of
language evolution. It is not only used to test hypotheses,
but also as a source of data on difficult to observe evolution-
ary dynamics. This makes it particularly important to distin-
guish the emergent behaviors of evolutionary systems being
studied, from the behaviors of specific models. In this paper
we provide an in-depth analysis of one recent model of lin-
guistic bio-cultural coevolution (Yamauchi and Hashimoto,
2010) and show that several of its reported behaviors are arti-
facts produced by the model’s design and parameter settings.
Specifically, we show that the model’s population size setting
and agent “geography” place strong limits on both cultural
and biological diversity in the model. These limits interact
with the model’s learning mechanism and result in a number
of semi-stable attractor states. We argue that it is the proper-
ties of these attractors that account for the long run behavior
of the model, directly conflicting with the analysis given in
the original paper. Our results are confirmed by experiments
altering the model’s population size parameter which result
in a qualitative change in the observed model behavior.

Introduction
The study of human evolution is complicated by the fact
that in our species, phenotypes are shaped by the interac-
tion of two separate evolutionary processes; biological evo-
lution affecting our genes and cultural evolution affecting
our learning environments. This dual inheritance (Richer-
son and Boyd, 2006) is perhaps most obvious in the study
of human language, where despite the human ability to use
language being biologically determined, the forms of the
actual languages an individual acquires are determined by
their cultural environment. The importance of this inter-
action diachronically, the so-called phenomenon of gene-
culture coevolution, has in the last decade received grow-
ing recognition in the field of Evolutionary Linguistics (Dea-
con, 1997; Tomasello, 1999; Hurford and Kirby, 1999) and
is also coming to be recognized in mainstream linguistics
(Briscoe, 1998).

The most famous theoretical evolutionary gene-culture in-
teraction is the Baldwin Effect (Baldwin, 1896; Simpson,
1953), a suggested process whereby initially learnt behav-

iors are gradually integrated into the genome. If the Bald-
win Effect were in operation in language evolution it would
work to increase the overall genetic contribution to the phe-
notype. Deacon (1997, 2003) however has suggested that
language evolution is characterized by the opposite, a de-
crease in genetic contribution. He suggests that a relaxation
of biological selection pressures, similar to that seen in do-
mesticated animals, has given our lineage the evolutionary
flexibility to evolve complex language. It has been argued
that the cause of this relaxation of selection may have been
through a cultural niche construction process (Odling-Smee
et al., 2003; Yamauchi, 2004) in which cultural transmission
was able to take over some of the burden of transmitting
communicative behaviors between generations. This would
have removed any selective pressure to keep these traits ge-
netically hardwired, effectively allowing our ancestors to
“self-domesticate” themselves via the culture they created.

Unfortunately, for anyone wishing to study the Baldwin
effect, or other similar coevolutionary interactions, very lit-
tle direct historical data exists. Biologically, the soft tissues
on which our language ability depends seldom fossilize, and
culturally, spoken words never do. This has led researchers
to turn to a variety of indirect sources of data, such as com-
parative animal models, archaeological data, language ac-
quisition studies and, recently, computational modeling. Not
only are computational models being used to test hypothe-
ses, but they are also being used directly as a source of data.
This makes it particularly important that we understand the
models that we are working with. Specifically, we need to
be careful to determine whether any interesting dynamics we
observe in our simulations are truly emergent properties of
interactions of the target systems, or are just artifacts of our
particular model designs.

In this paper we provide a detailed analysis of one re-
cent exploratory computational model designed to investi-
gate gene-cultural coevolution. The model was originally
presented in Yamauchi and Hashimoto (2010) and we chose
to investigate it due to its claimed cyclic repetition of stages
in which biological selection was masked by cultural evolu-
tion, followed by stages in which biological selection was
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vigorously reasserted. As such a cycle has not been at-
tested in real world data, it was our intention to investigate
its cause, and determine whether it was a product of an ar-
tificially high rate of simulated biological evolution when
compared with the rate of cultural change. A possibility sug-
gested by Chater et al. (2009), who argued that faster rates of
culture change provide a moving target that biological evo-
lution has a hard time adapting to.

However, on analysis, we show that the model’s apparent
cyclic behavior can be better described as a random walk
between a linearly ordered set of attractor states. Further-
more, we show that the existence of these attractors is the
result of arbitrarily chosen model parameter settings, and is
not necessarily a consequence of properties of the target co-
evolutionary system. We give a precise characterization of
the set of attractor states and the transition probabilities be-
tween them and explain why the attractors exist and behave
as they do. Finally, we show why the original set of param-
eters led to this behavior in the first place. We believe our
analysis will prove useful to others interested in constructing
gene-culture coevolutionary simulations and hopefully help
prevent similar dynamics compromising future models.

This paper is structured as follows. The following section
provides a description of the model we will analyze. This is
followed by a summary of some key results from the original
paper. We then describe our implementation of the model
and where it can be obtained. This is followed by an in-
depth analysis of the model’s behavior based both on addi-
tional data from our implementation and a detailed study of
the model’s design. The final section then briefly discusses
the implications of our analysis and highlights several points
that need to be carefully considered during the construction
of future coevolutionary models.

Model of Language Evolution
In this section we describe the original model of Yamauchi
and Hashimoto (2010).

In general terms, the model can be characterized as an
agent-based language evolution simulation in which agent
phenotypes are determined by a combination of their biolog-
ically inherited genomes and culturally transmitted knowl-
edge. The model is designed to investigate the interactions
between the biological and cultural aspects of agent evolu-
tion and is based on an earlier gene-culture coevolutionary
model by Kirby and Hurford (1997). The main difference
when compared with this earlier model is in the ways in
which agents “learn”, and specifically how their ability to
learn is affected by their biological inheritance.

In Yamauchi and Hashimoto’s model, each agent has a
chromosome (a length 12 binary array), which represents its
genetic predisposition towards learning each of 12 different
linguistic alleles. For each allele the agent may be predis-
posed to learn either of its two possible forms; either zero or
one. In addition to this chromosome, each agent also has a

grammar (a 12-value ternary array), representing its knowl-
edge of its local language. For each allele the agent’s gram-
mar can either specify which form is used, zero or one, or
may specify a lack of knowledge about the local language’s
instantiation of that allele, in which case its grammar will
contain a null value. Additionally, agents also possess a cer-
tain supply of cognitive learning resource, initially set at 24
units.

The simulation proceeds via discrete generations, which
each contain four phases. First, in the Learning Phase the
current generation of agents are exposed to utterances from
the previous generation and are given a chance to learn their
grammars. Second, in the Invention Phase agents who still
have null values in their grammar are given a chance to in-
vent new values. Third, in the Communication Phase agents
interact with their neighbors to determine their fitness. Fi-
nally, in the Reproduction Phase a new generation of agents
is created via sexual recombination of agents from the cur-
rent generation.

Prior to the beginning of the simulation, all agents in the
current and previous generations have their chromosomes
randomly initialized to zeros and ones. The grammars of
both generations are also initialized to contain only nulls.
This means that in the first generation of the simulation,
agents will not receive any non-null inputs which they can
learn from. Thus the initial chromosomes do not directly
determine the initial culturally transmitted language of the
agents.

Each generation contains 200 agents that are geograph-
ically arranged in a cycle. An agent’s position in the cycle
affects which agents it learns from in the Learning Phase and
which agents it communicates with in the Communication
Phase, but has no affect on the agent during the Reproduc-
tion Phase. That is, learning and fitness are determined lo-
cally on the cycle, but reproduction is determined globally.
The motivation for this is discussed in Kirby and Hurford
(1997).

In the Learning Phase agents are presented in turn with
utterances taken randomly from members of the previous
generation at a distance of at most two from the learner
agent. Utterances are produced by looking at the source
agents grammar and randomly selecting one of the 12 al-
leles. The utterance is then a pair of the allele index (1–12)
and its value (zero, one or null). If the value of the utterance
is null, it is instantly discarded and the learner agent moves
on to the next utterance. Otherwise, the agent takes the ut-
terance and compares its value with its own grammar at the
specified index. If the value of the utterance is different from
its own grammar, the agent attempts to update its grammar
to match the utterance.

Updating the grammar requires the agent to have suffi-
cient learning resource remaining to make the update. An
update that sets the grammar to a value equal to the value of
the agents chromosome at the same index costs the agent 1
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unit of learning resource, an update to a value different from
the agent’s chromosome costs the agent 4 units of learning
resource. If sufficient learning resource is available, the cost
is subtracted from the agents supply of learning resource and
the update is made. If the agent has insufficient learning re-
source, the agent’s learning resource is set to 0, and no up-
date is made. For each agent, the learning phase continues
until either it has been exposed to a total of 200 utterances
or until its learning resource is depleted.

Once the Learning Phase has been completed for all
agents, the Invention Phase begins. All agents that have
learning resource left are given a chance to use that resource
to fill in any null values left in their grammars. For each left
over unit of learning resource an agent has a 0.01 chance of
filling a single null with a randomly selected value of zero
or one. Once either the learning resource is exhausted or no
nulls remain in the grammar, invention stops, and the gram-
mar of the agent is fixed for the remainder of the simulation.

Next the simulation enters the Communication Phase.
This phase serves to establish the fitness of each agent,
which will be used to determine their likelihood of con-
tributing to the next generation of agents in the Reproduction
Phase. Initially each agent has its fitness initialized to a base
value of 1. Beyond this, fitness is determined by the ability
of the agent to successfully communicate with its neighbors.
Each agent has 6 chances to communicate with each of its
immediate neighbors on the cycle in the same generation.

To determine if the agents are successful in communicat-
ing, one of the 12 grammatical alleles is randomly selected
and the grammars of both agents are compared at that allele.
If either agent has a null value for that allele, or if the two
agents disagree on its value, then communication is declared
a failure and the agents’ fitness is left unchanged. However,
if both agents’ grammars agree, communication is declared
a success and both agents receive plus 1 to their fitness score.
When this process is complete all agents will have been as-
signed a fitness score of between 1 and 13.

Finally, the simulation enters the Reproduction Phase in
which the next generation of agents is produced. To create
each new agent, two parent agents are selected from the cur-
rent generation via roulette wheel selection. The location of
agents on the cycle is ignored for the purposes of their se-
lection. The chromosomes of the two parent agents are then
combined via obligatory single point crossover. Then with a
probability of 0.00025 each allele is mutated. This chromo-
some is then used to create a new agent which is initialized
with an empty grammar (all null).

Once reproduction is completed, the current generation is
replaced by the new generation and the above four phases
are repeated. For a more complete description of the model
please refer to the original paper or examine the freely avail-
able source code of our implementation.

Before proceeding to the results that this model produces,
we would like to note that, as is fairly common in this type of

modeling, the majority of parameter values are set to largely
arbitrary values. That is to say there is no external linguis-
tic factor motivating setting the population size to 200 or in
setting an agent’s initial learning resource at 24 units, they
just happen to be values that seem to work and produce the
intended dynamics.

Simulation Results
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Figure 5: Evolution of the population at the underlying level. On each graph, the expended

cognitive resource (after the learning process) indicates the intensity of learning. The degree of

assimilation is measured by the number of grammatical element whose value is same as its corre-

sponding allele on UG.
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Figure 1: Gene-Grammar Match in the Original Model1
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Figure 2: Number of Genotypes in the Original Model1

Two key charts from Yamauchi and Hashimoto (2010) are
reproduced as figures 1 and 2. The first shows the progres-
sion of the Gene-Grammar match (average hamming dis-
tance between mature agents’ grammars and chromosomes)
and the learning intensity (average amount of learning re-
source consumed by agents in the Learning Phase). The
second shows the number of different genotypes present in
the population over time. The original paper divides the dis-
cussion of these results into three stages as marked by the
dashed vertical lines in the figures.

1Reproduced with permission of the original authors.
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Stage 1 - Baldwin Effect
The first stage spans the first few hundred generations and
covers the period in which agents go from initially having
no culturally transmitted language (and a very low fitness) to
having a highly uniform language shared between all agents
(and consequently maximal fitness). The language that re-
sults from this phase is shown to match the grammar to an
above chance level, and by the end of the phase, the ge-
netic diversity has decreased significantly. This is claimed
to be the result of an assimilatory process akin to the Bald-
win effect, operating to allow agents to save more learning
resource for the invention of new tokens to replace any null
elements in their grammars.

Stage 2 - Functional Redundancy
The second stage takes place over several thousand gener-
ations throughout a period in which biological selection is
masked by a culture. Following stage 1, the culturally trans-
mitted language closely matches the agents’ innate biases
and provides them a stable uniform stimulus to learn from.
This simplifies learning and allows all agents to successfully
learn a single common language. As a result there are no
problems in communication, and all agents are assigned the
maximum fitness score. Biological selection has been effec-
tively masked by culture. Throughout this stage the cultur-
ally determined language transmitted between generations
remains largely unchanged. The masking of biological se-
lection leads to a relaxation of selection on the agents biases
(the biases have been made functionally redundant), and
they are free to degrade to values that no longer match the
culturally transmitted language. The original paper claims
that as a result of this “the degree of correlation between
the gene-pool and the environment gradually, yet firmly de-
clines” throughout this stage.

Stage 3 - Unmasking of Natural Selection
This stage begins when the gene-grammar match has deteri-
orated to a point at which biological natural selection is no
longer masked and biological selection again begins to take
effect. It is claimed that this results in agents in a local area
converging on different I-languages which decreases their
fitness and cause problems for agents in the subsequent gen-
eration to learn the language. Due to this, a biological as-
similatory process begins to take affect, similar to that seen
in stage 1, which quickly returns the population to a point
with high gene-grammar matches as was present at the be-
ginning of stage 2. Having returned conditions to how they
were at the onset of stage 2 it is claimed that stages 2 and 3
then repeat cyclically every few thousand generations.

Our Implementation
Unfortunately the source code of the original model is not
publicly available and so to investigate it further we reimple-
mented it ourselves following the details given in the orig-

Figure 3: Gene-Grammar Match in our implementation (c.f.
fig.1) [Seed=1303050913721, Runs=1, Generations=5000]

Figure 4: Number of Genotypes in our implementation (c.f.
fig.2) [Seed=1303050913721, Runs=1, Generations=5000]

inal paper. The specifications were sufficiently precise that
our implementation produces results which closely mirror
those reported in the original paper. For comparison we
present figures 3 and 4 which show the same range of be-
haviors as those of the original model depicted in figures 1
and 2.

In presenting our own results we generally concentrate on
only the gene-grammar match, ignoring the learning inten-
sity. This is because except for the initial generations, where
there is a significant number of nulls, the learning intensity
is essentially a scaled inverse of the gene-grammar match.
We also tend to ignore the number of nulls, fitness, num-
ber of genotypes, et cetera, as for the most part they tend to
produce relatively stable values throughout the simulations.

Our implementation of the model is available for down-
load at:

http://code.google.com/p/suzume/

To run the model as described in this paper select “Ya-
mauchiHashimoto2010” as the Agent Type, “CyclicBag-
Model” as the Population Model and “RouletteWheelSelec-
tion” as the Selection Model. The version of our code used
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to conduct the experiments presented in this paper was Rev
ac9d4c742fe2.

Unless otherwise specified, all simulation results pre-
sented in this paper were conducted with the default con-
figuration parameters settings. Each result set is presented
together with the random generator seed, run count and gen-
eration count used to produce it. This information should
suffice to reproduce the data underlying all figures presented
in this paper.

Analysis
Genetic Diversity
One of the features that led the authors of the original pa-
per to conclude that stage 1 was the result of a Baldwin Ef-
fect style assimilatory process was the overall decrease in
genetic diversity during this stage. But as figure 5 shows,
even when selection has been set to ignore agent fitness val-
ues (resulting in neutral biological selection), the same re-
duction in genetic diversity is observed. This reduction is
caused by genetic drift in the relatively small population fix-
ing random alleles. This process brings the overall number
of genotypes down to approximately 5-10. The number of
genotypes never reaches 1 because new variations are con-
stantly being introduced by mutation. 5–10 is the level at
which new variants are being introduced by mutation at the
same rate as which they are being removed by drift.

This process of drift removing variation and mutation
adding it, continues throughout the simulation and results
in a rather constant level of genetic variation despite the ab-
sence of biological selection in stages 2 and 3. The level
at which the number of genotypes stabilizes can be altered
by changing the mutation rate of the agents or by changing
the population size (smaller populations are more easily af-
fected by drift fixing values). Looking at just the number
of genotypes actually makes the degree of variation in the
population seem greater than it actually is. While there may
be 5-10 variants at any given time, it should be noted that
these are normally very closely related to each other and are
usually only represented by a small number of individuals.

What the decrease in variation from random drift implies
is that the initial reduction in genetic variation observed dur-
ing the first stage should not be seen as evidence of an adap-
tive genetic process such as the Baldwin Effect.

Masked Genetic Selection
As was reported by the authors in the original paper, genetic
selection is effectively masked in stages 2 and 3 of the sim-
ulation (approximately 1000 generations onwards). And so
we should expect genotypes to take a random walk through
the space of possibilities for as long as selection remains
masked. If we look at figure 6, which shows 10 separate
runs over 10000 generations, we see this does in fact oc-
cur to a certain degree, but the gene-grammar matches never
drop below 8 for any significant period of time. This would

Figure 5: Genotype Variation over initial 1000 gen-
erations under neutral biological selection (c.f. fig.2)
[Seed=1302966692486, Runs=50, Generations=5000]

Figure 6: Gene-Grammar Match for 10 independent runs
over 10000 generations [Seed=1303127096921, Runs=10,
Generations=10000]

suggest that this is the limit to which cultural shielding can
operate. That this is in fact the case, can be argued directly
from the model design.

There are two ways in which an agent’s learning resource
can be depleted. First, an agent may be exposed to conflict-
ing inputs which causes it to repeatedly switch the value of
a grammatical allele, quickly depleting the resource. But as
our experiments and the results of the original paper show,
this is unlikely to occur once a common language has been
established, as that language is very stable. Alternatively,
this may occur if an agent is presented with consistent input,
but when that input is so divergent from its innate biases
that the learning cost is greater than the agents initial learn-
ing resource supply. The value at which this occurs can be
calculated based on the simulation parameters.

Agents begin with 24 units of learning resource and need
to fill the 12 alleles in their grammar. The cost of filling an
allele that matches their chromosome is 1, and the cost of
filling a non-matching allele is 4. Therefore the maximum
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number of non-matching alleles the agent can learn while
successfully filling its chromosome is four, any more and
it won’t have sufficient resources left to fill the remaining
alleles (4 non-matching × 4 + 8 matching × 1 = 24). Ex-
periments changing learning costs and the agents supply of
learning resource alter the shielding level as expected.

This means any agent dropping below a gene-grammar
match of 8 will not be able to fill its grammar, and so would
have its fitness penalized and would be selected against by
biological selection. This is different to the reasoning pre-
sented in the original paper where it was suggested that at
this point the agents would be selected against due to in-
creasing variation in their learning input. This will occur in
subsequent generations with agents being subjected to null
inputs, but is not the original cause of the unmasking of bio-
logical selection.

Coevolutionary Attractors
A close inspection of figure 6 shows that there are certain
values at which the gene-grammar match occurs more fre-
quently. Specifically those values centered around integer
values between 8 and 12. This can be seen clearly in the
probability density plot shown in figure 7.

Figure 7: Gene-Grammar Match Density
[Seed=1303046232707, Runs=100, Generations=5000]

The reason the gene-grammar match occurs most fre-
quently around these values is due to the previously men-
tioned facts that the language is uniform across agents, and
that genetic variation is highly limited. If there is only one
language, and if the vast majority of agents share the same
genes, then the average gene-grammar match will fall close
to an integer value. It is only when significant portions of
the population possesses different genes that the population
will move away from these points. In cases where this does
happen, genetic drift will usually sweep the population back
to its original integer value point. In rare cases however, if
the population moves sufficiently far away from its previ-
ously stable genetic state, drift may cause the population to
be swept to a new uniform genetic state (and hence a differ-

ent integer gene-grammar match value).
Of course there may be several different chromosome-

grammar matches that result in agents exhibiting the same
gene-grammar match value. However, as nothing in the
agent’s learning algorithm changes their probability of learn-
ing individual grammatical alleles due to a particular set of
genetic biases (only the number of matches ultimately in-
fluences learning), these different model states will behave
identically. Because of this it is safe to view the integer value
gene-grammar matches as attractor states in the simulation,
despite them potentially representing a number of different
underlying gene-culture states.

to 12 to 11 to 10 to 9 to 8
from 12 .55 .05 – – –
from 11 .01 .52 .07 .01 –
from 10 – .02 .42 .08 –
from 9 – – .02 .61 .03
from 8 – – – .04 .78

We calculated the likelihood of the simulation jumping
between each of these attractor states (±0.2 units) over a pe-
riod of 200 generations. The transition probability matrix
is presented in the table above and in the transition diagram
in figure 8. We tested these results against transitions be-
tween equally sized intervals positioned directly between the
attractor states and obtained probabilities of the simulation
staying in those intervals approximately 5 times lower than
in the case of the attractors. This indicates that the attractors
are significantly more stable.

Figure 8: State Transition Diagram [Seed=1303037425613,
Runs=50, Generations=20000]

Shape of the Attractors

As can be seen in figure 7 the attractors are not symmetrical.
For all attractors except the lowest one (at a gene-grammar
match of 8) there are significantly more values in the re-
gion directly below them, than in the region above. This
is representative of the fact that deviations from the fixed
point are more likely to be in a downward direction. This
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happens because these deviations are the result of biologi-
cal changes, and as the four attractors in question (at gene-
grammar matches of 9, 10, 11 and 12) all represent geno-
types in which more than half of the grammar alleles match
the agent’s biases. Thus the majority of random changes
to agent’s genotypes will result in a decrease in the gene-
grammar match.

Figure 9: Average Gene-Grammar matches [Seed=
1303037425613, Runs=50, Generations=20000]

This results in a greater probability of downward transi-
tions between attractors, and in the long run attractors results
in the lower attractors having a greater chance of being occu-
pied. This long run effect is visible in figure 9. For approxi-
mately the first 5000 generations the model has yet to settle
down following the high gene-grammar matches attained in
the first few hundred generations.

Attractors and Population Size

Figure 10: Gene-Grammar matches for a large population
of 400 agents [Seed= 1303033229645, Runs=50, Genera-
tions=12000]

As the culturally determined language is largely sta-
ble throughout the simulation, the primary requirement for
falling into an attractor is that all agents show very little

genetic variation (if there is significant variation the aver-
age gene-grammar match is unlikely to approach an integer
value). As was discussed earlier the main reason the sim-
ulation generally ends up in states with little genetic vari-
ation is due to genetic drift sweeping away what variation
that does exist. Unsurprisingly this is more of an issue with a
smaller population, and our experiments show that the lower
the population size, the less genetic variation exists, and the
more defined the fixed points become.

Conversely, increasing the population size makes the
fixed points less distinct as can be seen in figure 10 which
shows gene-grammar occurrence frequencies in a popula-
tion of 400 agents. What is surprising is when we increase
population size further still (as shown in figure 11 with a
population of 1000 agents), the fixed points disappear en-
tirely. With the fixed points removed, the simulation loses
the downward ratchet effect caused by the shape of the fixed
points and demonstrates a qualitatively different behavior
than was seen with smaller population sizes. We think this
is likely the behavior that was originally intended by Ya-
mauchi and Hashimoto (2010). Unfortunately an analysis of
the dynamics of the model with this larger population size is
outside the scope of this paper.

Figure 11: Gene-Grammar matches for a very large pop-
ulation of 1000 agents [Seed= 1302981824159, Runs=50,
Generations=12000]

Conclusions and Discussion
While the model presented in Yamauchi and Hashimoto
(2010) does reproduce many of the interactions it sets out
to capture (Cultural Shielding, Niche Construction etc.), the
behavior of the model within the limits set by these interac-
tions has been shown to be the result of the model’s design,
and not of any underlying emergent properties of its target
system (e.g. gene-culture coevolution). We have not pro-
vided evidence directly contradicting any of the conclusions
reached based on the original model, but have shown that
additional work is necessary to understand the dynamics of
the system that was investigated. We think that the analysis
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presented in this paper will be useful to others seeking to de-
sign coevolutionary simulations, particularly as inspection
of charts related to the coevolutionary simulation of Kirby
and Hurford (1997) also suggests evidence of a similar sort
of fixed points to those identified here.

Population Size is Significant Population size usually
only has a quantitative effect on simulation behavior, but
as was demonstrated in our analysis, under certain circum-
stances, it can have a significant qualitative effect. Given
that increasing population size can be computationally ex-
pensive, we think that it might be sensible to investigate al-
ternative population structures that may be able to imitate
the behaviors of larger populations. At a minimum we think
our analysis demonstrates the necessity of testing coevolu-
tionary simulations on a wide range of population sizes to
see if there exist any qualitative effects.

Cultural Diversity is Important in Coevolution Many
of the dynamics we identified in this model were the re-
sult of it only supporting limited cultural diversity. The
fixed points we identified would not have been present if
the model had been able to support multiple culturally de-
termined languages concurrently. Additionally, when the
model strayed away from the zone in which biological evo-
lution was shielded by culture, and biological selection re-
asserted itself, had there been more than a single language
present the dynamics would have likely proved more inter-
esting. The lack of cultural diversity/change in the present
model can be traced directly to its learning mechanism,
when learning resources are sufficient as they are throughout
the majority of the simulation, there is a near zero probabil-
ity of cultural change occurring. Future simulations should
be designed to allow at least a certain level of diversity, not
just in their representation of biology, but also of their cul-
ture.

Biological Selection Geography Running roulette wheel
selection on a relatively small population of 200 agents in
which there is no concept of distance resulted in low levels
of genetic diversity throughout the simulation. Genetic di-
versity was shown to be raised by increasing the population
size which effectively removed the fixed points seen in the
simulation, but at the cost of a heavily increased computa-
tional burden. We suggest that future simulations could take
advantage of alternative selection methods such as trimming
some fraction of poorer performing agents from the repro-
ductive population as in Kirby and Hurford (1997). Or al-
ternatively by adding some concept of geography into the
replacement algorithm.

Random Walks in a Binary Space During Stage 2 of the
original paper’s analysis, the authors claim that the relax-
ation of selection leads to a gradual yet firm degradation
in the gene-grammar match of the agents. But as we have

shown, this is in fact simply a random walk which also has
the possibility of increasing the match. If instead of using
a binary space of language possibilities the authors had of
used a higher dimensional space, the random nature of the
walk would have been far less likely to increase the gene-
grammar match, and would have better demonstrated the
degradation dynamic that was intended.
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Background
This contribution is an extended abstract of (Decraene and
McMullin, 2011). What we here term Cellular Information
Processing Networks (CIPNs) are biochemical systems of
interacting molecules occurring in living cells. CIPNs are
responsible for coordinating cellular activities in response
to internal and external stimuli (e.g., chemotaxis signalling
pathways). CIPNs can be regarded as special purpose com-
puters (Bray, 1995). A single enzyme molecule effectively
carries out pattern matching to identify and bind target sub-
strate(s), and then executes a discrete computational opera-
tion in transforming these into the product molecule(s). The
concept of collective autocatalysis, formulated by Farmer
et al. (1986), denotes a collection of molecular species where
each of them is the product of at least one reaction catalysed
by at least one other species of the set. Fontana and Buss
(1994) developed this into a more general formal concept
of (collective) self-maintenance, and it has more recently
been elaborated and refined in the Chemical Organization
Theory of Dittrich and Speroni (2007). Self-maintenance
ensures that reaction networks can reconstitute themselves
when subjected to perturbations and during cellular divi-
sions. It may thus mediate between the conflicting objec-
tives of robustness and evolvability in reaction networks.

In contrast to modern living cells, the cellular model con-
sidered here does not incorporate a distinct genetic trans-
lation system. It is motivated by the (presumed) evolution
of information processing in (proto-)cells prior to the emer-
gence of the genetic architecture.

The Artificial Chemistry (MCS.bl)
We employ an agent/string-based Artificial Chemistry called
the Molecular Classifier System (MCS.bl1) which is based
on Holland’s broadcast language (Holland, 1992, pp. 143-
152). The basic elements (the abstract “molecules”) are
formally strings on a specified symbol alphabet (“atomic”
species). Chemical reactions are stochastic (molecular “mu-
tation” may alter the generated product strings), reflexive

1MCS.bl source code and documentation is available at:
http://esignet.net/dokumente/upload/WP13

(no distinction made between operands and operators) and
catalytic. Any single molecule may contain several con-
dition/action rules which define its binding and enzymatic
properties. In general the broadcast language allows arbi-
trary string transformations (computations) to be expressed;
however, for the specific experiments described here, indi-
vidual autocatalysis (self-catalysed replication) is explicitly
disabled. Populations of molecules are encapsulated in con-
tainers to form “cells”2. Each cell functions as a separate
well-stirred reactor. The number of molecules in a cell may
increase until the cell matches a specified division criterion;
a cell then divides with stochastic assortment of molecules
into two daughter cells. Where particular molecular species
are present in small numbers in a parent cell they may be ab-
sent completely in one of the two daughter cells, giving rise
to distinct, cell-level, mutation events. The total number of
cells is fixed: each division triggers the removal of another
cell selected at random. The system is implemented on a
small parallel computer cluster, with one CPU per cell. The
real-time required for individual molecular interactions may
vary with the specific detailed structures of the molecules
involved. Cell reproduction rate is dependent on the real-
time rate of catalytic reactions occurring in the cell, and on
the specific criteria in effect for cell division. Distinct, in-
teracting, selectional dynamics arise at both molecular and
cellular levels.

Experiment: Molecular Amplification
In the first experiment cells are evolved to carry out ampli-
fication of a given molecular species. This is motivated by
conceptually similar in vivo investigations reported in the lit-
erature (Fong et al., 2005). The cell division criterion is con-
figured so that cells divide when a target molecular species
(sT ) reaches a threshold number of instances. The cellu-
lar reproduction rate (fitness) therefore depends on the abil-
ity of the cell to promote the growth of sT while still pre-
serving overall collective self-maintenance of all required
molecular species. The system is initialised (“seeded”) with

2For brevity, we say simply “cell” here; but this should be read
as “proto-cell” throughout.
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a hand-designed, viable cellular species (self-maintaining at
the molecular level, including the target molecular species,
so that cellular division is possible).

Similar phenomena are encountered in multiple runs. One
typical run is described and analysed in more detail. In
the course of this run, 1235 different and unique cellular
species were generated in total, but of these, just three suc-
cessively came to dominate the cellular population, through
three identifiable displacement events. Careful analysis of
both the molecular dynamics within the dominant cellular
species and the cell-level population dynamics allowed de-
termination that the first observed displacement in this run
was selectional, with a clear increase in fitness (molecular
amplification function); but the subsequent two displace-
ments represented drift among essentially equal-fitness cel-
lular species. That said, more fine-grained examination of
the displacement events also shows that they are correlated
with significant transient increases in cellular species diver-
sity. These displacements are thus significantly more intri-
cate than straight selection or drift between two “pure” cell
lines. In effect, a single molecular mutation event can give
rise to a complex cascade of cell-level mutations.

Experiment: Crosstalk
Crosstalk phenomena arise very naturally in real biochem-
ical information processing networks due to the fact that
molecules from different signalling pathways may share the
same physical reaction space (the cell). Depending on the
relative specificities of the reactions there is then an auto-
matic potential for any given molecular species to contribute
to signal levels in multiple pathways. Here we describe an
experiment investigating the evolutionary dynamics arising
when distinct cells, with potential crosstalking pathways, are
forcibly merged, but subsequent cell division is constrained
to maintain selected molecular components from both pre-
existing reaction networks (so cellular species in which one
network simply displaces the other cannot continue to repro-
duce). This work is naturally related to the symbiogenesis
theory which was originally postulated by Mereschkowsky
(1910), and already explored computationally by Barricelli,
on the first stored program digital computers, in the 1950’s
(Barricelli, 1957).

Over a number of runs, various common features are ob-
served under these experimental conditions. A very rich va-
riety of cellular species emerges, and in general there is sig-
nificantly more cellular species diversity than in the previ-
ously described experiment: it is rare in this case for a single
cellular species to exceed more than half of the population.
Nonetheless, distinct displacement events can still be ob-
served; and it is possible to analyse the molecular behaviour
of a selection of mutant cellular species in detail. It is typi-
cal to observe the emergence of cellular species containing a
“meta-reaction network”, still including all the seed molecu-
lar species, but also additional molecular species, exploiting

crosstalk and bridging between the seed species, and par-
ticipating in the collective self-maintenance. In this sense,
this experiment demonstrates a some (limited) evolutionary
growth in the complexity of the self-maintaining reaction
networks — both in terms of number of species and num-
ber of reactions composing the network. It is also observed
that the gestation time of the dominant cellular species suc-
cessively decreases

Conclusion
We have presented a preliminary investigation of the role
of collective self-maintenance in the evolution of (proto-
)cellular information processing reaction networks. To assist
this research, we built a novel agent-based multi-level selec-
tional Artificial Chemistry. This was applied to the evolution
of a single and multiple/crosstalking self-maintaining reac-
tion networks. In these experiments, cellular species were
successfully evolved to achieve the pre-specified informa-
tion processing functions more effectively and exhibited a
relatively higher level of complexity (by at least some rea-
sonable measures). This proof of concept should contribute,
to some extent, to understanding of the much more general
problem of open-ended evolutionary growth of complexity
using Artificial Chemistries.
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Abstract 
Many theories have sought to explain the evolution of sex, but 
the question remains unanswered owing to the scarcity of 
compelling empirical tests. Here we summarize the results of 
two of our published studies investigating the evolution of sex 
using digital organisms. We used these evolving programs to 
test the hypothesis that sexual reproduction is advantageous in 
changing environments. We found that sex evolved to be the 
dominant mode of reproduction only when the environment 
was changing rapidly and substantially. Additionally, we 
measured the effects of sexual reproduction on genetic 
architecture, specifically modularity and epistasis. We found 
that sex profoundly influences genome organization, increasing 
modularity and decreasing the effects of interactions between 
mutations. Our studies have contributed to understanding both 
the causes and consequences of sexual reproduction, while also 
demonstrating the efficacy and power of in silico approaches to 
these issues.  

Introduction 
Why sex? The paradox of sexual reproduction – a process that 
is costly and complicated, yet widespread in nature – has 
fascinated biologists for well over a century, and has in turn 
generated a wide range of hypothesis and experimental tests 
[1-3]. One of the simplest and perhaps most intuitive 
explanations is that sex accelerates the rate of adaptation to 
novel or changing environments by increasing genotypic and 
phenotypic variation [4]. Here we summarize a previously 
published study testing this theory in silico [5] as well as 
another study examining the effects of recombination on 
genetic architecture [6]. 

Methods 
All experiments were conducted using Avida software (freely 
available at http://avida.devosoft.org/), previously used in 
many studies of evolutionary trajectories and outcomes [7-8]. 
Digital organisms in Avida are short self-replicating computer 
programs that mutate, evolve, and reproduce either asexually 
or sexually, depending on which divide instruction they 
execute. Genomes were built from the default instruction set 
with 27 instructions including 2 divide instructions, divide-
sex and divide-asex, only one of which can be expressed by 
any individual. In these studies, point, insertion, and deletion 

mutations occurred at rates of 0.002, 0.0005, and 0.0005 per 
instruction copied, respectively, with the same mutation rates 
applied to the divide instructions as all others. When a 
population was at its carrying capacity (here 3600 organisms), 
each new offspring replaced a randomly chosen organism. All 
experiments ran for 100,000 updates (the Avida time unit), 
and a generation typically required 5–10 updates, with the 
precise number depending on the organisms’ genomic and 
phenotypic complexity.  

Digital metabolism. An organism’s genome may contain 
instructions that encode the ability to metabolize one or more 
substrates present in the environment. Metabolism of a 
substrate either accelerates or decelerates an organism’s 
replication rate by a factor of 2m, where m is the substrate’s 
metabolic value and is positive or negative, signifying a 
nutrient or a poison, respectively. Fitness is calculated as the 
organism’s total energy (energy obtained via metabolism in 
addition to basal energy provided equally to all organisms) 
divided by the time used to produce an offspring.  
Environmental conditions. For the study of the effects of 
sexual versus asexual reproduction on genetic architecture, we 
evolved populations in a constant environment with 9 
substrates that were always available in unlimited amounts. 
When testing the possible benefit of sex in changing 
environments, we used the same constant environment for the 
first 1000 updates of each experimental run, after which 
additional and changing substrates were introduced.  

Recombination mechanism. Recombination is initiated by 
pairing up the genomes of two progeny that were produced 
sexually (i.e., divide-sex was expressed) and consecutively. 
The pair then exchanges a single continuous genomic region. 
The recombining region is chosen at random, but is matched 
between the organisms based on its relative position in the 
genomes. After recombination, both offspring are placed at 
random locations in the population, in the same manner as 
asexually produced organisms. The Avida mechanism of 
recombination (see [9] for a more detailed explanation) differs 
from others presented elsewhere in the Artificial Life 
literature. For example, in Tierra, sex involved recombination 
between living and deceased organisms [10], while in another 
system recombination somewhat resembled plasmid transfer 
[11]. Moreover, those studies were not driven by hypothesis 
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testing, but rather were descriptive and phenomenological in 
scope, making any comparisons difficult. 

Results 
Effects of changing environment on reproductive mode. 
The trajectories of the relative abundance of sexual and 
asexual organisms were highly variable during our 
experiments. Overall, asexual reproduction prevailed, except 
at the highest rates of environmental change, when sexual 
reproduction tended to be more common. This result was 
obtained both when comparing the final mode of reproduction 
and when measuring the time that populations spent as 
predominantly sexual or asexual over the course of their 
evolution. 

Origin versus maintenance of sex. Given the costs of sexual 
reproduction, it may be easier to maintain sex than to evolve it 
de novo [12]. We found that over the entire duration of the 
experiment, the populations started with sexual ancestors were 
predominantly sexual 38% more often than those with asexual 
ancestors. However, when considering only the latter half of 
the experiment, this difference was reduced to 25%, indicating 
the time necessary to make the switch between the modes of 
reproduction also played an important role. Overall, sex 
overcame the barriers that hindered its establishment in 
previously asexual populations only about half the time even 
under the most favorable treatments.  

Mode of reproduction and modularity. We conducted 
extensive mutational analysis of organisms randomly sampled 
from populations that evolved in a constant environment with 
either obligatory sexual or obligatory asexual reproduction. 
We found that sexual organisms evolved to have both higher 
physical modularity (shorter distance between the genomic 
sites encoding a computational trait) and higher functional 
modularity (less overlap between the sites that encode two or 
more traits) than asexual organisms.  

Mutational sensitivity and epistasis. Sexual populations also 
evolved to be significantly more robust to individual 
mutations than the asexual populations. Under both modes of 
reproduction, the predominant mode of epistasis was 
alleviating (positive), with multiple mutations reducing fitness 
less than expected from their individual effects.  This epistasis 
was weaker, however, in sexual than in asexual organisms. 

Discussion and Conclusions 
Our experiments show that rapidly changing environments 
can promote the evolution of sex, but at the same time, they 
call attention to some limitations of this theory.  In particular, 
the parameter space that favored sex was quite limited, and 
the origin of sexual reproduction was more difficult than its 
maintenance. We also failed to observe a preponderance of 
aggravating (negative) epistasis, which is a key component of 
the mutational deterministic hypothesis [13], another well-
known theory for the evolution of sex, thus adding to evidence 
against this hypothesis obtained in other systems [14-16]. 
Instead, our results suggest that an indirect benefit for sexual 
reproduction might arise from increased genomic modularity, 
perhaps leading to greater evolvability that sustains long-term 

increases in fitness [17-19]. 
 More generally, the studies summarized here highlight the 
utility of digital organisms for testing complex evolutionary 
theories because they allow one to manipulate any relevant 
features of the environment, control for the confounding 
effects of ancestry, compare the origin and maintenance of 
organismal traits under the same conditions, and obtain data 
across many replicate populations and for many thousands of 
generations. Finally, the insights gained from our experiments 
with digital organisms may also lead to future research on 
biological systems to examine the generality of these results.  
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Abstract

Localization of molecules in a natural cell plays important
roles in interesting behavior of organisms like cell division
and morphogenesis. Such localization is mostly formalized
in a continuous space or lattice. This paper takes another
approach using an artificial chemistry with membranes; we
propose a dynamic division of reaction spaces to deal with
molecular localization. As an application of the method, we
modeled the cell division of B. subtilis. We executed the
model on a simulator and observed the intended results.

Introduction
Living organisms show many kinds of interesting behavior
whose mechanisms are not easily understood. They include
reproduction, morphogenesis, evolution, etc. In some of
them, the properties and dynamics of lipid membranes play
important roles. As one of the main interests in the field of
artificial life is to understand the essence of living system,
numerous formalisms have been proposed and used to model
the behavior of life in which membranes take their part; arti-
ficial chemistries (AChems) are among them (Dittrich et al.,
2001). For example, Madina et al. studied the formation of
proto-cell structures using their 3D Lattice Artificial Chem-
istry (Madina et al., 2003). They observed in the model
that amphiphilic molecules are organized into membrane-
like structures.

Besides the properties of membranes, another factor is
also important to understand interesting behavior: localiza-
tion of molecules. For example, in the early stage of C.
elegans (a kind of worm) embryogenesis, the point where
the sperm enters decides the localization of specific proteins,
which induces asymmetric cell division (Kemphues, 2000).
It is beneficial for a formalism to be capable of dealing with
such localization.

There seem to be two established methods to handle
it: one assumes a continuous space and the positions of
molecules; the other employs a lattice (1D, 2D or 3D, of
squares or other shapes) and places molecules in lattice cells
(Arjunan and Tomita, 2010). But both methods would have
drawbacks when they are to be applied to modeling and sim-
ulating a life-like system with many compartments separated

by membranes. The first method may require much com-
putational resource to calculate the behavior of molecules.
With the second method, it seems difficult to scale and adapt
the lattice size and granularity when, for example, morpho-
genesis from zygote to adult is to be modeled and simulated.

In this study, we take a different approach. Instead of
using the position of molecule in a continuous space or in-
troducing a pre-defined spatial structure, we divide reaction
spaces dynamically. To express it, we extend our AChem
(Amari and Tominaga, 2009). Then we model the cell divi-
sion of B. subtilis to evaluate the expressiveness of the ex-
tended AChem.

The organization of the following sections is as follows.
First, we illustrate part of the cell-dividing mechanism of B.
subtilis which we are going to model. Second we briefly
explain the base AChem and its extension. Then we model
B. subtilis cell division and show the result of its execution.
Finally, we discuss the proposed approach.

Mechanism of B. subtilis Cell Division
B. subtilis is a gram-negative rod-shaped bacterium (Adams
and Errington, 2009). It is a model organism in molecular bi-
ology. Its cell division has been studied, by which B. subtilis
reproduces itself, for it is a single-cell creature. The mech-
anism of division is not completely understood, yet some
details have been elucidated up until today.

This section illustrates part of the mechanism that con-
trols the division of B. subtilis cell which we model in our
AChem.

Forming of Z-ring and division septum
In the process of division, a Z-ring and a division septum are
formed at the mid-cell of B. subtilis (Adams and Errington,
2009; NW and J, 2005) (Fig. 1). A Z-ring is a ring-shaped
polymer of cytoplasmic protein named FtsZ; it is formed by
the polymerization of the protein on the inside surface of cy-
toplasmic membrane. Then the Z-ring constricts towards the
deep-cell, and the septum formation follows it; the septum
becomes one pole of each daughter cell when the division is
complete.
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division septum

Z-ringnucleoid

Figure 1: The Z-ring and septum.

In order for a cell to divide evenly, the position of Z-
ring (and septum) must be regulated. Two mechanisms
are regarded as contributing to the regulation, namely, nu-
cleoid occlusion (Adams and Errington, 2009) and the
MinCDJ system (Adams and Errington, 2009; van Baarle
and Bramkamp, 2010; Bramkamp et al., 2008). Nucleoid
occlusion prevents the Z-ring from forming near nucleiods
(shown as gray ellipses in Fig. 1), while the MinCDJ system
prevents one from forming near the cell-poles. In the present
study, we model the latter mechanism.

Four kinds of proteins play their roles in the MinCDJ sys-
tem, namely, MinC, MinD, MinJ and DivIVA. DivIVA lo-
calizes to the inner surface of cytoplasmic membrane at the
cell-poles. It recruits MinJ, and MinJ recruits MinD, and
MinD recruits MinC. MinC then prevents the polymeriza-
tion of FtsZ near the cell-poles. Although the mechanism of
the localization of DivIVA to the cell-poles is not yet fully
understood, the protein is known to have a characteristic that
tends to bind to a concave curve of lipid membrane surface
(Ramamurthi and Losick, 2009; Lenarcic et al., 2009).

Completion of cell division
These mechanisms restrict the Z-ring and the division sep-
tum to be formed at the mid-cell. The constriction of Z-
ring makes the septum curve inward, so DivIVA binds to
the cytoplasmic membrane near the Z-ring (Ramamurthi and
Losick, 2009; Lenarcic et al., 2009). Then DivIVA recruits
MinJ, MinD and MinC proteins, which will work again in
the next cell division.

Following the completion of Z-ring constriction, the syn-
thesis of division septum is complete, which is the end of
cell division. The Z-ring at a new cell-pole is depolymer-
ized by MinC and other proteins (Gregory et al., 2008); the
FtsZ monomers will re-polymerize to form the next Z-ring.

The Base Artificial Chemistry
The present study attempts to model the cell division of B.
subtilis using an extended AChem, which we propose in this
paper. Before we describe the extension, we give an outline
of the base AChem (Amari and Tominaga, 2009).

A v-atom is an atom in this AChem, whose name starts
with an upper-case letter followed by lower-case letters
and/or digits, such as Abc and D2e. A v-molecule is a stack

of one or more lines of v-atoms. Shown in Fig. 2 is an exam-
ple of v-molecule consisting of two lines, which is denoted
by 0#AbCd/1#EfGh/, where 1 is the displacement of the
second line relative to the first.

A recombination rule is a chemical equation in this
AChem, which is phrased in terms of patterns. A pattern
matches (or does not match) a v-molecule. A pattern con-
sists of atomic patterns and/or wildcards.

An atomic pattern is denoted by a name of v-atom, and
matches that v-atom; for example, the atomic pattern Ab
matches a v-atom Ab.

There are two kinds of wildcards, namely, atomic wild-
card and sequence wildcard. An atomic wildcard, de-
noted by a non-negative integer and surrounding angle
brackets like <1>, matches any v-atom. The integer is
the wildcard’s ID, which is referred to by recombina-
tion. A sequence wildcard, denoted using an asterisk like
<*2> or <3*>, matches any sequence of zero or more
v-atoms. The pattern shown in Fig. 3 (left) is denoted
by 0#<*0>Ab<1><2*>/0#Cd<3*>/, and matches all of
the three v-molecules shown in the right of the figure.

The left-hand side of recombination rule consists of one
or two patterns, and the right-hand side may have any num-
ber of patterns. A recombination rule recombines a v-
molecule (or v-molecules) matched by its left-hand side to
v-molecule(s) represented by the pattern(s) on the right-hand
side. Shown below is an example recombination rule.

0#<*0>Ab<1><2*>/+ 0#Cd<3*>/

→ 0#<*0>Ab<1><2*>/0#Cd<3*>/ (1)

If this rule is applied to the two v-molecules 0#ZyAbEf/
and 0#CdGhIj/, they are recombined to one v-molecule
of the form 0#ZyAbEf/1#CdGhIj/.

In this AChem, a membrane surrounds a cubicle. Mem-
branes can be nested to make a system. A system can model
a natural cell including cell organelles. Each cubicle has a
multiset of v-molecules, and so does each membrane; both
are called reaction spaces. Each reaction space has its own
set of recombination rules. Although reaction spaces are as-
signed to membranes and cubicles, each reaction space has
no spatial structure; it is “well-stirred,” i.e., any v-molecule
can react with any other v-molecule in the space. An exam-
ple system is shown in Fig. 4(a). A system is represented by
a tree structure, where a cubicle corresponds to a node and a
membrane to an edge (Fig. 4(b)).

A v-molecule in the reaction space of a membrane (which
can model a protein embedded in a lipid bilayer membrane),

Ab Cd

GhEf

Figure 2: An example v-molecule.
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pattern v-molecules

Ab <1>

Cd

<*0> <2*>

<3*>

Ab Ef

GhCd
Zy Ab

Cd
Ef

IjGh
Ab Ef
Cd

Zy Gh

Figure 3: A pattern using sequence wildcards and its matching example v-molecules.

Cubicle 1

Cubicle 2 Cubicle 3

Membrane 1

Membrane 2 Membrane 3

Cubicle 0

(a) an AChem system

Cubicle 1

Cubicle 2 Cubicle 3

Membrane 1

Membrane 2 Membrane 3

Cubicle 0

(b) tree representation

Figure 4: An example system of our AChem.

Membrane 2

Cubicle 2

Cubicle 1

_0#AB/ ^0#CD/

_0#CD/^0#AB/

(a) (b)

Figure 5: Directions of membrane v-molecules.

called membrane v-molecule, has its direction, as the mem-
brane protein does. The direction of membrane v-molecule
is top (represented by a preceding hat sign (ˆ)) or bottom (by
an underscore ( )), and is relative to an adjacent cubicle from
which the v-molecule is viewed. If a membrane v-molecule
is top when it is viewed from a cubicle (as ˆ0#AB/ viewed
from Cubicle 1 in Fig. 5(a) for example), it is bottom when
viewed from the opposite cubicle ( 0#AB/ from Cubicle 2).

A recombination rule specifies the types of v-molecules
using directions. In a recombination rule of cubicle, if a pat-
tern has no direction such as those in Rule (1), it represents a
v-molecule in the reaction space of the cubicle. If a pattern
has a preceding direction, as in the following examples, it
represents a v-molecule having that direction in the reaction
space of an adjacent membrane.

0#AB/+ 0#Z/→ 0#ABZ/ (2)
ˆ0#CD/+ 0#Z/→ ˆ0#CDZ/ (3)

For example, if Rule (2) is applied to a bottom v-molecule
0#AB/ of a membrane (suppose the rule is defined in Cu-

bicle 2 of Fig. 5 and we are viewing the v-molecule (a) from
Cubicle 2) and a cubicle v-molecule 0#Z/ (in Cubicle 2, not
shown in the figure), they are recombined to a bottom mem-

divide

merge

separate

connect

connecting v-molecule

membrane v-molecule

Figure 6: Membrane dynamics in this AChem.

(c)

^0#AB/=0#AB/

=0#AB/ -> ^0#AB/

(d)

^0#AB/ =0#AB/

^0#AB/ -> =0#AB/

(b)

=0#AB/ ^0#A/ (^0#B/)

=0#AB/ -> ^0#A/ + (^0#B/)

(a)

^0#A/ (^0#B/) =0#AB/

^0#A/ + (^0#B/) -> =0#AB/

Figure 7: Recombination rules change membrane structure.

brane v-molecule (of Membrane 2) of the form 0#ABZ/,
i.e., 0#ABZ/.

The AChem can express the division and merger of mem-
branes (Fig. 6). The processes go through an intermediate
state where two membranes are connected by a v-molecule.
This v-molecule is called connecting v-molecule; it is rep-
resented by equal sign (=) in a pattern. The division and
merger of membranes are not described by specifying mem-
branes explicitly; instead, they are defined in terms of re-
combinations of v-molecules. Four kinds of recombination
rules that change membrane structures are shown in Fig. 7
(the rules are supposed to be given to the parent cubicle
of the membranes in this case). A pattern surrounded by
parentheses like the second term of “ˆ0#A/ + (ˆ0#B/)”
expresses that the two patterns represent v-molecules of dif-
ferent membranes.
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Membrane

Reaction Space 1

Cubicle

Reaction Space 2

Boundary

Membrane

Reaction Space 2

Membrane

Reaction Space 3

Cubicle

Reaction Space 1

Cubicle

Reaction Space 3

Boundary

(adjacent)(adjacent)

(adjacent) (adjacent)

Figure 8: Membrane, cubicle and reaction spaces.

A system is interpreted nondeterministically as follows.

1. Initialize the system: each reaction space is given initial
v-molecules.

2. Choose a reaction space S.

3. Choose a recombination rule R from S.

4. Choose one or two v-molecules, if any, that R can apply
to.

5. Recombine the v-molecule(s); change the membrane
structure if specified.

6. Go to Step 2.

When a system is run on a simulator software, choices are
made by a specific algorithm of the simulator (called its re-
actor algorithm). Some of our simulators make choices ran-
domly; others employ physicochemical methods.

Extensions to the Base Artificial Chemistry
This study extends the base AChem described in the previ-
ous section, and models the cell division of B. subtilis with
the extended AChem. This section illustrates the extension.

In the process of the cell division, there occur the recruit-
ment of division proteins (DivIVA, MinC, etc.) to the cell-
poles and the localization of FtsZ at the mid-cell. Since the
base AChem gives one reaction space to a cubicle and em-
ploys the well-stirred reactor algorithm, it cannot express
such localization of proteins in a straightforward manner.

The present study extends the AChem so that a cubicle
can have multiple reaction spaces, and so can a membrane,
to express such localization. Reaction spaces of a cubicle
(or a membrane) have adjacency relationships among them.
Figure 8 depicts a cubicle that have three reaction spaces
(Cubicle Reaction Spaces 1, 2 and 3), and its surrounding
membrane that also have three reaction spaces (Membrane
Reaction Spaces 1, 2 and 3); the arrows indicate their adja-
cency relationships.

Membrane

Reaction Space 1

Membrane

Reaction Space 2

[bnd]_0#AB/

Cubicle Reaction Space 1

[bnd]_0#AB/

Boundary

[bnd]0#AB/ [bnd]0#AB/

[bnd]^0#AB/

Cubicle Reaction Space 2

Figure 9: Reference to a boundary v-molecule.

Boundary between reaction spaces
Two adjacent reaction spaces of a cubicle/membrane have a
boundary between them. Unlike a membrane, a boundary
has no reaction space. A boundary can be specified by a
membrane v-molecule. This special kind of v-molecule is
called boundary v-molecule. A boundary v-molecule has a
direction. It can be viewed from the outside and the inside
of the membrane (same as a normal membrane v-molecule),
and also can be viewed from the reaction spaces it speci-
fies. Figure 9 illustrates how a boundary v-molecule can be
viewed from reaction spaces around it. The boundary sep-
arates the membrane into two reaction spaces (Membrane
Reaction Spaces 1 and 2) and the cubicle into two (Cubi-
cle Reaction Spaces 1 and 2). Each reaction space can refer
to the boundary v-molecule in its recombination rules using
the pattern shown near the arrow from the space; a boundary
v-molecule is expressed by a tag “[bnd]” in a pattern.

Migration of v-molecules between reaction spaces
In a natural cell, most of materials in cytoplasm can freely
diffuse in the cytoplasm. To express such behavior, a re-
combination rule that makes v-molecules migrate between
adjacent reaction spaces can be defined. This type of rule is
called migration rule. An example rule is shown below:

0#AB/→ [as]0#AB/ (4)

The tag “[as]” means “another space.” When a rule of this
type is applied to a v-molecule, the v-molecule migrates to
any of the reaction spaces adjacent to the current space.

Membrane division on a boundary
In the base AChem, a membrane is divided into two when
a dividing rule is applied to a membrane v-molecule in
the membrane. The division also divides the cubicle sur-
rounded by the membrane; the contents of the cubicle (i.e.,
v-molecules and child membranes) are distributed to the new
cubicles nondeterministically. This property, however, is not
desirable when the AChem is to model cell division, because
the contents of the cell should be divided evenly.
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 (a) [bnd]^0#AB/ -> =0#AB/

(a)

 (b) [bnd]_0#AB/ -> =_0#AB/

(b)

(a)

(b)

 (c) [bnd]_0#AB/ -> =^0#AB/

(c)
(c)

Figure 10: Membrane division on a boundary.

Dividing membrane and its inside cubicle on a speci-
fied boundary enables the system to distribute the contents
of membrane/cubicle as intended. One can distribute the
contents of a membrane/cubicle to its reaction spaces (by
recombination rules) before division, then can divide the
membrane/cubicle to make two membranes/cubicles.

Such division is performed when a specific type of recom-
bination rule is applied to a boundary v-molecule. Three
types of rules and their effects are depicted in Fig. 10. Each
pair of eyeballs indicates the reaction space where the re-
combination rule is defined. An application of any of the
rules (a), (b) or (c) divides the membrane/cubicle on the
left to the two distinct membranes/cubicles on the right; the
black triangle represents a connecting v-molecule. At the
same time, the boundary disappears.

Dividing a reaction space

A reaction space is divided dynamically by the application
of recombination rule to a membrane v-molecule. There
are two types of rules. One is a rule that creates a bound-
ary molecule (Fig. 11(a)). An application of such a rule
makes the membrane v-molecule a boundary v-molecule,
divides the membrane reaction space where the membrane
v-molecule has been residing, and also divides the inside
cubicle reaction space from which the v-molecule can be
viewed. The contents of each of the original reaction spaces
are distributed nondeterministically to its daughter spaces.

The other is a rule that creates “neighboring space”
(Fig. 11(b)), which is indicated by the tag “[nsp]”. When
this type of rule is applied to a membrane v-molecule, a new
cubicle reaction space that is adjacent only to the current
(i.e., one having the rule) cubicle reaction space is created,
and also a new membrane reaction space adjacent only to
the current membrane reaction space (where the membrane
v-molecule belongs to) is created. The contents of the orig-
inal reaction spaces are distributed nondeterministically to
the daughter spaces in the same manner as that for the previ-
ous case. In this type of division, the created boundary has
no boundary v-molecule.

Modeling the Cell Division of B. subtilis
Using the extended AChem, we constructed a model for the
cell division of B. subtilis.

Overview of the model
The conceptual diagram of the model is shown in Fig. 12.
A small triangle represents a complex of MinC, MinD and
MinJ, a small square represents DivIVA, and a small circle
represents FtsZ. The process of division progresses as fol-
lows. (The numbers correspond to those in the figure.)

1. DivIVA-MinCDJ complex localizes to the inner surface
of the both ends of the rod-shaped cell. FtsZ molecules
are scattered over the whole cytoplasm.

2. FtsZ binds to any part of the inner surface of cytoplasmic
membrane and starts to polymerize.

3. DivIVA-MinCDJ complex at the rod ends depolymerizes
FtsZ polymers around it.

4. Since DivIVA-MinCDJ does not exist at the mid-cell,
FtsZ polymerizes there.

5. The polymer of FtsZ becomes a Z-ring.

6. A septum starts to be synthesized as the Z-ring constricts.
As the septum grows, DivIVA in the cytoplasm binds near
the Z-ring.

7. The cell divides into two when the Z-ring constricts com-
pletely and the septum is fully synthesized.

8. MinC, MinD and MinJ binds to DivIVA that is recruited
by the Z-ring, to make DivIVA-MinCDJ complex.

9. MinC in the complex depolymerizes the remaining FtsZ
polymer. Go to Step 1.

Definition of the model
The model is defined by the following specifications: the
structure of the AChem system (membranes, cubicles and
reaction spaces), the initial multiset of v-molecules for each
reaction space, and the set of recombination rules for each
reaction space.

The structure of the system is shown in Fig. 13. It con-
sists of a membrane and a cubicle surrounded by the mem-
brane. The membrane has three reaction spaces, namely,
m-left-pole, m-mid-cell and m-right-pole; the cubicle also
has three reaction spaces, left-pole, mid-cell and right-pole.
All the membrane reaction spaces share the same set of four
recombination rules; the cubicle reaction spaces also share
the same set with each other, which comprises 13 rules.

Initial v-molecules are given as follows. The mem-
brane reaction spaces at both ends of the cell, m-left-pole
and m-right-pole, are given v-molecules representing Di-
vIVA ( 0#Div4a/). The space m-mid-cell is given no v-
molecule. All the cubicle reaction spaces, left-pole, mid-cell
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(a)_0#AB/ -> [bnd]_0#AB/ (b) _0#AB/ -> [nsp]_0#AB/

_0#AB/ [bnd]_0#AB/

=

_0#AB/ [nsp]_0#AB/ [nsp]_0#AB/

Figure 11: Examples of boundary creation.

constricting Z-ring

(6)

remaining FtsZ polymers

(7)

new cell-poles

(8)(9)

(5)

Z-ring (FtsZ polymer)

(2 to 4)

FtsZ

cell-poles

mid-cell(1)

DivIVA and MinCDJ

Figure 12: A conceptual diagram of the model.

world

m-left-pole m-mid-cell

left-pole mid-cell

m-right-pole

right-pole

boundary

Figure 13: Initial structure of the system.

and right-pole, are given v-molecules for FtsZ, 0#Ftsz/,
and v-molecules 0#Mincdj/, which represent MinC,
MinD and MinJ at once. We deal with the three proteins
as an abstract molecule to make the description short.

Recombination rules define how the system works as fol-
lows. First, MinCDJ binds to DivIVA (5).

ˆ0#Div4a/+ 0#Mincdj/ → ˆ0#Div4aMincdj/ (5)

And FtsZ binds to the plasmic membrane (6). To the protein,
an FtsZ monomer binds to polymerize (7); FtsZ polymers in
the membrane also join (8).

0#Ftsz<0*>/ →ˆ0#Ftsz<0*>/ (6)
0#<*0>Ftsz/+ˆ0#Ftsz<1*>/

→ˆ0#<*0>FtszFtsz<1*>/ (7)
0#<*0>Ftsz/+0#Ftsz<1*>/

→0#<*0>FtszFtsz<1*>/ (8)

MinC in DivIVA-MinCDJ complex binds to FtsZ polymer
(9) and depolymerizes it (10).

ˆ0#Div4aMincdj/+ 0#<*1>Ftsz<2*>/

→ 0#Div4aMincdjFtsz<2*>/+ 0#<*1>/ (9)
ˆ0#Div4aMincdjFtsz<1*>/

→ ˆ0#Div4aMincdj/+ 0#Ftsz<1*>/ (10)

Because FtsZ polymerization is prevented at the ends of
cell by DivIVA-MinCDJ complex, FtsZ polymerizes at the
mid-cell. Eventually a Z-ring is formed (11) (we regard a
polymer of twenty FtsZ as a Z-ring; the number is arbitrary).
The Z-ring is represented by a boundary v-molecule. The
rule divides each of m-mid-cell and mid-cell into two reac-
tion spaces.

ˆ0#Ftsz<0..18><19*>/

→ [bnd]ˆ0#Ftsz<0..18><19*>/ (11)

The Z-ring constricts to the deep-cell and divides the
membrane (12); the constricted Z-ring becomes a connect-
ing v-molecule.

[bnd] 0#Ftsz<0*>/ → = 0#/0#Ftsz<0*>/0#/ (12)

DivIVA in cytoplasm binds to the plasmic membrane near
the constricted Z-ring (13, 14). Note that the viewpoints
of the two rules are in the opposite cubicle to each other.
DivIVA near the Z-ring is expressed by a v-molecule with
multiple lines.

=ˆ0#<0*>/0#Ftsz<1*>/0#<2*>/+ 0#Div4a/

→ =ˆ0#Div4a<0*>/0#Ftsz<1*>/0#<2*>/ (13)
= 0#<0*>/0#Ftsz<1*>/0#<2*>/+ 0#Div4a/

→ = 0#<0*>/0#Ftsz<1*>/0#Div4a<2*>/ (14)

The divided membranes separate when a particular num-
ber (ten) of DivIVA have bound to the both sides of Z-ring
(15), meaning sufficient time has elapsed for the complete
constriction of Z-ring. (The first term is folded to fit in the

539ECAL 2011



column.)

=0#<0..9><10*>/0#<*11><12..31><32*>/

0#<33..42><43*>/

→ 0#<0..9><10*>/0#<*11><12..21>/

+( 0#<33..42><43*>/0#<22..31><32*>/) (15)

After the division, there are remaining FtsZ and DivIVA
binding nearby at the new cell-pole. In other words, they
indicate the new cell-pole. The following rule creates a new
reaction space that represents the new cell-pole (16).

ˆ0#<0..9><10*>/0#Ftsz<11*>/

→ [nsp]ˆ0#<0>/+ [nsp]ˆ0#<1>/+ [nsp]ˆ0#<2>/

+[nsp]ˆ0#<3>/+ [nsp]ˆ0#<4>/+ [nsp]ˆ0#<5>/

+[nsp]ˆ0#<6>/+ [nsp]ˆ0#<7>/+ [nsp]ˆ0#<8>/

+[nsp]ˆ0#<9>/+ [nsp]ˆ0#<10*>/

+[nsp]ˆ0#Ftsz<11*>/ (16)

Then MinCDJ binds to DivIVA at the new cell-pole to
make DivIVA-MinCDJ complex (5), and MinC there de-
polymerizes the FtsZ polymer remaining at the pole (6).

In addition, the system has migration rules (like (17)) that
let v-molecules migrate to adjacent cubicle reaction spaces,
and a rule that expresses the decomposition of DivIVA (18).

0#Div4a/ → [as]0#Div4a/ (17)
0#Div4aDiv4a<0*>/ → 0#Div4a/+ 0#Div4a<0*>/

(18)

Execution of the model
We built a prototype simulator for the extended AChem by
modifying a simulator for the base AChem; the both simu-
lators are written in Ruby. When we ran the description for
the cell division illustrated in the previous section, the model
worked as intended.

A snapshot taken from the execution is shown in Fig-
ure 14. The text above is the output of simulator, and it
is depicted in the illustration below. In this state, the first
cell division is complete, and each daughter cell has started
the next cycle of cell division. In Membrane 11 and Mem-
brane 13, remaining FtsZ polymers ( 0#FtszFtsz· · ·/)
are observed.

Discussion
In the extended AChem, while each reaction space is well-
stirred, a cubicle/membrane can consist of multiple reac-
tion spaces, so localization of molecules within the cubi-
cle/membrane can be expressed.

The division of reaction spaces is performed by the appli-
cation of recombination rule to a molecule. This is in the
same framework we used to formalize membrane division
and merger (Tominaga et al., 2007). The main advantage
of this approach is that the same set of rules can be applied

after the structure of system has changed because rules do
not refer to membranes, cubicles or reaction spaces by their
IDs, positions, coordinates or addresses; the behavior is de-
termined only by v-molecules they have. Though we did not
model nucleoid occlusion, we think it can also be modeled
using the division of reaction spaces.

Possible topologies of reaction spaces are limited. For ex-
ample, a membrane reaction space and the cubicle reaction
space inside (and adjacent to) it always correspond in a one-
to-one manner.

In the illustrated application, the execution of the system
is somewhat like a reaction-diffusion system; the number
of FtsZ in the mid-cell space (or “concentration”) seems to
contribute to the formation of the Z-ring. This is because
the implementation of the simulator uses random numbers to
decide which reaction to occur. The current implementation
does not take physicochemical dynamics of molecules into
account. Doing it will be our future work.

In (Madina et al., 2003), the formation of membrane-like
structures is studied. They define the lattice and interaction
among particles in the space. A membrane-like structure is
observed as a collection of particles in lattice cells that en-
close an area. So the lattice should be suitable for the study.
In our AChem, a membrane is a primary entity and cannot
be decomposed into parts; this property will be beneficial in
modeling the behavior of membrane at a high level of ab-
straction.

A work using E-Cell to simulate the E-ring formation of
E. coli (Arjunan and Tomita, 2010) predefines a hexagonal
lattice with voxels having 12 neighbors in order to simulate
the behavior of proteins in cytoplasm. In contrast, our study
first only gives three reaction spaces to express the areas of
cytoplasm and they divide dynamically as the execution pro-
gresses. This flexibility will contribute to the scalability of
model, especially the membrane structure of which changes
considerably, like the process of complete ontogenesis.

In this aspect, our approach has similarities with L-
systems (Lindenmayer, 1968): symbols in an L-system can
increase as rules are applied, and rules specify no position
or ID of each symbol occurrence. Since ours is an artificial
chemistry, membranes and cubicles can have (v-)molecules,
and reactions among them can be described as recombina-
tion rules. We think this is advantageous in modeling a sys-
tem based on known biochemical reactions.

Concluding Remarks
In this paper, we presented a membrane artificial chemistry
that can dynamically divide reaction spaces, as an extension
to our previous artificial chemistry. The extension is intro-
duced to express the localization of molecules.

We showed an application of it: a model for the cell divi-
sion of B. subtilis. The model is defined by the initial struc-
ture, the initial v-molecules and 17 recombination rules. We
executed the model on our simulator, and observed that a
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xxxdcl> ao
Cubicle 0 [ object: NumObjects: 0 ]
Membrane 1 == m-world ( object: NumObjects: 0)
Cubicle 2 == world [ object: <0#Dummy/: 1> NumObjects: 1 ]
Membrane 3 == m-left-pole ( object: <_0#Div4aMincdj/: 12> NumObjects: 12)
Cubicle 4 == left-pole [ object: <0#Div4a/: 3> <0#Mincdj/: 3> NumObjects: 6 ]
Membrane 5 == m-mid-cell ( object: <_0#FtszFtszFtszFtszFtszFtszFtszFtszFtszFtszFtszFtszFtsz/: 1> 
<_0#FtszFtszFtszFtszFtszFtszFtszFtszFtszFtsz/: 1> NumObjects: 2)
Cubicle 6 == mid-cell [ object: <0#Div4a/: 8> <0#Mincdj/: 4> NumObjects: 12 ]
Membrane 7 == m-right-pole ( object: <_0#Div4aMincdj/: 11> NumObjects: 11)
Cubicle 8 == right-pole [ object: <0#Div4a/: 6> <0#Mincdj/: 2> NumObjects: 8 ]
Membrane 9 == m-mid-cell_0 ( object: <_0#FtszFtsz/: 1> NumObjects: 1)
Cubicle 10 == mid-cell_0 [ object: <0#Div4a/: 11> <0#Mincdj/: 5> NumObjects: 16 ]
Membrane 11 == m-mid-cell_1 ( object: <_0#FtszFtszFtszFtszFtszFtsz/: 1> <_0#Div4a/: 1> 
<_0#Div4aMincdj/: 10> <_0#FtszFtsz/: 1> NumObjects: 13)
Cubicle 12 == mid-cell_1 [ object: <0#Div4a/: 4> <0#Mincdj/: 3> NumObjects: 7 ]
Membrane 13 == m-mid-cell_2 ( object: <_0#Div4a/: 4> <_0#Div4aMincdj/: 6> 
<_0#FtszFtszFtszFtszFtszFtszFtszFtszFtszFtszFtszFtsz/: 1> NumObjects: 11)
Cubicle 14 == mid-cell_2 [ object: <0#Div4a/: 4> <0#Mincdj/: 4> NumObjects: 8 ]

Cubicle 2

Membrane 3

Membrane 9

Cubicle 4

Cubicle 12

Membrane 7

Cubicle 8

Cubicle 10

Membrane5

Boundary(5, 7)Boundary(3, 9)

Cubicle 6

Cubicle 14Boundary(9, 11) Boundary(5, 13)

Membrane 13Membrane 11

Figure 14: A snapshot from the execution of the model.

cell divides as intended. The small set of description was
able to simulate the cell division on the generic simulator;
this we think demonstrated the effectiveness of the present
approach.

We speculate this approach is useful in other applications;
we are currently modeling the division of E. coli and the
embryogenesis of C. elegans. The AChem may be further
extended to be able to express more complex phenomena
and structures such as forming cytoskeleton.
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Abstract

The use of tools or artifacts is essential to the human race and
has been the subject of recent research in Artificial Intelli-
gence. How individual agents acquire these capabilities and
how they evolve can be considered vital steps towards under-
standing complex group capabilities. In a previous study, we
designed and implemented an extended version of a theoret-
ical model for artifact capability that accommodated biolog-
ical evolution and learning via exploratory methods. Histor-
ical knowledge and genetic algorithms were combined with
learning techniques to build agents that could learn either in-
dividually from observations of their own behaviour or so-
cially by observation from a distance. In this study, we in-
corporate a collaborative form of cultural learning into the
model in an effort to enhance the artifact capability-learning
agents. This is accomplished via the design of a cultural evo-
lutionary model that utilizes genetic and cultural algorithms
to complement the cognitive abilities of the agents. Learning
agents belonging to a social network cooperate with and ben-
efit from each other by sharing individual experiences. Re-
sults obtained from the multi-agent simulation implementa-
tion confirm the efficiency of social learning over individual
learning and demonstrate the benefits of cultural over biolog-
ical evolution. They also suggest that as artifacts get more
complex, social agents learning via cultural influence outper-
form those learning by observation from a distance.

Introduction
The ability of humans to learn tool or artifact use, evolve
these capabilities and transfer the knowledge to others has
been of much interest to various researchers particularly in
the cognitive sciences. Archaeologists (Plummer, 2004) are
fascinated by the earliest recordings of tool use, philoso-
phers (Preston, 1998) theorize on the importance of tool use
relative to human intelligence and behavioural geneticists
(Bacher et al., 2010) present arguments on the role of genet-
ics in tool use behaviour. Preston contends in her work that
the study of tool use be considered as important as the study
of language because it is indicative of the high level cog-
nition that humans are capable of. According to (Petroski,
1992) artifact evolution is driven by functionality rather than
failure. Artifacts do not necessarily evolve because they fail
at what they were intended for, but rather because they can

always be improved. These improvements are often identi-
fied during use of the artifact. Humans use tools by them-
selves but often combine their tool capabilities. In order to
successfully model these complex group capabilities it is es-
sential to understand how humans acquire individual capa-
bilities and how these capabilities change over time.

In this study the terms tools and artifacts are used inter-
changeably and include any physical object in the environ-
ment that a human agent can use towards achieving a goal.
The human agent is a rational agent that acts in its best inter-
ests, has beliefs about the world, and chooses its actions ac-
cordingly (Wooldridge, 2000). Based on the Belief-Desire-
Intention (BDI) theory of (Bratman, 1987) the rational agent
has beliefs, desires and intentions. The agent’s beliefs de-
scribe its informative state about the world. Its desires repre-
sent what the agent would like to accomplish and are used to
devise goals. Its intentions are adopted goals that the agent
uses to generate plans or actions that it performs. According
to (Acay et al., 2008) tool capability resides within the in-
tentions of an agent and represents plans that the agent can
realize with the help of a tool. If an agent has capability for
a tool then it has at least one plan that specifies one way to
use the tool towards one or more of its adopted goals.

In a previous study (Mokom and Kobti, 2011) we im-
plemented an extended version of Acay et al.’s theoretical
model for tool capability incorporating biological evolution
and learning through exploratory methods. A representation
of artifacts and the cognition of an agent that can learn ar-
tifact capabilities were provided. Learning techniques from
(Russell and Norvig, 1995) were combined with genetic al-
gorithms (GA) to build a multi-agent simulation that evalu-
ated individual and social learning in the form of observa-
tional learning from a distance. The social learning agent
observed another agent successfully apply an artifact capa-
bility without the acting agents’ knowledge, noted partial in-
formation and subsequently formed a learning goal to apply
the same capability.

One limitation of the previously implemented social
learning agent is the fact that there must exist another agent
in its vicinity that already possesses the capability to use
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the tool. This limitation coupled with the contention by
(Reynolds, 1997) that cultural evolution evolves faster than
biological evolution is the inspiration for the work in this pa-
per. We design and implement a cultural evolutionary model
that supports agents that can socially learn an artifact capa-
bility without any prior knowledge. This is accomplished
via the integration of a GA and a cultural algorithm (CA)
with the framework of an artifact-capability learning agent.
A learning agent can benefit from being part of a social net-
work where individual experiences are shared by using the
experiences of others to enhance its own learning process.
Our objectives are to demonstrate how agents can collabora-
tively learn an artifact capability over time and compare the
results to those obtained for observational learning agents.

The next section provides some background on related
work. It is followed by our architecture of artifact capability-
learning agents. We then provide details on our implemen-
tation and experiments conducted, followed by conclusions
deduced and future work.

Background
Artifact Use
The subject of tool use particularly in animals has been
explored in various fields. (Wood et al., 2005) provide a
good background on this. Much of the underlying work in-
volves the effort to understand how animals explore objects.
(Power, 2000) provides some insight into exploratory meth-
ods utilized by children and animals when they encounter a
new tool. He contends that the exhibited behaviour, which
can sometimes be genetically predetermined, is species de-
pendent and very much influenced by culture.

Robotic researchers have also explored the subject of tool
use. This has involved the development of object recogni-
tion mechanisms in robots (Wood et al., 2005) and the cre-
ation of industrial robots programmed for specific tool use
(Bluethmann et al., 2003). In an effort to investigate robots
learning tool use through exploratory methods, (Stoytchev,
2005) provides a representation of a robot that can attempt
various actions with a tool, record and remember the ef-
fects. (Schäfer and Bergfeldt, 2007) investigate the emer-
gence of complex tool use behaviours acknowledging that
they need to combine their efforts with learning and reason-
ing by agents in order to obtain more useful results. (Noble
and Franks, 2002) simulate various social learning methods
for tool use concluding that emulation is sometimes a more
effective method of learning than imitation because it pro-
motes exploration. Omitted from their research is an evolu-
tionary aspect to their work.

Cultural Learning
Knowledge among humans is often transmitted through ex-
perience and cooperation. According to Tomasello et al.
(1993) in cultural learning, integrated patterns of behavior
accumulate changes across generations of a social group.

They identify three different manifestations of cultural
learning namely imitation, instructed learning and learning
by collaboration. Cultural evolution describes the change
of culture over time and can be used to study the effects of
cultural learning.

(Curran and O’Riordan, 2007) simulate the instructed
learning form of cultural learning using a teacher/pupil en-
vironment. In their study a GA and a neural network are
used to evolve a population where fitter individuals are se-
lected as teachers for the pupils of the next generation. The
goal was to demonstrate how cultural learning improves the
fitness of a population. (Acerbi and Nolfi, 2007) utilize sim-
ulated annealing to incorporate cultural evolution in their
comparisons between individual learning and the imitation
form of cultural learning concluding that a sequence of both
yields the best results. Geared more towards robotics, much
of their work involves robotic sensors and body schema.
(Reynolds and Peng, 2004) capitalize on the emergence of
cultural learning in their CA framework to demonstrate the
power of learning and adaptation within cultures.

Architecture of an Artifact
Capability-Learning Agent

An artifact capability-learning agent has the ability to em-
ploy learning techniques towards acquiring a tool capability,
that is one way to use a tool towards the achievement of
one or more of its goals. This can be accomplished via in-
dividual or social learning experiences. In the former case
the agent learns solely through observations of its own be-
haviour and in the latter, the agent learns by observing or co-
operating with other agents in its environment. We present
the existing model of an artifact capability-learning agent
from our previous study and demonstrate its expansion to
cultural learning agents.

Cognitive Elements of Learning Agent
The cognition of a rational agent endowed with the ability
to learn artifact capabilities, was incorporated into a general
model of learning agents developed by (Russell and Norvig,
1995). This can be appreciated in Figure 1 obtained from
(Mokom and Kobti, 2011). The learning agent’s cognition
is composed of a performance element, a critic and a learn-
ing element. The performance element bears the responsi-
bility of selecting the agent’s external actions to perform.
Once these actions are performed, the critic element mea-
sures resulting percepts against an external predefined stan-
dard of performance and generates feedback. This feedback
is received by the learning element and used to improve the
performance element so it can do better the next time. The
rational agent’s beliefs, goals and capabilities reside within
the performance element playing a role in the decision mak-
ing process of action selection.
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Figure 1: An artifact capability-learning agent

Artifact and Agent Model
An artifact is represented as an object made up of one or
more parts. Each artifact part is composed of a set of at-
tributes. An artifact attribute has a set of possible values
and a visibility property. The visibility property indicates
whether an observing agent can copy the value of the at-
tribute chosen by the agent it is observing. Lets consider a
pen as an artifact. The part shell could represent the entire
outer layer of the pen with an attribute hold-position. The set
of values for the hold-position attribute indicate all possible
points where the pen can be held. If the hold-position at-
tribute is visible then an observing agent can copy the point
at which the pen is held by the acting agent.

An artifact capability-learning agent has beliefs, goals and
capabilities. A capability has an abstract functional ability
and an ordered list of tasks. Abstract functional abilities rep-
resent all the things that an agent can do with an artifact re-
gardless of whether the agent knows how. It is only when
the agent acquires the knowledge to use the abstract abil-
ity that the agent can be described as having the capability.
An agent can therefore select an abstract ability and use it
to formulate a learning goal. For simplicity it is assumed in
this study that an artifact has a single part and multiple at-
tributes. The ordered lists of tasks represent attribute value
sequences that the agent must determine in order to realize
the capability.

External to the rational agent is a predefined standard
of performance that is goal dependent for every artifact.
This standard maintains information about the number of
required tasks and the correct attribute value sequences for
each task within an artifact capability. The performance
standard is used by the critic element in evaluating the re-
sults of the agent’s actions. The critic’s feedback includes an
average fitness score for the attempted sequence. The model
supports a range of values performance standard that pro-
vides an inclusive range within which the selected attribute
value is constrained to fall. For an attribute value sequence

V = 〈v1, . . . , vn〉 with n attributes, the critic calculates the
mean fitness score MF as follows:

f (vi) =


1, mn ≤ vi ≤ mx

1
mn−vi , vi < mn

1
vi−mx , vi > mx

MF (V ) = avg

(
n∑

i=1

f (vi)

)

where mn represents the lower bound of the performance
standard for the attribute with value vi and mx represents
its upper bound. The function gives the same score to all
values that satisfy the standards’ criteria. The rest of the
values are scored based on their distance from the required
range.

Performance Element
One of the key decisions in the design of a learning agent is
the design of the performance element. In accordance with
(Russell and Norvig, 1995), the performance element of an
artifact capability-learning agent should contain all the in-
formation needed by the agent to go about trying to use the
tool. This is essentially how the agent deliberates and se-
lects attribute values. We inherit two types of performance
elements designed in the previous study and refer to them
henceforth as PE1 and PE2. In this study we design a new
type of performance element PE3.

All three performance elements’ maintain a history of
failed attempts in their respective beliefs. A fitness-based
attribute value selection procedure is used in the selection
of attribute values where one randomly chosen attribute of a
selected sequence is modified at each attempt. For PE1 and
PE2 the selection is based on the fitness of the agent’s pre-
vious attempts. PE1 supports an agent learning on its own.
The agent simply ensures that it does not repeat attribute
value sequences that have previously failed. PE2 supports
an agent learning socially via observation from a distance.
Like PE1, it does not repeat attempted sequences. The vari-
ation lies in the fact that PE2 has partial knowledge of the
capability at the start of the learning process. In determining
new attribute values, the agent only selects and modifies the
invisible attributes.

The new performance element PE3 is built to support an
agent learning a tool capability through cultural experience.
Its selections are based on both the fitness of its previous
attempts and the fitness of all other agents that it cooperates
with.

Social Network and Cultural Algorithm
PE3 agents that collaborate with each other belong to a so-
cial network. In this study, it is not deemed necessary to de-
fine a social network with complex relationships. The social
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Figure 2: Cultural learning by m agents of a k-task artifact
capability

network exists only to facilitate the exchange of information
between agents towards enhancing the learning process.

PE3 agents are designed within the CA framework. CA’s
were introduced by (Reynolds, 1979) to facilitate the mod-
eling of cultural evolution. A CA is made up of a belief
space, a population space and a communication protocol be-
tween them. Selected individuals from the population space
contribute to knowledge maintained in the belief space. The
contribution is transmitted through an acceptance function
and the knowledge in the belief space is adjusted accord-
ingly. That knowledge influences the evolution of the indi-
viduals in the population space via an influence function. A
CA supports the use of any kind of evolutionary algorithm
in the implementation of the population space. The frame-
work for PE3 agents learning an artifact capability is shown
in Figure 2. It demonstrates PE3 agents belonging to a sin-
gle social network sharing one global belief space within the
CA. In the figure, there are m agents trying to learn the same
artifact capability with k tasks.

Knowledge Sources Reynolds identifies five types of cul-
tural knowledge that can be maintained in the belief space of
a CA. They are situational, normative, topographic, histori-
cal or temporal and domain knowledge. Figure 2 shows the
belief space in our design using situational and normative
knowledge. Situational knowledge maintains the best per-
formers so far. For artifact capability-learning agents coop-
erating with each other, these would be the highest scoring
selections of attribute value sequences. Normative knowl-
edge maintains encouraging ranges for each attribute value
making it feasible for agents to “jump into the good range”

(Chung and Reynolds, 1998). The learning agents can adjust
their attribute value selections using the guidance of these
ranges that have been derived from selections of the top per-
formers.

PE3 agents utilize knowledge from two types of belief
spaces. The agent’s personal belief space PB maintains
a history of its failed attempts for the current task being
learned and is local to the agent. Thus PB = {〈v1, . . . , vn〉}
where n represents the number of attributes for the arti-
fact and each vi is the selected attribute value for the se-
quence. The global belief space shared by agents in a so-
cial network henceforth referred to as GB is defined as:
GB = 〈S,N〉, where S = {SK1, . . . , SKk} represents
the situational knowledge and N = {NK1, . . . , NKk} rep-
resents the normative knowledge for k tasks of an artifact
capability. The situational knowledge maintains the single
best exemplar found so far for each task:

SK = (t, sSK , 〈kv1, . . . , kvn〉) (1)

where t is the task id, n represents the number of attributes
for the artifact, each kvi is the selected attribute value and
sSK represents the score of the sequence. The normative
knowledge keeps favourable ranges for each attribute value.
This is defined as:

NK = {t, R1, . . . , Rn} (2)

where t is the task id and n is the number of attributes for
the artifact. Each Ri is a tuple:

Ri = 〈sl, su, [l, u]〉 (3)

where l and u represent the favourable lower and upper
bound values of attribute i, with sl and su as their
respective scores. A PE3 agent contributes to and uses both
belief spaces in the learning process.

Adjusting the Belief Spaces The agent’s local belief
space is updated with the failed attempt every time the agent
tries a new attribute value sequence for a particular task and
fails. For GB’s adjustment when top performers are ac-
cepted, they are sorted according to their scores. If h con-
tains parameters for the individual with the highest score:
h = (t, sh, 〈v1, . . . , vn〉), then it is used to adjust the situa-
tional knowledge SK defined in Eq. (1) as follows:

SK ′ =

{
h, sh > sSK

SK, otherwise
(4)

Thus the situational knowledge is always the highest
performer so far among all the attempted attribute values
for the specific task by members of its social network.

In order to adjust the normative knowledge we need to
deal with one attribute at a time. For each attribute i we
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obtain and sort its values for all top performers. The low-
est selected value xi and the highest selected value yi, with
their corresponding scores sxi and syi can now easily be
extracted. Normative knowledge for the task being learned
defined in Eqs. (2) and (3) is updated for each attribute i
using the following formulae:

l′i =

{
xi, (xi < li and sxi = sli) or sxi > sli

li, otherwise
(5)

sl′i =

{
sxi, (xi < li and sxi = sli) or sxi > sli

sli, otherwise

u′i =

{
yi, (yi > ui and syi = sui) or syi > sui

ui, otherwise

su′i =

{
syi, (yi > ui and syi = sui) or syi > sui

sui, otherwise

Using these rules, the agents will progress towards learning
the correct range required by the performance standard.

Population Space and Influence from Global Belief
Space The population space in our cultural algorithm uses
a genetic algorithm. As in the previous study the GA uses
a bit representation for solutions in the population. It em-
ploys two-point crossover and mutation to modify a single
attribute value for each attempt. Selection for reproduc-
tion is accomplished via roulette wheel selection. With PE3
agents however, mutation is carried out differently. In order
to benefit from knowledge in GB, the situational and nor-
mative knowledge are used to determine direction and step
size for the mutation respectively. This effectively permits
attribute value sequences to follow the exemplar and at the
same time strive to get into a desirable range. If the sequence
being influenced is q = (s, 〈v1, . . . , vn〉), then the chosen
attribute’s value vi, is mutated using the following formula
derived from Chung and Reynolds (Chung and Reynolds,
1998):

v′i =


vi + |(ui − li) ·N (0, 1)| , vi < kvi

vi − |(ui − li) ·N (0, 1)| , vi > kvi

vi + (ui − li) ·N (0, 1) , otherwise

(6)

where kvi represents the exemplar value in the situational
knowledge as defined in Eq. (1), li and ui correspond to the
lower and upper bounds for that attribute in the normative
knowledge defined in Eqs. (2) and (3), and N (0, 1) is a
random value obtained using the standard normal
distribution. All values correspond to the current task being
learned.

Cultural Learning Simulation
The simulation environment is a simple 20 x 15 toroidal grid
world, in which each square contains an agent and an arti-

fact. There are three types of agents henceforth referred to
as AG_GA_PE1, AG_SOCIAL_PE2 and AG_SOCIAL_PE3
varying based on the implementation of the performance el-
ement. All AG_SOCIAL_PE3 agents belong to a single so-
cial network. The agents can learn capability for artifacts
with different complexity. All artifacts are made up of a sin-
gle part but differ in the number of attributes. The grid is
populated with 100 members of each type of agent and the
same type of artifact is placed in each square. The agents
simultaneously learn the same artifact capability by attempt-
ing different combinations of attribute values employing the
respective technique of their performance elements.

For the genetic algorithm of AG_GA_PE1 and
AG_SOCIAL_PE2 a mutation rate of 0.01 was chosen.
For AG_SOCIAL_PE3 agents, mutation was determined by
direction and step-size with a mutation rate of 1/n where
n represented the number of attributes for the artifact being
learned. The crossover rate was set to 0.7 and the population
size at 100 for the GAs of all agents. The range of possible
attribute values for artifacts was set to [1 .. 100] with the
range of values performance standard covering 20% of the
range. The number of tasks required by all agents to learn
to use the artifact was 5. Finally, the top 5% performers for
each agent’s solutions were selected to be accepted into the
global belief space.

The pseudo-code for cultural learning of an artifact capa-
bility is shown as Algorithm 1. At the start the social net-
work is created and its global belief space is initialized to 5
tasks. For each task the exemplar is set to null and the nor-
mative range to the range of possible attribute values that is
[1 .. 100]. Agents are then added to the network. All agents
perform the rest of the algorithm simultaneously. Each agent
gets the artifact at its location and uses its cognitive elements
to learn the capability. The learning element selects an ap-
propriate ability and formulates a goal. The performance
element initializes the agent’s local belief and capability to
null and the goal to false. Every simulation step the agent
generates an attribute value sequence, attempts it and per-
forms the necessary updates. If the feedback of the attempt
indicates failure, the sequence is added to the agent’s local
belief. If there is some form of success, the agent has ei-
ther reached its goal or has met the minimum requirement to
proceed to the next task. If the goal is achieved, the learning
element advises the performance element to perform the fi-
nal capability update and the agent is done. If the goal is not
yet reached, the performance element is asked to update the
capability with the learned task’s successful attribute values,
clear the local belief as well as the agent’s population space
and continue on to the next task.

The knowledge maintained by GB is utilized when PE3
provides an attribute value sequence. The pseudo-code is
shown as Algorithm 2. POP_SIZE is a constant that spec-
ifies the number of attribute value sequences being evolved
by the GA used to implement PE3’s population space and
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Algorithm 1 Cultural learning of an artifact capability
Create social network
Initialize global belief space
Add agents to social network
Each agent gets artifact
Learning element selects an ability
Learning element formulates a goal
PE3 initializes local belief
PE3 initializes goal and capability
while goal not achieved

PE3 provides attribute value sequence
Critic tests attribute value sequence
Critic generates feedback
Learning element generates changes
PE3 applies changes

end

is set to 100 in our experiments. The initial population is
randomly generated without repeating sequences that have
been attempted already. Once that is complete PE3 pro-
vides attribute value sequences by checking if there are still
sequences to be attempted, selecting and returning one. If
all attribute value sequences in the population have been at-
tempted, fitness scores are used as the criteria to vote top per-
formers for acceptance into GB, which is responsible for its
own adjustment. A new population is then generated influ-
enced by GB’s situational and normative knowledge. One
attribute value sequence is selected from the new population
and returned for the agent to attempt.

CA’s require the evaluation of the entire population space
prior to communication with GB via the acceptance func-
tion. For an artifact capability-learning agent this means
that an agent’s selections have no impact on GB until af-
ter all attribute value sequences in the population have been
attempted. This is necessary because the agent has to test
every generated sequence and obtain its fitness before the
top performers can be identified. There is one more instance
however, where it would be useful to update GB’s knowl-
edge. That would be when the critic element declares suc-
cess for an agent either at the task or the goal level. This
can occur at any time during the evaluation process of the
population space. In this specific case, when applying the
learning elements suggested changes PE3 requests that the
successful attribute value sequence be accepted into GB. It
does not vote for top performers since it is likely that the
entire population has not yet been evaluated. After the suc-
cessful sequence is accepted GB adjusts its situational and
normative knowledge using the same rules as when it re-
ceives top performers. This allows the agents to benefit from
the success of others.

Experiments and Results
AG_GA_PE1 agents are the individual experience-learning
agents that strive to acquire an artifact capability on their

Algorithm 2 PE3’s algorithm to provide attribute value se-
quence
if size(POP) < POP_SIZE

values = Generate random value sequence

else

if attempted all sequences in POP
Select top performers from POP
Accept selected performers in GB
Generate POP’ with influence from GB
values = One value sequence from POP’
else

values = One value sequence from POP
end

end

Figure 3: Average Convergence For All Agents Learning
Capability for 4, 8, 12 and 16-attribute Artifacts (Visibility
of attributes applies only to AG_SOCIAL_PE2 agents)

own. An AG_SOCIAL_PE2 agent learns socially by ob-
serving a capable agent from a distance, copying visible at-
tributes and learning the remaining attribute values on its
own. AG_SOCIAL_PE3 agents benefit culturally by coop-
erating with other agents in an effort to enhance their indi-
vidual learning abilities. Figure 3 shows the results of 100
representatives of each type of agent learning capability for
artifacts with 4, 8, 12 and 16 attributes. Figure 4 shows the
results of 100 representatives of both types of social agents
learning capability for artifacts with 8, 12, 16, 20 and 24 at-
tributes. In all experiments 25% of the attributes were made
visible for AG_SOCIAL_PE2. At the end of each test run, the
mean convergence times for each type of agent were com-
puted. These are the average number of iterations needed by
the agents to learn the artifact capability.
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Figure 4: Average Convergence For Social Agents Learning
Capability for 8, 12, 16, 20 and 24-attribute Artifacts (Visi-
bility of attributes applies only to AG_SOCIAL_PE2 agents)

It can be observed in Figure 3 that AG_GA_PE1
agents were outperformed by both AG_SOCIAL_PE2 and
AG_SOCIAL_PE3 agents in all conducted experiments. The
results show an increase in the difference in convergence
rate between the individual and social learning agents as
the number of attributes increased from 4 1o 16 attributes
with the individual learning agents needing more time to
learn the capability. An interesting observation in Figure 4is
the difference in convergence rate between the two types of
social learning agents. AG_SOCIAL_PE2 learn faster than
AG_SOCIAL_PE3 agents for 8, 12 and 16 attributes. How-
ever at 20 attributes the cultural learning agents outperform
those learning via observation from a distance. The trend
continues at 24 attributes as AG_SOCIAL_PE3 agents learn
even faster.

In our previous study it was demonstrated that learn-
ing socially outperforms individual learning therefore, it
is no surprise AG_SOCIAL_PE2 agents do better than
AG_GA_PE1 agents. The fact that AG_SOCIAL_PE3 agents
outperform AG_GA_PE1 agents supports the contention that
artifact capability-learning via cultural evolution should pro-
ceed at a faster rate than through biological evolution. To
understand the results that show agents learning via obser-
vation from a distance outperforming their cultural learning
counterparts with simpler artifacts or artifacts with fewer at-
tributes it must be remembered that these agents have par-
tial knowledge of the artifact capability upfront. We believe
that this partial knowledge gives AG_SOCIAL_PE2 agents a
head start in the learning process. AG_SOCIAL_PE3 agents
on the other hand begin with no knowledge of the capa-
bility and simply use the best of their social group to im-
prove the process over time. According to Reynolds (1997)

knowledge compiled over time and maintained in the global
belief space should guide the learning process such that it
improves at every trial. As the number of attributes in-
crease, the artifacts get more complex and the search space
larger AG_SOCIAL_PE3 agents get better and eventually
outperform AG_SOCIAL_PE2 agents. Although the ob-
served threshold may vary and be problem dependent CA’s
have been used to optimize complex applications Chung and
Reynolds (1998). Therefore we suggest that as an artifact
gets more complex the likelihood that its capabilities would
be best acquired via cultural learning increases especially
when the visibility of attributes for observational learning is
low.

Conclusions and Future Work
In this study, we have designed and implemented a cultural
evolutionary model supporting an agent with the objective of
learning artifact capabilities without prior knowledge. Cul-
tural learning agents benefit from belonging to a social net-
work where individual experiences are shared. The model
was designed by integrating a genetic and cultural algorithm
with the framework of an artifact capability-learning agent.
One of the objectives was to enhance the learning capacities
of a previously implemented learning agent through cultural
learning. Another objective was to compare cultural learn-
ing of artifact capabilities to observational learning from a
distance. On a larger scale, we maintain that understanding
the acquisition and evolution of artifact capabilities for sin-
gle rational agents is a vital step towards representing their
capacity to combine them into group capabilities, towards
the accomplishment of more complex goals.

Results obtained from our multi-agent simulation imple-
mentation confirm that social learning outperforms individ-
ual learning and suggest that complex artifact capabilities
are best learned via cultural learning. Although observa-
tional learning from a distance surpassed cultural learning
for simpler artifacts, the fact that it requires access to an
agent already in possession of the capability is a drawback.
Additionally the agent must know how to copy the visible
attributes with some degree of certainty. A cultural learning
agent needs no capable agent in its vicinity and can begin
the learning process without possessing any aspect of the ar-
tifact capability.

We believe that further experiments are necessary to in-
vestigate varying degrees of attribute visibility for agents
learning via observation compared to the cultural learning
process. One of the knowledge sources identified for the
global belief space by (Reynolds, 1979) that was not used
in this study is domain knowledge. For future work it can
be used to influence the choice of goals for agents to pur-
sue with regard to learning an artifact capability. It would
be useful to simulate how goals evolve. One fitness func-
tion would no longer be sufficient in the learning process.
The choice of a fitness function would be driven by the arti-
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fact capability being learned, even for the same artifact. As
an example, a knife can be used both as a cooking utensil
and as a weapon. An agent’s choice of one versus the other
would require a different fitness function.
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Abstract

This paper explores the following question: how a fixed-size
population of autonomous agents (such as a swarm of robotic
agents) may evolve altruistic behaviors during open-ended
evolution. In particular, we focus on a situation where the
tragedy of commons can possibly occur: a situation where
individuals must display altruistic behaviors in order for the
whole population to avoid extinction. Our approach considers
a sub-individual framework, defined at the level of genomes
rather than agents, in order to provide an efficient algorith-
mic solution for the emergent of coordination among the pop-
ulation. Experiments show that the proposed evolutionary
adaptation algorithm favors the emergence of altruistic be-
havior under some assumptions regarding genome related-
ness. In-depth experimental studies explore the relation be-
tween genotypic diversity and degree of altruism as well as
the exact nature of the evolutionary adaptation process.

Introduction
Altruism is a remarkable behavior observed in Nature,
where actions of an individual benefit other individuals even
though these actions may negatively impact the individual’s
chances of survival. A well-known example is given by in-
dividuals that watch out for a predator and signal danger to
the group whenever it is required, thus potentially drawing
the predator’s attention to them. The reason why some indi-
viduals may sacrifice themselves for the benefit of the group
has long been studied and there are now some widely ac-
cepted theoretical basis regarding the relation between geno-
typic relatedness among individuals and degree of altruism,
as first described by Hamilton (1964). Altruism has long
been actively studied from Biology to Economics, from So-
ciology to Game Theory, to cite a few domains. It differs
from cooperation as altruism requires no direct benefit nor
reciprocity. Moreover, its benefit can only be measured at
the level of the population, as summarized by Lehmann and
Keller (2006).

This paper is concerned with the emergence of altruism
in a fixed-size population of evolving autonomous agents
where the environment is such that selfish behaviors lead
to extinction. This situation is known as the tragedy of (un-
managed) commons, as introduced by Hardin (1968, 1994):

individuals must share a common limited resource, and pos-
sibly sacrifice their own benefit, so that the population sur-
vives through generations.

The main motivation behind this research is to propose a
practical implementation of evolutionary adaptation ina pri-
ori unknown environments in the scope of a fixed-size pop-
ulation of autonomous agents. This assumption is central to
our motivation as the long term goal is to provide practical
algorithmic solutions that can be deployed in a swarm of vir-
tual agents in complex environments as well as real world
autonomous robots. The contribution in this paper is then
both fundamental and practical as the emergence of altru-
ism during the course of evolution is experimentally studied,
with a particular focus on its causes and consequences, and
is considered within an experimental setup that is closely re-
lated to the target application: a 2D virtual environment with
realistic assumptions inspired from autonomous robotics.

The paper is organized as follow: the definitions of altru-
ism and tragedy of commons are provided in the next sec-
tion, along with a short description of relevant contributions
from the fields of Artificial Life and Evolutionary Robotics.
Then, the environment-driven evolutionary adaptation algo-
rithm is described as well as the experimental settings used
for the experiment. Results from the experiment are given
and discussed, with a particular focus on the nature of altru-
ism observed. Finally, the last section provides a discussion
and conclusion and sketches future directions for this work.

Context and Motivation
This section starts with a definition of the Tragedy of Com-
mons, a well-known social dilemma where the population
welfare strongly depends on individual behaviors. Then, a
definition of altruism is given as well as a brief overview of
its theoretical foundations in Biology. The section ends with
a short review of related works in the field of Artificial Life
and Evolutionary Robotics.

The Tragedy of Commons

The tragedy of (unmanaged) commons ((Hardin, 1968,
1994)) is a particular kind of social dilemma where a pop-
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ulation of individuals have access to a finite common re-
source pool: each individual may temporarily increase its
fitness through selfish behavior, but this inevitably leads to
exhaust the common resource pool, ultimately ending with
population extinction. The classic example describes farm-
ers optimizing their personal benefit by owning as many
cows as possible without any regards for the common graz-
ing the cows feed from, which will quickly suffer from over-
exploitation, ending with cows dying from starvation.

The tragedy of commons has been widely studied in both
Evolutionary Biology and Economics (Mankiw, 2009). Us-
ing a terminology from Economics, the conditions for the
occurrence of the tragedy of commons requires that the re-
source must be accessible to anyone (”non-excludable”) but
in limited quantity, thus implying competition (”rivalry”)
among individuals. It shares some similarities with the well-
known public goods dilemma1 regarding the condition of
unrestricted accessibility to the resource, but also differs as
the substractability of the resource may penalize the survival
rate of the population (e.g. because of free-riders). From the
Biology viewpoint, the tragedy of commons is known to be
responsible of in-group competition among individuals.

A possible explanation for the tragedy of commons is
the negative impact of reciprocity, where free-riders are fa-
vored as they focus on their own personal fitness gain with
no regards to the cost at the level of the population (Sober,
1992). However, several strategies have been identified and
discussed in the literature for ”solving” the tragedy of com-
mons: kin selection, policing (self-regulated punishment) or
diminishing returns (population behavior depends on eco-
logical feedback) are all good candidates observed in Nature
(Rankin et al. (2007)).

Definition of Altruism

The emergence of cooperation and altruism has been the fo-
cus of a particular attention from many research fields, in-
cluding of course Biology.

The distinction between cooperation with mutual bene-
fit2 (West et al., 2007) and ”strong” altruism (termed al-
truism from now on) depends on the nature of the fitness
benefit at the level ofeither the individualor the popula-
tion (Lehmann and Keller, 2006). Cooperation implies that
a given individual benefits from its behavior during its life-
time, either through direct or delayed (i.e. through repeated
interactions) reciprocity. Altruism, on the other hand, char-
acterizes the sacrifice of (part of) one own’s fitness for the
benefit of others. Therefore, an altruistic behavior bene-

1In the public goods dilemma, individuals may choose to invest
a part of their benefit for the group welfare.

2Cooperation is also sometimes used as a synonym for altruism
(e.g. cooperation in the prisoner’s dilemma corresponds to altru-
ism (Sober, 1992)). In this paper, we assume the restricted and
well-accepted definition of cooperation as a behavior leading to
mutual benefit.

fits other individuals and possibly has a positive impact on
longer time-scale (e.g. more than a single lifetime).

Several theories have been identified, covering different
kinds of behavior observed in Nature, from mutualism to
conditional cooperation. On the one hand, mutualism is the
case where cooperation leads to direct benefit even though
a single individual displays a cooperative behavior (May-
nard Smith J., 1983; Lima, 1989; Packer C., 1988; Dugatkin
and Wilson, 1992). On the other hand, the more classic
conditional cooperation scheme implies that all individuals
share the same cooperative strategy so that the whole pop-
ulation welfare is increased: kin selection (Hamilton, 1964;
Maynard Smith, 1964), reciprocity (Trivers, 1971; Axelrod
and Hamilton, 1981) or the more controversial group selec-
tion (Wynne-Edwards, 1986; Dugatkin, 1994; West et al.,
2007) can be accounted for such conditional cooperation.

While the emergence of cooperation can be explained by
the fact that every individuals benefit from such a behavior
(i.e. no cost to cooperate), the justification for altruism is not
as straight-forward. The idea of inclusive fitness proposed
by Hamilton (1964) is now widely accepted to account for
the emergence of altruism: inclusive fitness considers the fit-
ness of a particular individual to depend both on its own be-
havior and the behavior of its close relatives. The basic idea
is to consider individuals as vehicles for genes, therefore
kinship must be taken into account rather than the sole inter-
est of one individual/vehicle. Of course, sacrificing oneself
depends on several parameters such as the expected fitness
loss (from sacrifice) and benefit (for others) as well as the
genotypic relatedness of the individuals concerned (closer
relatives may imply increased altruistic behaviors).

Hamilton formalized the relationship between cost, bene-
fit and relatedness in the following equation:C/B < r. The
CostC is the amount of fitness lost by an altruistic individ-
ual. The benefitB is the amount of fitness gained by the
recipient that benefits from the altruistic behavior. Andr is
the genotypic relatedness between the two individuals. The
term kin selectionhas been introduced by Maynard Smith
(1964) to illustrate the mechanism and consequences with
inclusive fitness: if one’s individual is willing to sacrifice it-
self for closely related individuals, the gene responsible for
such an altruistic behavior may spread through natural selec-
tion as it is likely to be present also in the genotypic material
of its parents.

Models of Altruism in Artificial Life

Altruistic behavior, as well as the emergence of altruism,
has also been investigated in the field of Artificial Life. All
the major theories have been studied: kin selection (Sober,
1992; Leticia et al., 2004), group selection (Fletcher and
Zwick, 2004, 2007) and other mechanisms such as effect
of increased environment’s viscosity (Mitteldorf and Wil-
son, 2000), communication (Ackley and Littman, 1994) and
tag mechanism (Spector et al., 2004; Spector and Klein,
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2006). Previous works have provided studies with various
approaches, from game theoretic models to discrete and con-
tinuous virtual world simulations. Moreover, kin selection,
reciprocity and group selection have been described as vari-
ations of a similar mechanism favoring the correlation of in-
teraction between agents (Woodcock and Heath, 2002).

The emergence of altruism under specific condition have
also been studied in virtual or real environments, in par-
ticular with respect to the public good dilemma (Connelly
et al., 2010; Waibel et al., 2009) and to the tragedy of com-
mons (Spector et al., 2004; Scogings and Hawick, 2008),
with similar concerns for different selection schemes.

Waibel et al. (2009) discusses the ability to evolve altru-
ism in team of homogeneous robots with group selection
in a setup similar to the public good dilemma. Facing the
same environmental conditions, Connelly et al. (2010) ex-
perimentally show that altruism naturally emerges as long
as resources is widely available.

The tragedy of commons has been addressed by Spector
et al. (2004), where tag recognition favors the interaction be-
tween altruistic agents facing a tragedy of commons, and by
Scogings and Hawick (2008) in a prey-predator setup. Even
though their work considered population with fixed strat-
egy (rather than evolutionary adaptation), they illustrated the
ability of altruistic population to survive in aggressive envi-
ronment even when confronted to selfish individuals.

Method
In this paper, we are interested in identifying the emer-
gence of altruism in the scope of environment-driven self-
adaptation in a population of autonomous agents. The mo-
tivation behind this work is two-fold. Firstly, our long-term
motivation targets the design of an evolutionary adaptation
algorithm for a limited group of autonomous agents that is
capable of facinga priori unknown situations. An important
requirement is that the algorithm should be implementable
in a virtual or real-world environment (e.g. multi-agent sim-
ulation, agents in virtual worlds, robot swarms).

Secondly, we ask the following question: what can be
expected when a population of evolving agents faces the
tragedy of commons. This implies to identify if a strategy
emerges, but also the nature of this strategy, if any.

In this section, we describe the algorithm and the experi-
mental setting used for this work. In particular, the experi-
mental setting has been designed so that the population faces
a setup where the tragedy of commons is expected to occur.
Lastly, methodological tools for monitoring altruistic behav-
iors are introduced at the end of the section.

Algorithm
The mEDEA3 algorithm takes inspiration from the selfish
gene metaphor popularized by Dawkins (1976) and per-
forms as an evolutionary adaptation algorithm that can be

3minimal Environment-driven Distributed Evol. Adaptation.

distributed over a population of robotic agents (i.e. each
agent in the population runs the same algorithm, but carries
different genomes). It was first introduced by Bredeche and
Montanier (2010) to address robustness issue with dynamic
unknown environments and has been successfully validated
on real e-puck autonomous robots (Bredeche et al. (2011)).

In this framework, each agent contains anactivegenome,
which (indirectly) controls the agent’s behavior, and areser-
voir of stored genomes, which is empty at first. At each
time step, each agentbroadcastsin a limited range (ap-
prox. 1/32th of the arena’s width) aslightly mutated copy
of its active genome (e.g. with gaussian mutation) and stores
genomes received from neighbors, if close enough. At the
end of a ”lifetime” (i.e. a pre-defined number of time steps),
each agent ”forgets” its active genome andrandomlypicks
one genome from its reservoir of stored genomes (if not
empty). Then the reservoir is emptied, and a new lifetime
starts. This algorithm is duplicated within each agent in the
population, even though agents’ behaviors differ depending
on each agent’s current active genome.

There are three major claims why this algorithm works.
Firstly, selection pressure occurs at the population level
(the more a genome spreads itself, the higher its fitness)
rather than at the individual level (random sampling). Sec-
ondly, genomes survive only through spreading (as an active
genome is automatically deleted locally at the end of a gen-
eration). Thirdly, individual fitness improves over time as
conservative variations generate new candidates that explore
alternative (but closely related) behavioral strategies.

In practical, this algorithm provides an evolutionary adap-
tation mechanism, but does not provide a control function.
The actual control of the agent behavior shall be performed
by a dedicated controller whose parameters are determined
from the genome. In other words, the mEDEA algorithm
provides evolutionary adaptation by tuning the control ar-
chitecture. In the rest of this paper, the controller used is a
Multilayer Perceptron whose weights are decoded from the
genome (more details in the next Section).

The mEDEA algorithm shares some similarity with
the basic concepts demonstrated in Tierra (Ray, 1991),
AVIDA (Adami et al., 1994) and followers, but also differs
as it was originally designed for real world environments
with a limited number of moving autonomous agents such
as mobile robots. It can also be related to Embodied Evo-
lutionary Robotics (Watson et al., 2002) regarding the pos-
sible implementation on physical agents, but with the major
difference that it is not meant to optimize a pre-defined ob-
jective function.

Experimental Setup

In order to account for the existence of altruism, we have
defined a foraging task where a population of autonomous
agents must eat food items to maintain a positive energy
level. The experimental setup used in the next section is il-
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lustrated in figure 1, with food items (circles), agents (small
dots) and obstacles. The environment and task depends on
the following elements: (1)Self-sustainability: foraging is
necessary to survive, as each food items give a small amount
of battery energy. However, an agent’s battery is limited
to a maximum amount of energy, and foraging may end up
in wasting resource. (2)Foraging behavior: an agent may
choose to harvestall or part of a food item. (3)Re-grow
rate: whenever a food item is harvested, it is removed from
the environment until it grows back after some delay. The
time to grow back depends on the quantity of energy har-
vested from the food item.

As a consequence, the environment features a common
resource pool for which agents compete: a perfect setup for
the Tragedy of Commons to occur. Indeed, it is then enough
to set the appropriate delay before a given food item would
grow back. This is achieved by setting the maximum re-
grow delay for a food item (EPLagMax

, with EP as in ”En-
ergy Point”), which in turn will be used to compute on-the-
fly the re-grow delay of a food item that was just harvested
(EPLag). This is described in equation 1, which also takes
into account the amount of energy harvested by an agent
from the food item (Eharvested) and the amount of energy
available in each food item (EPeMax

).

EPLag = Eharvested/EPeMax
∗ EPLagMax

(1)

Within this setup, it is expected that altruistic agents in ag-
gressive environments shall harvest the minimum amount of
energy from each food items, therefore increasing the avail-
ability of the resource (short re-grow delay, no wasted en-
ergy). On the other hand, selfish behaviors are likely to be
fitted for small values ofEPLagMax

, but are expected to be-
come more and more critical as the value ofEPLagMax

in-
creases.

Figure 1: Snapshot from the simulator: food items (circles),
agents (dots) and obstacles

Methodology
In order to account for altruism, we define a measure for
monitoring thecost of altruismfor one foraging agent. In
the setup described earlier, this corresponds to measuring the

amount of energy thatcould beconsumed when harvesting a
food item, but which is actuallynot consumedby the agent.
This is formally defined in equation 2.

Cost = max(0, min(EPeMax
, rEmax

−rEnow
)−Eharvested)

(2)
WhereEPeMax

is defined as before (i.e. maximal energy
in a food item),rEmax

is the maximal energy level of an
agent,rEnow

is the current energy level of the agent and
Eharvested is the energy harvested by the agent from the
food item.

While a selfish agent shall have a cost of zero, an altru-
istic agent should be able to perform a trade-off between its
altruistic nature and its survival needs. Therefore, the cost of
altruism can be seen as the agent’s level of sacrifice which is
continuous (a quantity of energy) rather than discrete (eat or
dont eat).

Results and Analysis
This section presents results obtained running the mEDEA
algorithm in the environment described in the previous sec-
tion. The organization of the section is as follow: the al-
gorithm is evaluated for its ability to evolve agents with al-
truistic behavior. Then, the nature of altruistic behavior is
investigated, considering the balance between environmen-
tal pressure and the algorithm’s mechanisms. Finally, the
relation between genotypic relatedness and the degree of al-
truism is explored along with its impact on the survival rate
of the population.

All experiments were conducted with100 robotic agents
in the environment described and illustrated in the previous
section. The environment contains800 food items and an
agent may harvest a maximum of50 units from a food item.
Each agent consumes1 unit of energy per step, and can store
up to 800 energy units (harvesting surplus is lost). If the
agent’s battery level drops to zero, the agent stops and its
genome is lost. It is then refilled with a small portion of
energy, but remains still until it receives a new genome.

The control architecture is a Multilayer Perceptron (MLP)
with 5 hidden neurons,11 inputs (8 proximity sensors, bat-
tery level and orientation/distance to the closest food item)
and3 outputs (left/right motor and proportion of energy to be
harvested from a food item, if any). The weights of the MLP
are decoded from the active genome of the agent. Each agent
broadcasts a mutated copy of its own genome and receives
genomes from neighbors within a limited range (roughly
1/10th of the length of the larger side of the environment).
The mutation operator used in the Medea algorithm is de-
fined as a gaussian mutation with aσ parameter.σ is in-
cluded into the genome (i.e. similar to a self-adaptive Evo-
lution Strategy) and ranges from0.01 (low mutation rate) to
0.5 (large mutation rate).

All results shown here have been achieved inROBOROBO,
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a fast 2D simulation for robotic agents, originally introduced
by Bredeche and Montanier (2010) . The source code for re-
producing the experiments is freely available for download
(http://www.lri.fr/˜montanier/roborobo-ecal). For each ex-
perimental settings, a set of600 independent runs have been
performed during320000 iterations (=800 generations) to
provide statistically significant data.

Emergence of Altruism in Medea

A large set of experiments was performed under vari-
ous environmental pressures by setting a specific value of
EPLagMax

for each run, ranging from25 steps (easy envi-
ronment) to400 steps (aggressive environment), for a to-
tal of 16 setups. For each setup (i.e. a fixed value of
EPLagMax

), 600 independent runs were performed and re-
sults were aggregated to extract various indicators: number
of active agents, average cost measure and energy balance
(i.e. a positive value means agents harvest more than the
minimal requirement). In all experiments, the course of evo-
lution is similar: the number of active agents quickly in-
creases to a stable value while costs start from random val-
ues and stabilize to (possibly) positive values. While the
increasing number of active agents is expected from evo-
lutionary adaptation, the second observation is of primary
importance regarding the possibility of altruistic behavior: a
positive cost value would imply that agents do not systemat-
ically harvest all possible energy from the food items.

Results are summarized in figures 3(a), 3(b) and 2 (resp.
number of active agents, cost measure and energy balance),
by taking into consideration the last10 generations of all
runs for each setup (i.e. after convergence to stable behav-
iors). Altruistic behavior in the context of increasing envi-
ronmental pressure can be observed by looking at the cost,
which converges to a stable value, while the energy balance
converges to zero (i.e. the limit for survival). Indeed, altru-
istic behaviors are observed starting with environments with
EPLagMax

= 100, and remains afterwards. With stronger
environmental pressures (larger values ofEPLagMax

), the
number of active agents decreases, which confirms that the
environment is becoming more and more challenging.

Several observations can be drawn from these results.
Firstly, altruistic behaviors are difficult to observe when en-
vironmental pressure is low and tragedy of commons not
bound to occur (median values are close to zero for val-
ues ofEPLagMax

under100 steps). This tends to reveal
the greedy nature of the algorithm: without environmental
pressure, altruism does not emerge spontaneously. In fact,
it is possible to classify the individuals’ behavioral patterns
with respect to (a) their fellow agents (selfish vs. altruis-
tic behavior) and (b) the environment (frugal vs. greedy
behavior). the mEDEA algorithm tends to generategreedy
but altruistic agents depending on the environment at hand.
Secondly, altruistic behaviors remain stable in the popula-
tion even though the environmental pressure increases and

the number of active agents starts to drop, implying limited
correlation between the level of altruism and environmental
pressure. This is explored in the following.
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are likely to have larger positive energy balances)
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Investigating the Nature of Altruism

In order to explore the dynamics of the algorithm, a first
experiment is designed to evaluate its ability to converge
towards the same results from different initial conditions.
Starting with a population of agents already evolved in
a challenging setup (EPLagMax

= 400, strong pressure,
used during1000 generations), the population is abruptly
changed to a smoother environment (EPLagMax

= 200,
moderate pressure) and re-adaptation (if any) is studied. The
expected outcome is that the number of active agents and the
cost measure should converge back to the expected values
(shown before). This is indeed what is observed, as shown
in figure 4, advocating for the robustness with regards to ini-
tial conditions, at least in this case (i.e. starting from already
evolved genomes rather than pure random genomes). This
is also confirmed by a Mann-Withley’s statistical test.

However, a careful analysis of the results reveals a sur-
prising feature occurring when the environmental pressure
is changed: the number of active agents rises significantly
before going back down to its final stable value. The same
holds for the cost measure, as a sudden drop is observed,
preceding a slow convergence to the expected, higher, value.
This is indeed a surprise as, for a brief moment, individuals
actually have a better survival rate even though more egoistic
behaviors are monitored. A closer look at the results in the
close vicinity of the change in the environment (not visible at
this resolution) actually confirms this: after the environmen-
tal change, the number of active agents (resp. cost measure)
quickly rises (resp. drops), before slowly converging back
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to its final expected value.
A candidate hypothesis for explaining the algorithm’s

behavior is to reconsider the very nature ofwhat can be
stated as its intrinsic motivation: mEDEA may be per-
forming a trade-off between survivaland stability of evo-
lutionary dynamics, rather than survival only. In or-
der to investigate this hypothesis, we define a measure
of evolutionary stability that takes into account the num-
ber of ancestors from a previous generation for individu-
als of the current generation (i.e. the larger the number,
the more the ancestor with one offspring only). Larger
numbers imply a more stable population as it means that
more genomes actually survived through their offsprings.
In other words, a population with many ancestors imply
lack of selective pressure. In practical, this is defined as
follow: nbStrainsgen=N−b/nbActiveAgentsgen=N , with
nbStrains the number of ancestors fromb generations ago
with at least one descendant in the current generation. The
value is normalized in[0, 1]. Lower values imply increased
selective pressure.

Figure 5 tracks this value for a few generations: for each
generation (i.e. each boxplot), the (normalized) number of
ancestors fromb = 10 generations ago with at least one off-
spring in the current generation is drawn. During the short
increase in performance after the environmental change, the
number of ancestors decreases for at least10 generations,
which indicates that fewer genomes actually benefited from
a stronger selective advantage. However, selective pressure
then goes back to a more conservative level, even though be-
haviors end up being sub-optimal with respect to survival (as
shown before). Why the best genomes for survival do not re-
main in the population is yet to be fully understood. In this
context, it is likely that egoistic agents may only temporarily
benefit from the change, as they may not be enough in num-
bers to take over the population before altruistic agents adapt
to the new environment. Indeed, very specific initial con-

ditions (forcing egoistic behavior at start-up) or dedicated
mechanisms in the algorithm (see next section for a discus-
sion) may be required to obtain the best population wrt. sur-
viving rate.
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Figure 5: Ancestors from generationN−10 with at least one
offspring in the current generation (34 generations before
and after the change are shown).

Discussion on Diversity and Altruism
As stated previously, it is likely that selective pressure acts
in favor of a trade-off between optimizing survival and al-
gorithmic internal stability. But what happens if one were
to deliberately enforce genotypic homogeneity? In the fol-
lowing, we address this question and discuss its possible im-
plications. The motivation is two-fold: firstly, the goal is to
explore the relation between genotypic homogeneity, level
of altruism and survival rate. Secondly, part of the answer
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Figure 4: Environment change from strong to moderate pressure (see text).a) Number of active robots ;b) Cost measure

to this question is a first step towards controlling the evolu-
tionary dynamics at work in the algorithm.

A set of additional experiments have been performed
where genotypic relatedness is favored during the selection
process, in order to decrease genotypic distance among in-
dividuals in the population. In practical, the algorithm’s ran-
dom selection that is embedded in each agent is replaced
by a tournament selection (Miller and Goldberg, 1995) (also
embedded in each agent), where ranking is based on the
genotypic (euclidian) distance between the previously ac-
tive genome and the locally available genomes (the closer,
the better). Tournament selection combined with genotypic
distance (termed kin-tournament from now on) makes it pos-
sible to introduce an explicit pressure towards kin selection,
which can easily be tuned by the size of the tournament.

Experiments with a tournament size of3 (roughly corre-
sponding to medium pressure towards kin selection) have
been achieved with two setups, one with moderate envi-
ronmental pressure (EPLagMax

= 200) and the other with
a strong pressure (EPLagMax

= 400). For each setup,
200 runs were performed, and statistical test are computed
with Mann-Whitley’s Test to clearly establish the differ-
ence in performance. Performing kin selection increases
the level of altruism in both cases (roughly doubling it,
p− value < 10−15). While the number of runs with extinc-
tions is roughly similar (p− value = 0.07 for EPLagMax

=
200, andp− value = 0.71 for EPLagMax

= 400), enforced
kin selection suffers from a smaller number of active agents
(p − value < 10−15).

These results can be put in perspective with Hamilton’s
idea of inclusive fitness (Hamilton, 1964). The intrinsic
mechanisms in the algorithm, in particular conservative mu-
tation, already imply a strong genotypic relation between
one genome and its offsprings. Kin selection is shown to
artificially increase the already existing level of altruism, at
the cost of a decreased overall performance wrt. to individ-
ual survival. This is not a surprise as altruistic behaviors

were already shown previously to lead to sub-optimal sur-
vival rate, which is even more critical when environmental
pressure is aggressive. Nevertheless, the kin-tournament se-
lection as proposed here actually does provide an interesting
tunable mechanism to act on the level of altruism, and could
possibly lead to a more competitive, heterogeneous popula-
tion if kin selection is penalized rather than favored.

Conclusions and Perspectives

In this paper, we investigated evolutionary adaptation in a
population of robotic agents whenever altruistic behaviors
are mandatory to survive. The algorithm under scrutiny was
shown to naturally evolve greedy-altruistic agents within ag-
gressive environments (ie. greedy behavior whenever it does
not impact the survival rate of the population). An impor-
tant message from this paper is that evolutionary adapta-
tion in this context does not automatically lead to the best
survival strategy but rather converge towards a trade-off be-
tween algorithmic stability and survival. Also, the relation
between genotypic relatedness and the level of altruism was
confirmed and a possible mechanism to control the level of
altruism has been identified.

Perspectives from this work include deeper investiga-
tion regarding the exact causes of the sub-optimal survival
strategies obtained. Moreover, tuning the level of altru-
ism offers interesting perspectives with regards to modeling
environmental-feedback induced altruistic behaviors, such
asdiminishing returns, where altruism may be regulated by
the environment (Rankin et al., 2007).
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Abstract

Physiological studies suggest that humans have internal dy-
namics models for both themselves as well as their environ-
ment, which are integral components in motion planning and
control. Although robotic systems rely on similar models, a
primary constraint for robotic applications is how such mod-
els are acquired and developed. Traditionally human engi-
neers derive the dynamics models for robots; this approach
is not scalable for increasingly complex designs. As a result,
there is growing interest in model inference methods, which
automate the modeling process and extends the design range
of robots. This paper proposes a novel method that infers
dynamics models as mathematical expressions via Symbolic
Regression and applies them for robotic motion planning and
control tasks. The advantage of this expression is not only the
accuracy but also the computational efficiency. Experimen-
tal results on underpowered pendulum domains validate that
our inferred models enable fast motion planning and real-time
control based on rapid re-planning, with significantly superior
results over Support Vector Regression and Gaussian Process
Regression.

Introduction
Recent advancement in robotics has resulted in multitude of
morphologically diverse robots, ranging from joint-based,
legged robots to soft, continuous robots. The traditional ap-
proach to designing robot controllers requires that human
engineers derive a dynamics model using first principles and
prior knowledge about robots. However, as these robots in-
crease in complexity, obtaining the dynamics model using
analytical methods becomes significantly more difficult. In-
stead, inferring a dynamics model via machine learning ap-
proaches is a promising alternative.

Physiological evidences suggest that humans also acquire
dynamics models that are vital for motion planning and con-
trol (Wolpert et al., 1995). Such dynamics models are clas-
sified into two types: forward and inverse models (Kawato,
1999). Forward models predict the consequence of motor
commands, while inverse models determine the necessary
motor commands to achieve a desired state transition.

The goal of this work is to infer a robot’s forward model
and to effectively apply it in motion planning and control

Figure 1: Diagrams of forward modeling. (a) One-step state
prediction with forward model, and (b) iterative state pre-
diction with internal feedback for simulating command se-
quences.

tasks. In robotics, forward models take current state and
motor command as input, and predict the next state with-
out actually executing the command (Fig. 1(a)). Further-
more, they can also simulate command sequences of arbi-
trary length by iterating one-step predictions with internal
feedback loop (Fig. 1(b)). The latter provides an infrastruc-
ture for subsequent command optimization, which generally
takes the form of motion or trajectory planning.

For applications in robotic motion planning, forward
models should be accurate as well as computationally ef-
ficient. Model accuracy is essential as faulty prediction may
lead to misleading optimization. Since simulating command
sequences requires iterative use of forward models, even mi-
nor errors in individual predictions can accumulate, result-
ing in significant discrepancies over the course of the simu-
lation. Real-time re-planning is an effective remedy to this
problem; however this requires that the model is computa-
tionally lightweight for rapid evaluations under a strict time
constraint.

This paper introduces a novel method to infer the for-
ward model of an arbitrary robot and apply them for mo-
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Table 1: Comparison of autonomous modeling methods for robotic motion planning and control.
Authors Type of models Algorithm Usage

Sturm et al. (2008) forward and inverse GPR feedback motion control
Nguyen-Tuong and Peters (2008) forward and inverse GPR feedback motion control

Dearden and Demiris (2005) forward GPR state prediction
Bongard et al. (2006) morphological EA motion planning (offline)

Ours forward SR motion planning (offline, real-time)

tion planning and control problems. Our method uses Sym-
bolic Regression (SR) (Koza, 1992) for model inference.
Models inferred via SR are mathematical expressions that
accurately explain robot’s dynamics and are computation-
ally lightweight. Experiments on underpowered pendu-
lums show that the accuracy of our models are comparable
to those learned with Gaussian Process Regression (GPR),
while being superior to those with Support Vector Regres-
sion (SVR). Another advantage of SR models is that they
can be evaluated for prediction at least three orders of mag-
nitude faster than GPR and SVR models. This allows for
fast motion planning and real-time control based on rapid
re-planning. For motion planning, our method can find a
more desirable plan with smaller computational effort com-
pared to GPR and SVR-based methods. Furthermore, our
method can achieve large performance gain via real-time re-
planning, while methods based on GPR or SVR models can-
not meet strict time constraints.

Background and Related Work
There are a wide range of approaches and applications for
autonomous modeling of robots’ dynamics. This section
provides a brief survey of previous studies, summarized in
Table 1.

Sturm et al. (2008) investigated an autonomous modeling
approach that used Gaussian processes to infer the dynamics
model of robot arms. Their models inferred the relationship
between the motor targets of all joints and resulting pose of
the arm. In contrast, our formulation relates the actuated
torque or force with resulting state transition. Our approach
allows for better generalization and applications in under-
powered control domains such as legged locomotion.

Nguyen-Tuong and Peters (2008) proposed similar ap-
proach for autonomously modeling the dynamics of robot
arms. Their models inferred the inverse kinematics of robot
arms and are used in real-time feedback control. They in-
ferred the model using Local GPR (LGPR) that can be in-
ferred and evaluated efficiently. While we also focus on
computational efficiency, we extend the use of such efficient
models from feedback control to rapid motion planning and
real-time re-planning.

Dearden and Demiris (2005) proposed a forward model-
ing approach based on Gaussian processes to model two mo-
tored arms. Their model relates motor commands to the re-

sulting arm motions. However the motor command in their
work is binary, while our experiments investigate continuous
motor command.

Bongard et al. (2006) inferred the morphology of robots
autonomously via an Evolutionary Algorithm (EA) and
modeled them in a 3D simulator. The simulated model was
used as a surrogate for the real robot and was sufficiently ac-
curate to develop gait. An advantage of their approach was
resilience against unexpected damage. However, this work
relied on the accuracy of the 3D simulator to develop the
model. The design of such 3D physics simulations raises the
same fundamental issue of requiring laborious derivations
from human engineers. Moreover, since their 3D models re-
quire heavy computation, they are not suitable for real-time
control.

For goal-oriented control tasks, behavior-based control
approaches, such as Reinforcement Learning (Sutton and
Barto, 1998) and Neuroevolution (Yao, 1999), are widely
studied as alternatives to model-based approaches. These
approaches do not rely on models, but instead try to op-
timize sensorimotor mappings to achieve predefined goals.
Although they are successful for achieving given goals, such
as inverted cart-pole tasks, they lack the ability to generalize
the learned knowledge to other tasks.

Learning Forward Models
Forward Modeling

In this work, we seek to find a forward model that ex-
plains the dynamic relationship between given commands
and robot’s state transition. We assume discrete time dy-
namics in which a robot’s state at time t is represented as
a set of m sensored values Xt = {xt

1, ..., x
t
m}. A forward

model for such a dynamics is a function that predicts the
state Xt+1 at time t + 1 as

Xt+1 ≈ f(Xt, Ct), (1)

where Ct = {τ t
1, ..., τ

t
n} is a set of n command signals at

time t.
An advantage of this formulation is that it can extrap-

olate the resulting motion of an arbitrary length of mo-
tor commands. That is, given initial state X0 and a com-
mand sequence C = {C0, ..., CT�1}, resulting state at time
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Figure 2: A sample SR model. The DAG representation of
a function:
f(τ, θ, θ̇) = 1.23∗ (4.56�τ)+(4.56�τ)∗7.5∗ θ̇�cos(θ)

t ∈ [1 : T ] can be predicted as

Xt ≈ f(Xt�1, Ct�1)
≈ f(f(Xt�2, Ct�2), Ct�1)
≈ f(f(...f(X0, C0)...), Ct�1). (2)

In this study, all state variables are continuous. The mod-
eling problem is simplified by explicitly predicting second-
order differentials of these state variables. We assume that
state variables X can be decomposed as X = 〈q, q̇〉, where q
is a set of linear and angular position variables, and q̇ is a set
of their first-order differentials (i.e. velocity variables). We
formulate the modeling problem as predicting the function:

q̈t+1 ≈ g(qt, q̇t, Ct),

instead of directly inferring function f in Eq. 1. We calculate
state values q̇t+1 and qt+1 via following integration:

q̇t+1 ≈ q̇t + q̈t+1∆t

qt+1 ≈ qt + q̇t+1∆t.

The robot’s state is represented as a set of angular and lin-
ear parameters in most robotic systems. By using gen-
eralized state variables, this approach of inferring second-
order differential systems can be readily adapted to arbitrary
robotic systems. To generate training data set for model in-
ference, random commands are sent to robot’s actuators, and
〈q̈t+1, q̇t, qt, Ct〉 at each time step is collected as a training
data point.

Learning Models with Symbolic Regression
An SR uses evolutionary algorithm that searches mathemat-
ical expressions to explain a given data set. SR has been
successfully applied to infer non-linear dynamics, such as
conserved laws of nature, accurately (Schmidt and Lipson,
2009). Our work uses SR to search for mathematical expres-
sions that explain the relationship that exists in the training

data. The fundamental idea of SR is to use Genetic Pro-
gramming (GP) to evolve populations of expressions and
selectively generate populations of lower error. Mathemati-
cal expressions are represented as Directed Acyclic Graphs
(DAGs). GP searches the space of possible graphs and min-
imizes error by applying genetic operators, such as muta-
tion and crossover. A sample mathematical expression and
its DAG representation are shown in Fig. 2. We used Eu-
reqa (Schmidt and Lipson, 2009) as SR implementation in
our experiments.

Motion Planning and Control
Offline Motion Planning
For motion planning, we propose an approach that directly
searches the command space via a hill-climbing heuristic,
which searches for an optimal command sequence to max-
imizes a target function. Inferred forward models are used
for simulating candidate command sequences in such a func-
tion. Optimization algorithm is sketched in Algorithm 1.

Algorithm 1 Motion planning with forward models using a
hill-climbing heuristic

if Offline planning then
Cbest ← random commands
X0 ← initial state

else if Real-time planning then
Cbest ← current motion plan
X0 ← observed state

end if
Etmp = target(Cbest, X

0)
repeat

for all C in neighbor(Cbest) do
if target(C, X0) > Etmp then

Cbest = C
Etmp = target(C, X0)

end if
end for

until Goal condition satisfied or allotted iterations expire
return Cbest

Note the evaluation of command sequences is completely
dependent on the predicted state transition. Thus, the op-
timality of the plan depends highly on the accuracy of the
predictive model. On the other hand, since the command
space is high-dimensional and continuous, the search for the
optimal command requires numerous iterations. Therefore,
rapid evaluation of target function is vital. Since mathemat-
ical expressions are evaluated extremely efficiently on mod-
ern computers, SR models can evaluate the function quickly.

Real-time Motion Control by Re-planning
In practice, the fundamental issue of predicting state tran-
sition with forward models is the accumulation of errors
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Table 2: Specification of the experiments.

Arm size (H�W�D) 2�0.4�0.2m
Arm mass 1kg

Gravity 10m�s�2

Maximum torque for P1 τmax: 1.25kg�m
Maximum torque for P2 τmax: 4kg�m

Time step resolution 60Hz
State variables X = {θ1, θ̇1} (P1)

X = {θ1, θ̇1, θ2, θ̇2} (P2)
θ1, θ2 ∈ [�π : π]

# of neighbors in Algorithm 1 10

over iterative use of prediction as seen in Eq. 2. We re-
solve this problem using real-time re-planning to adapt ac-
cordingly to the errors. As the robot obtains real-time sen-
sor values, it is able to ground the predicted state with the
recorded observations. This is implemented by modifying
offline planning in accordance to the new observations. In
case of re-planning, the hill-climbing algorithm takes the
observed state as the initial state and current motion plan
as initial command sequence. Since typical robotic systems
require high frequency control and feedback, real-time plan-
ning must be equally constrained by such critical restric-
tions. SR models are sufficiently computationally efficient
to allow for re-planning, while GRP and SVR models are
not. Although re-planning was introduced primarily to adapt
to cumulative error, it can start with random motion and plan
the motion in purely online fashion.

Experiments
In this section, we present experimental results. We eval-
uate our method in the motored single and double pendu-
lum problems, called P1 and P2 (Fig. 3). While robots in
these problems are mechanically simple, motion planning
in this domain remains a challenge for autonomous robotic
controllers. Pendulums used in our experiments are under-
powered, and thus, achieving most angular positions is a
non-trivial task which often requires unexpected motions.

Experimental Settings
P1 is composed of an arm that is hinged to a stationary point
via a motored joint. P2 has two arms: motor joints connect
the first arm to stationary point, while connecting the second
arm to the first arm. These pendulums are simulated with
Bullet Physics Library (Coumans, 2010), a popular, open-
source 3D physics simulator. Detailed specification of the
experiment is provided in Table 2.

The goal of the control task in this domain is to move
the only arm (of P1) or the upper arm (of P2) to the up-
right position within allotted time steps (i.e., 600 steps in
P1, and 1200 steps in P2). Task start with the initial state

P1 P2

Torque

θ1

θ1

θ2

Torque

Torque

Figure 3: Single (P1) and double (P2) motored pendulum.

of X0 = O, where the arms are in the stable equilibrium
position. The torque output of each joint motor is limited so
that controllers cannot reach to the upright position by sim-
ply applying maximum torque in a single direction. Instead,
a successful motion requires that the pendulum be swung to
accumulate sufficient momentum to eventually achieve the
upright position. This additional complexity makes it dif-
ficult for existing automated motion controllers to achieve
the goal, since evaluating long motor commands via forward
models is vital to planning successful motion.

To generate training data set, we actuate a robot using
random motor commands. For the pendulum domain, each
motor is actuated with a randomly generated torque curve
whose torque, τ(t), at time t is calculated as

τ(t) =
τmax∑N
i=1 ai

�
N∑

i=1

ai � sin(bi � t + ci), (3)

where τmax denotes maximum torque, and ai, bi, and ci are
random values drawn from uniform distribution under fol-
lowing constraints;

ai ∈ [0 : 1],

bi ∈ [
1
4
� π

60
:

π

60
],

ci ∈ [0 : 2π].

This formulation results in a composite wave of N individ-
ual sine waves. We set N = 3 throughout the experiments.
Random actuation lasts for 1 minute, resulting in 3600 time
steps. In the double pendulum domain, two distinct torque
curves are generated with different random seeds.

Model Inference and Cross-validation Evaluation
Given the training data, we can learn forward models using
off-the-shelf regression algorithms. We compare Symbolic
Regression (SR) with Support Vector Regression (SVR)
and Gaussian Process Regression (GPR). We used Eu-
reqa (Schmidt and Lipson, 2009), libSVM (Chang and Lin,
2001), and Weka (Hall et al., 2009) libraries for SR, SVR,
and GPR, respectively.
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Table 3: Comparison of regression algorithms. Listed numbers denote correlation coefficients of inferred models. Computation
time for inferring each model is shown in parenthesis.

Target GPR SVR SR (short) SR

θ̈1 in P1 0.9996 (≈4min) 0.9733 (<1sec) 1 (=4min) 1 (=2hours)
θ̈1 in P2 0.7063 (≈4min) 0.9588 (≈18sec) 0.9639 (=4min) 0.9700 (=8hours)
θ̈2 in P2 0.7455 (≈4min) 0.9286 (≈27sec) 0.9080 (=4min) 0.9751 (=8hours)
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Figure 4: Average error on varying prediction periods.

The model inference results of all approaches were com-
pared on cross-validation data sets and performance is mea-
sured with correlation coefficient. The results are summa-
rized in Table 3. Computation time for inferring models on
Intel Core2 Duo 3.06GHz are also listed in the table. Since
SR is a stochastic process, longer training periods may yield
better results, while GPR and SVM are deterministic algo-
rithms that do not improve with additional time. We tested
on short, being matched with the time GPR inference took,
and long training period for SR. Since model inference is an
offline process, time constraints are typically not strict.

The results indicate that SR is superior to both GPR and
SVR, given long training time. SR inferred a virtually per-
fect model for θ̈1 in P1. Even with shorter training period,
SR models are comparable to those inferred with GPR or
SVR. In the following experiments, we use SR models in-
ferred with longer training period.

Model Accuracy on Novel Command Sequences
Since cross-validation results on training data sets do not
necessarily reflect generalization performance of inferred
models on novel data sets, we used additional tests to in-
spect and analyze differences in these models. To evaluate
models on novel data sets, we generated 20 random torque
curves using Eq. 3 with different random seeds and predicted
resulting motion using the inferred models. Their prediction
error was evaluated as the difference from actual motion.
Since one of our concerns is the effect of cumulative errors,
we vary the prediction period from 1 to 1800 steps to see
how each model behaves during iterative predictions. Aver-
age predictive error on each joint angle over the prediction
period is shown in Fig. 4.

We can readily see that average prediction error tends to

increase, as the prediction period gets longer. This implies
that the cumulative error harms predictive performance over
iterations. For predicting θ1 in P1, it is clear that the er-
ror is less pronounced in the SR models, suggesting that the
symbolic representation has a more consistent model repre-
sentation. SVR did poor job on novel data sets, in spite of
good performance on cross-validation. The differences of
performance among three models are statistically significant
(p < 0.05) for prediction periods of 60, 120, 600, and 1200
steps.

In P2, SVR again marked poor performance, for predict-
ing both θ1 and θ2. GPR and SR performed comparably.
While GPR models outperformed SR models for short pe-
riods (i.e., lower than 233 and 997 steps for θ1 and θ2, re-
spectively), SR was superior for long periods. This implies
that SR models would be more robust to cumulative error
over iterative predictions. Another implication is that cross-
validation results, in which GPR models are evaluated badly,
do not reflect the models’ generalization performance appro-
priately.

Evaluation of Offline Motion Planning
Given inferred dynamics models, the motion planning is for-
mulated as an optimization problem. The target function is
defined as follows:

target(θ1) = max
θt
1∈θ1

|θt
1|

where θ1 = {θ0
1, ..., θ

T
1 }, and θt

1 is the angle of the target
joint at time t. Only the initial state is provided to the mod-
els. Given candidate command sequence C and initial state
variables X0, the algorithm simulate entire state transition
over T steps. Our method plans the motion by searching for
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Figure 5: The performance on motion planning tasks.

a command sequence whose simulated motion maximizes
this function.

To evaluate motion planning performance of each model,
the hill-climbing approach, described in Algorithm 1, was
applied for 20 runs per each. The planned commands were
executed on actual robot, and their actual performance were
evaluated based on Eq. 4. We compared the actual perfor-
mance with the expected performance to analyze the dis-
crepancy between predicted and actual performance.

In initial tests, the hill-climbing approach for all models
was executed for 500 iterations. However, there is a signif-
icant difference in the computational efficiency of SR, GPR
and SVR, with SR executing at least three orders of mag-
nitude faster than GPR and SVR in both P1 and P2 experi-
ments. To provide comparable results with respect to com-
putational effort, an additional SR, called SR*, experiment
was implemented with 500000 iterations.

The performance of the SVR, GPR, SR and SR* mo-
tion planning is shown in Fig. 5. It is clear that SVR and
GPR tends to overestimate its capability, often allowing for
highly optimized plans that do not translate to real world re-
sults. In comparison, SR provides a truer prediction of the
real world even if the hill-climbing problem becomes subse-
quently harder. When normalized for computational effort,
SR* does a significantly better job, compared to SVR and
GPR.
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In the double pendulum problem, SVR and GPR pre-
dicted a nearly optimal solution with certainty, but in fact,
the actual performance was poor. SR achieved similar per-
formance, but had a more realistic prediction. Although SR*
had the best actual performance, its performance was far
poorer than expected.

Evaluation of Real-time Motion Control
This section provides the comparison for the real-time re-
planning motion control. We experimented two re-planning
approaches: first approach started with an initially optimized
plan (i.e., re-planning of the plan generated by SR that is
described in the last section); while second one started with a
random plan, resulting in purely online planning and control.
These two are compared with the offline GPR planning and
SR* planning. For the re-planning approaches, the number
of iterations per step (IPS) was doubled until the real time
constraint could not be achieved. This limit was resulted
160 IPS and 40 IPS for the single and double pendulum,
respectively. Since SVR and GPR models could not achieve
even 1 IPS for both problems, they are not applied to re-
planning. The results are shown in Figure 6.

The performance of online and “re-planning of SR” ap-
proaches improve with increased IPS, significantly outper-
forming offline GPR and SR* (p < 0.05) with maximum
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IPS (i.e., 160 for single and 40 for double pendulum). “Re-
planning of SR” typically showed remarkable improvement
over the purely online approach, resulting in the best per-
formance among all tested approaches with maximum IPS.
When the IPS is set to maximum, the total number of itera-
tions required for “re-planning of SR” approach was 96500
iterations and 48500 iterations for single and double pendu-
lum problems, respectively. While offline SR* consumed
500000 iterations, its performance is poorer than that of “re-
planning of SR”.

In summary, the benefits of SR modeling over GPR and
SVR modeling are two-fold: first, it provides more accurate
prediction that is vital to planning; and second, the reduced
computational effort makes efficient real-time applications
possible.

Conclusion and Future Work
In this paper, an SR-based method was proposed to model a
robot’s dynamics autonomously and the inferred model was
used for motion planning and control tasks. The model is
represented as a mathematical expression that accurately ex-
plains the robot’s dynamics and allows for fast computation.
These features enable fast motion planning and real-time
control based on re-planning, resulting in significantly su-
perior control performance over GPR and SVR-based meth-
ods.

Possible applications of our method include forward mod-
eling and motion planning for the locomotion of legged
robots or soft robots. Soft robots are an area of particular
interest since deriving a dynamic model is a difficult and
daunting task. However, forward models of these robots are
considered significantly more complex than of pendulums.
Since the difficulty of model inference via SR is known to
increase dramatically as the complexity of the true model in-
creases (Schmidt and Lipson, 2008), we will need to develop
novel techniques to infer models of more complex dynam-
ics.

This paper is an initial investigation of applying SR for
robotic modeling and there is room for further optimization.
Although this work used a simplistic hill-climbing heuristic
approach for motion planning, more complex and superior
algorithms can be applied instead. It will also be possible to
use SR to infer inverse models and utilize them in feedback
control. We believe that the coexistence of accuracy and
efficiency in SR models will help a novel class of algorithms
in robotics to emerge.
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Abstract

Complex artificial life simulations can yield substantially dis-
tinct populations of agents corresponding to different adap-
tations to a common environment or specialized adaptations
to different environments. Here we show how a standard
clustering algorithm applied to the artificial genomes of such
agents can be used to discover and characterize these sub-
populations. As gene changes propagate throughout the pop-
ulation, new subpopulations are produced, which show up as
new clusters. Cluster centroids allow us to characterize these
different subpopulations and identify their distinct adaptation
mechanisms. We suggest these subpopulations may reason-
ably be thought of as species, even if the simulation soft-
ware allows interbreeding between members of the different
subpopulations, and provide evidence of both sympatric and
allopatric speciation in the Polyworld artificial life system.
Analyzing intra- and inter-cluster fecundity differences and
offspring production rates suggests that speciation is being
promoted by a combination of post-zygotic selection (lower
fitness of hybrid offspring) and pre-zygotic selection (assor-
tative mating), which may be fostered by reinforcement (the
Wallace effect).

Introduction
Artificial life simulations exhibit complex agent-based be-
haviors, which persist and evolve through genetic recombi-
nation and mutation. Unless explicit speciation is built into
the simulation, identifying emergent species in these simu-
lations is difficult, both theoretically and practically. Here
we demonstrate a technique for identifying subpopulations
of agents using a clustering algorithm to identify groups of
agents with shared genetic attributes. The resulting clusters
might reasonably be considered distinct species, and allow
us to identify some of the different adaptation mechanisms
adopted in the simulation. Examining the temporal distri-
bution of these clusters allows us to better understand the
evolutionary course of speciation and adaptation in our sim-
ulations, and may offer some insights into speciation in bio-
logical ecosystems.

Understanding speciation is one of the key problems in
biology. Much debate centers around the role of allopatric
(geographically isolated) vs sympatric (shared environment)
species divergence. The significance and driving forces

of sympatric speciation have been controversial since the
ideas were introduced by Wallace (1899) and championed
by Dobzhansky (1937). Disruptive selection (adaptation to
distinct fitness peaks) in combination with reinforcement
(the selection pressure that results from reduced fitness of
hybrids; aka the Wallace effect) leads to assortative mating
(a preference for related partners) thus providing a basis for
sympatric speciation. Despite the simplicity and attractive-
ness of these ideas, the so-called Modern Synthesis largely
discarded the idea of selective speciation, instead attributing
divergence to more readily observable geographic isolation
(Mayr and Provine, 1998), and a variety of models (reviewed
in (Kirkpatrick and Ravigné, 2001)) have led many to con-
clude that sympatric speciation, while possible, will only be
found under very limited circumstances (Felsenstein, 1981).
However, though the jury is still out, empirical evidence
for reinforcement driving sympatric speciation does exist
((Sætre et al., 1997; Ortiz-Barrientos et al., 2004; Silverton
et al., 2005) and others) and recent theoretical and modeling
work have suggested potential mechanisms (such as compe-
tition overwhelming selection towards a single method of re-
source utilization) for overcoming the perceived limitations
on sympatry (Dieckmann and Doebeli, 1999; Kondrashov
and Kondrashov, 1999; Van Doorn and Weissing, 2001). For
high-level reviews see (Butlin and Tregenza, 1997; Tregenza
and Butlin, 1999; Weissing et al., 2011). In this work, both
pre-zygotic (pre-mating) and post-zygotic (post-mating) se-
lection are observed, suggesting reinforcement may be play-
ing a role in our speciation events—both sympatric and al-
lopatric followed by population mixing.

In the life sciences clustering algorithms are applied in
many areas, including the analysis of clinical information,
phylogeny, genomics, and proteomics (Zhao and Karypis,
2005). Mallet (1995) proposed gene clustering as a preferred
method for the rigorous identification of biological species
(as opposed to taxonomic features). We seek to import these
concepts and tools from the realm of biology into our artifi-
cial life work to help us better understand the evolutionary
dynamics of our model ecosystem, though we believe there
may be some general principles that apply to both artificial
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and natural ecosystems.
The use of gene clustering for speciation has been ex-

plored in genetic algorithms by Hocaoglu and Sanderson
(1995) and in computational ecosystems by Aspinall and
Gras (2010). The Aspinall and Gras predator-prey simulator
has some traits in common with ours, but defines two dis-
tinct agent classes which do not interbreed, and the cluster-
ing analysis is performed during the simulation and allowed
to control reproductive success, thus allowing it to drive the
speciation process. By contrast, there is no impact of cluster
membership or genetic distance on reproductive success in
the work reported here, and all gene clustering analysis is
performed post hoc, after a simulation has run its course.

Clustering algorithms (reviewed in Hartigan (1975);
Kaufman and Rousseeuw (2005)) rely upon two key ele-
ments: the distance function used to measure object simi-
larity and the algorithm used to partition the data. The dis-
tance function must account for the “curse of dimensional-
ity” (Bellman, 1957) intrinsic to high dimensional spaces in
general and evolutionary algorithms employing large, high-
dimensional genomes in particular. Clustering algorithms
with a pre-specified number of clusters—such as k-means
clustering (MacQueen, 1967)—though widely used, suffer
from the simple fact that the number of clusters may not be
known a priori.

Information theory (Shannon, 1948) allows us to partially
alleviate the curse of dimensionality. Through the process of
variation and selection those genetic dimensions which most
affect an agent’s fitness will be selected for and conserved,
thus exhibiting low entropy across the population of agents,
while those which are inconsequential will descend into a
random distribution. By weighting genetic dimensions with
certainty (i.e., 1 - entropy) those genetic features most sig-
nificant to the agents’ survival and reproduction will be em-
phasized during the partitioning into clusters, while spurious
proximity in the inconsequential dimensions is ignored.

Algorithmically, we have chosen to use the QT (Quality
Threshold) Clustering algorithm (Heyer et al., 1999; Scharl
and Leisch, 2006), which clusters based on a maximum
intra-cluster distance (diameter), rather than a set number
of clusters.

The Artificial Life Software
This research was carried out using Polyworld (Yaeger,
1994), a computational ecology with a long history, in which
populations of haploid agents evolve, each possessing a suite
of primitive behaviors (move, turn, eat, mate, attack, light,
focus) under continuous control of an Artificial Neural Net-
work (ANN) employing (in this case) discrete-time, firing-
rate neurons with synapses that adapt via Hebbian learning.
The wiring diagram of the ANN is encoded in the organ-
ism’s genome, via a statistical description of the number of
neural groups of excitatory and inhibitory neurons, synaptic
connection densities, regularity of connections, and learning

rates. The only epistatic interaction between genes derives
from the role played by the genes expressing the number
of neural groups and the number of neurons in each group in
controlling whether the corresponding inter-group and inter-
neuron connections are expressed. For a detailed discus-
sion of Polyworld’s genetic encoding scheme, see (Yaeger,
1994).

Input to the ANN consists of pixels from a rendering of
the scene from each agent’s point of view. Output from the
ANN consists of the aforementioned primitive behaviors.
For the simulation discussed here, there are 2,486 genes
devoted to specifying the neural topologies (but not synap-
tic weights) of ANNs with up to 217 neurons and 45,854
synaptic connections. The actual neuron count ranged from
14 to 163, with a mean of 48, and the synapse count
ranged from 46 to 9,034, with a mean of 656. A small
number of genes (8) characterize the agents’ simple mor-
phologies, metabolisms, and meta-genetics, in terms of size,
strength, maximum speed, fraction of energy contributed to
offspring, ID (green color component), mutation rate, num-
ber of crossover points, and lifespan. Thus there are 2,494
genes in all used in the clustering process.

All actions of the agents consume energy, so they must
replenish their energy levels by seeking out and consuming
food or by killing and eating other agents. Normally there
are also per-neuron and per-synapse energy costs, but for
consistency with some evolution-of-complexity experiments
these were disabled for the results reported here. Reproduc-
tion occurs when two collocated agents simultaneously ex-
press their mating behaviors.

The simulation is initially seeded with a uniform pop-
ulation of agents that have the minimum number of neu-
ral groups and a nearly minimal number of neurons and
synapses. While predisposed to some potentially benefi-
cial behaviors, such as running towards food (green) and
away from aggression (red; see (Yaeger, 1994) for details
on color use in Polyworld), these seed organisms are not a
viable species. I.e., without evolution they cannot sustain
their numbers through their reproductive behaviors and will
inevitably die out.

For these analyses the world was configured as in (Yaeger
et al., 2008), with two barriers running 90% of the depth of
the world, but left open for the remaining 10% of the world,
so populations are able to mix relatively easily, but not with
complete freedom. 80% of the food is grown in a patch oc-
cupying 40% of world depth at the open end of the barriers,
20% in a patch occcupying 10% of world depth at the closed
end of the barriers. This layout may be seen in Figure 1.

As simulations progress both the structural architecture of
the ANNs and the activation of every neuron at every time
step for every agent may be recorded, thus permitting in-
vestigation into evolutionary trends in network structure and
function (Yaeger et al., 2010). Agent genomes may also be
recorded, and these recorded genomes serve as the basis for

566 ECAL 2011



Figure 1: Polyworld simulation environment

the clustering analysis described here. Some genes exhibit
smooth, general trends over the course of the simulation, but
others demonstrate short, sharp changes that correspond to
temporal cluster boundaries, as will be discussed later.

The Clustering Algorithm
The clustering task can be divided into two subproblems:
the distance function used to measure object similarity and
the clustering algorithm used to partition objects. For the
distance function, we used entropy-weighted Euclidean dis-
tance over each agent’s genome. For the clustering algo-
rithm, we used a variation of the QT-Clust algorithm (Heyer
et al., 1999; Scharl and Leisch, 2006), with the addition of
a new algorithmic improvement to allow for multiple clus-
ter selection on each pass and a precalculation of point-wise
distances for greater efficiency.

The Distance Function

Genomic data in artificial life simulations are afflicted by
the curse of dimensionality (Bellman, 1957), and the current
Polyworld genome consists of nearly 2,500 genes! Fortu-
nately, the process of selection in evolutionary algorithms
gives a way to identify genes which are likely to differentiate
subpopulations. Genes with a high impact on agent fitness
will be selected for and conserved, while those which are in-
consequential will trend towards a random distribution. By
taking the information certainty (1 - Shannon Entropy) of
each gene, the relative importance of each dimension may
be used to weight the many dimensions:

H(g) = −
Ns∑
i=0

p(gi) log2(p(gi))

certainty(g) = 1−H(g)

where g is a specific gene, the gi are the gene values (states),
and Ns is the number of possible gene states. Probabilities
were calculated for 16 bins of 16 gene values, capturing the

full range of these 8-bit genes (0-255), over the entire pop-
ulation of 29,564 agents extent during the full evolutionary
simulation.

While each gene of the Polyworld genome is specified
by an 8-bit value, the full range of genetic values may not
be expressed over the course of a simulation. In comparing
genomic data, the difference along this distribution is more
important than the raw score. To address this issue when
calculating genetic distances between agents, we have nor-
malized the measure of each gene dimension, by calculating
the genes’ z-scores:

z(x) =
x− µ
σ

where x is the raw gene value, µ is the mean value of that
gene, and σ is the standard deviation of that gene’s values).

After normalizing gene values to produce gene z-scores,
distances are calculated between z-scores, weighting the rel-
ative importance of each gene by its certainty. Our dis-
tance metric is therefore the certainty-weighted squared-
Euclidean distance of z-scores:

dist(x, y) =

Ng∑
i=0

(wi(z(xi)− z(yi)))2

where x and y correspond to two agents and their genomes,
Ng is the total number of genes in the genome, wi is the
certainty calculated for each specific gene i, and z(xi) and
z(yi) are the z-scores of gene i in the genomes of agents x
and y.

The QT-Clust Algorithm

Clustering algorithms rely upon the fixation of one or more
variables: number of clusters, similarity of elements in the
cluster, or number of elements in each cluster. Effective
clusters should maximize inter-cluster distances, while mini-
mizing intra-cluster distances (cluster diameter). Traditional
k-nearest-neighbor approaches (MacQueen, 1967) require
the number of clusters to be specified a priori. Addition-
ally, these algorithms encounter the hubness phenomenon
in which a centroid may be a common nearest-neighbor
in Euclidean space, building large diameter clusters. This
phenomenon is exacerbated by high-dimensionality (Beyer
et al., 1999; Radovanović et al., 2010).

To avoid these issues, we have opted to use the QT-Clust
algorithm (Heyer et al., 1999; Scharl and Leisch, 2006),
which is a nearest-neighbor clustering approach fixing clus-
ter diameter (ε), rather than the number of clusters. This
algorithm is perticularly well suited for data discovery prob-
lems, such as gene analysis (the original use case). Adjust-
ment of the cluster diameter parameter provides a means of
controlling cluster fit that is both more intuitive and prac-
tical than algorithms requiring explicit specification of the
number of clusters. (E.g., we are unlikely to have chosen
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Algorithm 1: QT-Clust
Input: G, ε
Output: Clusters

if |G| ≤ 1 then
output G

else
// Cluster building
foreach i ∈ G do

flag := TRUE; Ci := i;
while flag and Ci 6= G do

find j ∈ G−Ci : diameter(Ci ∪ j) is min;
if diameter(Ci ∪ j) > ε then

flag := FALSE
else

Ci = Ci ∪ j
// Cluster selection
C := C0...C|G|;
while |C| > 0 do

identify set P ∈ C with max cardinality;
G := G− P ;
C := X ∈ C : |X ∩ P | = 0;
output P ;

QT Clust(G, ε)

values of 8, 29, and 108 for the number of clusters we ended
up focusing our attention on, but specifying cluster diame-
ter in terms of standard deviations that produced these clus-
terings seemed reasonably natural.) The iterative approach
used by QT-Clust also avoids issues of hubness common
to nearest-neighbor clustering algorithms by creating an ε-
neighborhood graph around each agent. The largest of these
groupings is then selected and removed from the population
to be re-clustered, thus eliminating the effect of outliers and
hubs (Radovanović et al., 2010).

The algorithm has two stages. First, a cluster is built start-
ing with each agent within the population (G). The cluster
is built by adding the next closest agent to the cluster, un-
til a threshold (ε) of maximum distance is reached. Cluster
construction may be done in parallel for a significant speed
increase. Then, each of these clusters is passed through a fil-
tering step, which selects the largest candidate that does not
overlap with a previously selected cluster, until no viable
candidates remain. This multiple selection amortizes the
time complexity of the original QT-Clust algorithm, while
maintaining its quality control advantages. After filtering,
unclustered elements are then reclustered within the remain-
ing population until all elements are classified.

Results
We ran this algorithm on Polyworld simulation data con-
taining 29,564 agents (distributed over 30,000 time steps),
contained in 1.9GB of genomic data. Simulation parame-

ε 1.5 1.75 2 2.125 2.25 2.5 2.75
# clust 2063 750 108 29 8 3 3

Table 1: Resulting cluster counts for different ε thresholds

ters are identical to those presented in previous work on the
evolution of neural complexity (Yaeger et al., 2008). While
previous work has focused on general trends, combining the
results of multiple runs and applying standard tests of statis-
tical significance, here we wish to tease apart the dynamics
of a particular simulation, and we are interested in the de-
gree to which cluster analysis and a species/sub-population
perspective can inform the understanding of those dynam-
ics. We would expect the details of cluster/species forma-
tion to vary from run to run, even when nothing changes
but the pseudo-random number generator’s seed, and have
seen hints of such variation in previous work on complexity
trends.

For the discussion below, we define ε as a factor of the
sum of all certainty weightings:

ε(x) = x

Ng∑
i=0

wi

This sum is equivalent to the weighted distance between
two genomes which differ by 1 standard deviation on each
dimension, due to z-score normalization. Thresholds were
set between 1.5 and 3 times the sum of the certainty values,
at increments of .25.

Behavior Across Different Thresholds

Table 1 shows the number of clusters identified for varying
levels of ε. Figure 2a-c show the population of each cluster
over time for ε = 2.0, 2.125, 2.25. The progression from
a large diameter to a smaller diameter shows each cluster
splintering. Whether these show hierarchical clustering is a
question for further empirical study.

Temporal Trends in Clusters

Figure 2b shows that while the larger clusters tend to be re-
placed serially over time, other, smaller clusters emerge, co-
exist with one or more of the larger clusters for extended
periods of time, and are ultimately extinguished, suggest-
ing the emergence, persistence, and decline of subordinate
species. This also suggests we may be seeing reproductive
isolation of sub-populations, despite the fact that Polyworld
does not in any way inhibit cross-cluster reproduction. This
could be due to pre-zygotic, assortative mating preferences
(unpublished work suggests agents attend to both geneti-
cally and behaviorally determined color expressions) or to
post-zygotic disruptive selection effects in a Dobzhansky-
Muller manner—hybrid offspring expressing neural archi-
tectures that are sub-optimal in themselves, or in combina-
tion with “physiological” characteristics that affect energy
requirements. We look at both possibilities below.
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Figure 2: Temporal trends in cluster populations for ε =
{2.0, 2.125, 2.25}, two high-certainty genes (size and internal-
neural-group count) exhibiting different selection behaviors, and
TSE complexity. Genes and complexity shown as population
means with standard deviation bands.

Temporal Neural Genetic
Size Start Peak End Complexity Size INGC

0 1062 0 78 3749 0.2445 133.6 35.1
1 2278 1311 4087 8441 0.3626 172.4 101.0
5 769 4408 6694 11585 0.3657 202.5 98.3
9 3983 5119 8772 17509 0.3058 224.7 62.3
16 205 9168 14722 20192 0.3563 221.3 106.3
17 767 8795 13813 27611 0.3257 215.8 77.1
21 16732 6394 20672 30000 0.2876 225.4 41.9
23 397 11487 28572 30000 0.2861 200.5 38.8
24 273 13207 26594 30000 0.2619 185.3 29.1
27 2202 15126 29565 30000 0.3114 222.0 45.7

Table 2: Raw data from QT-Clust with ε = 2.125. Shown are
the origin, peak, and extinction of each major cluster, the TSE
complexity, and mean values of the size and internal-neural-group-
count (INGC) genes. Gene values are in the raw 0–255 range.
Clusters with < 700 members appear in light gray. Clusters with
< 200 members are not shown.

For the larger clusters, from cluster populations alone we
cannot distinguish between roughly monotonic, anagenetic
(within lineage) changes and true cladogenetic (divergent)
speciation. However, long periods of temporal overlap dur-
ing transitions suggest we may be seeing true speciation in
large clusters as well, as distinct, new clusters emerge and
are simply more successful than either the short-lived small
clusters or the previous large cluster.

Temporal Trends in Genes

The use of clusters allows us to identify genetic differences
between different subpopulations, including temporal trends
in specific genes known to distinguish different subpopula-
tions. Figure 2d shows different selection patterns for two
high-certainty genes positioned below the cluster population
graphs to allow comparison of their temporal trends. Table 2
shows the corresponding raw data for all clusters with a pop-
ulation size greater than 200.

The size gene (certainty = 0.3515) shows a nearly
monotonic selection pattern. Only the initial seed popula-
tion has a relatively small size. By the time of the transition
from the second to the third major cluster, size has reached
the level at which it will plateau—around 220. By contrast,
the internal-neural-group-count gene (certainty = 0.2058)
shows a more variable selection pattern, which corresponds
to trends in neural complexity as discussed below. These
changes also correspond to cluster emergence and decline,
as discussed in Cluster Characterization.

Neural Complexity

Tononi-Sporns-Edelman neural complexity (TSE complex-
ity) (Tononi et al., 1994) gives an indication of the neural
structure and function for each agent. Figure 2e shows the
mean TSE complexity over time for the simulation being an-
alyzed. In a past study, complexity was shown to be highly
selected for only during periods of behavioral adaptation of
the agents to their environment (Yaeger, 2009), in keeping
with the tautology of evolutionary selection applying only
when the subject of selection confers an evolutionary ad-
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Clusters children grandchildren child-rate grandchild-rate
Same 2.04 (0.02) 4.04 (0.05) 6.54 (0.06) 10.6 (0.2)
Diff 1.89 (0.00) 3.57 (0.03) 5.11 (0.12) 7.76 (0.3)

Table 3: Reproductive success—numbers of offspring from par-
ents of the same or different clusters and child-production rates per
1,000 contacts with agents from same or different clusters (stderr
in parens), using ε = 2.125.

vantage. The current results are in general agreement with
previous simulations, showing strong selection for complex-
ity in early populations during the period in which they are
evolving to adopt an Ideal Free Distribution (Fretwell and
Lucas, 1970; Fretwell, 1972) of agents to the heterogeneous
resources of the simulated environment, plateauing around
step 7500, and followed by a long stretch of relative stability
lasting for the rest of the simulation. However, we see here
a bump in complexity around t=15,000, unique to this par-
ticular simulation, that our clustering analysis reveals to be
the result of a corresponding bump in internal-neural-group
count deriving from the emergence and decline of a pair of
specific sub-populations (clusters 16 and 17).

Discussion and Conclusions

Whether discussing the larger clusters, that replaced each
other somewhat serially, or smaller clusters that represented
sub-populations coexistent with the larger populations, we
think it may be reasonable to conceive of these clusters as
species within our artificial simulation. Since the simulation
does not explicitly prevent interbreeding between clusters or
base reproductive success on genetic distance, perhaps they
should be considered proto-species, but the fall and rise of
sub-populations, with significantly different genetic makeup
from the dominant population, suggests a degree of speci-
ficity and persistence of species identity. Even the domi-
nant populations may demonstrate speciation and competi-
tion between species, given the degree to which they over-
lap in time; e.g., note in Figure 2b that the cluster rising to
dominance at the end of the run (light orange – cluster 27)
first appeared barely over half way through the simulation
(t=15,126) well before the previous dominating population
(light purple – cluster 21) had reached its peak population
(t=20,672). This occurs despite a relatively simple environ-
ment in which agents are free to mix and in which there
is only one kind of energy resource (two if you distinguish
between food that is grown and food derived from the car-
casses of agents that are killed).

As Mallet (1995) notes, “Clusters can remain distinct un-
der relatively high levels of gene flow provided there is
strong selection against intermediates; species will be main-
tained when selection balances gene flow.” Lacking geo-
graphic isolation, sympatric speciation is typically thought
to require disruptive selection to elicit distinct phenotypes
and genotypes, coupled with selection for assortative mat-
ing to elicit reproductive isolation.

If disruptive selection and poor hybrid fitness are play-
ing a role in balancing gene flow, we should see differences
in the fitness, as measured by fecundity, of offspring from
parents belonging to the same or to different clusters. To
investigate this hypothesis we examined the number of chil-
dren and the number of grandchildren produced by agents
born to parents from the same or from different clusters.
The left-hand columns of Table 3 summarize the results.
Though the differences are modest, the offspring of parents
from the same cluster produce more offspring than do the
offspring of parents from different clusters, and those off-
spring are themselves more fecund. The magnitude of the
differences are about 10x the standard error rates observed in
the population (shown in parentheses), thus there is at least
a modest post-zygotic selection pressure at work. Ampli-
fied across multiple generations it is easy to see how intra-
cluster breeders will outperform inter-cluster breeders and
produce ever more distinct sub-populations—species—even
sympatrically. This is basically the first half of Wallace and
Dobzhansky’s proposed route to sympatric speciation.

If reinforcement is producing pre-zygotic selection and
assortative mating, we should see differences in the rate at
which agents produce offspring when they come in contact
with agents from the same or different clusters. To inves-
tigate this possibility we examined the number of children
and grandchildren produced per contact with other agents
from the same or different clusters. For this analysis it is im-
portant to normalize birth rates by contact counts, since any
kind of temporal, behavioral, or geographical isolation can
and does significantly skew the number of potential repro-
ductive encounters between same and different clusters for
a given agent. The right-hand columns of Table 3 summa-
rize these results. Both the child- and grandchild-production
rates (per 1,000 contacts) are greater for encounters with
agents from the same cluster than for agents from a differ-
ent cluster. Here again, though the magnitude of the differ-
ences is small, they are roughly 10x the standard error rates
observed in the population. Thus there is at least a weak
pre-zygotic selection pressure at work.

Certain characteristics of the current simulated
environment—especially the partial barriers, that are a
holdover from previous experiments looking at the evo-
lution of complexity—make it difficult to entirely tease
apart sympatric vs allopatric speciation. In movies showing
cluster membership over time we see clusters emerge and
persist alongside existing clusters in a fully sympatric
fashion. But we also see evidence of allopatric speciation,
with new clusters emerging in and coming to dominate
one food patch before spreading to the other—in fact,
having difficulty invading the second food patch. So we
currently believe both forms of speciation are to be found
in these simulations. A sample movie can be found at:
http://informatics.indiana.edu/larryy/cluster movie.zip
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Figure 3: Means and standard error bars for the strength,
size, mate-energy-fraction (MEF) and internal-neural-group-count
(INGC) genes, along with neural complexity, for clusters with more
than 700 agents, using ε = 2.125.

Cluster Characterization

Clustered sub-populations can be characterized by their re-
spective cluster centroid. Figure 3 provides a set of cluster
fingerprints, summarizing the raw data in Table 2 for clus-
ters of ε = 2.125 (showing only the major clusters, with
populations > 700). Specific evolutionary trends can be
correlated to the rise and fall of particular species. The
increase in size is readily apparent, along with a general
decline in mate energy fraction and strength, and a varia-
tion in the internal-neural-group count. The earlier clusters
1 and 5 explore larger neural structures, achieving higher
complexity. All dominant clusters exhibit a trend towards
reduced energy consumption (low mate energy fraction and
strength) and increased energy capacity (large size). Clus-
ter 17 shows an exploratory population with slightly higher
internal-neural-group count and neural complexity, coupled
with a reduced emphasis on energy conservation, as evi-
denced by an increased strength and mate energy fraction,
and slightly smaller size. This exploratory population is
present in the middle third of the simulation, emerging out
of the dominant cluster 21, but having only limited success,
and, together with cluster 16, is responsible for the bump
in internal-neural-group count and complexity as previously
discussed.

Future Directions
One direction is to apply these analysis methods to simula-
tions with simpler environments, in order to eliminate the
possibility of allopatric speciation. We are also investigat-
ing methods from the evolutionary biology literature, such
as “heat maps” of genetic diversity versus geological origins
of parents, that might help us quantify degrees of sympatric
vs allopatric speciation. An analysis of the temporal his-
tory of the fecundity and child-production rates discussed

here might help distinguish pre-zygotic and post-zygotic se-
lection and clarify the role of reinforcement in producing
assortative mating.

Alternative clustering algorithms are also of interest. In-
formation theory-based algorithms, such as that of Gokcay
and Principe (2002), which maximizes cross-entropy be-
tween clusters, look particularly attractive. Alternatively,
adopting a rival-penalization method, such as the k*-means
algorithm (Cheung, 2002), may provide a better metric for
cluster selection than cluster diameter. It might also be in-
teresting to adapt the hierarchical clustering scheme of As-
pinall and Gras (2010), regardless of whether we adopt their
practice of allowing clusters to modulate reproductive suc-
cess. Such a comparison would provide insight into whether
or not varying the thresholds of QT-Clust is suggesting hier-
archies of sub-populations, as hinted by Figure 2.

Any of these clustering methods, including the current
one, would allow us to evaluate the effectiveness of a “mis-
cegenation function”, which establishes a probability of re-
productive success that is inversely proportional to genetic
distance between potential mates, that was long ago built
into Polyworld, but which has never been explored to any
substantial degree.

With the existing data, a study of the geographic locality
of the origin and spread of each species may yield informa-
tion about environmental effects on selection and degrees of
sympatric vs allopatric speciation. This may provide the-
oretical insights into a common real-world speciation sce-
nario in which initial allopatric (regional) divergence is fol-
lowed by sympatric divergence, as seen in Darwin’s Finches
and other taxa (Huber et al., 2007). We would also like to ap-
ply these methods to simulations with clearly differentiated
niches that are geographically either overlapping or isolated,
to distinguish and quantify the relative effects of niche spe-
cialization vs geographic isolation.
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Radovanović, M., Nanopoulos, A., and MirjanaIvanović (2010).
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Abstract

This work uses an ALife simulation to explore the implemen-
tation of embodied reaction logic in a chemical computer.
Chemical systems have potential for computation. There are
properties of a logical system that are desirable in any com-
putational system, such as the ability of the system to change
state in response to some input. An issue in chemistry is that
the molecules must have some physical embodiment, which
must somehow represent state; state is then interpreted as the
presence or absence of certain molecular configurations in the
system. The design of a chemical logic gate is a means of
showing that a chemical system can change state appropri-
ately and that the information encoded in the molecules is
available to be processed as information. This paper com-
pares two simulated chemical computing systems: Bindworld
(a simple illustrative example) and Stringmol, (a fully im-
plemented complex DNA-inspired evolutionary computing
framework). The problems and design decisions involved in
creating a NOT gate in each system are compared, showing
that designed computational systems require a certain com-
plexity and flexibility to be useful to human operators. Fi-
nally we discuss general extensions to the Stringmol reaction
chemistry that would simplify the process of information pro-
cessing in embodied systems.

Computation is a fairly new concept to science. Although
the word itself has been in use since 1447 or before, until the
early 20th century it referred only to manual calculation per-
formed by humans (this is why early machines were called
“automatic computers” to distinguish them from their hu-
man counterparts). It is only since the development of the
mechanical and electronic computer that the term has been
applied to a process external to human thought.

Artificial Life (ALife) is a simulation of biological life
on a computer. These simulations are often considered to
be “embodied thought experiments” (Di Paolo et al., 2000),
which test whether the essential properties of biology have
been captured. Simulations of biological processes are also
seen as a step towards harnessing biological processes for
our own ends (Brooks, 2001). (The successful simulation
will process information in a similar, but more robust, man-
ner to our electronic computers.) It is therefore legitimate to
consider how a biological simulation is capable of informa-
tion processing. The simplest form of this is logic.

Models of conventional computing deliver programming
languages, based on logic, that abstract the functionality
away from the implementation of the logic on electrical cir-
cuitry. Programmers take this for granted when designing
software using these programming languages. Similar ab-
stractions may be needed to program computers based on
other media. Generally, computation proceeds in the fol-
lowing context:

1. INPUT: An observer encodes a problem and passes it to
some external system (be it electronic, neural, biological,
molecular, or otherwise) via a setup function.

2. COMPUTE: The system evolves, ending in some changed
state. Where the change in state has involved some notion
of information processing, computation has occurred.

3. OUTPUT: The observer uses an output function to extract
some useful information from the system and decode it
into a useful response.

The problem, or series of instructions, is encoded in a differ-
ent way depending on the architecture of the computer. In
electronic computers it is a program in a language such as
C (or, equivalently, the machine code representation of that
program). The usefulness of a computer is in the COMPUTE
stage, when the computer performs a task so that we do not
need to execute it ourselves.

Systems requiring two-way data exchange (such as a
search engine, which alternates between taking queries and
returning results) can be seen as a series of input-compute-
output operations. We do not discuss parallelism and con-
currency, but restrict our discussion to an input-compute-
output problem analogous to a batch processing command.

The idea of a chemical computer is appealing: somehow
encode the task in a solution of input molecules, place them
in solution with the computational molecules, and find the
result in the set of extractable output molecules. Molecu-
lar computing is massively parallel - there is potential for
billions of reactions to take place at the same time in a sin-
gle container. For example, in DNA computing (Păun et al.,
1998; Lee et al., 2004; Adleman, 1994), the setup function
consists of encoding a problem in fragments of DNA. The
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computation occurs in vitro, in parallel, and without external
interference. The output function often consists of using gel
electrophoresis to extract and sequence DNA of a particular
weight, which we know to encode a useful response. Impor-
tantly, the information is embodied – it is represented as a
sequence of DNA that is processed via the laws of physical
chemistry.

This paper compares two embodied computers. The first
is a small theoretical novel computer, Bindworld, in which
simple “atoms” bind with each other to form complexes.
The second is a larger, implemented novel computer, String-
mol, in which long RNA-like sequences interact according
to their embedded programs. We use the comparison to
highlight the challenges and tradeoffs involved in designing
a novel embodied computer.

It is important to emphasise the role of the molecules-as-
programs in terms of their computing power. To demon-
strate the importance of reactions within a chemical compu-
tation, we briefly describe some theoretical work based on
the concept of complementary binding of molecules alone.
We show the shortcomings of this approach, and extend it to
incorporate the concept of reaction between molecules once
they have bound together before presenting our experimen-
tal implementation of a NOT gate in an artificial chemistry.

Stringmol is an artificial chemistry (AC) that is being
developed to explore a method of evolutionary computa-
tion based on the “RNA-world” model of biology (Gilbert,
1986). This is a computational simulation in which the
genome-carrier molecule is composed of the same molecu-
lar building blocks as the enzymes that are encoded therein.
The system, called Stringmol (Hickinbotham et al., 2010a,b,
2009) abstracts the concept of stochastic mixing and molec-
ular binding and reaction into a tractable model for ALife
experiments. The link between computation and open-ended
evolution is that both paradigms require that it is possible to
generate an unbounded set of possible states. In related
work (Clark et al., 2011), we have demonstrated that the so-
phisticated binding protocols in Stringmol are key to the di-
versity that the system is capable of producing. Here, we
show that binding alone is not a convenient form for com-
putation.

In addition to being able to carry out computation, it must
also be feasible for a human programmer to initialise the sys-
tem “by hand”. The idea of logic gates is an appropriate area
in which to start thinking about a novel computational sys-
tem, since logic is familiar and universally used in traditional
computational systems. A non-standard computer which can
be used with a standard computing paradigm (logic) is more
approachable than one which requires an entirely new way
of thinking about computation; it requires less training to use
and program, and existing results and algorithms are easier
to re-use. Conceptualising such a familiar idea in a new sys-
tem highlights the similarities and differences between the
novel system and von Neumann computing. The two sys-

tems we compare here are both formally specified (Bind-
world by its reaction rules, Stringmol by its program code);
these mathematical and programmatical specifications are
not included here, however, as conceptual analysis of the
two systems informs our main conclusions.

Logic gates have already been implemented in a real
chemical system based on DNA enzymes with catalytic ac-
tion (Stojanovic and Stefanovic, 2003). Simulation is an
important complement to experiments with real chemistry,
since the simulation can be interrogated easily and com-
pletely, and complete understanding of the molecular model
is available. The issue with simulation is whether the correct
properties of real chemistry have been captured in the model.
The systems we compare here differ from real chemistry:
Bindworld is much more simple (containing only atoms and
bonds); and Stringmol uses a programming metaphor in the
place of the physical properties of atoms by containing a set
of operators and pointers.

Teuscher provides a good review of realisations of logic
elements in chemical computers (Teuscher, 2007), focus-
ing on how to build in reliability through redundancy in
membrane-based systems. The systems we explore here,
however, are different from membrane computing systems;
they lack a container-based physical hierarchy.

Two important properties of a useful computational sys-
tem are preservation of state and change of state. Firstly,
information must be preserved in some way; the system
must have some kind of memory. Secondly, information
must be modified in some sensible way; a system that does
not change cannot perform computation. Logic encapsulates
both the idea of preservation of state (truth values are held
steady) and that of change of state (output values are modi-
fied).

What are we looking for in a non-standard
computational system?

We already possess a remarkably powerful and ubiquitous
computational system: the von Neumann architecture (As-
pray, 1990) implemented on electronic computers. This ar-
chitecture is used by virtually all electronic computing de-
vices, from the mobile phone to the supercomputer. There is
therefore little point in developing and researching a novel
computational system unless it is (or has the potential to
be) in some way superior to the von Neumann electronic
computer. Simulations are useful for research, but often dif-
ficult to implement on traditional computers. A platform
amenable to evolution is also desirable. Thus, we require
a different form of embodiment to that seen in electronic
computers. We seek a general computational platform that
is more amenable to biological systems in general, and bio-
logical evolution in particular.

The role of a computer is to carry out algorithms for hu-
mans, or even adjust these algorithms to cope with particu-
lar problems; informally, computers solve problems for us.
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The Church-Turing thesis (which is widely regarded and ac-
cepted as correct, but is unproved, and indeed formally un-
provable (Copeland, 1996)) states that every expressible or
comprehensible algorithm is computable using a Turing ma-
chine. As electronic computers are equivalent to Turing
machines, no novel computer will ever allow more problems
to be solved than an electronic computer.

One advantage of a novel computer could be that there
were some problems it could solve better (either faster or
more accurately). Another could be that the INPUT stage
were easier; that the problem encoding were more under-
standable or easier to generate. This is very important, as
much of the effort involved in computer-aided problem solv-
ing goes into formalising the problem in a way that the
computer can understand. Finally, a novel computer might
not allow problems to be solved faster or more easily, but
might offer practical advantages like being smaller, lighter,
cheaper, or more energy-efficient. A novel computer might
even be able to solve fewer problems than an electronic com-
puter, but convey significant practical advantages.

In vitro experimentation versus in silico simulation
We can explore non-standard computational systems in two
ways: by implementing them in the real world, or in simula-
tion. Real-world implementation has had interesting results,
such as Adleman’s solution of an instance of the directed
Hamiltonian path problem using DNA molecules (Adleman,
1994) and Adamatzky’s reaction-diffusion logic gates in a
chemical medium (Adamatzky and Costello, 2002).

Simulating non-standard computational systems has also
been successful; consider Winfree’s simulations of com-
putation by interactions between self-assembling tiles
(Winfree, 1998) or Adamatzky’s simulations of reaction-
diffusion systems (Adamatzky, 1997). Winfree simulated
sets of DNA molecules with 4 “sticky ends” (ends amenable
to binding with other DNA molecules) and showed that they
are capable of unsupervised self-assembly, in particular pat-
terns, into nets of DNA. This system was used to simulate
a self-assembling Sierpinski triangle. Adamatzky simulated
(and also constructed) logic gates whose information carri-
ers were interacting waves of chemical reaction proceeding
across a medium.

When simulating chemical computation, we need to set
up an environment which approximates real chemistry. As
the mechanisms of real chemistry are currently intractable
(too much computation is required) and indeed not fully
known, we need to set up a simplified simulation-world. It
should be qualitatively similar to real chemistry, but vastly
simplified to make it computationally tractable.1There are
several choices we have to make:

1Unconventional computation can be a rather recursive field;
we are considering the computational power of a simulation whose
complexity is limited by the computational power required to sim-
ulate it!

Figure 1: Two “atoms”, complementary in shape, bonding
together to form a complex.

• Atoms. What types of atoms (unsplittable entities) to in-
clude in the system.

• Interactions. How these atoms interact.
• Determinism. How large is the role of chance in the sys-

tem.
• Container. The environment the simulation operates in;

its dimensionality and boundary conditions.

Bindworld: a simple simulation and its
drawbacks

This section presents Bindworld, a trivial simulated
chemical-analogue computational system designed around
the concept of binding alone (with no explicit formalisation
of reaction). This is a “thought experiment” that shows the
necessity of reaction in computational chemistries.

A “program” in Bindworld consists of a population of
atoms, so called because they are indivisible. Each atom has
one or more bindsites of type k or k′, k ∈ N∗. For example,
a shape could have the three bindsites of types 1, 2′, 3. A
bindsite of type k can only bind to one of type k′. For ex-
ample, a bindsite of type 7 can only bind to one of type 7′.
This rule reflects shape complementarity. Only bindsites on
different atoms can bond; two complementary bindsites on
the same atom cannot bond to each other. If a bond occurs,
the two atoms in question are bonded to form a complex.

To implement a program in Bindworld, we must:

1. INPUT: Set up a population Pi of atoms, encoded in
which are the truth values for our gate inputs. When set-
ting up the population Pi (encoding our question) we have
control of the presence or absence of atoms, and of the
bindsites they possess. We can choose whether to include
a certain atom in the initial population, and which bind-
sites to equip it with.

2. COMPUTE: Let the system evolve by forming all possible
bonds between atoms.

3. OUTPUT: Interrogate the final population Pf , and infer
the state of the system from the pattern of bonds found
between atoms.

Bindworld can either be deterministic (if two atoms can
bind at a particular moment, they certainly will) or nonde-
terministic (if two atoms can bind, they may either bind or
remain unbound).
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Figure 2: A molecular NOT gate; atom AX (top) has bound
to atom AZ (bottom) via complementary bindsites of types
1 and 1’. Here the case where X = true is illustrated; the
atom AX is present. The case X = false, this atom would
be absent and AX would be bound to nothing.

One of the implications of having bonding with no reac-
tion is that when reading the final population Pf , it is useless
to read either the presence/absence of atoms or which bind-
sites they possess, as this information will be the same as
in the initial population. The only way in which the system
can change is by bonding atoms to other atoms and form-
ing complexes. We must therefore extract the output value
of our logic gate from information about which atoms are
bound to which.

Making logic gates in Bindworld
Suppose we have access to two binary variables X and Z
and two atoms AX and AZ with complementary bindsites
1 and 1’. These atoms are notated AX,1 and AZ,1′ and will
bond to each other as their bindsites are complementary. We
then define the input rule and the output rule formally as:

Input: Pi =

{
{AX , AZ} if X = T
{AZ} if X = F

Output: Z =

{
F if bound(AZ)

Pf

T if ¬bound(AZ)
Pf

(1)

We set the output variable Z to true if atom AZ is bound to
anything in Pf , shown by the helper function bound(AZ)

Pf .
This implements the relation Z = ¬X in Bindworld; the
chemistry of the system behaves differently depending on
how we set up the initial population.

As shown, it is simple to engineer one gate on its own.
It is also simple to run a set of gates in parallel by simply
using sets of bindsites which do not interact with each other.
It is when we come to link gates together by connecting the
output of one to the input of the next (as we must to run any
meaningful computation) that problems occur.

One way of doing this is with the NOT gate is by simply
inserting another atom AJ with a bindsite of type 1. If we do
this after the initial gate has run, the results will be sensible
and ¬bound(AZ)

Pf will reflect ¬¬X . However, this means
the computer’s execution would have to be paused after the

operation of every gate, which would make the computer’s
operation intolerably slow, as such chemical manipulations
are very slow. Furthermore, they would need to be con-
trolled either by hand or by an electronic computer; using
a traditional computer to facilitate the operation of a novel
one (when it could just evaluate the gates electronically) is
a waste of resources. We want to be able to program the
computer and leave it to run unsupervised.

The process is even more complex when dealing with 2-
input gates such as AND or NOR, which raises another dis-
advantage of Bindworld: the activity of programming it (set-
ting up the atoms and the initial population) is very hard. It is
conceptually very nonintuitive and difficult to reason about.
This violates another goal in the design of novel comput-
ers, that they should be easy to control and program. There
may be an arcane, complex way of setting up unsupervised
chained gates in Bindworld, involving helper bindsites and
ancillary atoms, but it escapes us.

To sum up, Bindworld has several down sides. Firstly,
programming it is extremely nonintuitive. Secondly, it
seems even simple one-input-gate chaining is very hard un-
less the population can be adjusted after the evaluation of
every gate, a restriction which would cripple the system’s
power. Thirdly, although we can define the joining of two
atoms as a “reaction,” Bindworld has no explicit concept of
reaction, which means it does not integrate very well with
our mental schemas of computation and chemistry. The
next section describes an artificial chemistry built around
this concept.

Computation with the Stringmol artificial
chemistry

We give here a brief overview of our molecular system,
which is described fully in Hickinbotham et al. (2010a,
2009). A summary of the chemistry is presented below, fol-
lowed by a description and discussion of molecular struc-
ture.

In order to express our observations in a computational
system, we identify three major domains. The first defines
the underlying physico-chemical properties of the atomic
components. The second is the coding of the proteins in
genes - the sequence of codes. The third is the embodiment
of both the physico-chemical properties and the sequence of
codes in the physical world. The physico-chemical proper-
ties of the system are immutable, but they specify a space of
possible realisations that is immeasurably vast. Genetic sys-
tems are specified by the sequence of codes, but importantly,
the sequence is embodied within the system, thus allowing
the enzymes that the sequence encodes to act on the embod-
iment of the sequence itself and thus modify it. This has
places the sequence management apparatus under control of
the sequence itself, eventually exploiting the available pos-
sibilities that the physico-chemical properties endow upon
the embodied system. This phenomenon is the basis of bi-
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ological evolutionary systems, where the embodiment of a
genetic code in a carrier molecule allows the encoded pro-
teins to “curate” the genome. Initial experiments by Hickin-
botham et al. (2010b, 2009) into implementing such a sys-
tem have resulted in the Stringmol chemistry.

Molecular representation
In Stringmol, the molecular analogues are composed of se-
quences of token symbols (single letters or symbols such as
‘$’ or‘>’) which represent both the structure of the molecule
and a series of programmatic instructions. Molecules bind
at loci along sequences if there is a match between the se-
quences at that point. Importantly, the match is inexact, and
is modelled as a probability of a bind occurring. The basis of
the soft alignment scoring function is based on the scoring
method of Smith and Waterman (1981).

Once bound, the two molecules have the potential (by fol-
lowing the programs specified by their strings of instruc-
tions) both to create new molecules and to change their
composition, thus forming new molecules. This is the re-
action component of the system. The sequence is treated
like a program, commencing at the beginning of whichever
aligned subsequence is furthest from the beginning of its
string. There are 7 functional symbols, shown as non-
alphabetical characters ‘$’, ‘>’, ‘ˆ’, ‘?’, ‘=’, ‘%’, and ‘}’.
Stringmol uses functional symbols to specify the manipu-
lation of a set of pointers which indicate positions on the
molecular strings, and the symbols that the pointers index.
During a reaction, alignments are used to specify program
flow, commonly acting as place markers and analogues of
“goto” statements.

Note that in Stringmol, binding and reaction are com-
pletely chronologically and conceptually separate. Once a
bind is effected, it remains in place for the duration of the
reaction. Another bind cannot interrupt a reaction; a third
Stringmol cannot bind to a reaction in progress.

System Architecture
A Stringmol simulation can be considered as a set of re-
acting molecules whose movements inside a container are
governed by a stochastic mixing function. All molecules are
subject to decay (spontaneous destruction), which places a
requirement upon the system to act in order to maintain itself
in the face of entropy. Should molecules come sufficiently
close to one another, then they can bind and subsequent to
binding occurring, react. The system has a discrete-time
clock. At each time step, all the molecules in the system
are processed. Actions only occur if energy is available. En-
ergy is consumed via binding and executing each instruction
in a reaction; these two events each have an energy cost.
The likelihood of binding and the nature of the reaction is
encoded in the string of each molecule in the encounter. At
one particular time step, we specify that 25 energy units are
available. The selection of which events consume the energy

is stochastic. The balance between energy availability and
the decay rate of the molecule maintains a steady population
of molecules. We currently specify that only two molecules
can ever participate in a single reaction, and that raw ma-
terials for the assembly of new molecules are available in
saturation.

Strategy for implementing molecular logic
Our implementation of logic within this artificial chemical
system allows us to demonstrate the ability of the system to
change state. There are two points arising from this. Firstly,
the implementation of the processing is not straightforward,
since the reaction-language was not tailored to logic. Sec-
ondly, following from the first point, there naturally arises
within the system the possibility of evolving the system to
deliver fuzzier logical analysis from the initial bootstrap, via
a built-in ability of the system to evolve.

We require that the chemical system acts to maintain
a population of molecules in an environment where no
molecule can persist indefinitely. We thus base our sys-
tem on a molecular species that we call a replicase, R. This
molecule R has embodied properties coded into its sequence
that allows it to bind to copies of itself and create further
copies.

Before an input data molecule D enters the system, the
R molecules simply maintain a stable population. The in-
put does not persist in the system, so in order for the sys-
tem to generate a response that does persist, the input signal
must induce two changes in R. In our implementation, R is
‘primed’ to implement changes to its own sequence when D
binds to a specific region, to introduce a signal generating
molecule S that not only acts as a replicase, but also gener-
ates an output molecule O.

Experiments showed (Hickinbotham et al., 2010b) that
changes in the binding site of the replicase allowed new
species of replicase to be preferentially copied, and thus
drive other replicase molecules to extinction. We exploit
this phenomena in the design of our state-change when an
input data molecule appears – it changes the sequence of the
replicase molecule R it interacts with to always be copied
rather than act as the copier. This means that the original
replicase R is swept out of the system, and a new replicase
species S takes its place. S not only self-maintains, but also
produces output molecules.

Designing the molecular species
The sequences of logical Stringmol data input molecules D
must perform two tasks. Firstly, they must bind to the repli-
case molecule, and secondly, they must encode the logical
state of the input. For a “true” signal, we specify the se-
quences INPUTTTTTT and INPUTFFFFF for false. There
are two regions to this molecule. The sequence INPUT
forms the bind site (shown in yellow in figure 3II, where
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Figure 3: The replicase NOT gate molecules. Yellow re-
gions are bind sites, blue regions are program sequences,
red regions are read/write areas external to the program re-
gions. Dotted lines show binds. Black regions are parts of
the sequence that are not used in the reaction. Particular
regions of molecules are referenced by numbers and letters
in triangles. There are three reactions I, II and III: I: The
replicase R will copy anything that binds at position 1, us-
ing the program encoded at region 2. R can bind to other
R molecules. II: The data molecule D binds to R at re-
gion 3. The program at 4 is executed, which changes sites
a and b and uses the logic encoding at c to write a specifi-
cation of the output molecule. This changes the sequence of
molecule R to create a new molecule species S. III: The
signal-producing molecule S. This molecule has the dual
functionality of copying the molecule it binds to, and mov-
ing program flow from region 5 to region 6, where the output
molecule is expressed.

as the sequences TTTTT or FFFFF encode the logical state
(shown in red).

The central challenge in this experiment was designing
the replicase molecule R to bind and process the input
molecule. The string encoding the functionality for this
molecule was 243 symbols long. The reactions that the se-
quence encodes are shown in figure 3. There are three re-
actions to consider. Reaction I is the replication function,
encoded on region 2 the top row of the figure. We refer the
reader to Hickinbotham et al. (2009) for a discussion of the
replicase functionality encoded in this region. Reaction II
occurs when D binds to R at region 3. The processing of
the input molecule is encoded in region 4, and proceeds as
follows:

1. check-input: Inexact alignments can form a bind
with low but significant probability. It is therefore im-
portant to check the validity of molecules which bind at
region 3. The sequence ?VACH} carries out this check,
and terminates the reaction if the condition is not met.

2. Mod-replicase: This sequence carries out the modi-
fication of the replicase bind site at region a, and deletes
the terminate symbol } at region b. This change means

that region 5 will be executed in reaction III to initiate
production of the output molecule when S-S binds occur.

3. Check-boolean: Switches program flow to create a
template for an output molecule that embodies “true” or
“false” in the system.

4. Set-output-false and Set-output-true:
These sequences position the read pointer over the se-
quence encoding “true” or “false” respectively depending
on the output of a NOT operation on the logical state of
D.

5. Make-output-messagewrites the output of the NOT
operation into the template sequence for the output
molecule.

6. Express-output-message creates a new output
molecule. Note this sequence is also shown in reaction
III as region 6. The program executed by the S jumps to
this region from region 5.

The output molecules are ODTWKZFFFFF for false and
ODTWKZTTTTT for true. Note that we had originally coded
this molecule using the sequence OUTPUT, but the last three
letters of this sequence formed a partial match with the bind
site for INPUT.

It is clear the mechanism for latching the system is more
complex than in an electronic logic gate. This is a conse-
quence of the fact that everything in the system is subject to
decay, so in order to preserve the output, it must be repeat-
edly created by S. However, this does provide the facility for
new configurations to arise by allowing mutation to occur in
the system as in (Hickinbotham et al., 2009).

Experimental trial

To demonstrate the effectiveness of the molecular specifica-
tion, we ran 1,000 trials each of input conditions with true,
false and NULL configurations. A previously implemented
C++ incarnation of Stringmol was used to run the trials, all
of which successfully produced the output signal molecule,
maintaining the population indefinitely. Examples of pro-
cessing a true and false input signal are shown in figure 4
(the null configuration is simply a constant population of the
seed replicase). In both of these examples, the molecular
population dynamics are similar. The Input signal binds to
the Start Replicase, which executes the self-modifying code.
This produces the “signal replicase”. We see the popula-
tion of Start Replicase drop off more quickly than the input
molecule, since it is subject to modification into the Sig-
nal replicase and decay, whereas the input molecule is only
subject to decay. The bump in the population of the Signal
replicase is due to an energy glut, since the input population
is too small to consume available energy. Finally, we see
the emergence of a steady state population of two molec-
ular species: the Signal replicase, and the output molecule
encoded with the appropriate boolean NOT response.
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Figure 4: Reaction logic processing of an input molecule
through a NOT replicase. Top: “true”, encoded as
INPUTTTTTT (green line), when combined with the “start
replicase” (black line), creates a population of output “false”
molecules encoded as ODTWKZFFFFF (red dashed line),
along with a Replicase-plus-signal enzyme (black dotted
line). Bottom: Same as the above, but with “false”, encoded
as INPUTFFFFF (red line), and a population of output
“true” molecules encoded as ODTWKZTTTTT (green dashed
line).

Comparison and conclusion

We have shown theoretically and experimentally how an em-
bodied reaction process enhances the computational power
of chemical systems. The main demonstrator for this has
been the design of a simple NOT gate. The differences
between Bindworld and Stringmol mirror several important
considerations in the design and engineering of novel com-
putational systems.

A major difference is that Stringmol is more complex than
Bindworld; it has more atoms, more complex combination
rules, and a clear, hardwired border between binding and
reaction. Informally, Bindworld is a simpler world than
Stringmol. This means that, to express complex ideas like
logic gates in the terms of Bindworld, we have to do more
work to reduce them to its simple terms. Stringmol (like a
high-level programming language) has more useful abstrac-
tions that we can incorporate when designing “code” that
runs in Stringmol. Its programmatic instructions encode the
reaction potential of each entity. Stringmol is in closer cor-

respondence with our mental schemas of the problems we
wish to solve. As ease of programming is a very important
computing property, this consideration is important. String-
mol vs. Bindworld is an example of how making a system
more complex can make it easier to use.

Stringmol is also nondeterministic; this can be an advan-
tage because it allows the same starting state to cause dif-
ferent behaviours, which may occur at different rates and
can aggregate over time into more complex behaviours. Von
Neumann computation relies on the permanent assumption
of determinism, but this is not necessary (many biological
computers, like the brain, do not require it) and means we
have to work harder to implement nondeterminism (as in
random number generators). It also leads us into a procedu-
ral, deterministic, local mental schema of computing, which
is not something we want to be crippled by when designing
distributed, concurrent or nondeterministic systems.

With artificial chemistries like Stringmol, there natu-
rally arises the possibility of evolving the system to deliver
fuzzier logical analysis from the initial bootstrap, via a built-
in ability of the system to evolve. We plan to explore this
avenue in future work, with a view to delivering a system
capable of evolving solutions within the embodied chem-
istry.

In our experimental work, we have taken pains to develop
a solution that required no changes to the artificial chemistry
that was used in (Hickinbotham et al., 2010b) for applica-
tions in evolution. This is important, since biological evo-
lution exploits the embodiment of the genome in much the
same way as the embodied reactions we explore here. We
had to overcome some difficulties with the functional codes
in Stringmol, and also some difficulties with similarities in
binding sequences that led to mis-alignments. These indi-
cate that the Stringmol system would have more expressive
power in both evolutionary and computational experiments
were these issues addressed.

Rather like Newspeak in Orwell’s 1984, the expression of
certain things in Stringmol is difficult if not well-nigh im-
possible. Intuitively, the process of simulating the physical
copying of a sequence of letters seems to require more infor-
mation processing than a single logic gate. However the pro-
cess of copying information is not the same as actually pro-
cessing the information itself. Thus in Stringmol it is easy
to copy strings, but it is very difficult to express a straight-
forward logic gate because there are not the straightforward
expressions available to do so.

We note that simple changes to the Stringmol language
that would emphasise the concept of molecular embodiment
of information would make the logic gate easier to imple-
ment. These are: • Cut and paste of strings, rather than
copy and paste. Currently, we have to laboriously copy each
symbol in a string to do some information processing. But
some of these operations do not really require copies to be
made. We could just as easily use what is being copied.
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Thought of as an embodied system, the advantages of this
are clear. Cut and paste in Stringmol would mean that sub-
sequences could be excised and spliced into other sequences
by manipulation of pointers. • Regulation of some be-
haviour could occur if repressors could be made possible.
In our NOT gate, the input signal re-programmed the seed
replicase so that it made an output signal. This program-
ming would not have been necessary in a system where reg-
ulation of expression was feasible. • Energy-dependent
behaviour: Our processing system is subject to energy con-
straints. If we could switch when energy was low, we could
change behaviour to correct it. This would allow regulation
of energy to occur and give rise to selection at the molecular
level that is not currently possible •More steps to copy: If
we could dismantle the ‘=’ operator, we’d be able to do more
sophisticated construction of signals. As it is, we have to
string ====== together to copy short sequences, that is not
obviously evolvable without six corresponding mutations. If
we could use the Nellis-Stepney system, we could increment
the write pointer without incrementing the read pointer, and
thus have a copy of a symbol many times. • Increment
direction: If we could switch this, it would be possible
to write/evolve more compact programs. • Pointer refer-
encing: If we could move any pointer to any other pointer,
rather than the limited set currently implemented, we could
more easily implement certain information processing be-
haviours. probable alignments.

It is interesting to note that many of these extensions
could be applied to other string-based ALife systems, such
as Tierra (Ray, 1991), Avida (Johnson and Wilke, 2004) and
Typogenetics (Gwak and Wee, 2007). These systems were
also designed to carry out the task of replication, and they
are known to have limitations in terms of evolutionary open-
endedness. Our studies here indicate that there is potential to
extend the instruction sets in these models to allow richer in-
formation processing, which may lead to richer behaviours.

Stringmol and Bindworld are doubtless far from any use-
ful chemical computer, being after all only simulations.
However, they allow us to explore the properties of chem-
ical and bio-inspired long molecule computing, a strategy
which we hope will eventually allow us to design a useful
biological computer.
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Abstract

An environment plays an important role in behaviors acqui-
sition for artificial creatures. Thus, the environment must
obey the physical laws. In this paper, it is examined how
the behavior differences appear when the artificial creature
autonomously behaves in some fluid environments. We con-
struct the approximate virtual fluid environment with low
computing costs to simulate the behavior acquisition for ar-
tificial creatures. Also we propose a simulation method for
artificial creatures in consideration of effects from the virtual
fluid environment based on physics modeling. As a result
of simulation, we verify that it is possible for the creature to
acquire adaptive behaviors in different environments. After
evolution, the creature behaves autonomously by leveraging
effectively fluid forces in each virtual environment.

Introduction
Many computer simulations have been performed for study-
ing acquiring behaviors, evolution, and learning methodolo-
gies on virtual artificial life creatures in the field of Artificial
Life (ALife) and evolving robotics. Artificial fish swims au-
tomatically by learning its behavior controller (Tu and Ter-
zopoulos, 1994). This study makes it easy to create fish ani-
mation. A flock simulation approach is developed based on
a distributed behavioral model without setting the orbit of
each bird (Reynolds, 1987). This approach makes it easy to
create flock animation. The virtual creature is able to acquire
its morphology and behavior by an evolutionary methodol-
ogy based on the creature’s competition (Sims, 1994a)(Sims,
1994b). Many studies for behavior acquisition are based on
Sims’ studies. Sims’ model is applied to the virtual cata-
pult creatures to evolute (Chaumont et al., 2007). This crea-
ture could throw its parts of body as far as possible. The
relation for co-evolution of virtual creatures is observed by
fighting each other in Sims’ virtual environment (Miconi,
2008). In these days, there are many simulations for arti-
ficial creature using the physical calculating engine. It en-
ables these creatures to obey physics law easily. ”Snake-
Like Robot” acquires adaptive locomotion on the ground
using it (Tanev et al., 2005). This model is robust for ob-
stacles. In these studies, the experimental environment is set

as an ideal environment in a computer simulation space be-
cause they considered that the methodology of evolving and
learning behavior in an ideal environment is more important
than acquisition of the similar behavior in realistic environ-
ment. Therefore, the influenced force from the fluid envi-
ronments to the artificial creature is not precisely analyzed.
Instead, the implemented force adopts the simple calcula-
tion methods for reducing the computing time. On the other
hand, in a field of numerical fluid dynamics, many fluid sim-
ulations are based on a finite element method and a particle
method. The moving particle semi-implicit method makes
it easy to create animation on the water surface (Koshizuka
et al., 1998). A virtual anomalocaris model swims in the
virtual two-dimensional water environment using the parti-
cle method (Usami, 2007). And an artificial creature be-
haves based on a rule method considering the fluid effect
(Lentine et al., 2010). The finite element method and the
particle method give accurate results. However, they con-
sume much computational time. Therefore, it is unsuitable
for a real-time simulation to acquire appropriate behaviors in
the virtual fluid environment. However, we consider that the
virtual environment needs to acquire a more natural policy
of adaptive behaviors.

In this paper, it is examined how the behavior differences
appear when the artificial creature autonomously behaves in
the different fluid environments. At first, we construct an
approximate virtual fluid environment which enable us to
do the behavior acquisition simulation with low computing
costs. This environment is constructed by setting physics
parameters such as the fluid density and drag coefficients.
And we propose a simulation method for the artificial crea-
ture in consideration of the fluid environment. The artifi-
cial creature imitating a flat fish is modeled by connecting
rigid bodies. This creature can behave by moving its bodies.
In order to control bodies and learn the behaviors, an artifi-
cial neural network (ANN) is implemented with the creature.
Genetic algorithm (GA) is applied to the ANN by its evolu-
tion. We experiment to examine how the artificial creature
can acquire adaptive behaviors in some fluid environments.
As a result of simulation, we verify that it is possible to ac-
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Gravity (FG)

Figure 1: Modeling
buoyancy

Drag (FD)

Movement Velocity (v)

Figure2: Modeling drag

quire an adaptive behavior for the artificial creature in virtual
fluid environments. And we analyze the acquired behaviors
by examining a relation between fluid environments and ac-
quired behaviors.

Construction of the Virtual Fluid Environment
We assume that the buoyancy and drag act as the forces that
virtual rigid objects (sphere, rectangular parallelepipeds) re-
ceive from the fluid effect. We construct a virtual fluid envi-
ronment by modeling two forces acting on the object in the
fluid environment. These two forces compare to the buoy-
ancy and drag respectively. The simulation is performed by
calculating objects’ movement, which obeys a physics law,
resulting in an animation. We employ ”PhysX (offered by
the NVIDIA Corporation)” as a physical calculating engine.
PhysX is applied to calculate a basic physical operation, for
example, a gravity, a friction force, and collisions among
virtual objects. In the virtual fluid environment the acceler-
ation of the gravityg is 9.807[m/s2] We construct the fluid
environments by changing the parameter of fluid densityρ.

Modeling Buoyancy

Based on Archimedes’ principle, we model the buoyancy as
a force whose strengthFB equals to the weight of the fluid
volume which an object occupied in the fluid. This force
acts on the center of the mass in the opposite direction of
gravity (Fig.1). The strength of the buoyancy in the fluid
environment,FB [N], is given by equation 1,

FB = ρV g (1)

whereρ[kg/m3] is the density of the fluid,V [m3] is the vol-
ume of the object, andg[m/s2] is the acceleration of the
gravity.

Modeling Drag

Based on fluid dynamics, we model the drag as uniformly
distributed forces to the surface of the object in the oppo-
site moving direction (Fig.2). In the field of fluid dynamics,

Front view

Plan view

200200200

2
0
0

1
5: Actuator

HeadBodyTail

Figure 3: Artificial flat fish model

FD[N] is given by equation 2,

FD = CD
1

2
ρv2S (2)

by using dynamic pressure of a flow12ρv
2[kg/(m ・ s2)]

derived analytically as the strength of the drag in the fluid,
whereCD is a scalar quantity called the drag coefficient,
andS[m2] is the reference area of the object. The drag co-
efficient depends on the shape of the object. In this study,
the drag coefficient of a rectangular parallelepiped is 1.50.
The reference area of the object is the projection area of the
object to the plane which is perpendicular to the flow.

An artificial creature can generate a propulsion force by
moving its bodies because the modeled drag force is added
to its bodies when this creature moves its bodies.

Experiment for Acquisition Behavior in the
Different Fluid Environment

We examine how the differences appear when an artificial
creature autonomously behaves in some fluid environments.
It is assumed that the model must move forward as effi-
ciently as possible. Evolutionary computing is adopted to
acquire the adaptive behavior.

Artificial Flat Fish Model
We model the artificial creature by connecting rigid bodies
with actuators. The modeled artificial creature imitates a flat
fish, which can behave by controlling its bodies. After eval-
uation of this model by evolutionary computing in fluid en-
vironments, this creature behaves effectively by using lever-
age fluid forces in each virtual environment. Figure 3 shows
an artificial flat fish model. The fish model consists of three
rectangular parallelepiped with same sizes. This model has
two actuators with one degree of freedom (Fig.4). The den-
sity of the model is as same as that of fluid.
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Modeling Behavior for Flat Fish Model
We focus on one actuator, when the model bend upward its
body, the center of gravity of its body received drag forceF1

(Fig.5). The strength of the drag forceF1 is given by 3,

F1 =
1

2
CDρSv21 (3)

whereθ is the bend angle,rG is the distance between the ac-
tuator and the center of gravity of its body,ω1 is the angular
velocity of the actuator andv21 it the speed of the body.v1 is
given by 4,

v1 = rG
dθ

dt
= rGω1 (4)

Therefore,F1 is expressed by 5

F1 =
1

2
CDρS(rGω1)

2

= kω2
1(k =

1

2
CDρSr2G) (5)

In the same way, when the model unbends its body, the
center of gravity of its body receives the drag forceF2

(Fig.6), The strength of the drag forceF2 is given by 6,

F2 = kω2
1 (6)

whereω2 is the angular velocity of the actuator.
In order to move the model forward, the equation 7 is sat-

isfied. ∫ 0

θ

kω2
2 sin θdθ −

∫ θ

0

kω2
1 sin θdθ > 0 (7)

By solving 7, the following relation

k(ω2
2 − ω2

1)(1 + cos θ) > 0 (8)

k, 1 + cos θ are the positive value,

ω2 − ω1 > 0 (9)

This equation 9 means that the model moves forward by the
speed of unbending the body faster than that of bending the
body. In the same reason, when the model bends its body
downward, the model moves forward by the speed of un-
bending the body faster than that of bending the body, too.

Therefore, the model moves forward as efficiently as pos-
sible by the speed of unbending the body, which is faster
than that of bending the body on each actuator.

Control Method for Flat Fish
An artificial neural network (ANN) is introduced to move
flat fish model’s actuators autonomously depending on in-
formation given by its sensor and actuators. Actuators are
controlled by outputs of the three-layer feed-forward ANN.
Table 1 shows the input and output parameters of the ANN.
A transfer function for the ANNf(x) is formalized by com-
bining two sigmoid functions, given by equation 10.

f(x) =
1

1 + e(−
x
α−β)

+
1

1 + e(−
x
α+β)

− 1 (10)

Figure7 shows an example of the transfer function (α = 0.1,
β = 5.0). This function enables the ANN to output the zero
value. The number of neurons in the hidden layer is the
same as the number of neurons in the input layer. Synaptic
weights of the ANN are initialized by a real random number
at first. The model enables itself to behave more effectively
by optimizing synaptic weights of the ANN and the gain of
the transfer function.

Experimented Condition
We experiment to examine how the differences appear when
the artificial creature autonomously behaves in some fluid
environments. The flat fish model must move forward as ef-
ficiently as possible within a definite period of time (Fig.8).
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Table 1: Setting of input and output parameters of ANN

Input
Relative angle of actuatori between

rectangular parallelepiped in each time (θi)
Relative angular velocity of actuatori between

rectangular parallelepiped in each time (ωi)

Output
Objectangle of actuatori between

rectangular parallelepiped in each time (Ai)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

f(
x)

x

Figure7: Transfer function for ANN (α = 0.1, β = 5.0)

Fluid density ρ
n

Model density ρ
n

Figure8: Initialize state of a experiment (Front view)

We artificially prepare six fluid environments for experi-
ments. Table 2 shows the densityρn used for each fluid
environment. The GA optimizes the synaptic weights of
the ANN and the gain of transfer function by applying the
RCGA. Table 3 shows ANN and RCGA conditions for this
experiment. An evaluated value for the RCGA as a fitness
function is set so that the creature moves forward as possible
as it can. This evaluated valueFeval is given by 11.

Feval =

Step∑
t=0

x(t) (11)

whereStep is the number of step used for the simulation at
each generation,x(t) is a distance from a start position at
each simulation stept.

Result and Discussion
We upload the movies to URL (http://autonomous.
complex.eng.hokudai.ac.jp/researches/
physics-modeling/movies/nakamura ) that flat

Table 2: Experimental condition

Thenumber of the neuron
in the input layer 5

ANN
Thenumber of the neuron

in the hidden layer 5
Thenumber of the neuron

in the output layer 2
Therange of an object angle [−30◦, 30◦]

Genotype Weight ij , α, β
Phenotype Feval

Population 30
1 Step 1/60[s]

GA Simulationstep 300
Generation 250

Crossover Probability 0.05
MutationProbability 0.85

Trial times 30

Table 3: Density of each fluid environment

ρ1 1.20[kg/m3] (Air environment)
ρ2 200.0[kg/m3]
ρ3 400.0[kg/m3]
ρ4 600.0[kg/m3]
ρ5 800.0[kg/m3]
ρ6 998.20[kg/m3] (Water environment)

creatureacquires adaptive behaviors. Figure 9 shows a
diagram which draws the position of best individual at each
simulation time in each environment. The angle between
rigid bodies on the best individual in each environment is
shown in Fig.10-15. From these results, model’s bodies
oscillate periodically, and the angle between its bodies
propagates from the front to back in each environment.
This model moves forward by oscillating its tail much more
than the bodies. And the smaller the density of model
is, the faster the model oscillates its bodies in the fluid
environment, because the creature in the environment whose
density is larger needs more energy to move its bodies than
that in the environment whose density is smaller. Therefore,
the smaller the density of model is, the farer the model
moves forward from the start position. In addition, the
speed of fish’s body generates the drag forces. The speed
to unbend model’s body (ω2, ω4) is faster than that to bend
its body (ω1, ω3) as modeling behavior for flat fish model
(Fig.16). Therefore, this model can generate propulsion by
applying evolutionary computations (ANN and RCGA).
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Figure9: Relation of the fluid environment and the distance
from start position
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Figure10: Angles of the rigid bodies on the best individual
(Fluid density is the air)
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Figure11: Angles of the rigid bodies on the best individual
(Fluid density is 200.0[kg/m3])
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Figure12: Angles of the rigid bodies on the best individual
(Fluid density is 400.0[kg/m3])
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Figure13: Angles of the rigid bodies on the best individual
(Fluid density is 600.0[kg/m3])
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Figure14: Angles of the rigid bodies on the best individual
(Fluid density is 800.0[kg/m3])
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Figure15: Angles of the rigid bodies on the best individual
(Fluid density is the water)
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Figure16: Mechanism generating propulsion
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Figure 17: Angle of rigid bodies in the flat model at the
100th generation in the air environment
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Figure18: Relation of the generation and the distance from
the start position in the air environment
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Figure 19: Angle of rigid bodies in the flat model at the
100th generation in the water environment
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Figure20: Relation of the generation and the distance from
the start position in the water environment
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In the air environment, the frequency of the elite crea-
ture’s body in the middle of the experiment is larger than
that of creatures’s body after optimizing the ANN (Fig.17).
However the creature on the way of the experiment cannot
move more forward well (Fig.18). Similarly, the creature on
the way of the experiment cannot move more forward well in
the water environment (Fig.19, 20). This creature acquires
an adaptive behavior in the each environment by using evo-
lutionary computations (ANN and RCGA), moves forward
as efficiently as possible.

Additional experiment

Additionally, we examine how the topology of the artificial
creature affects with the behavior ability through numerical
simulation. To do so, we generate two types of the flat fish
model. The modification is done by changing the number of
actuators. We make a three joints flat fish model (Fig.21),
and a five joints flat fish model (Fig.22). These models con-
sist of rectangular parallelepipeds with the same size, keep-
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Figure23: Relation of the number of actuators and the dis-
tance from start position

ing the total length of flat fish model (two joint model). We
investigate how far two models move forward as efficiently
as possible from the initial position within a definite period
of time. Evolutionary computation (RCGA) is applied to
all generated creatures to adapt their ANNs, which are set as
controllers for the behavior. The experimental conditions for
the RCGA and the ANN are shown in Table 2. The density
of the fluid and model is as same as that of the water.

Figure 23 shows the position of best individual of each
model at each simulation time in the water environment.
Figure 24 shows the angle between rigid bodies on the best
individual of the three joints model. Figure 25 shows the an-
gle between rigid bodies on best individual of the five joints
model.

From these results, three joints model move forward fur-
ther than two joints model from the start position. However,
five joints model do not move forward further than two joints
model from the start position. Bodies of two models oscil-
late periodically and the angle between the creature’s bodies
propagates from the front to back. This creature moves for-
ward by oscillating its tail much more than the bodies like
a two joints model. And the speed to unbend each model’s
body (ω2, ω4) is faster than that to bend its body (ω1, ω3) as
modeling behavior for flat fish model (Fig.16).

In addition, the three joints model oscillates its bod-
ies greatly and slowly, This model generates stronger drag
forces because the surface drag area is large. On the other
hand, the five joints model oscillates its bodies in a small
range with a fast frequency . This model generates a small
drag forces because the surface drag area is small. By these
experiments, it becomes clear that the flat fish model needs
a proper topology of the body to move forward, that is, the
topology of the flat fish model effects behaviors.
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Figure24: Angles of the rigid bodies on the best individual
(three joints model)

Conclusion
In this paper, we constructed the virtual environment with
low computational costs by introducing two forces compar-
ing to the buoyancy and drag calculated by using a physical
calculating engine. And we examine how the differences ap-
pear when artificial creature model autonomously behaves in
some fluid environments by applying evolutionary comput-
ing (ANN and RCGA). From the result, it is possible for the
model to acquire behaviors in some fluid environment. Af-
ter optimizing the ANN, this model behaves effectively by
leveraging fluid forces in each environment. The model’s
bodies oscillate periodically, and the angle between the its
bodies propagates from the front to back in each environ-
ment. This model moves forward by oscillating its tail much
more than the bodies. Additionally, we examine how the
topology of the artificial creature affects with the behavior
ability through numerical simulation. From the result, it be-
comes clear that the flat fish model needs a proper topology
of the body to move forward.

As a future work, we would like to explore ”life-as-it-
could-be” by controlling the artificial creature which has
many wings.
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Abstract

Nootropia is a complex, self-organizing system, inspired by
the Theory of Autopoiesis and successfully applied so far to
the challenging problem of profiling a user’s information in-
terests. In this paper for the first time, Nootropia is studied in
the context of Artificial Life, as an autonomous system that
can learn without human intervention. A series of experi-
ments demonstrate that Nootropia can autonomously learn to
identify documents belonging to a specific topic with minimal
training. This is achieved through a deterministic process of
self-organization, which, when coupled with a complex and
dynamic information environment, gives rise to rich and un-
predictable behavior. Nootropia is open to its environment
and operates far from equilibrium, while it tries to maintain
its identity within an information stream. Our exploration of
the dynamics behind Nootropia’s autonomous learning capa-
bilities lead to interesting insights, which may extend beyond
its successful application to the problem of profiling and to-
wards a new research stream that uses Nootropia as a means
for studying computational autopoiesis.

Introduction
Humberto Maturana and Francisco J. Varelas’Autopoietic
Theorydescribes a model of self-organisation (Varela et al.,
1974; Maturana and Varela, 1980). In simple words, it states
that a system’s organisation is defined by its “structure” (its
components (nodes) and their relations (links)) and the pro-
cesses that this structure performs, which continuously re-
generate the structure that produces them. Of particular in-
terest to the current work is Varela’s view of the immune
system in the context of Autopoietic Theory. Varela treated
the immune system as anorganisationally closednetwork
that reacts autonomously in order to define and preserve the
organism’s identity, in what is calledself-assertion(Varela
and Coutinho, 1991). Self-assertion is an on going process,
since both the organism and the environment change over
time.

Two types of change contribute to self-assertion. The
network’sdynamicsrefer to ongoing variations in the con-
centration of antibodies and play the role of reinforcement
learning. The network’smetadynamicsare the result of the
recruitment of new cells (produced by the bone marrow)

and of the removal of existing cells. The network’s meta-
dynamics play the role of a distributed control mechanism
that allows the network to maintain its viability by shifting
its immune repertoire (Bersini and Varela, 1994). It is also
important, that due to the interactions between antibodies, it
is essentially the network itself that chooses which new re-
cruited cells will survive in the network. According to Vaz
and Varela, self-assertion is the natural consequence of this
endogenous selectionprocess (Vaz and Varela, 1978).

Stewart and Varela used a computational model to explore
self-assertion (Stewart and Varela, 1991). Like the origi-
nal computer simulation of a cell-like autopoietic structure
in (Varela et al., 1974), Stewart and Varela’s model involved
a discrete two dimensional grid representation of shape-
space, where antibodies are randomly introduced. The sur-
vival of antibodies on this grid depends on their affinity to
other antibodies, with affinity being a function of the dis-
tance between two antibodies. The simulation gave rise
to stable (but not static) patterns that were the result of
the network’s metadynamics. Similar self-assertion mod-
els have also been studied in (De Boer and Perelson, 1991)
and (Bersini, 2002).

Discrete, two dimensional spaces have been the basis of
many computational models of autopoiesis. A comprehen-
sive review can be found in (McMullin, 2004). Although
cellular automata on two-dimensional grids are known to be
capable of universal computation, in the case of autopoiesis
and self-assertion models in particular, the simulated envi-
ronments are relatively simple. For instance, in the orig-
inal computational model of autopoiesis, the environment
where the cell-like structure is formed comprises particles
that bond in the presence of a catalyst to form the cell’s
membrane. Similarly, in Stewart and Varela’s model of the
immune system the external environment consists of ran-
domly generated antibodies in the shape space. In both
cases, the computer simulations demonstrate visually, that
despite the stochastic nature of the environment stable struc-
tures progressively emerge and manage to maintain their
identity over time.

This paper suggests an alternative scientific methodology
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for exploring autonomous behaviour through autopoiesis. It
uses the Web as a source of real-world data for simulating
a complex and dynamic information environment. In this
environment, a profiling system, which has been inspired
by the autopoietic view of the immune system, has to au-
tonomously learn to identify specific information, in order to
maintain its identity. A series of experiments demonstrates
that this system is capable of autonomous learning through
a process of self-organisation that dynamically controls the
profile’s structure. Although, the adopted information en-
vironment cannot be easily visualised, depicting how cer-
tain macroscopic variables vary over time, reveals a complex
system that, although deterministic, is unpredictable. Small
variations in the initial conditions can cause significant vari-
ations in the structural pathways the system follows as it in-
teracts with its complex environment. The results also reveal
an interesting relation between energy consumption and au-
tonomous behaviour that requires further investigation.

Profiling with Nootropia
According to (Mireille, 2008), profiling could be generally
defined as:

“The process of ‘discovering’ correlations between
data in databases that can be used to identify and rep-
resent a human or nonhuman subject (individual or
group) and/or the application of profiles (sets of corre-
lated data) to individuate and represent a subject or to
identify a subject as a member of a group or category.”

In practice, when profiling an individual’s (or a group’s)
information interests, a profile is built and continuously
learns from the user’s interaction with information and is
used to evaluate the relevance of new, incoming informa-
tion to these interests. Profiling in this case, is a challeng-
ing problem with analogies to the immune system’s self-
assertion process. To maintain its viability a profile has to
be able to define and preserve the identify of the user’s in-
terests. It has to be able to learn a variety of interests and
continuously adapt to changes in them.

These analogies inspired the design and development of
Nootropia1, a profiling system that so far, has been success-
fully applied for adaptive filtering of textual information ac-
cording to a user’s (or a group’s) interests. In its current
form, Nootropia was first introduced in (Nanas et al., 2004)
and since then, it has been extensively described and exper-
imentally evaluated (see for instance (Nanas and De Roeck,
2009; Nanas et al., 2009, 2010b,a).

In Nootropia, the profile is a weighted network of fea-
tures, e.g., a network of words extracted from the content
of text documents. The links in this network capture cor-
relations between features that appear regularly in the same

1Greek word for: “an individual’s or a group’s particular way
of thinking, someone’s characteristics of intellect and perception”.

context, e.g., correlations between words that appear close
to each other in text. A feature’s weight measures its im-
portance within the profile and a link’s weight the strength
of the correlation between two features. The profile is built
and continuously adapts to interest changes through a pro-
cess of self-organisation that adjusts the network’s structure
in response to user feedback (explicit or implicit). For in-
stance, if a document is identified as relevant to the user’s
interests, then words in the profile that also appear in the
document get reinforced at the expense of the words they are
linked to. These local competitions cause a redistribution of
weight between the profile’s words (dynamics). Words in
the document that do not already appear in the profile are
recruited and those profile words that run out of weight are
purged (metadynamics). The exact self-organisation process
is described in detail in (Nanas and De Roeck, 2009).

To evaluate the relevance of an information item (e.g.,
document), the profile deploys a directional spreading ac-
tivation process. Profile features (e.g., words) that also ap-
pear in the item get activated. In order of increasing weight,
each activated feature disseminates part of its current activa-
tion towards the activated features with larger weights that
it is linked to. The relevance score is then calculated as the
weighted sum of the final activation of profile features. This
non-linear evaluation process, which is described in detail
in (Nanas et al., 2010a), implies a hierarchy of features, as
activation is being channeled from the majority of features
with small weights towards the “elite” of features with large
weights. The structure of this implicit hierarchy, which con-
tinuously self-organises in response to the environment, de-
fines the profile’s collective reaction to incoming informa-
tion.

The autopoietic properties of Nootropia are discussed
in detail in (Nanas and De Roeck, 2009), where it is ar-
gued that Nootropia exhibits the basic characteristics of self-
assertion models. It is a non-linear, self-organising sys-
tem, that is open to its environment and operates far from
equilibrium, constantly adjusting structurally, and hence be-
haviourally. It also involves both network dynamics and
metadynamics with endogenous selection. Experiments per-
formed in (Nanas and De Roeck, 2009) and (Nanas et al.,
2010b) demonstrate Nootropia’s ability to effectively adapt
to a variety of interest changes through self-organisation.
Further experiments and analysis indicate that it is the net-
work’s non-linearity which allows the profile to store addi-
tional information regarding a user’s interests and thus re-
main specific even within high-dimensional spaces (Nanas
et al., 2010b,a). In such spaces, comparative experiments
between Nootropia and a vector-based profile containing the
same weighted words, show that the additional information
encoded by Nootropia’s links contributes to an increase in
accuracy of up to 50% (Nanas et al., 2010a) . Nootropia’s
advantageous properties have already boosted the develop-
ment of real world prototypes, such as the Personalised
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News Aggregator described in (Nanas et al., 2010c).
In all of the above cases though, it is the user (or a group

of users) that explicitly, or implicitly, provides the profile
with relevant information to learn from. So what if we
take the user out of the equation and ask the profile to au-
tonomously identify and choose information to learn from?
Will the profile be able to maintain its identity and what
lessons can be learned from its autonomous learning be-
haviour? This paper deals with these questions experimen-
tally in the context of Alife in general and of the Theory of
Autopoiesis in particular.

Experimental Evaluation
The performed experiments are a continuation of those re-
ferred above and use a variation of their methodology to test
the ability of a profile to autonomously learn to identify doc-
uments belonging to a specific topic category. Once more
the dataset used in the experiments is the Reuters-21578
document collection2. It includes 21578 news stories from
Reuters newswire in 1987, ordered according to publication
date and classified by human experts into 135 topic cate-
gories. The experiments focus on the 23 topics with at least
100 relevant documents in the dataset.

Autonomous Profile

As it is exemplified in figure 1, for each of the 23 topics, a
“seed” profile is initialised using the first five3 documents in
the collection belonging to the topic. The seed profile is then
released in the information stream and traverses the 21578
documents in the collection in chronological order. The pro-
file evaluates every individual document and assigns to it a
score. If the assigned score is over a threshold the profile
chooses the document for “consumption” and self-organises
accordingly. For the current experiments, the threshold is
calculated for each individual document as the average score
assigned to the documents “consumed” so far. The process
is repeated until all 21578 have been accounted for. The

2available at http://www.daviddlewis.com/resources/
testcollections/reuters21578/

3Experiments were also performed for 1, 10 and 50 initialisa-
tion documents, but are not reported here due to space limitations.
With just 1 initialisation document the seed profile is not developed
enough to achieve the desired behaviour. As the number of initial-
isation documents increases from 5 to 10 and then to 50 the profile
relies more on its initial condition rather than the subsequent learn-
ing process.

profile’s accuracy is then measured by calculating the Av-
erage Uninterpolated Precision (AUP) of the list compris-
ing the documents in the collection ordered by decreasing
score. A topics AUP is defined as the sum of the precision4

at each point in the ordered list where a relevant document
appears, divided by the total number of relevant documents.
The essence of this accuracy metric is that documents rel-
evant to the current topic should receive larger scores than
irrelevant documents.

The above methodology establishes a challenging exper-
imental task. Based only on its initial training with a small
number of documents relevant to a topic, the profile has to
autonomously learn to identify documents belonging to that
topic. Ideally, the profile should choose all relevant docu-
ments and ignore the rest5. However, as it is depicted in
figure 1, there are typically both false negatives and false
positives. Not all relevant documents are chosen and not all
chosen documents are relevant. Both the percentage of rel-
evant documents chosen and the percentage of chosen doc-
uments that are relevant affect the profile’s accuracy. If the
first percentage is small the profile ignores valuable input.
If the second percentage is small then the profile may devi-
ate away from the current topic of interest. It should also
be noted that since the content of documents relevant to a
topic may change over time, the profile has to be able to
follow this drift. Overall, the choices the profile made so
far define its current structure and consequently its future
choices. So even small changes in the initial conditions can
cause the profile to follow a very different trajectory. Out
of an infinite number of possible network configuration the
profile has to self-organise in such a way that it manages to
maintain its (topical) identity within a complex and dynamic
environment.

Supervised and Random Profiles

In the experiments the accuracy and behaviour of the au-
tonomous profile are juxtaposed with those of asupervised
profile and of arandom profile6. In both cases we start
with an initially empty profile. Like before the profile is
released in the information stream and evaluates the 21578
documents in chronological order. Unlike the autonomous
profile, these two types of profile do not choose the doc-
uments to learn from autonomously. Whenever the super-
vised profile evaluates a relevant document it will always use
it for learning, while it ignores all non-relevant documents.
In other words, it is provided a priori with complete knowl-
edge of which documents are relevant to the current topic of

4i.e., the ratio of documents relevant to that topic.
5It is assumed that the categorisation of documents by Reuter’s

experts has been accurate.
6All three types of profile are built using Information Gain to

extract the most important words in the training documents and a
sliding window of size 20 for identifying correlations between the
extracted words.
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topic relevant docs relevant rel. chosen/ rel. chosen/ AUP AUP AUP auto/
code docs chosen chosen docs chosen total rel. autonomous supervized random supervized

earn 3987 715 694 0.97 0.17 0.694 0.732 0.349 0.949
acq 2448 433 149 0.34 0.06 0.262 0.424 0.105 0.617
money-fx 801 16 11 0.69 0.01 0.311 0.556 0.046 0.559
crude 634 123 114 0.93 0.18 0.636 0.700 0.033 0.909
grain 628 6 1 0.17 0.00 0.246 0.509 0.027 0.483
trade 552 94 65 0.69 0.12 0.334 0.558 0.044 0.599
interest 513 124 108 0.87 0.21 0.413 0.463 0.030 0.892
wheat 306 77 53 0.69 0.17 0.430 0.490 0.012 0.878
ship 305 54 6 0.11 0.02 0.029 0.436 0.011 0.066
corn 254 8 3 0.38 0.01 0.322 0.275 0.010 1.171
dlr 217 97 52 0.54 0.24 0.371 0.468 0.014 0.793
oilseed 192 7 2 0.29 0.01 0.298 0.174 0.010 1.714
money-supply 190 719 64 0.09 0.34 0.051 0.184 0.012 0.279
sugar 184 199 30 0.15 0.16 0.116 0.683 0.008 0.169
gnp 163 8 3 0.38 0.02 0.384 0.424 0.013 0.907
coffee 145 51 45 0.88 0.31 0.775 0.824 0.007 0.940
veg-oil 137 182 21 0.12 0.15 0.082 0.459 0.012 0.180
gold 135 10 5 0.50 0.04 0.763 0.768 0.005 0.993
nat-gas 130 15 9 0.60 0.07 0.665 0.432 0.007 1.538
soybean 120 7 2 0.29 0.02 0.421 0.285 0.005 1.479
bop 116 230 45 0.20 0.39 0.175 0.310 0.005 0.566
livestock 114 8 3 0.38 0.03 0.111 0.265 0.006 0.419
cpi 112 119 26 0.22 0.23 0.065 0.285 0.005 0.229
average 538.4 143.6 65.7 0.5 0.1 0.346 0.465 0.034 0.743

Table 1: Experimental Results. Columns from left to right: (1) topic code, (2) number of relevant documents in the collection,
(3) number of documents chosen by the the autonomous profile, (4) number of chosen documents relevant to the current
topic, (5) ratio of chosen documents that are relevant, (6) ratio of relevant documents chosen, (7) per topic AUP score for the
autonomous profile, (8) per topic AUP score for the supervised profile, (9) per topic AUP for the random profile, (10) ratio of
the supervised profile’s AUP achieved by the autonomous profile.

interest. The random profile, on the other hand, is provided
with an equal number of randomly selected documents from
the collection.

Accuracy
Table 1 summarises for each topic, the choices made by the
autonomous profile and the resulting AUP score and com-
pares it to those of the supervised and autonomous profile.
The results lead to the following observations:

• The accuracy of the random profile is the lowest (table 1
col. 9). The profile must learn from relevant documents
to be accurate.

• As expected the supervised profile achieves the best over-
all performance (table 1 col. 8).

• The performance of the autonomous profile is satisfactory
(table 1 col. 7). It achieves on average 74% of the super-
vised profile’s accuracy (table 1 col. 10).

• The autonomous profile achieves this level of accuracy
although on average it only identifies 10% of the existing
relevant documents per topic (table 1 col. 6). It appears
that not all of the available relevant documents are re-
quired for increased accuracy. In fact, it is interesting that
there are four topics (corn, oilseed, nat-gas, soybean) for
which the autonomous profile clearly outperforms the su-
pervised profile although, after its initialisation with five
documents, it chooses a very small number of documents
to learn from. It may be the case, that for certain top-
ics with relatively small number of relevant documents in

the collection and distinct content, this is a better strat-
egy. The seed profile overspecialises to the initialisation
documents, but these are representative enough of the re-
maining relevant documents that ignoring them leads to
better accuracy. In any case, this is not always the best
strategy (e.g., topics grain, ship, and livestock).

• The satisfactory accuracy of the autonomous profile is
mainly due to the fact that, on average, 50% of the docu-
ments chosen are indeed relevant. There is a clearer cor-
relation between the profile’s accuracy and the percentage
of chosen documents that are relevant. In general, if the
percentage is small the accuracy of the autonomous pro-
file is small and increases as the percentage increases. For
percentages close to one the accuracy of the autonomous
profile approximates that of the supervised profile. It is
clear that the profile has to be selective when choosing
the documents to learn from. Too many false positives
can cause the profile to drift away from the current topic
of interest.

Behaviour

Nootropia is a complex system and it is not easy to visu-
alise, or to analyse, its dynamic behaviour. In this paper,
an attempt is made to understand how self-organisation con-
tributes to the above autonomous learning capabilities, by
observing certain macroscopic variables related to the pro-
file’s nodes and their weights. The analysis of the network’s
connectivity is part of ongoing work and will be included in
future publications. Furthermore, due to space limitations,
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Figure 2: Fluctuations in the number of profile nodes along theinformation stream.

only the four topics with the largest number of relevant doc-
uments are indicatively chosen for this study.

The graphs in figure 2 depict for each of the topics earn,
acq, money-fx and crude, how the number of nodes (words)
in the profile (Y-axis) changes as it traverses the docu-
ment collection (X-axis). These indicative graphs show that
Nootropia is a dissipative, self-organising system that can
dynamically control its size (and connectivity (Nanas et al.,
2009)). Energy (word weight) flows through the profile with
the addition of words and is dissipated when these words are
purged. Although there are more than 20.000 unique words
in Reuters-215787, the number of nodes in the profile does
not escalate above 1000. In all four cases, the three types of
profile are easily distinguished based on the average number
of words. The autonomous profile maintains the smallest
number of words and the random profile the largest number
of words, although it uses the same number of documents to
learn from as the supervised profile. So these differences
are not only due to differences in the number of training
documents, but they also depend on the semantic diversity
of these documents. The random profile is provided with
randomly selected training documents from the collection,
that may belong to any topic. These documents may in-
clude a greater variety of words and thus give rise to a profile

7After stop word removal and stemming.

with a larger number of nodes. The supervised profile uses
the same number of documents relevant to a specific topic
and so their vocabulary is more focused. For the same rea-
sons, the autonomous profile appears to be the most focused
profile type, with the least number of profile words and the
mildest fluctuations. Apparently, the profile has the ability
to choose documents that are semantically close to its initial
composition and their vocabulary is already reflected in the
profile. These documents do not have many new words to
contribute to the profile and cause as a result smaller profile
perturbations. It is also evident from these figures that the
average number of words in each profile type varies from
topic to topic and depends not only on the number of rele-
vant documents, but also on the semantic characteristics of
each topic. Finally, it is clear that in the case of topic money-
fx (fig. 2 C ), the profile does not successfully identify ap-
propriate documents to learn from, causing a decrease in the
number of profile words and the poorest relative accuracy
out of the four cases (see tbl. 1).

To further investigate the behaviour of Nootropia, fig-
ures 3 and 4 depict respectively, the average and aggregate
weight of profile nodes through out the 21578 documents8.
With the exception of the unsuccessful topic money-fx, the
autonomous profile has the largest average weight, which

8Note that for visualisation reasons the Y-axis of the graphs in
figure 3 has various scales.

593ECAL 2011



0 5000 10000 15000 20000

number of documents

0

0.5

1

1.5

2

a
v
e
ra
g
e
 n
o
d
e
 w
e
ig
h
t

autonomous

supervized

random

A) topic earn

0 5000 10000 15000 20000

number of documents

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

a
v
e
ra
g
e
 n
o
d
e
 w
e
ig
h
t

autonomous

supervized

random

B) topic acq

0 5000 10000 15000 20000

number of documents

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

a
v
e
ra
g
e
 n
o
d
e
 w
e
ig
h
t

autonomous

supervised

random

C) topic money-fx

0 5000 10000 15000 20000

number of documents

0

0.1

0.2

0.3

0.4

0.5

a
v
e
ra
g
e
 n
o
d
e
 w
e
ig
h
t

autonomous

supervised

random

D) topic crude

Figure 3: The average weight of profile nodes along the information stream.
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Figure 4: The aggregate profile weight along the information stream.
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tends to increase along the process. There is also an apparent
correlation between the scale of the average node weight and
the accuracy of the profile (see table 1). Furthermore, the
average weight does not depend only on the number of pro-
file nodes. According to graphs B and D in figures 2 and 3,
although the autonomous profile maintains in both cases ap-
proximately the same number of nodes, there is a significant
difference in the average weight. This means that the aver-
age weight of profile nodes is possibly another macroscopic
variable that characterises the behaviour and accuracy of the
autonomous profile. It shows that the autonomous profile
can effectively maintain and reinforce its identity. By choos-
ing documents that are relevant to its initial semantic com-
position, the profile reinforces what has already been learned
and remains specific to its area of interest, thus avoiding in-
tense structural fluctuations.

The distinct behaviour of the autonomous profile is also
reflected in the way it aggregates node weight. According
to figure 4, with the exception again of topic money-fx, the
autonomous profile progressively accumulates weight until
it reaches a certain capacity, where it tends to stabilise. It is
also interesting, that unlike the supervised and the random
profile, the aggregation of weight by the autonomous pro-
file is more progressive and with less fluctuations. Finally,
it is notable that for topic earn, acq and crude the aggregate
weight of the autonomous profile is comparable to that of the
supervised and random profiles, despite the smaller number
of documents used for learning (tbl. 1) and the smaller num-
ber of profile words (fig. 2).

Discussion

The experimental results show that Nootropia is capable of
autonomous learning within a complex information environ-
ment. The system’s accuracy in itself is not the primary con-
cern of this paper. It is already satisfactory enough, given the
small amount of training data that are provided for initialisa-
tion and it can be further improved, e.g., through more elab-
orate thresholding mechanisms. What is important is that
this unsupervised learning behaviour is the result of an au-
topoietic network’s self-organisation in response to a diverse
and changing information environment. The network “per-
ceives” its environment through a non-linear spreading acti-
vation process that leads to increased specificity even within
high-dimensional environments (Nanas et al., 2010a). As a
result, the network can accurately identify and extract rel-
evant information from the environment. The “cognitive”,
learning process is the result of the network’s reaction to
the extracted information and involves both the redistribu-
tion of node weights through local interactions (network dy-
namics) and the addition and removal of nodes (network
metadynamics). The network becomes open to the environ-
ment: energy (weight) is absorbed from the environment,
it is temporarily stored by the network and eventually, it is
disseminated back to the environment. The distribution of

stored energy (weight) in the network imposes a hierarchy
on the nodes that defines the network’s response to the envi-
ronment. When the network is forced to self-organise in re-
sponse to random information then it becomes large (fig. 2),
but the hierarchy of nodes remains shallow (fig. 3). The
network is more volatile, because more nodes have small
weights and can be more easily removed from the network,
causing pronounced fluctuations in the number of nodes. On
the contrary, relevant information reinforces what is already
in the network with additional energy and the hierarchy of
nodes grows higher. This increases the stability and speci-
ficity of the network and it becomes more likely that it will
identify additional relevant information, leading to a posi-
tive feedback loop, which allows the profile to maintain its
identity and to avoid strong perturbations.

Some interesting lessons can be learned from all the
above:

• The World Wide Web can serve as a valuable source
of real-world data, for simulating complex and dynamic
environments to experiment in the domain of Artificial
Life. These environments are multidimensional and can-
not be visualised. They provide however a rich infor-
mation world that lies somewhere in the middle of the
range between the relatively simple 2D worlds of many
computer simulations and the physical world. As in the
case of Varela’s 2D simulations (Varela et al., 1974; Stew-
art and Varela, 1991), the above experiments demonstrate
that even in such a complex environment autopoiesis can
still give rise to consistent, “meaningful” behaviour that
can maintain a system’s viability.

• If Nootropia is indeed an autopoietic system, or at least
exhibits some autopoietic properties, then its experimen-
tal study highlights the importance of the environment
during autopoiesis. Nootropia is organisationally closed,
but it is the interaction with the environment that guides
its structural and hence, behavioural development. It is
structurally coupled to its environment and unlike exist-
ing 2D simulations, it is the richness of this environment
that can give rise to a plethora of structural modifications
and corresponding behaviours.

• It is even more interesting that the study of Nootropia’s
behaviour indicates a relation between energy and au-
topoiesis. The autonomous profile effectively accumu-
lates energy per node, to reinforce its structure and hence
its identity. As a consequence, even within a complex
environment and despite the infinite number of possible
structural pathways, the profile can be specific enough to
choose the information that will lead to further energy ag-
gregation and self-assertion. The role of energy during
autopoiesis has been ignored by existing computational
investigations and will become a major theme of the re-
search endeavour that this paper initiates.
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Summary and Outlook
Computational Autopoiesis is already an established area of
research in Alife. The most common approach involves sim-
ulating autopoietic (cell-like) structures on a discrete, two-
dimensional space. The current work deviates from this
practice. Nootropia is a profiling model that has been in-
spired by Varela’s view of the immune system as an organ-
isationally closed network of interacting antibodies, which
reacts autonomously to define and preserve the host organ-
ism’s identity. Nootropia has already been evaluated ex-
tensively and has produced significant results, both quan-
titatively and qualitatively. The past experimental work on
Nootropia concentrated on supervised learning. In this pa-
per for the first time, human intervention is kept minimal. A
collection of news articles ordered according to publication
date serves as an information stream and within this stream
a profile, which has been initialised with a small number of
articles relevant to a topic, has to autonomously identify and
learn from more relevant articles. This autonomous profile is
contrasted to a supervised profile that has complete knowl-
edge of what is relevant and a random profile that chooses
documents to learn from at random.

The accuracy of the autonomous profile is satisfactory. It
clearly outperforms the random profile and achieves a level
of accuracy that is on average 74% that of the supervised
profile. What is important is that this level of accuracy is
the result of self-organisation in response to the environ-
ment. The analysis of Nootropia’s behaviour provides ev-
idence that it can control its structure dynamically and in
such a way that it effectively consumes and stores energy
from the environment. The stored energy reinforces the net-
work’s structure and hence the profile’s specificity. It be-
comes easier for the profile to identify more relevant infor-
mation, leading naturally to self-assertion.

The experimental work in this paper demonstrates also
that exploiting the web as a valuable source of real-world
data for simulating complex and dynamic environments, can
be a fruitful avenue of research in Alife. It is in such
multidimensional information worlds that interesting com-
plex structures and behaviours may arise as a natural conse-
quence of autopoiesis. This paper is only a first step in this
research avenue. Future steps involve a more extensive ex-
perimentation and analysis, including statistical analysis of
the network’s properties (e.g., degree distribution and clus-
tering coefficient), but also, a more comprehensive explo-
ration of the background theories and philosophies. This pa-
per brings to our attention the relation between information,
energy and life and creates one more connection between
Alife and the domains of Thermodynamics and Energetics in
general. Nootropia is a possible means for exploring this re-
lation through computational autopoiesis and some interest-
ing insights have been gained with the current work. Much
more is of course required to be able to make bolder claims,
or to draw more general conclusions.
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Abstract

We address the process of copying in Artificial Life organ-
isms. Copying is a source of mutations, a crucial component
in evolution. We propose that rich copying mechanisms, and
thereby rich evolutionary systems, can be obtained by em-
bodying the copying process in a lower-level simulation.

We demonstrate an embodied copying process that has the
potential to alter its own mutation rate, without having the
concept of a mutation rate parameter explicit in the system.

Introduction
In computing, the concept of copying is important. Many
programs copy data during computation. So programming
languages often have the concept of copying as a primi-
tive instruction. For example, all high-level imperative lan-
guages have an assignment operator; a := b copies the con-
tents of b and puts the result in a.

In Artificial Life (ALife), the concept of copying is also
important. To reproduce, life-forms (whether biological or
artificial) need to copy themselves. ALife organisms in com-
puters can make use of the copy operations in program-
ming languages, using these to copy themselves. But the
requirements of ALife organisms and traditional computer
programs are different. Copying in ALife is a source of mu-
tations. It is a novelty-generation process driving evolution.

In biological organisms, copying is not an abstract con-
cept implemented by a defined instruction. It is an emer-
gent property of lower level processes. Copying is embod-
ied within the biological systems that are being copied, and
so mutations caused by the copying process can change the
copying process.

We propose that ALife organisms should not blindly use
the copy operations provided by programming languages.
Here, we focus on copying as an embodied process, rather
than as a computational result.

Artificial Chemistry (AChem) is the medium we use to
embody the copying process. We explain how existing work
has started to implement embodied copying reactions in
AChems. We build on this by designing an AChem and us-
ing it to implement an embodied copying process.

Crisp, stochastic, and embodied copying
In normal computer programs, copying should happen
crisply, without any errors. If a programmer writes a := b
in their code, they expect the copy to work perfectly. They
expect a to contain an exact copy of b.

However, this is not the case in ALife. When biological
life-forms (such as bacteria) clone themselves asexually, the
clones are not exact copies of their parents (see any biology
textbook, e.g. [1]). The biological ‘copy operation’ does not
work perfectly. But this is not a mistake. Biology would not
be improved by a perfect copy operation. Imperfect copy-
ing in biology causes the mutations and novelty that allow
evolution to happen.

Stochasticity is a way of introducing variation into com-
puter programs (or more generally, any systems). ALife or-
ganisms can use this variation to explore the design space of
possible organisms. Stochastic programs are crisp programs
with variation introduced via pseudo-random number gener-
ators. Stochastic programs can influence ALife organisms,
allowing the organisms to vary. But the variation originates
outside the simulation of the organisms, so the organisms
can not influence the variation process. They can not change
the stochastic programs. If the programs are to be changed
during a simulation, they much be changed by another ab-
stract process, operating on a higher level. This process,
in turn, can only be changed by a process operating on an
even higher level. This chain of meta-processes and meta-
parameters can be broken by embodying the process in the
simulation.

Embodying means implementing one system (the process)
within another (the environment). It is frequently used in
robotics to refer to building physical robots rather than simu-
lated ones, thus embodying the robot system (process) in the
physical world (environment). But the environment within
which a process can be embodied is not limited to the phys-
ical world [6]. All processes are embodied within some en-
vironment, but stochastic programs are embodied in a trivial
environment outside the simulation of the ALife organisms.
This is why the ALife organisms can not change the stochas-
tic programs.
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Algorithm 1 Deconstructing the string copy operation, as a
prerequisite to embodying it

result string A := string B

i := start(string B)
while i not at-end(string B) do

string A(i) := char-copy(string B(i))
i := next(i)

end while

In order for an ALife organism to change a stochastic pro-
cess, the process must be implemented in the same language
as the organisms: the process must be embodied within the
simulation of the organism. A stochastic copying process
allows the organisms in a simulation to vary, and so evolve.
If the copying process is itself part of the simulation, then it
too will be able to vary and evolve.

Copying as a process
In writing an embodied copying program, we must think

about the process of copying a string, rather than the re-
sult of the copy. Algorithm 1 breaks down this process
into four parts, each involving a particular function: start,
at-end, char-copy, and next. Each of these four func-
tions can be either crisp, stochastic or embodied. If all four
are crisp, then the overall copying process is crisp, and exact
copies are always produced.

If any of these four functions are stochastic, then the
overall copying process will be stochastic. Making differ-
ent combinations of these four functions stochastic intro-
duces different kinds of variation into the copying process.
For example: making char-copy stochastic could cause
some characters to be copied incorrectly; making at-end
stochastic could cause the copy to be truncated.

We can embody the copying process in different ways,
and to different degrees. We must implement a simulation of
a system where at least one of these functions can happen as
a consequence of lower-level events. But we do not need to
embody all four of the functions. We can implement some of
them as crisp or stochastic functions in the definition of our
simulation. Thus there are many different ways in which we
can embody the copy operation. Each of these ways leads
to different systems with different properties and different
degrees of self-modification and novelty generation.

Example: the Stringmol AChem
The Stringmol AChem [3, 2, 4] has been used to implement
an embodied copy operation. In terms of algorithm 1, it
has embodied start and at-end functions, a stochastic
char-copy function and a crisp next function.

Stringmol’s embodied copying process has been shown
to produce interesting behaviour [3]. Because the process
of copying is embodied in a ‘replicase’ chemical, evolution

can change the process when the replicase copies (another
instance of) itself. One sequence of changes observed in
Stringmol (described in detail, in [3]) is the emergence of
an unprogrammed ‘macro-mutation’ that chops off the first
few characters of a chemical. The emergence of the macro-
mutation exploited the two embodied stages of Stringmol’s
copying process: the start and at-end functions.

Stringmol produced something different from what would
normally be expected of a copy operation: an unpro-
grammed type of mutation. The emergence of a new type
of mutation is not possible using just a stochastic copy op-
eration. Embodiment is needed to allow the intermediate
stages of the copying process to be exploited and changed.
This shows the potential power of embodying the copying
process (or more generally, any process).

Our hypothesis is that by embodying different stages of
the copying process, we will be able to observe different,
unprogrammed types of mutation emerging from our ALife
simulations.

The Graphmol AChem

In our Graphmol AChem, the chemicals are graphs, and re-
actions change the topology of the graphs. We use Graph-
mol to build an embodied copy operation that has an em-
bodied next function. Here we use crisp start, at-end
and char-copy functions, because we are interested in
investigating the effect of embodying the next function.
However, Graphmol has been designed so that the start,
at-end and char-copy functions can (in the future) be
made stochastic or embodied.

We embody the next function by building a “walker”
chemical in Graphmol. This chemical is a graph that can
change its own topology by running short computer pro-
grams. Some of its graph nodes are “feet” that walk along
the string being copied (which is also represented as a
graph). The next function (incrementing a pointer) is bro-
ken down into two stages: (1) lifting up a foot; and (2)
putting that foot down in the ‘next’ place. A stochastic pro-
cess controls where the feet are put down, allowing them to
be put down in the “wrong” place and so causing mutations
in the copied string (variations in the copying process). The
next function is embodied because the stochastic process
depends on the composition of the walker chemical. Chang-
ing the walker chemical changes the stochastic process, and
so an evolving walker chemical can change the way in which
it performs its next function.

We show that this embodiment allows the walker chem-
ical to change its mutation rate through evolution. This
demonstrates the usefulness of an embodied next function
(increment operation) used to make an embodied copy oper-
ation.
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[ begin Begin defining a binding site
] end End definition of a binding site
< show Show binding site
> hide Hide binding site
! stop Stop the execution of a program

a-z, 0-9 junk Non-functional atoms

Figure 1: The alphabet of Graphmol atoms.

Definition of Graphmol
The chemicals in Graphmol are represented by graphs. Each
graph is both a data structure and a program. The execution
of the program changes the structure of the graph.

A Graphmol chemical is defined by a string of atoms over
an alphabet (figure 1). This string is parsed into three types
of nodes (binding sites, which can be shown or hidden;
functions; and junk), and folded into a graph with three types
of edge (program edges, fold edges, and bind edges). Dis-
tances through the graph are used in a stochastic binding
process (distances are calculated using the number of atoms
in each node).

Reactions are defined by the Graphmol programming lan-
guage, which has two parts: a declarative part (binding pro-
cess) and an imperative part (instruction pointers).

The declarative part defines how chemical graphs bind to
each other, implemented by a simple aspatial physics engine.
This continually changes the graph structure by adding bind
edges between shown binding sites. The process is stochas-
tic, and the chance of two binding sites binding (having a
bind edge added) depends on: (1) how closely their binding
site patterns match; and (2) their distance apart, through the
graph (measured as the length of the shortest path between
the two binding sites).

The function nodes in the graph are the imperative lan-
guage instructions. Instruction pointers move through the
graph, executing the function nodes. This changes the graph
structure by showing and hiding binding sites. When
binding sites are shown, new binds become possible; when
binding sites are hidden, some binds become impossible.

Junk affects how programs run in two ways: (1) it acts as
a no-op for instruction pointers moving through the graph,
slowing down execution of programs with respect to the
timescale of the binding process; (2) it affects the graph dis-
tance between nodes, used to calculate binding probabilities.

Parsing and Folding There are two steps in converting a
string of atoms into a chemical graph. These are (1) parsing
atoms into nodes and (2) folding: connecting function nodes
to their binding site nodes (figure 2).

A sequence of non-functional atoms enclosed in brackets
[nnnnn] (with no internal brackets) defines a binding site.
So the string [hdfggd[icsd]bdgd[dhdhd]ixr]ss
defines two binding sites, icsd and dhdhd. The string of

Figure 2: Parsing and folding: (a) a string of atoms; (b)
the parsed graph of nodes connected by program arcs (solid
edges); (c) temporary edge between u1u1u binding node
and t1t1t binding node (dash-dotted edge), used to find
closest functional node and binding site (dotted arrows); (d)
resulting fold edge between the function node and its bind-
ing site (dashed edge).

atoms is parsed into a linear graph (figure 2 (b)) of binding
site nodes, function nodes, and junk (everything else).

When executed, each < or > function shows or hides
a particular binding site. The folding process connects these
functions to the sites they affect. A temporary graph edge is
added between a binding site node of the form uxuxu and
its matching txtxt binding site node (where x is any non-
functional atom). The closest show or hide function node,
and closest the binding site node (measured along edges in-
cluding the temporary edge), to the uxuxu node, are joined
by a fold edge, and the temporary edge is removed. The
result is the folded chemical graph (figure 2 (d)).

The fold edge is a form of indirect addressing. Instead of
the function note specifying explicitly which binding site it
shows (or hides), it instead specifies a template: uxuxu.
During folding, this template is ‘dereferenced’ to locate the
binding site: the closest binding site to the matching txtxt.
Indirect addressing makes the system more evolvable, be-
cause the templates can change independently of the pattern
of the target binding site.

Chemicals Once strings have been parsed and folded into
chemical graphs, the graphs can start to react. The physics
engine starts binding matching sites (here, we use exact
string matching, so two binding sites either match or they do
not; binding is a crisp process). When more than two sites
match, the choice of which to bind is made stochastically,
based on the graph distances between the sites.

When two binding sites bind, a bind edge is created be-
tween them, and an instruction pointer is created at each
binding site. These instruction pointers move along their
respective chemicals, executing any functions they reach.

As Graphmol runs, the graph states change because of two

599ECAL 2011



processes: (1) instruction pointers move along the chemi-
cals, executing functions that show and hide binding sites;
(2) the physics engine makes binds happen between binding
sites that match and are close together, which creates new
instruction pointers.

Reactions There are two different concepts of ‘reaction’
in Graphmol: (1) a micro-scale interaction between two
binding sites; (2) a macro-scale interaction between two
chemicals, either designed into the chemicals, or an emer-
gent property of the system.

(1) In the micro-scale case, a ‘reaction’ is the same as a
bind between two binding sites. If two binding sites have
patterns that match, then they have a probability of bind-
ing that depends on their distance apart through the graph.
If the two binding sites are on different chemicals (that are
not bound), then their distance apart is not defined, and they
have a (pre-specified) low probability of binding.

When a bind happens, a bind edge is created between the
two binding site nodes. This changes the topology of the
chemical graphs, changing the probabilities of other binds
happening. This new edge remains in place until one of its
binding site nodes is hidden, at which point the edge is
removed. When the bind happens, two instruction point-
ers are created, one at each binding site node. They move
along their respective chemical’s program edges, executing
any function nodes they encounter, until they reach either
the end of the chemical, or a stop, (!), function, at which
point the instruction pointer is removed.

The immediate result of this type of reaction is a graph
topology change. The two chemicals are now connected
together, and so the distances between binding sites have
changed. A longer-term result of this reaction is that two
computer programs are now running, represented by the two
instruction pointers that are created. If another bind happens
before these programs finish running, then further programs
start executing in parallel.

This definition of ‘reaction’ views Graphmol as a simula-
tion of nodes in a graph. Graphmol simulates these nodes by
continually iterating the instruction pointers that exist (run-
ning the programs), and checking if any new binds happen
(starting new programs). As the programs run, new binding
sites become visible and so new binds can happen.

(2) In the macro-scale case, a ‘reaction’ is not defined ex-
plicitly as part of the Graphmol program: instead, it is a
property of a running system. This can be an emergent prop-
erty, produced by an evolutionary system. But in order to
bootstrap evolutionary systems, we can design macro-scale
reactions by hand-crafting Graphmol chemicals.

In traditional AChems, a reaction is a process whereby
two chemicals are chosen to enter a black box, something
happens, then one or more chemicals emerge from the box.
Viewing Graphmol as a simulation of graph nodes does not
fit this black box definition of a reaction. But we can use the

[start] junk
[lllll] ! junk [xxxxx] ! junk [rrrrr] ! junk
[lllll] ! junk [xxxxx] ! junk [rrrrr] ! junk
...
[lllll] ! junk [xxxxx] ! junk [rrrrr] ! junk
[lllll] ! junk [xxxxx] ! junk [rrrrr] ! junk
[stop]

Figure 3: The Graphmol DNA as a string of atoms (white-
space added for readability only). The xxxxx binding sites
are the bases that carry the information. The DNA chemical
can be of arbitrary length.

simulation to implement white box reactions instead.
We can design two chemicals that have binding sites with

matching patterns. We can set up the internal states of these
chemicals so that only the two matching binding sites are
shown (the rest being hidden). When we put these chem-
icals into the simulation, they will bind and start executing
their programs. The execution of their programs might cause
other binding sites to become shown and other binds to hap-
pen, but eventually all the programs will stop and no more
binds will be possible. The individual programs cannot go
into an infinite loop, since they execute along the program
edges of a linear graph. The whole simulation could go into
an infinite loop, but we assume not, for this argument.

We can think of this whole process as one ‘reaction’, and
the system now looks like a traditional AChem, but with a
complicated reaction mechanism. The chemicals that now
exist in the simulation are the products of the ‘reaction’.
Macro-reactions of this type are white boxes, because they
are embodied in the simulation. This means that other chem-
icals can interfere with the process of the reaction.

Embodied copying in Graphmol
Binding and program execution change the topology of
chemical graphs. We use this to make one chemical graph
move, relative to another. We make a long linear chemi-
cal graph composed of binding sites separated by regions
of junk. This chemical contains no function atoms, so will
not change its own topology. We make a second, smaller,
chemical that ‘walks’ along the long chemical by alternately
showing and hiding its six binding site ‘feet’. We add a
special crisp char-copy instruction to the Graphmol lan-
guage, specifically for the purpose of the experiments re-
ported here.

The idea of a small chemical moving along a long, linear
chemical is analogous to the way in which DNA is copied in
biology. DNA is a long linear chemical. The chemical ‘DNA
polymerase’ moves along the DNA and copies it. The actual
process in biology is much more complicated than this, but
making a simplified abstraction of the process allows us to
implement an embodied copy operation in an AChem. Fur-
thermore, many chemicals in biology move along DNA or
RNA chemicals (not just to copy them). For example: (see
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[t1t1t] [yyyyy] junk >[u4u4u] junk <[u2u2u] !
[t2t2t] [magic] junk >[u5u5u] junk <[u3u3u] !
[t3t3t] [eeeee] junk >[u6u6u] junk <[u4u4u] !
[t4t4t] [yyyyy] junk >[u1u1u] junk <[u5u5u] !
[t5t5t] [magic] junk >[u2u2u] junk <[u6u6u] !
[t6t6t] [eeeee] junk >[u3u3u] junk <[u1u1u] !

[tstst] [fgneg] junk <[u1u1u] junk >[ususu] !

[tetet] [fgbc] junk junk junk junk
junk >[u1u1u] junk >[u2u2u] junk >[u3u3u]
junk >[u4u4u] junk >[u5u5u] junk >[u6u6u]
junk <[ususu] junk >[ueueu] !

Figure 4: The Graphmol walker as a string of atoms. There
are six feet (t1t1t–t6t6t), a ‘start’ site (tstst) and a
‘stop’ site (tetet). The length of the junk sections is varied
in the experiment (see later).

any biology textbook for details, for example [1]) helicases
(that unwind the two strands of DNA), ligases (that glue
together sections of DNA) and ribosomes (that transcribe
RNA into protein).

So, if we are interested in simulating analogies of biology,
then movement of one chemical along another is a useful
type of process to have in general.

Graphmol DNA We design a Graphmol chemical analo-
gous to biological DNA. DNA stores information as a se-
quence of DNA bases attached to a common “backbone”
structure.

Graphmol DNA has a sequence of ‘base’ nodes contain-
ing different information, interspersed with backbone nodes
(figure 3). A ‘base’ node is a binding site, whose pat-
ter is five information-carrying atoms (shown generically as
xxxxx). Two backbone nodes [lllll] and [rrrrr]
give the DNA a direction. (The stop atoms, !, are for effi-
ciency, to remove the instruction pointer that is created on
the DNA when a bind occurs.)

The junk regions add distance between the binding sites,
which controls the probability of binding to different sites.
In the implementation reported here, the DNA’s junk regions
are each 40 atoms long.

The DNA chemical also has a start and a stop binding
site. These allow the walker chemical to begin copying from
the start of the DNA and to unbind when it reaches the end.
This allows us to program the copy operation as a ‘macro-
scale reaction’, as described above.

Graphmol Walker The walker chemical is shown in fig-
ure 4 as a sequence of atoms; its walking behaviour is shown
schematically in figure 5. The walker chemical moves along
the DNA chemical using six ‘feet’ (binding sites) alternat-
ing their visibility in a cycle. Feet 1 and 4 bind to [lllll]
on the DNA, feet 2 and 5 to [xxxxx], and feet 3 and 6 to
[rrrrr]. In this paper, binds happen if sites match exactly,
where alphabet atoms match their complements (rotated 13
characters through the alphabet), and digits do not match.

Figure 5: The walking process. Feet 1–3 are shown and
bound (triangles), foot 4 is shown and unbound (dark circle),
feet 5 and 6 are hidden (white circles). bind: The physics
engine binds foot 4 (which is now shown with a triangle).
show/hide: The bind starts a program running, which hides
foot 1 (which therefore unbinds), and shows foot 5 (which
is unbound). The cyclic process is ready to start anew.

Figure 6: Low probability mis-stepping: (a) stepping over a
site; (b) stepping backwards.

For the purposes of this paper, the Graphmol language is
extended with magic binding sites that match and bind to
any of the DNA’s [xxxxx] information-carrying binding
sites. It performs a crisp copy of the bound node (a crisp
char-copy function, from algorithm 1).

The walker has a ‘start’ [fgneg] region and a ‘stop’
[fgbc] region. The start region sets up the walker’s feet
ready to begin moving along the DNA. The end region un-
binds the walker from the DNA and sets the walker up ready
to start another copy. This is a crisp start and at-end
function, from algorithm 1.

Each foot has a short program associated with it. These
programs show and hide the walker’s six feet in a cyclic
pattern, making it walk along the DNA (figure 5).

Each of the walker’s feet has a pattern that matches mul-
tiple binding sites on the DNA. Because the probability
of binding depends stochastically on graph distance, the
walker’s feet will always be more likely to bind to sites
on the DNA that are close to where the walker is currently
bound. As three of the walker’s feet are always bound at the
same time, the next matching binding site along the DNA
will always be closer to the walker’s shown foot than earlier
or later DNA sites. The walker usually steps to the correct
next binding site, but can sometimes (with a low probabil-
ity controlled by the amount of junk) jump forwards or step
backwards (figure 6). Thus the walker implements an em-
bodied next function (from algorithm 1).
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Because the walker is copying the chemical it walks over.
These jumps forwards and backwards correspond to inser-
tions and deletions in the copied chemical.

Through the same binding process, the walker can also
occasionally get its feet tangled, and fall off, resulting in a
truncated copy. So the walker also implements an embodied
at-end function. It has two at-end functions: a crisp
one (‘stop’ region) and an embodied one (fall off early).

Experiment
The Graphmol walker chemical, described in the previous
section, can copy a DNA chemical, making insertion, dele-
tion and truncation errors. But the way in which it makes
these errors is not a collection of arbitrary choices written
into an equation or a piece of stochastic code. It is a collec-
tion of arbitrary choices written into a machine (chemical)
implemented in a lower-level stochastic programming lan-
guage (Graphmol). If this machine/language combination is
evolvable, then these arbitrary choices can be changed by
evolution, and adapted to the problem being solved.

This paper is a feasibility study, testing that the embod-
ied copying process implemented by the walker is evolvable.
We show that, due to the design of the walker and of Graph-
mol, there is evolutionary pressure for the walker to evolve.
It can trade off its accuracy against its speed of copying, by
altering its level of junk. With more junk, the walker copies
more accurately but also more slowly. With less junk, the
walker copies less accurately but also more quickly.

Experiment design
We want to test the hypothesis that changing the walker’s
junk level changes its speed and accuracy of copying.

To test this hypothesis, we run multiple simulations of the
walker copying the DNA chemical. The length of the DNA
chemical (number of bases) is the same as the length of the
walker (number of atoms). This simulates the fact that if
the walker was evolving, then changing its junk level would
change the length of its encoding on the DNA.

We set up the DNA chemical by showing all of its bind-
ing sites. We set up the walker chemical by hiding all of
its binding sites except the ‘start’ site [fgneg]. We then
bind the walker’s ‘start’ site to the DNA’s ‘start’ site and
simulate the (macro-scale) reaction until the walker unbinds
from the DNA, thus finishing its copy. When the walker un-
binds from the DNA, we compare its copy to the original
DNA. The pattern of bases on the original DNA is randomly
generated each time.

We repeat this copying process for walker chemicals con-
taining different levels of junk. The junk regions in the
walker chemical (see figure 4) are varied in length from one
atom to 20 atoms. In this experiment, all of the junk regions
within the walker are the same length as each other, for sim-
plicity. If the walker was evolving, it would not need to
enforce this. Indeed, unless there was evolutionary pressure

for it, evolution would probably not maintain 26 different re-
gions at the same length. So this experiment shows a coarse
view of the evolutionary options the walker has. In reality,
the walker has a much finer level of control over its junk
regions than this experiment shows.

For each different level of junk, we measure the time
taken for the walker to make a copy (figure 7(a)) and the
accuracy of its copying (figure 7(b)). Since the walker can
make insertions, deletions and truncations of the DNA it is
copying, there are many ways to define accuracy. We use
the following. We care about the walker copying the DNA
almost perfectly: we want perfect copies most of the time,
but occasionally we want small mutations for evolution to
exploit. So we define an ‘almost perfect copy’ as a copy
that differs from the original by at most three bases, i.e. any
combination of three insertions or deletions. To determine if
a copy is almost perfect, we use Smith-Waterman alignment
[5]. The Smith-Waterman algorithm measures the length of
the longest common subsequence between two strings, tak-
ing into account (and penalising) short insertions and dele-
tions. We set the penalty for an insertion or deletion to be
1, to measure the number of errors in the copy (subtract-
ing the length of the original DNA, and taking the absolute
value). If the number of errors is three or less, the copy is
‘almost perfect’. Values other than three give qualitatively
similar results, but larger values are more noisy so more ex-
periments would need to be run to obtain the same error bars.

We run 80 copies per junk level, counting the number of
nearly perfect copies to measure accuracy. We then repeat
this process 20 times, to determine the error in these mea-
surements (shown as notched boxplots in figure 7).

Results
As the junk level increases, the walker takes longer to copy
its DNA (figure 7(a)). This is for two reasons: (1) more
junk makes the graph distance between binding sites longer,
so the probability of the walker binding (and hence taking a
step) is reduced; (2) more junk means the walker’s encoding
on the DNA is longer, so takes more steps to copy.

As the junk level increases, the walker becomes more ac-
curate at copying its DNA (figure 7(b)). This is in spite of
there being more DNA to copy at higher junk levels. As junk
increases, the probability of binding is reduced in such a way
that the probability of an erroneous bind (either jumping for-
wards or stepping backwards, figure 6) is reduced more than
the probability of it making a correct bind (the probability
is a non-linear function of distance, p(d) = (20/d)77, cho-
sen to give good behaviours over a range of chemical sizes).
This makes the walker more accurate with more junk.

A walker with a low junk level is fast but error-prone; a
walker with a high junk level is slow but reliable. So, the
walker can trade off accuracy against speed. We can see this
tradeoff by graphing the rate of copying for each junk level
(figure 7(c)). This is the number of nearly perfect copies
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made, divided by the time taken to make them. The graph
is noisy at low junk levels because few nearly perfect copies
are made here (as can be seen from the accuracy graph, fig-
ure 7(b)). The tradeoff can be seen in this graph as a peak at
a moderate amount of junk. Too much junk and the walker
copies too slowly, making its rate of accurate copying low.
Too little junk and the walker makes too many errors, mak-
ing its rate of accurate copying low.

Discussion
When the walker is put into a simulation where it can evolve,
it will be able to control its own junk level through mutations
that add or remove junk. These results show that changing
the walker’s junk level changes its speed/accuracy tradeoff
for copying. Thus the walker will be able to find, for itself,
the tradeoff between speed and accuracy that optimises its
survivability in its environment.

Because it finds this tradeoff for itself, it will be able to
re-optimise if its environment changes. We have taken a
quantity that is normally a parameter in ALife simulations,
the mutation rate, and embodied the process that requires
this parameter. This means that the ALife organisms can
change this parameter, by manipulating the underlying pro-
cesses that give rise to the parameter. The mutation rate has
changed from being an external parameter, to an observed
property of the system.

Future work
This experiment has demonstrated that it is possible to build
an AChem with an embodied copying process that can be
exploited by the system to adapt its mutation rate. But be-
cause the whole process of mutation is embodied (not just
the rate), the system should be able to change the copying
process, generating novel types of mutation. When we run
the embodied copying process in a evolutionary system, we
will be looking for such changes.

To make systems that can change their mutation process
in different ways, different parts of the copying process can
be embodied:

Copying a character
The walker chemical takes the process ‘iterate over a string’
and implements this as an embodied process in Graph-
mol. Here we have used a crisp char-copy function to
copy each character of the string (so the only copying er-
rors are insertions and deletions). The char-copy func-
tion could instead be made stochastic, to explore the effect
of point mutations on the walker. More interestingly, the
char-copy process could be embodied, by implementing
a char-copy mechanism in Graphmol. Just as we broke
the string copy process into components (algorithm 1), we
can break the character copy process into components to be
embodied (algorithm 2):

(a) Copying time increases with junk level (so speed decreases).

(b) Accuracy of copying increases with junk level.

(c) Rate of copying has an optimum junk level, trading off speed
against accuracy.

Figure 7: How the walker’s junk length affects its copying.
A “nearly perfect copy” is a copy that differs from the orig-
inal by at most three bases (three insertions or deletions).
The notches show the 95% confidence intervals.
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Algorithm 2 Deconstructing the character copy operation,
as a prerequisite to embodying it

result char A := char B

x := read(char B)
y := repn(x)
char A := write(y)

1. Read the character read This could be implemented as
a set of binding sites with patterns that match each of the
DNA bases. When one of these sites binds to a DNA base,
a program on the walker changes the walker’s state.

2. Represent the character repn The walker needs to
know which site has been bound, so needs a change of
state to signify this. For example, it could show a binding
site corresponding to the base that it is currently copying.

3. Write the character write The walker needs to main-
tain a chemical representing the copy it is making of the
DNA chemical. The binding site it shows in the step
above, could bind to a free-floating chemical base, at
which point the walker would attach this base to the copy.

After attaching the copied character to the result string,
the walker needs to move on to the next character on the
string being copied. The walker already does this to walk
along a DNA chemical, but it will also need to do this with
the copy it is producing.

Making binding evolvable
In this paper, binding requires an exact (complementary)
match between binding sites. We need to allow ‘soft’ bind-
ing, so that evolution can modulate binding affinities to give
complex behaviours [3]. This will make the start and
at-end functions embodied (and char-copy, if used
with the previous section).

In this paper, the folding sites [uxuxu] and [txtxt]
(figure 2a) were chosen arbitrarily. In future, the folding pro-
cess will be implemented by a folding chemical, with bind-
ing sites matching [uxuxu] and [txtxt]. This makes
the folding process embodied, rather than hardcoding fold-
ing in the definition of Graphmol. Thus evolution will be
able to exploit the folding process and potentially change it.

Conclusions
We have discussed how ALife simulations can be made
more evolvable by making their copying process embodied
rather than stochastic. An existing example of where an em-
bodied copying operation has led to interesting behaviour is
the Stringmol AChem [3].

We have embodied copying in a new way, by making an
embodied next function (increment operation). This in-
volved designing the Graphmol AChem and implementing

an embodied next function in Graphmol. We attached a
crisp char-copy function to this embodied next func-
tion, creating an embodied string copy operation. This em-
bodied string copy operation can make insertion and dele-
tion mutations on the copied string.

We have run a feasibility experiment (figure 7) to show
that the embodied copy operation is evolvable, and has the
potential to adapt its own mutation rate to its environment.
But more experiments are needed to find the environments
in which it will show this. The copying process adapts by
changing the level of junk in its embodiment, which changes
its probability of incrementing correctly versus increment-
ing erroneously. In this way, the embodied copy operation
can adapt its own mutation rate without there being an ex-
plicit mutation rate parameter in the system.

This is the crucial difference between embodied systems
and stochastic systems. Stochastic systems are crisp sys-
tems with parametrised variation added in. Embodied sys-
tems are evolvable machines that can evolve their own pa-
rameters and processes, because they are implemented in a
lower-level language.
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Abstract

Artificial evolution of robot behavior is commonly conducted
in environments containing a single robot or multiple robots
that are all controlled by evolving behavioral logic. In this pa-
per, we take a novel approach and study how the presence of
preprogrammed robots affects the evolutionary process and
the solutions evolved. We evolve behavioral control that en-
ables robots to forage. The robots are situated in an environ-
ment that contains a nest and a number of prey. The robots
must either push or carry the prey to the nest. We analyze the
behaviors evolved in mixed setups in which one or more pre-
programmed robots are present. We compare these behaviors
to behaviors evolved in non-mixed setup in which no prepro-
grammed robots are present. The results show that although
the evolved robots do not use their capacity to communicate,
they do collaborate with the preprogrammed robots. We find
that the performance of some of the solutions evolved in the
mixed setup is higher than the performance of homogeneous
groups of robots.

Introduction
In this paper, we take a novel approach to the evolution of
behavioral control for robots. We report on experiments in
which we evolve behaviors for robots that share the envi-
ronment with preprogrammed robots. The preprogrammed
robots are (aside from their behavior) indistinguishable from
the evolving robots. Mixing evolving robots with prepro-
grammed robots is interesting for several reasons: from an
engineering perspective, artificial evolution may be used
to fill in the gaps between partially known (easily prepro-
grammable) solutions to complex tasks and/or to optimize
the performance of a robot collective. From an evolutionary
perspective, it is interesting to evaluate how the presence of
robots programmed with a solution influences the evolution-
ary process and the solutions evolved – such as determining
whether the evolving robots adopt the preprogrammed so-
lution and/or whether they learn to communicate with the
preprogrammed robots.

We use a multirobot foraging task for our experiments.
A robot can push prey or it can pick up and carry a prey.
If a prey-carrying robot collides with another robot, it loses

the prey. Thus, the robots must avoid collisions when carry-
ing prey. The preprogrammed robots have the same sensory
and actuation capabilities as the evolving robots. Each robot
can control the color of its body. Whenever carrying prey,
a preprogrammed robot sets its body color to red. When
not carrying a prey, a preprogrammed robot sets its body
color to green. Thus, nearby robots can see when a prepro-
grammed robot is carrying a prey or not and give way in
order to avoid collisions. Since evolving robots have control
over their body color too, they have the potential to commu-
nicate to nearby teammates in the same way as the prepro-
grammed robots do.

In this study, we analyze and discuss the fitness tra-
jectories and the solutions obtained in evolutionary runs
where one preprogrammed robot and two evolving robots
are present. We discuss if and how the robots collaborate
and communicate. We setup an experiment in which we take
an incremental approach to evolution in order to increase the
rate of solutions with a high average fitness. Finally, we re-
port on experiments in which three preprogrammed robots
and six evolving robots are present during evolution.

The contribution of this paper is three-fold: i) We demon-
strate that evolving robots can learn to collaborate with pre-
programmed robots. ii) We demonstrate how a basic incre-
mental approach to evolution can increase the rate at which
collaborative solutions are evolved when preprogrammed
robots are present. iii) We show that heterogeneous groups
of preprogrammed robots and evolved robots can achieve
a better performance than homogeneous groups of prepro-
grammed robots.

Related work
Interest in evolutionary robotics started in the early
90s (Cliff et al., 1993; Nolfi and Floreano, 2000). Ini-
tially, focus was on evolving a controller for a single robot
to perform relatively simple tasks such as obstacle avoid-
ance, exploration, and navigation (see for instance Nolfi
et al. (1994)). Recently, there have been several studies
on the evolution of controllers for multirobot systems—
particularly those systems in which control is decentralized
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and in which individual robots have limited sensory capabil-
ities. In swarm robotics research (Şahin, 2005), it has been
demonstrated how the application of evolutionary robotics
can overcome the fundamental design problem of deriving
microscopic rules for the individuals such that the desired
macroscopic behavior emerges. When artificial evolution is
applied to swarms of robots, the designer can specify a fit-
ness function that scores the collective behavior and let evo-
lution search the space of individual behaviors. Using this
approach, Dorigo et al. (2004) demonstrated how a group of
homogeneous robots could be evolved to aggregate and to
display coordinated-motion when physically connected to
each other. In another study, Trianni et al. (2006) demon-
strated how a group of evolved homogeneous robots could
cooperatively avoid holes.

Evolutionary robotics has been applied to heterogeneous
multirobot systems: Tuci et al. (2008) evolved homogeneous
controllers for heterogeneous robots. Nolfi and Floreano
(1998) co-evolved a predator agent and a prey agent. The
fitnesses of the two types of agents were co-dependent al-
though each had a different genome.

It has also been demonstrated that heterogeneity can arise
in a homogeneous system (identical agents with identical
neuro-controllers). Quinn et al. (2003) evolved controllers
for a team of three robots with minimal sensory capabilities.
The robots’ task was to aggregate and then travel a distance
of one meter as a group. Interestingly, the team members
dynamically adopted roles and moved in a line formation.
The robot that would adopt the role as the leader, moved
backward in order to perceive the middle robot. The middle
and rear robot, on the other hand, moved forward. Ampatzis
et al. (2009) evolved homogeneous controllers for two real
robots that allowed them to self-assemble, that is, physically
connect to one another. However, the robots first had to allo-
cate roles so that one would be the gripping robot, while the
other would be the gripped robot. The roles were allocated
during what can be described as a dance: the robots would
circle each other while performing oscillatory movements
until one would approach the other to perform the grip.

In this study, we use a novel evolutionary setup. We ex-
plore the effect of the presence of preprogrammed robots on
the evolved behaviors. We find that the heterogeneity in the
group composition leads to role allocation and collaboration.

Robot Model and The Task
Below, we start by presenting the robot model that we use.
We go on to describe the foraging task and the environment.
Finally, we briefly discuss the software simulator in which
we conduct our experiments.

The Robot Model
We use a differential drive, cylindrical robot model. Each
robot has a diameter of 10 cm. The set of actuators is com-
posed of two wheels, a prey carry mechanism and a change-

able body color. The two wheels can be controlled inde-
pendently allowing a robot to move and to turn. Gaussian
noise with standard deviation of 5% is added independently
to the left wheel speed and to the right wheel speed set by the
robot controller in order to simulate issues such as slippage,
slightly uneven ground and so forth. The prey carry mecha-
nism enables a robot to pick up a prey within a distance of
5 cm. The body color actuator has three possible settings:
green, red, and black. Whenever green or red, a robot can be
detected by other nearby robots, while when black, the robot
is invisible to other robots.

The robots are equipped with several sensors that allow
them to perceive i) whether they are currently carrying a
prey or not (prey-carried sensor), ii) whether they are in-
side the nest or not (in-nest sensor), and iii) the presence of
nearby objects: eight nest sensors, eight prey sensors, eight
red robot sensors, and eight green robot sensors.

Aside from the prey-carried sensor and the in-nest sensor,
all the sensors operate in a similar way, but register different
types of objects. The nest sensors only register the nest. The
prey sensors only register prey. The green robot sensors only
register green robots. The red robot sensors only register red
robots. The sensors are distributed evenly around the robot’s
body.

A sensor only registers objects within a certain distance
and angle with respect to its orientation. All sensors have
an opening angle of 135 ◦ and a range of 1 meter, except for
the nest sensors which have a range of 10 meters. If there
are no sources within sensor’s range and opening angle, its
reading is 0. Otherwise, the reading is based on distance to
the closest source (c) according to the following equation:

s =
range− dc
range

, (1)

where range is the sensor’s detection range and dc is the
distance between the closest source c and the sensor.

The Foraging Task

Our experiments are conducted in the arena shown in Fig-
ure 1. The robots must search for prey and transport them
to the circular nest area with a diameter of 0.50 m centered
in the arena. The nest can be perceived by the robots us-
ing their nest sensors. The prey are scattered in the foraging
area around the nest. The foraging area is circular and has
a diameter of 4 meters. Whenever a prey is dropped in the
nest, it is immediately redeployed to a random location in
the foraging area. 13 prey are present in the environment
which results in a prey density of 1 prey/m2. When a prey-
carrying robot collides with another robot, it loses the prey
that it was carrying. The lost prey is randomly redeployed in
the environment in order to keep the prey density constant.
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Figure 1: Foraging arena.

Simulation Environment
We have implemented the robot model and constructed
the environment discussed above in JBotEvolver (see
http://sourceforge.net/projects/jbotevolver). We have imple-
mented our own neuro-evolution framework that allows for
distributed, fault tolerant fitness evaluation.

Controller Architecture
Below, we present the control logic for the preprogrammed
robot and the artificial neural network used for the evolving
robots.

Preprogrammed Robots
A finite state machine representation of the control program
for the preprogrammed robots is shown in Figure 2. A pre-
programmed robot starts of in the “Search” state in which
it locates and moves towards the nearest prey. If the prepro-
grammed robot detects the presence of a red robot in its way,
it assumes that the red robot is carrying a prey and therefore
turns around (180 ◦) and moves out of the way (state “Make
way”). When a prey is encountered, the preprogrammed
robot attempts to pick it up (state “Pick up”). If the prey is
picked up successfully, the preprogrammed robot becomes
red and starts moving towards the nest (state “Transport”).
When the nest is reached, the preprogrammed robot drops
the prey (state “Drop”) and returns to the “Search” state. If
the preprogrammed fails to pick up a prey or if it loses the
prey (due to a collision), the preprogrammed robot returns
to the “Search” state.

In the finite state machine in Figure 2, we have colored the
states with the color that a preprogrammed robot has when
in the respective states. Whenever a prey is carried, the pre-
programmed robot is red. Otherwise, the preprogrammed

Prey dropped

In nest

Prey lost

Prey picked up

Prey lost

Timeout
Red robot
seen ahead

Red robot
seen ahead

Prey near

Make way

Search Transport

Green

Red

Pick up Drop

Figure 2: Preprogrammed controller.

robot is green. Preprogrammed robots are never black.

The Evolving Robots
The evolving robots are controlled by a continuous time re-
current neural network (Beer and Gallagher, 1992). The net-
work consists of three layers of neurons: an input layer with
34 neurons, a hidden layer with 5 neurons, and an output
layer with 4 neurons. The input neurons Ii are reactive. The
prey-inputs (I1 to I8), the nest-inputs (I9 to I16), the green-
inputs (I17 to I24), and the red-inputs (I25 to I32) are all set
based on sensor readings from the respective sensors. The
prey-carried-input (I33) is 1 if a prey is currently carried and
0 otherwise. The in-nest-input (I34) is 1 if the robot is in the
nest and 0 otherwise. The neurons in the hidden layer are
fully connected and governed by the following equation:

τi
dHi

dt
= −Hi +

34∑
j=1

ωjiIi +
5∑

k=1

ωkiZ(Hk + βk), (2)

where τi is the decay constant, Hi is the neuron’s state, ωji

the strength of the synaptic connection from neuron j to neu-
ron i, β the bias terms, and Z(x) = (1 + e−x)−1 is the
sigmoid function. τ , β, and ωji are genetically controlled
network parameters. The possible ranges of these parame-
ters are: τ ∈ [0.1, 32], β ∈ [−10, 10] and ωji ∈ [−10, 10].
Cell potentials are set to 0 when the network is initialized
and circuits are integrated using the forward Euler method
with an integration step-size of 0.2.

The output layer is fully connected to the neurons in the
hidden layer. The activation of the output neurons is given
by the following equation:

Oi =
4∑

j=1

ωjiZ(yj + βj); (3)

The first two outputs O1 and O2 control the speed of the left
and the right wheel, respectively. Their output is linearly
mapped to speeds in the range [−50 cm/s, 50 cm/s]. The
third output O3 is mapped to the prey carrying mechanism:
if O3 > 0.5, the robot attempts to pick up the closest prey or
to hold a prey if one is already carried. IfO3 ≤ 0.5, any prey
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carried will be dropped. The fourth output O4, controls the
color of the robot. For values in the range [0, 0.33] the robot
becomes invisible to other robots, for values in the range
]0.33, 0.66[, the robot becomes green, and for values in the
range [0.66, 1.00], the robot becomes red.

Evolutionary Algorithm
We use a simple generational evolutionary algo-
rithm (Schwefel, 1995; Goldberg, 1989). Each generation
consists of 100 genomes. Each genome consists of a vector
of 228 real valued numbers. These values encode the
weights of the synaptic connections between neurons, the
bias terms and the decay constants for a neural network
with the topology described in the previous section. After
sampling the fitness of each genome in a generation, the 5
best genomes are retained and the rest are discarded. These
5 genomes are the parents of the subsequent generation.
From each parent an equal number of children (19) are
created and the parents are copied to the new generation.
The genotype for a child is obtained adding a random
Gaussian offset to each real-valued gene with a probability
of 15%.

We compute the fitness at the group-level. Thus, in the
experiments where a preprogrammed robot is present, its
behavior and its performance contribute to the fitness of the
group in the same way as the behavior of the evolving robots.
The fitness function F (i) is given below:

F (i) = Pi +

time-steps∑
s=1

fi,s (4)

where i is the genome being evaluated, Pi is the number of
prey foraged and fi,s is computed at every time-step, s. The
term fi,s is computed in the following way:

fi,s = 10−3cs + 10−4ds (5)

where cs is the number of robots carrying a prey at time-
step s and ds is a prey distance reward that depends on the
distance between each prey and the nest at time-step s. The
prey distance reward is computed using the formula:

ds =
1

n◦ prey

n◦ prey∑
j=1

1.75 m− dist(pj , nest)
1.75m

. (6)

We sample the fitness of each genome five times and se-
lection is based on the average fitness obtained.

Results and Discussion
We initially experimented with two different evolutionary
setups: a mixed setup in which two evolving robots and one
preprogrammed robot were present, and a non-mixed setup
in which three evolving robots were present. In each setup,

we performed 30 evolutionary runs with different initial ran-
dom seeds for 2000 generations each. Each generation con-
sisted of 100 genomes. The fitness of each genome was sam-
pled in five trials of five minutes of virtual time (3000 control
steps) each.

Below, we provide an overview of the results obtained.
We then describe the different types of behaviors evolved in
the non-mixed setup and the mixed, respectively. We go on
to discuss cooperation and communication. We then exper-
iment with incremental evolution in order to speed up evo-
lutionary learning. Finally, we experiment with setups in
which nine robots are present.

Fitness Trajectories
The plot in Figure 3 summarizes the results of the evolu-
tions runs conducted in the mixed setup and in the non-mixed
setup, respectively. The figure shows the average fitness of
the best genome in each generation in all the 30 runs con-
ducted in the mixed setup and in the non-mixed setup, re-
spectively. We have included the fitness trajectory for the
single highest scoring mixed run and for the single highest
scoring non-mixed run. The horizontal line at y = 119.9,
shows the average fitness obtained by three preprogrammed
robots alone in the environment.

3 preprogrammed
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Figure 3: The fitness scores of the best and the average the
best genomes in all the runs in the mixed setup and in the
non-mixed setup. The horizontal line at y = 119.9 indicates
the average performance of a team of three preprogrammed
robots.

The results in Figure 3 show that the fitness of the best
genome in the mixed setup is on average higher than the best
genomes in the non-mixed setup. The higher fitness in the
beginning of an evolutionary run in the mixed setup is ex-
plained by the presence of the preprogrammed robot. The
preprogrammed robot finds and transports prey to the nest
from the onset of an evolutionary run whereas the evolving
robots first have to learn to forage.
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When a preprogrammed robot is alone in the environ-
ment, it obtains an average fitness of 60.0. When three pre-
programmed robots are present in the environment, they in-
terfere with one another. Furthermore, as a trial progresses,
prey tend to be distributed further from the nest since more
preprogrammed robots tend to forage the prey close to the
nest faster. Interference and the increased prey distance both
have negative impacts on the fitness score. Three prepro-
grammed robots therefore obtain a fitness (119.9) that is less
than three times what a single preprogrammed robot obtains
on average (60.0). In the beginning of an evolution run when
the evolving robots are not yet foraging, the preprogrammed
robot can often forage undisturbed in the mixed setup. The
average fitness in the beginning of an evolutionary run in the
mixed setup is therefore close to the fitness obtained by a
single preprogrammed robot operating alone.

Behavioral Analysis
In this section, we analyze the evolved robots’ behaviors.
A summary of the post evaluation scores for the 30 evolu-
tionary runs conducted in the non-mixed setup and the 30
evolutionary runs conducted in the mixed setup can be seen
in Figure 4. In the plot, we have grouped the evolutionary
runs according to their foraging behaviors and fitness.

Performance of

robots

3 preprogrammed

A B

ED

C

0 20 40 60 80 100 120 140

Mixed and non-mixed fitness summary

Non-mixed

Mixed

Figure 4: Summary of the post evaluation of the best behav-
ior evolved in each evolutionary run in the non-mixed setup
and in the mixed setup. We have divided the evolved solu-
tions into groups A to E based on fitness and behavior.

In the non-mixed evolutionary runs, we observed behav-
iors that can be divided into three groups: A, B and C. All
the solutions in all groups successfully forage prey, however,
they forage in different ways. The behaviors group A all rely
on pushing prey towards the nest. An example of the push-
ing behavior can be seen in Figure 5. The pushing behavior
requires the robots to move in small circular patterns to con-
stantly get behind the prey and the behavior is thus not very
efficient.

The behaviors in group B rely on continually picking up
and dropping prey. When a prey is picked up, it is often
dropped after a single or a few control cycles, only to be
picked up again immediately. One of the behaviors in group
B is particularly interesting: often the robots transport two or

Figure 5: An example of a behavior in group A evolved in
the non-mixed setup (two screenshots from the same exper-
iment). The robots forage by pushing prey towards the nest.
As can be seen on the figure, this behavior results in a lot of
small circular movements and is thus not very effective.

more prey at a time by repeatedly picking up, dropping dif-
ferent prey. An example can be seen in Figure 6. Transport-
ing multiple prey, however, comes at a cost: since a robot
can only carry one prey at a time, it has to constantly make
small circular movements to pick up the prey left behind.
This means that the average fitness of the behavior in group
B is lower than the average fitness of the behaviors in the last
group of behaviors evolved in the non-mixed setup, group C.

In group C, the robots pickup prey and transport the prey
back to the nest. The differences in fitness between the dif-
ferent solutions are due to a number of factors: how the
robots search for prey, how efficient they are in moving to
a prey once they have located the prey, and if and how much
they interfere with one another. Some robots move away
from the nest in a straight line to search for prey, some robots
circle away from the nest, while in other cases, the robots
move in more irregular patterns. Most of the robots move
only forward or only backward, however, for some behav-
iors, the robots change direction once a prey is picked up.
Changing direction is especially efficient for those robots
that move directly from the nest to a prey: when a prey
is picked up, they change direction (without having to turn
around) to transport the prey back to the nest. Examples of
some of the behaviors in group C can be seen in Figure 7.

We have divided the behaviors evolved in the mixed setup
into two groups: D and E (see Figure 4). Group D contains
the lowest scoring behaviors evolved in the mixed setup. The
evolving robots in this group do not contribute to the forag-
ing, but instead move away from the nest in order to let the
preprogrammed robot forage undisturbed. In some cases,
the evolving robots move beyond the foraging area, in some
cases the evolved robots remain in the foraging area, and
sometimes they even pickup prey.1 However, in none of the
cases do the evolved robots attempt to move prey closer to

1Carrying prey is rewarded in the fitness function (see the “Evo-
lutionary Algorithm” section).
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Figure 6: An example of the behavior in group B evolved
in the non-mixed setup (two screenshots from the same ex-
periment). By continually picking up and dropping prey, the
robots are able to transport multiple prey towards the nest at
the same time.

the nest.
The evolved solutions in group E all obtained an average

post evaluation fitness of more than 70. In all of these solu-
tions, the evolved robots actively forage. The difference in
performance is due to the way in which the evolved robots
search for prey: some of the evolved robots move directly to-
wards prey close to the nest while others circle the foraging
area and forage mainly prey located far away from the nest
(thereby leaving the prey close to the nest for the prepro-
grammed robot to pickup). This type of behavior indicates
that the evolved robots collaborate with the preprogrammed
robot.

Collaboration To examine the level of collaboration (if
any) between the evolving and preprogrammed robots, we
analyzed if there is some evidence of division of labor: we
recorded the number of prey foraged by evolved robots and
the number of prey foraged by the preprogrammed robot in
the mixed setup. We ran 100 trials with each of the high-
est scoring genomes from the 30 evolutions conducted in
the mixed setup. For 16 of the 30 genomes, the prepro-
grammed robot forages significantly more prey when the
evolved robots are present compared to when it is the only
robot in the environment (Mann-Whitney, p < 0.05).

When the preprogrammed robot is alone, it forages 57.9
prey on average during a five minute trial, while when three
preprogrammed robots are present, each forages on aver-
age 38.7 prey. When evolved robots are present, the pre-
programmed robot forages an average of 75.3 prey per trial
for the best solution in the mixed setup. These results in-
dicate that the evolved robots have learned to collaborate
with the preprogrammed robot. For the best solution in the
mixed setup, the average distance (over 100 five minute tri-
als) of the preprogrammed robot from the center of the nest
was 0.54 m, while the average distance of the each of the
two evolved robots from the center of the nest was 1.06 m.

The evolving robots forage prey that are located far from
the nest and leave the prey close to (but not always in) the
nest. The preprogrammed robot (which prioritizes prey lo-
cated close to the nest) then transports the prey left by the
evolving robots the rest of the way to the nest. The division
of labor is efficient because the evolved robots in general
operate far from the nest, while the preprogrammed robot
operates close to and in the nest – collisions are therefore
avoided.

Communication The robots in both the non-mixed and
the mixed setups have the capacity to change their body
color and to detect the body color of nearby teammates.
This capacity potentially allows the robots to communicate.
However, in 22 out of 30 evolutionary runs in the non-mixed
setup, the evolved robots remain mainly black (invisible to
one another) during experimental trials. In the remaining 8
runs, the robots either remain mainly red (5) or constantly
change color (3) during a trial.

In order to determine if communication plays a major role
in the evolved solutions, we ran three sets of experiments in
the non-mixed setup, where we fixed the body color of all
the robots to black, red and green in 100 trials each. The
differences in terms of performance when the body color is
fixed and when the neural network has the control over the
body color were minimal. The average performance differ-
ence was only 0.5%, with the largest drop being 3.7% and
the largest increase in performance being 5.4%.

In a similar set of experiments in the mixed setup, we fixed
the color of the preprogrammed robot and the two evolving
robots. Fixing the body color to red results in an average per-
formance drop of 22.6%. This drop is explained by the fact
that the preprogrammed robot attempts to make way each
time it encounters a red robot. The average difference in
performance when the body color is fixed to either black or
green and when the controllers have control over the body
color was 0.6% with the largest difference being 3.2%. This
indicates that the performance of the evolved robots does not
depend on their capacity to change their body color.

It is surprising that the robots did not evolve to exploit
their capacity to change color in the mixed setup to commu-
nicate with the preprogrammed robot (which already com-
municates its internal state by changing color depending on
whether it is carrying a prey or not). A probable explanation
for the lack of communication is that the robots can forage
efficiently in the mixed setup without communicating. As
discussed in the previous section, the evolved robots do in
most cases learn to collaborate with preprogrammed robot
by transporting prey located far from the nest closer to the
nest for the preprogrammed transport the rest of the way to
the nest. The robots operate in different regions of the envi-
ronment and they do therefore not need to communicate in
order coordinate their actions or to avoid collisions.
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(a) (b) (c) (d)

Figure 7: Examples of the behaviors from group C evolved in the non-mixed setup (screenshots from different experiments
with different controllers). (a) the robots move directly to prey or start circling the foraging area in case no prey is found. (b)
the robots have set their body color to red and turn around once a prey is picked up. (c) the robots move to prey in arcs. (d)
robots pick up and carry prey, but they often interfere with one another.

Incremental Evolution in the mixed setup Of the 30 evo-
lutionary runs conducted in the mixed setup, the 12 runs in
group D did not evolve foraging behaviors, but instead, the
evolved robots move away from the nest in order to avoid
interfering with the preprogrammed robot. This solution is a
local maximum in the fitness landscape because the prepro-
grammed robot is an efficient forager from the onset of the
evolutionary process and any interference – a lost prey due
to a collision for instance – would result in a lower collective
fitness. We set up a series of experiment in which we tried
to increase evolutionary pressure towards solutions in which
the evolving robots participate in the foraging by initially
reducing the speed of the preprogrammed robot. When the
preprogrammed robot moves at a reduced speed, it forages
less than when moving at full speed. Evolutionary pressure
towards solutions in which the evolving robots actively for-
age is thus increased because any contribution made by the
evolving robots proportionally is higher with respect to the
fitness obtained by the team than when the preprogrammed
robot is moving at full speed. In a new incremental mixed
setup the preprogrammed robot initially moved at 50% of
the full speed. Once a collective fitness of 50 was reached
by the highest scoring individual in a generation, the speed
of the preprogrammed robot was increased to full speed.

We performed 30 evolutionary runs in the incremental
mixed setup. Out of the 30 evolutionary runs, only 6 pro-
duced non-foraging behaviors compared to 12 in the nor-
mal (non-incremental) mixed setup. The average of the post
evaluation fitness of the best genome from each run in the
incremental mixed was 90.0 compared to 84.7 in the mixed
setup. For 24 of the 30 genomes, the preprogrammed robot
forages significantly more prey when the evolved robots are
present compared to when it is the only robot in the environ-
ment (Mann-Whitney, p < 0.05). Hence, in the incremental
mixed setup, the evolving robots learn more frequently to
collaborate with the preprogrammed robot than in the non-

incremental mixed setup. Visual inspection of the successful
solutions evolved in the incremental mixed setup confirmed
that they are similar to the successful solutions evolved in
the non-incremental mixed setup (that is, the behaviors in
group E in Figure 4).

Performance in larger mixed groups In order to deter-
mine if and how the mixture of preprogrammed and evolved
could benefit larger groups of robots, we conducted experi-
ments in which nine robots were present in the environment:
three preprogrammed robots and six evolving robots. We
conducted the evolution in the same environment and with
the same fitness function as used above. We used an incre-
mental setup with four increments:

1st increment: Only the six evolving robots were present
[Fitness limit: 20].

2nd increment: The three preprogrammed robots were in-
troduced but moving at 25% of full speed [Fitness limit:
100].

3rd increment: The speed of the three preprogrammed
robots was increased to 50% of full speed [Fitness limit:
200].

4th increment: The speed of the three preprogrammed
robots was increased to full speed.

We conducted 30 evolutionary runs till the 2000th gen-
eration. The average fitness obtained in a post evaluation
(100 samples) of the best chromosome from each run was
358. The average fitness score obtained in 100 samples with
a homogeneous group of nine preprogrammed robots was
363. The average post evaluation fitness obtained by the
larger mixed groups was thus slightly lower than the fitness
obtained by nine preprogrammed robots. However, 12 out
of the 30 evolutionary runs produced solutions for mixed
groups that obtained a higher post evaluation fitness than
nine preprogrammed robots (Mann-Whitney, p < 0.02).
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The average post evaluation fitness of the best mixed group
was 403, thus well above the score obtained by a homoge-
neous group of nine preprogrammed robots.

We also observed collaborated between the six evolved
robots and the three preprogrammed robots just like in our
previous experiments. For the best solution evolved, the av-
erage distance from the center of the nest to each of the pre-
programmed robots was 0.58 m, whereas the average dis-
tance to each of the evolved robots was 1.23 m.

Conclusions
In this paper, we evaluated how the presence of prepro-
grammed robots affects the evolutionary process and the be-
haviors evolved in a multirobot foraging task. We conducted
evolutions in which a preprogrammed robot was present
and evolutions in which it was absent. Without the prepro-
grammed robot, three different kinds of foraging behaviors
were evolved: one in which robots push prey to the nest, one
in which robots continually pickup and drop prey, and one
(much more efficient) in which robots pickup and carry prey
to the nest.

In the setup in which the preprogrammed robot was
present, we only observed the pickup and carry behavior. To
increase the rate at which foraging solutions are evolved, we
conducted a series of incremental evolution experiments in
which the preprogrammed robot initially moved at a lower
speed and only after the evolved robots had learned to for-
age did the preprogrammed robot start to move at normal
speed. We applied a similar incremental approach for a
mixed group of nine robots. We found that when prepro-
grammed robots were present, the highest performing evolv-
ing robots had learned to collaborate with them: the evolv-
ing robots targeted prey far from the nest and dropped them
close to the nest for the preprogrammed robots to pickup and
deploy in the nest. As a result, the robots occupied different
regions of the environment and avoided collisions.

The results demonstrate that robots can be evolved to col-
laborate with preprogrammed robots. The evolving robots
did not adopt neither the preprogrammed solution nor the
preprogrammed communication protocol, but instead as-
sumed different roles and collaborated with the prepro-
grammed robots.

In this study, the preprogrammed robots had a complete
solution: they were able to forage on their own. In ongoing
work, we are evolving robots to fill in the behavioral gaps
between robots preprogrammed with different partial solu-
tions to complex tasks.
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Abstract 
   In the natural world, performing a given task which is 
beneficial to an entire group often requires the cooperation of 
several individuals of that group who often share the workload 
required to perform the task. The modeling toolkit to address 
problems related with the dynamics of collective action and other 
conflict of interests is game theory, often combined with its 
dynamical counterpart, Evolutionary Game Theory [1]. In this 
context, the last decades have witnessed the discovery of key 
insights into the emergence and sustainability of cooperation at 
different levels of organization. Special attention has been paid to 
two-person dilemmas such as the Prisoner’s Dilemma (PD), the 
Snowdrift Game (SG) and the Stag-Hunt game (SH), which 
constitute powerful metaphors to describe conflicting situations 
often encountered in the natural and social sciences.  
   Yet, unlike two-person games, current models of collective 
action have typically overlooked the necessity of some form of 
coordination among individuals, pervasive in biological and 
social collective dilemmas [2]. From social organization to the 
salvation of the planet against environmental hazards [3, 4], 
examples abound where a minimum number of individuals, 
which does not necessarily equal the entire group, must 
simultaneously cooperate before any outcome (or public good) is 
produced. With this abstract we intend to discuss the predictions 
of evolutionary game theory for the emergence of collective 
action, whenever a minimum threshold of individuals must 
cooperate simultaneously in a group before any viable public 
good is achieved. These conclusions were previously reported in 
Refs [2, 3, 5, 6]. 
   We have concentrated on two of the most important collective 
dilemmas: the N-person snowdrift game (NSG) [5] and N-person 
prisoner’s dilemma (NPD) [2]. In doing so, we uncover a new 
framework in which the advantage or not of cooperators depends 
sensitively on group and population size, as well as on the 
threshold for collective action. Such interplay leads to rich 
evolutionary scenarios of simultaneous co-existence and bi-
stability, impossible to anticipate based on the traditional 
assumption of infinite populations, providing valuable insights 
into the variety and complexity of many person social dilemmas, 
inescapable especially among Humans. 

   In addition, it is noteworthy that irrespective of the distinctive 
features of the N-person Prisoner’s dilemma (a defector’s 
dominance dilemma) and the N-person Snowdrift game (a 

coexistence game) [5], the existence of a coordination threshold 
is able to produce a unifying framework associated with a 
generalized stag-hunt game [2]. Moreover, the necessity of 
coordination is shown to increase the equilibrium fraction of 
cooperators, even if this enhancement comes together with a 
strong dependence on the initial level of cooperation, since 
coexistence between cooperators and defectors only emerges 
when a minimum number of cooperators is already present in the 
population. This result is of particular relevance given that the 
existence of coordination thresholds constitutes a rule, rather than 
the exception. In addition, we shall also discuss how the chances 
of collective cooperation are strongly dependent on the 
perception that individuals have of the collective risk of failure 
[3]. In this context, we are able to show how global cooperation is 
better achieved within i) small groups, addressing ii) highly risky 
situations characterized by iii) stringent condition to meet goals 
[3]. This result has strong implications on our current 
understanding of various collective problems, from collective 
hunting, voluntary adoption of public health measures and other 
prospective choices, to the mitigation of the effects of global 
warming. Overall, our results reinforce the idea that even minor 
differences in the nature of collective rewards and/or costs can 
have a profound effect in the final outcome of evolution. 
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Abstract

In biological systems, whole genome duplication and subse-
quent diversification constitute powerful mechanisms for the
discovery of new phenotypes and for the protection of these
phenotypes against environmental perturbation. Here, we use
Random Boolean Networks to investigate the influence of
these genetic mechanisms on the relationship between evolu-
tionary innovation and environmental robustness in gene reg-
ulatory networks. We find that whole genome duplication is
highly deleterious in ancestral environments, but provides fit-
ness advantages in novel environments, which come at the
cost of reduced environmental robustness. We then show that
the subsequent diversification of duplicated networks, via the
loss of regulatory interactions, can partly negotiate this trade-
off, improving evolutionary innovation and environmental ro-
bustness. We conclude by discussing the implications, limi-
tations, and future directions of our research.

Introduction
Biological systems exhibit two crucial and seemingly an-
tagonistic properties: robustness and evolvability (Wagner,
2005). Regardless of the level of biological organization,
living organisms display remarkable resilience to changing
conditions, and at the same time, they are able to respond
to these changes by developing novel phenotypes. At first
glance, these qualities seem paradoxical, yet both empirical
(Bloom et al., 2006; Ferrada and Wagner, 2008; Isalan et al.,
2008) and theoretical (Aldana et al., 2007; Wagner, 2008;
Draghi et al., 2010) analyses suggest their compatibility.

The relationship between robustness and evolvability has
been investigated in biological systems ranging in scale
from the molecule (Schuster et al., 1994; Cowperthwaite
et al., 2008) to the cell (Aldana et al., 2007; Ciliberti et al.,
2007a,b). At the cellular level, gene expression patterns are
robust to changing environmental conditions, such as alter-
ations in growth medium or the concentration levels of tran-
scription factors (Alon, 2007). This insensitivity to environ-
mental perturbation is largely influenced by the structure of
the underlying gene regulatory network (GRN) (Aldana and
Cluzel, 2003). A GRN consists of a set of genes, represented
as vertices, linked by directed edges if the gene-product
(e.g., protein, mRNA, microRNA) of the source gene has

a regulatory influence on the target gene. Recent analyses
of model GRNs have revealed that robustness is often corre-
lated with the capacity for evolutionary innovation (Ciliberti
et al., 2007a; Aldana et al., 2007).

One major form of structural change in GRNs comes from
whole genome duplication (WGD) events, wherein the en-
tire gene repertoire of an organism, including regulatory in-
teractions, is doubled (Sémon and Wolfe, 2007). WGD has
long been recognized as a driver of evolutionary innova-
tion (Ohno, 1970) and recent genetic analyses have demon-
strated that several major evolutionary transitions resulted
from ancient WGD events (Kellis et al., 2004; De Bodt
et al., 2005; Taylor et al., 2003). For example, the origin
of the budding yeast Saccharomyces cerevisiae (Kellis et al.,
2004) and the radiation of the angiosperms into over 250,000
species (De Bodt et al., 2005) have both been attributed to
WGD. The duplication of genetic material has implications
for environmental robustness, as redundant genes diverge
to compartmentalize the original function of the ancestral
gene (subfunctionalization) (Sémon and Wolfe, 2007). In
S. cerevisiae, for example, this occurs through the differ-
ential expression of redundant genes under various growth
conditions (Kafri et al., 2005). WGD also has implications
for evolutionary innovation, as duplicate genes diverge to
acquire new functions (neofunctionalization) (Sémon and
Wolfe, 2007). In S. cerevisiae, the ability to consume glu-
cose and grow anaerobically have both been attributed to the
genetic diversification that followed a WGD event (Piškur,
2001).

Despite the known importance of WGD events for evo-
lutionary processes, their influence on environmental ro-
bustness and evolutionary innovation in GRNs is not thor-
oughly understood. Here, we use Random Boolean Net-
works (RBNs) (Kauffman, 1969) to model the dynamics of
GRNs. We simulate WGD events in RBNs and quantify
their effect on environmental robustness and evolutionary in-
novation.

This paper is structured as follows. In the subsequent sec-
tion, we present the key concepts of this work. We then
present our model and the details of our simulations, ana-
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lyze and discuss our results, and conclude with an outline of
future research directions.

Background

Random Boolean Networks

Random Boolean Networks (RBNs) are abstract dynami-
cal models of gene regulatory networks (GRNs) (Kauffman,
1969). RBNs consist of N nodes, which represent genes,
and directed edges, which represent regulatory interactions.
Node states are binary, representing the expression (1) or re-
pression (0) of gene products. Node states are also dynamic,
such that the state of a node in time step t + 1 is depen-
dent upon the states of its regulating nodes in time step t.
To model this dependence, each vertex is associated with a
Boolean update function, which is captured by a look-up ta-
ble that explicitly maps the output expression state for all
possible combinations of input states. These output expres-
sion states are drawn at random with probability pexpr and
are held fixed throughout the system’s dynamics.

Node states are updated synchronously and in discrete
time. The dynamics of a RBN begin with a prespecified ini-
tial configuration of node states, which represents regulatory
factors upstream of the GRN (Ciliberti et al., 2007a). After
at most 2N time steps, the system will encounter a config-
uration previously visited, thus entering a cycle of one or
more configurations, which is referred to as an attractor.

An important aspect of RBNs is that their dynamical be-
havior falls into one of three regimes: ordered, critical, or
chaotic. Systems in the ordered regime exhibit short attrac-
tors that are relatively insensitive to environmental perturba-
tion. At the other end of the spectrum, systems in the chaotic
regime possess longer attractors that are highly sensitive to
environmental perturbation. The critical regime lies at the
transition between the ordered and chaotic regimes, offer-
ing a balance between the ability to withstand environmen-
tal perturbation (robustness) and the ability to utilize these
perturbations for evolutionary innovation (evolvability) (Al-
dana et al., 2007).

WGD and Subsequent Diversification

Immediately following whole genome duplication (WGD),
organismal stability is generally reduced, leading to a de-
crease in fitness (van Hoek and Hogeweg, 2009). However,
duplicate genes supply new genetic material, which can be
shaped via mutation and selection to produce novel func-
tions. These functions may allow for more rapid adaptation
if a new environment is encountered, providing potential fit-
ness benefits (van Hoek and Hogeweg, 2009). The genetic
reorganization that accompanies such diversification may
occur via gene loss, gene rearrangements, or alterations in
the circuitry of genetic regulation (Sémon and Wolfe, 2007).

Methods
In this section, we separately present our implementations of
RBN generation, duplication, and diversification. We then
quantify environmental robustness and evolutionary innova-
tion, outline the evolutionary processes used in our analyses,
and provide the details of our simulations.

RBN Topology
The degree distribution of a RBN has an important influence
on system dynamics (Aldana and Cluzel, 2003; Oikonomou
and Cluzel, 2006; Aldana et al., 2007). Here, we consider
RBNs with Poisson input degree distributions and power-
law output degree distributions, as empirical evidence sug-
gests that such topologies are representative of the GRNs of
several organisms (Aldana and Cluzel, 2003; Albert, 2005).
RBN topologies are generated as described by Darabos et al.
(2009).

Duplication
WGD is simulated by first creating a mirror-image of the
original RBN and then linking the duplicate and original
components by drawing edges from the source nodes in one
component to the targets in the other (Fig. 1a,b). Each node
in the duplicated RBN has twice as many inputs as the cor-
responding node in the non-duplicated RBN. As a result, the
number of entries in the look-up table is squared. To popu-
late the entries of each table, we follow Aldana et al. (2007):
when the duplicate regulatory inputs are not expressed, the
Boolean rules remain identical to those prior to duplication.
However, when the duplicate regulatory inputs are expressed
the Boolean rules are assigned at random with probability
pexpr.

Diversification
To simulate the genetic diversification that follows a WGD
event, we take a conservative approach and assume that only
regulatory interactions can be lost (akin to structural sim-
plification algorithms for neural networks (Le Cun et al.,
1990)). This represents a mutation to the promoter region
of a gene that prohibits the binding of one of its regulating
gene products. While this type of mutation represents only a
small subset of all possible forms of genetic reorganization,
it offers a useful and parsimonious starting point. Further,
empirical data suggest that (i) interactions are lost at a rate
that is three orders of magnitude larger than the rate at which
they are gained (Wagner, 2001) and (ii) rates of alternative
forms of reorganization, such as gene loss, are significantly
reduced among transcription factors (De Bodt et al., 2005),
which are the primary gene products modeled by RBNs.

In our simulations, diversification occurs through the re-
moval of all non-functional regulatory edges (Fig. 1c,d).
These edges link a source to a target, where the state of the
source does not influence the expression of the target. Such
edges are referred to as canalyzed (Kauffman et al., 2004),
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Figure 1: Schematic of whole genome duplication (WGD) and the subsequent diversification of a Random Boolean Network
(RBN). The (a) non-duplicated RBN (b) undergoes WGD, wherein its entire gene repertoire is copied. Additional edges (gray)
are drawn from the source nodes of one component to the target nodes of the other. The look-up tables of each node are
expanded as described by Aldana et al. (2007). As an illustrative example, we depict one possible expansion of the look-up
table of node a. (c) Diversification occurs via edge loss. E.g., a ← b. (d) All edges are removed where the state of the
target node is independent of the state of the source node. The diversification process continues throughout the evolution of the
population, resulting in RBN topologies that differ markedly from those that immediately followed WGD.

and their removal does not immediately affect the dynamics
of the RBN.

Environmental Robustness

Environmental perturbations come in many forms, including
alterations in temperature, growth medium, or biotic envi-
ronment. A RBN is environmentally robust if its phenotype
is insensitive to these non-genetic perturbations. We mea-
sure environmental robustness as the sensitivity of a RBN
to the perturbation of a single, randomly chosen configura-
tion of its attractor. Specifically, we systematically perturb
the state of each node in the randomly chosen configuration,
one at a time, and measure the proportion of perturbations in
which the RBN returns to its original attractor.

Evolutionary Innovation

An evolutionary innovation can be thought of as a change in
phenotype that confers a fitness advantage. To assess evolu-
tionary innovation, we measure the fitness of a RBN as the
ability of its attractor to match a randomly generated target
attractor. This target attractor represents the gene expres-
sion pattern required for optimal adaptation to a given en-
vironment. Fitness thus provides a proxy for evolutionary
innovation.

For each RBN, we randomly select a single output node
and record the sequence of output states σout during its at-
tractor. The fitness F of a RBN is then calculated as the
Hamming distance between the output and target sequences

(Oikonomou and Cluzel, 2006),

F = max

{
1− 1

lcm(L,Lc)

lcm(L,Lc)∑
t=1

|σout(t)− σtarget(t)|

}
,

(1)
whereL is the length of the output sequence, Lc is the length
of the target sequence, and lcm denotes the least common
multiple. To facilitate the comparison of sequences with
L 6= Lc, both sequences are concatenated onto themselves
until they are of length lcm(L,Lc). To ensure that fitness is
independent of the starting position of the output sequences,
we take the maximum fitness over all cyclic permutations of
σout.

Evolution

We simulate the evolution of randomly initialized popula-
tions of RBNs in discrete, non-overlapping generations. In
every generation, the fitness of each RBN is assessed accord-
ing to Eq. 1. RBNs are then selected with uniform proba-
bility, with replacement, to compete in binary tournaments.
Within a tournament, the RBN with the highest fitness is se-
lected to move on to the next generation, after undergoing
mutation. Mutation only affects the RBN’s look-up tables,
such that the entries in the look-up tables associated with
each vertex undergo bit-flip mutation with probability pmut.
This process of selection and mutation is repeated until the
next generation is fully populated.
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Figure 2: (a,b) Fitness, (c,d) environmental robustness, and (e,f) attractor length of non-duplicated (top row) and duplicated
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Simulation Details
We consider RBNs with N = 10 nodes prior to duplication
and N = 20 nodes after duplication. RBNs are initialized
near the critical regime by setting the probability of gene
expression to pexpr = 0.5 and the scaling exponent of the
output degree distribution to γ = 1.894, which yields criti-
cality in RBNs with N = 10 (Aldana et al., 2007).

Evolutionary analyses are conducted with a population
size of 500, wherein each RBN is paired with its own, ran-
domly chosen initial state which does not change through-
out the evolutionary trajectory of its lineage. In each exper-
iment, we consider 100 independent replications that each
consist of 5,000 generations. Mutation occurs with probabil-
ity pmut = 0.002 per look-up table entry. In the experiments
that include diversification, the deterministic edge-loss pro-
cess only occurs every 10 generations, due to computational
constraints.

Results
We present our results in four successive phases. First, we
compare the immediate effects of WGD on the fitness of
RBNs in their ancestral environments. Second, we compare
the immediate effects of WGD on the fitness and robust-
ness of RBNs in novel environments. Third, we consider
the evolutionary dynamics of fitness and robustness for non-
duplicated and duplicated RBNs. Fourth, we compare the
evolutionary dynamics of these same quantities when dupli-

cated RBNs are allowed to undergo diversification.

WGD in an Ancestral Environment
To simulate an ancestral environment, we simply assume
that the expression profile of a randomly generated RBN is
optimally adapted. To do this, we choose a random node
from the RBN and define it as σtarget. We then simulate
a WGD event, designate the expression profile of the same
node in the duplicated RBN as σout, and compute its fitness
(Eq. 1). To collect meaningful statistics, we repeat this pro-
cess 10,000 times.

WGD is highly deleterious in an ancestral environment.
Optimal fitness is maintained in only ∼ 42% of WGD
events. Of the remaining ∼ 58% of duplicated RBNs, av-
erage fitness decreases to 0.37± 0.002.

WGD in a Novel Environment
To simulate a novel environment, we randomly generate
σtarget of length Lc = 10 (Oikonomou and Cluzel, 2006).
We then generate a RBN, choose a random node, designate
its expression profile as σout, and compute the RBN’s fitness
(Eq. 1). In addition, we measure the RBN’s environmental
robustness. We then collect these data for the same RBN
after WGD. As in the previous analysis, this process is re-
peated 10,000 times.

Duplicated RBNs exhibit a marginal fitness advantage
over their non-duplicated counterparts (Fig. 2a,b; Stu-
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dent’s t-test, p = 5.43 × 10−4). However, this advantage
comes at the expense of a marginal decrease in environ-
mental robustness (Fig. 2c,d; Kolmogorov-Smirnov test,
p = 3.46 × 10−74). These subtle differences can be at-
tributed to the increased attractor length of the duplicated
RBNs (Fig. 2e,f; Student’s t-test, p = 8.9 × 10−9), which
have a higher probability of matching σtarget and exhibit a
greater sensitivity to perturbation.

Evolutionary Dynamics of Duplicated RBNs
We now turn from a static analysis of environmental robust-
ness and fitness to an evolutionary analysis of these quanti-
ties for populations of non-duplicated and duplicated RBNs.
As in the previous section, we consider novel environments
by randomly generating target sequences σtarget of length
Lc = 10.

As observed in our previous analysis, the duplicated
RBNs have an immediate, albeit slight, fitness advantage in
a novel environment (Fig. 3a), but are marginally less ro-
bust (Fig. 3b). These differences in fitness and robustness
become more pronounced throughout the evolutionary pro-
cess. Duplicated RBNs reach a plateau of average fitness
at 0.92 ± 0.006 (Fig. 3a, squares) while the non-duplicated
RBNs stagnate at an average fitness of 0.89 ± 0.008 (Fig.
3a, triangles). Simultaneously, the duplicated RBNs drop to
an average environmental robustness of 0.73 ± 0.042 (Fig.
3b, squares), while the non-duplicated RBNs retain a higher
environmental robustness of 0.83 ± 0.018 (Fig. 3b, trian-
gles). Thus, WGD in the absence of subsequent diversifica-
tion leads to a trade-off between environmental robustness
and evolutionary innovation.

Evolutionary Dynamics of Diversified RBNs
To investigate the effects of diversification after WGD, we
conduct an evolutionary analysis of paired populations of
duplicated RBNs, wherein diversification can only occur in
one of the initially identical populations.

Diversification promotes evolutionary innovation, with
populations reaching an average fitness of 0.95±0.013 (Fig.
4a, open circles), a significant improvement over the fit-
ness obtained with WGD alone (Fig. 4a, closed squares).
Simultaneously, diversification increases environmental ro-
bustness (Fig. 4b, open circles), though not to the same lev-
els observed prior to WGD (Fig. 3b, triangles). Thus, diver-
sification allows for the partial negotiation of the trade-off
between environmental robustness and evolutionary innova-
tion that is induced by WGD.

The diversification process also leads to appreciable struc-
tural changes in RBN topologies, with average connectivity
dropping rapidly (Fig. 4a, inset). RBN dynamics are also af-
fected, with attractor lengths of diversified networks settling
to an average of 9.48± 0.174, as compared to 9.92± 0.112
for non-diversified networks (Fig. 4b, inset). The probabil-
ity of gene expression pexpr remains approximately constant
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Figure 3: Evolutionary dynamics of (a) fitness and (b) envi-
ronmental robustness for populations of duplicated and non-
duplicated RBNs in novel environments. Data represent the
mean of 100 independent replications and error-bars denote
a single standard deviation. The inset in (b) depicts the av-
erage attractor length L. Data are deliberately offset in the
horizontal dimension for visual clarity. Note the break in
scale on the y-axis of (a). The scale of the x-axis is the same
in all panels, including insets.

at 0.5 throughout the evolutionary process (data not shown).

Discussion
We have used Random Boolean Networks (RBNs) to inves-
tigate the influence of whole genome duplication (WGD)
and subsequent diversification on evolutionary innovation
and environmental robustness in gene regulatory networks
(GRNs). There are some limitations to our approach that
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are worth highlighting. First, while the genotype produced
by a WGD event is purely redundant, its resulting pheno-
type may differ immediately from that of the non-duplicated
genotype. This occurs because both the original and du-

plicated nodes acquire new regulatory connections, neces-
sitating the random initialization of entire segments of the
expanded look-up tables. Further, the duplicated node can-
not, under most circumstances, act as a “backup” because
alterations to the original node may lead to phenotypic al-
terations that are not easily compensated for by the dupli-
cate. Second, because many phenotypes yield identical fit-
ness, and the phenotypic contribution of a single gene cannot
be separated from its interaction partners, it is not possible
to discern whether the observed changes in environmental
robustness and evolutionary innovation are due to subfunc-
tionalization, neofunctionalization, or a combination thereof
(He and Zhang, 2005).

Despite these limitations, our analyses have helped to
clarify the influence of WGD and subsequent diversifica-
tion on environmental robustness and evolutionary innova-
tion in GRNs. While deleterious in ancestral environments,
WGD provided marginal fitness benefits in novel environ-
ments, coming at the expense of reduced environmental ro-
bustness (Fig. 2). Over evolutionary time, these differ-
ences magnified, with duplicated RBNs achieving signifi-
cantly higher fitness and significantly lower environmental
robustness than their non-duplicated counterparts (Fig. 3).
Genetic diversification, via the loss of non-functioning regu-
latory interactions, was able to partly negotiate this trade-off,
leading to improvements in both fitness and environmental
robustness (Fig. 4).

Environmental robustness and evolutionary innovation
were therefore inversely related in this system. This oc-
curred because fitness assignment was based solely on the
ability of a RBN to match a target expression profile σtarget
(Eq. 1). This induced selection pressure for longer attrac-
tors (insets in Figs. 3b and 4b), because increasing the du-
ration of the expression profile of the output node increased
the probability that some segment of that profile matched
σtarget. In turn, environmental robustness decreased, be-
cause longer attractors were more sensitive to perturbation.
Thus, while some aspects of robustness and evolvability are
positively correlated in RBNs (Aldana et al., 2007), robust-
ness to environmental perturbation and the ability to match
a target phenotype are not amongst them.

Diversification increased environmental robustness (Fig.
4b) through a reduction in network connectivity (Fig. 4a, in-
set). This shifted the RBN dynamics closer to the critical
regime and therefore reduced the average attractor length
(Fig. 4b, inset), yielding more environmentally robust at-
tractors. It is notable that this reduction in attractor length
did not lead to a corresponding reduction in fitness (Fig. 4a).
How the diversified RBNs were able to attain increased fit-
ness using shorter attractors is not yet known. An analysis
of the structural properties of evolved RBNs, such as net-
work excitation (Draghi and Wagner, 2009) or degree distri-
bution (Aldana et al., 2007), may provide more insight into
the mechanisms by which diversification can simultaneously
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increases fitness and environmental robustness.
In the absence of diversification, the selective advantage

of WGD may depend heavily on the frequency with which
environmental perturbations occur. Selection may favor
phenotypes that consistently yield expression profiles of av-
erage fitness over those that inconsistently yield expression
profiles of high fitness. By placing non-duplicated and du-
plicated RBNs in a head-to-head competition under varying
levels of environmental perturbation, future work will seek
to determine how selection moderates the trade-off between
environmental robustness and evolutionary innovation, and
to discover the conditions under which selection leads to the
“survival of the flattest” (Wilke et al., 2001).

The environments considered in this study were static,
meaning that the target gene expression profile did not
change over time. Several studies have demonstrated the
importance of dynamic environments in shaping a popula-
tion’s potential for evolutionary innovation (Kashtan et al.,
2007; Draghi and Wagner, 2009). Future work will seek to
understand how WGD and subsequent diversification influ-
ence evolutionary innovation and robustness in dynamic en-
vironments.

Future work will also seek to expand upon our usage of
fitness as a proxy for evolutionary innovation. It may prove
insightful to analyze not only the ability to move toward a
specific fitness optimum, but also the ability to move toward
arbitrary fitness optima. Such measurements of the diversity
of accessible phenotypes are common in studies of evolv-
ability (Ciliberti et al., 2007a; Cowperthwaite et al., 2008;
Wagner, 2008), and could be incorporated into our analysis
(Draghi and Wagner, 2009). In addition, we will also in-
vestigate alternative forms of genetic diversification, with a
particular focus on gene loss, which will allow for a more
direct comparison with alternative models of WGD and di-
versification in GRNs (Wagner, 1996). These extensions,
among others, will lead to a more thorough understanding
of how various genetic mechanisms influence the relation-
ship between robustness and evolvability in gene regulatory
networks.
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Abstract

By using Aevol, a simulation framework designed to study
the evolution of genome structure, we investigate the effect
of homologous rearrangements on the course of evolution.
We designed an efficient model of rearrangements based on
an intermittent search algorithm. Then, using experimental in
silico evolution, we explore the effect of rearrangement rates
on the genome structure. We show that the effect of homol-
ogous rearrangements is quite complex. At first glance they
appear to be dangerous enough to trigger an indirect selective
pressure leading to short genomes when the rearrangement
rate is high. However, by analyzing the successful lineage
in the best runs, we found that there is a positive correlation
between the number of homologous rearrangements and the
fitness improvement in these lineages. Thus the impact of
homologous rearrangements on evolution is rather complex:
dangerous on the one hand but necessary on the other hand,
to ensure a sufficient level of evolvability to the organisms.
Moreover, our results show that the spontaneous rate of small
mutations influences the relative proportions of homologous
versus nonhomologous rearrangements.

Introduction
Chromosomal rearrangements are known to play a ma-
jor role in evolution. Their most visible effects are quite
straightforward: duplications and deletions account for nu-
merous gene acquisitions or losses while translocations and
inversions have a direct influence on gene order. How-
ever, these direct effects are flanked by other indirect se-
lective pressures. The rates and mechanisms of rearrange-
ments indeed influence the evolvability (Kirschner and Ger-
hart, 1998) of the lineage and, as it was stated by Earl and
Deem (2004), evolvability itself can be subject to evolution.
In the long term, more evolvable lineages are more likely
to produce beneficial mutations and hence to overcome lin-
eages with lower evolvability. Similarly, Wilke et al. (2001)
showed a second-order selective pressure on mutational ro-
bustness. The selection of a specific level of evolvability or
robustness is said to be indirect because they do not influ-
ence the fitness of the organism, but that of its descendants.

Unraveling these second-order pressures is a very chal-
lenging matter. Indeed, the underlying processes are com-
plex and act on a very long time scale. It is hence difficult

to tackle such questions either in vivo or in vitro. Compara-
tive genomics approaches are a way to circumvent this dif-
ficulty. However, they are based upon the static snapshots
of the contemporary sequences and have to infer their evo-
lutionary past.

Artificial life and in silico simulations are very useful in
such cases, providing us with insights into complex mech-
anisms and shedding light onto second-order pressures that
would have been difficult to identify otherwise (Wilke et al.,
2001; Adami, 2006; Misevic et al., 2006; Knibbe et al.,
2007; Beslon et al., 2010). They offer a dynamic view of the
evolutionary process and provide the experimentalist with a
very good control over parameters as well as a perfect fossil
record throughout the evolution.

The Aevol model was developed specifically to study
the evolution of genome structure. Experiments using this
model underlined the major importance of chromosomal re-
arrangements in the evolutionary process. For a start, we ob-
served that in total absence of chromosomal rearrangements,
evolution can hardly occur at all because gene duplications
are necessary to acquire new genes and thus new functions.
Secondly, it has been shown that, because of rearrange-
ments, non-coding sequences can become mutagenic for the
surrounding genes. The consequence is a clear trend for or-
ganisms having evolved under high rearrangement rates to
own shorter and denser genomes than those having evolved
under lower rates of rearrangement (Knibbe et al., 2007; Par-
sons et al., 2010). As we have already shown, this effect is
the consequence of the long-term selection of a specific level
of mutational variability (Knibbe et al., 2007).

Unlike point mutations and indels that produce local vari-
ations, chromosomal rearrangements can involve huge se-
quences and turn a very fit individual into an ill-adapted one
in a single event. Chromosomal rearrangements can hence
be very dangerous. However, rearrangements are usually
not fully random. Most rearrangements are the consequence
of error-repair mechanisms such as the RecA mediated dou-
ble strand break repair mechanism (Neidhardt, 1996). These
mechanisms usually require that the sequences be similar (at
least around the breakpoints) to be rearranged. Such rear-
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rangements based on sequence similarity are called homolo-
gous rearrangements. By contrast, we call here nonhomolo-
gous rearrangements those that occur between sequences of
low similarity. It is tempting to think that, because they are
partially directed, homologous rearrangements could be less
dangerous than rearrangements occurring at random points.

To investigate the role of homologous rearrangements in
genome evolution, we modified the Aevol model to intro-
duce a sensitivity to sequence similarity in the rearrange-
ment process: a rearrangement is now more likely to occur
between similar sequences (homologous recombination) but
remains possible, although at a low probability, when the
breakpoints differ (nonhomologous recombination).

After an overall presentation of the Aevol model, focus-
ing particularly on the way we take sequence homologies
into account in the rearrangement process, we will present
our results regarding the different effects of homologous and
nonhomologous rearrangements. We will discuss the intri-
cate relationship that exists between homologous and non-
homologous rearrangements, and their impact on evolvabil-
ity.

Aevol: A digital genetics model
The Aevol model was developed in our team to study the
evolution of genome structure. It simulates the evolution of
a population of N artificial haploid organisms with flexible
genomes. Although a description of the model has already
been published (see Knibbe et al. (2008) and its supp. mat.),
we thereafter provide an overview of the most important
principles that are necessary to have a good understanding
of the results presented here.

In Aevol, each artificial organism owns a genome whose
structure is inspired by prokaryotic genomes. It is organized
as a circular double-strand binary string containing a vari-
able number of genes separated by non-coding sequences
(figure 1). Genes are identified and decoded thanks to an
explicit transcription-translation process based upon prede-
fined signaling sequences. Then, an abstract “folding” pro-
cess gives rise to artificial “proteins” that are able to real-
ize or deflect a particular range of abstract “biological func-
tions”. The interaction of all these proteins yields the set of
functions the organism is able to perform, which will in turn
be compared to an environmental target to determine how
well-adapted this individual is.

At each generation, N new individuals are created by re-
producing preferentially the best individuals of the parental
generation which is then completely replaced. During the
replication process, the chromosome can undergo different
kinds of modifications: local mutations (point mutations,
small insertions and small deletions), but also large chro-
mosomal rearrangements (duplications, deletions, transloca-
tions and inversions). At the beginning of the run, all the or-
ganisms are initialized with the same random sequence (of
5,000 base-pairs here) which contains at least one gene.

Double stranded genome 
with scattered genes

Shine-Dalgarno

START

STOP

Coding DNA Sequence

Promoter

Terminator

Figure 1: In Aevol, each individual owns a circular double-
stranded binary genome upon which coding sequences are
identified thanks to predefined signalling sequences: pro-
moters and terminators mark the boundaries of transcribed
sequences and, inside these transcribed regions, coding se-
quences can exist between a START signal and an in-frame
STOP codon (see figure 2 for the genetic code).

From genotype to phenotype
Transcription In prokaryotes, transcription initiates at
particular sites, called promoters, where the RNA-
polymerases recognize a consensus sequence to which they
can bind and begin the RNA synthesis. In Aevol, we de-
fined a long consensus sequence, a promoter being a se-
quence whose Hamming distance d with this consensus is
less than or equal to dmax. In the experiments presented
here, the consensus was a 22-base-pairs (bp) sequence and
up to dmax = 4 mismatches were allowed. This consensus
sequence is long enough to ensure that random, non-coding
sequences have a low probability to become coding by a sin-
gle mutation event.

When a promoter is found, the transcription goes on un-
til a terminator is reached. We defined terminators as se-
quences that would be able to form a stem-loop structure,
as the ρ-independent bacterial terminators do. In these ex-
periments, the stem size was set to 4 and the loop size to 3,
terminators thus had the following structure: abcd∗∗∗dcba,
where a, b, c, d = 0 or 1.

The expression level e of an RNA is determined according
to its promoter sequence: e = 1− d

dmax+1 . This modulation
of the expression level models in a simplified way the basal
interaction of the RNA polymerase with the promoter, with-
out additional regulation. It provides duplicated genes with
a way to reduce temporarily their phenotypic contribution
while diverging toward other functions.

Translation Transcribed sequences (RNAs) do not nec-
essarily result in a protein. The translation process of
an RNA takes place when a Shine-Dalgarno-like sequence
is found, followed, a few base-pairs away, by a START
codon (see genetic code on figure 2). Whenever this sig-
nal 011011****000 is found, the following sequence is read
three bases (one codon) at a time until the STOP codon (001)
is found on the same reading frame. Each codon lying be-
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foreach Generation do
// Evaluation
foreach Individual do

Identify coding sequences
foreach CodingSequence do

Translate into abstract protein
end
Compute phenotype by combining protein
contributions
Compute fitness by comparing the phenotype to
the environmental target

end

// Selection
Sort the individuals by fitness
Compute the probabilities of reproduction
Draw the actual numbers of offspring

// Reproduction
foreach Individual do

foreach Offspring do
Do Rearrangements
Do Local Mutations

end
end

Replace current population
end

Algorithm 1: Aevol General Algorithm

tween the initiation and termination signals is translated into
an abstract “Amino-Acid” using an artificial genetic code,
therefore giving rise to the protein’s primary sequence (fig-
ure 2). As in real organisms, genes can be found on six
different reading frames (three on each strand), giving the
possibility for the organisms to evolve overlapping genes,
which are commonly found in virus and bacteria.

Protein “folding” and phenotype computation To
model the activity of proteins and the resulting phenotype,
we defined a simple “artificial chemistry” (Dittrich et al.,
2001) that describes the organism’s metabolism in a mathe-
matical language. In our simplified artificial world, we as-
sume that there is an abstract, one-dimensional space Ω =
[0, 1] representing all the possible metabolic processes (that
is, in this model, a metabolic process is just a real number).
In this “metabolic space”, each protein is involved in a sub-
set of processes (either realizing it or preventing other pro-
teins from realizing it) which is described using the fuzzy set
formalism: a given protein can be involved in a metabolic
process with a possibility degree lying between 0 and 1. A
protein is thus fully characterized by a mathematical func-
tion that associates a possibility degree to each metabolic
process, describing the fuzzy subset of metabolic processes
it is involved in. For simplicity, we use piecewise-linear
functions with a symmetric, triangular shape (figure 2). In

Genetic code

000 START
001 STOP
100 M0
101 M1
010 W0
011 W1
110 H0
111 H1

…001…0101…0110…0010…0110110011000101111011101110011010001…

…100…1010…1001…1101…1001001100111010000100010001100101110…

M1-H1-W1-M1-H0-W1-W0

Promoter 5’ UTR

Shine-Dalgarno

START STOPCoding sequence

11

110

10

Bin code M :

Bin code W :

Bin code H :

0,66

0,07

0,33

Norm.

Expression

level = e

M
W

e.|h|

Possibility

degree

Function

Figure 2: Overview of the transcription-translation-folding
process in Aevol. Transcribed sequences are those that start
with a promoter (consensus sequence) and end with a ter-
minator sequence (stem-loop structure), not shown on the
figure. Coding sequences (genes) are searched within the
transcribed sequences; They begin with a Shine-Dalgarno-
START sequence and end with a STOP codon. An artificial
genetic code (right) is used to convert a gene into the pri-
mary sequence of the corresponding protein and a “folding
process” enables us to compute the metabolic activity of this
protein (functional abilities).

this way, only three numbers are needed to characterize the
metabolic activity of a protein: the position m (m ∈ Ω) of
the triangle on the axis, its half-width w and its height h
(positive when realizing a function, negative when inhibit-
ing it). This means that the protein contributes to the range
[m−w,m+w] of metabolic processes, with a preference for
the processes closest to m (for which the highest efficiency,
h, is reached). Thus, various types of proteins can co-exist,
from highly efficient and specialized ones (small w, high h)
to polyvalent but poorly efficient ones (large w, low h).

In this framework, each protein’s primary sequence is de-
composed into three interlaced binary subsequences that will
in turn be interpreted as the values for them,w and h param-
eters. For instance, the codon 010 (resp. 011) is translated
into the single amino acid W0 (resp. W1), which means
that it contributes to the value of w by adding a bit 0 (resp.
1) to its binary code. Small mutations in the coding sequence
(point mutations, indels, possibly causing frame shifts) will
change these parameters, resulting in a modification of the
protein’s metabolic activity.

Once all the proteins encoded on the genotype of the or-
ganism have been identified and characterized, their activi-
ties are combined into a fuzzy set representing the individ-
ual’s phenotype P = (∪Ai) ∩ (∪Ij), using Lucasiewicz’
fuzzy operators, with Ai being the fuzzy subset of the i-th
activating protein (hi > 0) and Ij the fuzzy subset of the
j-th inhibiting protein (hj < 0). Intuitively, this means that
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metabolic processes achieved by the organism are those that
are activated and not inhibited. The phenotypic fuzzy set
P indicates to what extent the individual can realize each
metabolic process in our abstract metabolic space.

Environment, adaptation and selection
In Aevol, the environment is represented by a phenotypic
target: the fuzzy set E defined on Ω that represents the op-
timal degree of possibility for each “biological function”.
To evaluate an individual, we compare its phenotype P to
the optimal phenotype E. The “metabolic error” g is com-
puted as the geometric area between these two sets (figure
3). The lower the metabolic error, the better the individual.
This measure penalizes both the under-realization and the
over-realization of each function.

Figure 3: Measure of individual adaptation. Dashed curve:
environmental target E. Solid curve: phenotypic distribu-
tion P (resulting metabolic profile obtained after combining
all the proteins). Dark grey filled area: metabolic error g.

In the current version of Aevol, the population size is con-
stant (here N = 1, 000 individuals) and the population is
entirely renewed at each generation. A probability of re-
production is assigned to each individual according to its
metabolic error and a multinomial drawing determines the
actual number of offsprings each individual will have. In the
experiments presented here, we used an exponential ranking
selection (Blickle and Thiele, 1996). The individuals are
sorted by decreasing metabolic error so that the worst indi-
vidual has rank r = 1 and the best r = N . The probability
of reproduction of an individual is then given by s−1

sN−1
sN−r,

with s = 0, 998 being the intensity of selection in all the ex-
periments presented here.

Genetic operators
During their replication, genomes can undergo different
modifications: local mutations (point mutations, insertions
or deletions of 1 to 6 bp) and chromosomal rearrangements
(duplications, deletions, translocations, inversions).

Mutations and rearrangements affect the genome but do
not necessarily have a phenotypic effect. For instance, a
mutation that takes place in an untranscribed region will be
completely neutral unless it creates a new promoter, which
is reasonably rare given the size of the consensus sequence.

The rates at which each type of local mutation occurs
are parameters of the model. They are defined as the per-
base, per-replication probability of each type of mutation
to take place. The chromosomal rearrangement rates how-
ever, can not be a direct parameter of the model. Indeed, in
this version of the model, a rearrangement is all the more
likely to occur that the sequences at the breakpoints are
similar. The probability of a chromosomal rearrangement
to occur hence depends on the sequence itself and conse-
quently, is subject to evolution. Details about how we mod-
eled these homology-driven chromosomal rearrangements
are provided in the next section.

Genetic exchange (crossover) between individuals was
not allowed in the simulations presented here, because we
first needed to assess the impact of similarity-based intra-
chromosomal rearrangements in the simple case of an asex-
ual population. We plan to allow for similarity-based genetic
exchange in future experiments.

Homology-driven chromosomal
rearrangements

Taking homologies into account in the chromosomal rear-
rangement process requires some knowledge regarding se-
quence repeats on the chromosome. A naive approach would
be to compute a complete alignment search of the genome
on itself and then to proceed to the rearrangements if any.
However, searching for alignments between sequences is
known to be a computationally costly problem. In our par-
ticular case, where we deal with millions of genomes (clas-
sically 1,000 genomes per generation for thousands of gen-
erations), even a heuristic search such as BLAST (Altschul
et al., 1990) would be forbiddingly long to compute. An-
other possible approach, chosen here, is to use intermittent
searches (Bénichou et al., 2005), that provide us with a par-
tial yet sufficient knowledge of sequence alignments within
the genome.

In bacteria, several mechanisms can result in a rearranged
chromosome. All these mechanisms have a basic prerequi-
site of spatial proximity: two sequences must be physically
close together in the cytoplasm, at least at the breakpoints,
for them to rearrange. As the chromosome is supercoiled,
two sequences that are very distant from each other on the
chromosome can very well be next to each other in the three-
dimensional conformation. Since the mechanisms that con-
strain the spatial conformation of the genome according to
its sequence are still poorly understood in bacteria, here we
simply picked random pairs of sequences on the genome and
consider them to be neighbours.

How many pairs of points are to be drawn depends on
both the genome length and its degree of supercoiling. Con-
sider any given sequence on the genome. The number of
other sequences that are localized in its surroundings de-
pends on how densely packed the genome is. In a highly
supercoiled genome, for instance, all the sequences are very
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Figure 4: (a) For each pair of points that are candidate for a rearrangement to occur, a local alignment search is performed
between the surrounding sequences either in direct or indirect sense. (b) The searching zone is defined by 2 parameters: the
half length of the searching zone and the maximum slippage max shift authorized between the sequences. In the experiments
presented in this paper, we used values of respectively 50 for half length and 20 for max shift. (c) Solid line: probability
to find a sequence of the given score on a random sequence. Dashed line: the function prear(score) used to map scores to
rearrangement probabilities in our experiments.

tightly packed together so any sequence has many neigh-
bours and thus many rearrangement opportunities. We thus
introduced a specific parameter in the model, the “neigh-
bourhood rate” (µn), that expresses this degree of supercoil-
ing. The number of pair of points to consider for a possi-
ble rearrangement will then be given by L ∗ µn, with L, the
genome length in bp. Here, µn is a parameter defined for the
whole population and cannot change during its evolution.

For each candidate pair of points, a basic local alignment
search will be performed to determine the existence of simi-
larities between the surrounding sequences either in a direct
or indirect sense (figure 4(a)). To that end, we defined a sim-
ple scoring function (+1 per match, -2 per mismatch) that
allows us to quantify the similarity of two sequences1, and
associated each score to a probability of rearrangement. The
kind and number of rearrangements are computed thanks to
algorithm 2.

Preliminary experiments allowed us to adjust the func-
tion prear(score), that maps alignement scores to proba-
bilities of rearrangement. To favour homologous over non-
homologous rearrangements, alignment scores that are sel-
dom found on random sequences (high scores) are associ-
ated with very high rearrangement probabilities (homolo-
gous rearrangements). Low score alignments on the other
hand, are likely to result from contingency, and will hence
be given low probabilities of rearrangement (nonhomolo-
gous rearrangements). Figure 4(c) shows the probability
of finding an alignment of a given score on a random se-
quence as well as the function prear(score) we used in the
following experiments. This particular function yields a rea-
sonable tradeoff between homologous and nonhomologous

1Even though it is possible to allow for gaps within alignments,
the computation cost would be too important. Hence, in the exper-
iments presented here, no gaps were allowed.

rearrangements.

initial nb pairs← L ∗ µn

nb pairs← initial nb pairs
while nb pairs > 0 do

Draw 2 random positions pos1 and pos2
Draw type of rearrangement
if Inversion then sense← indirect
else sense← direct
Draw minimal alignment score using p−1

rear

Search Alignment(pos1, pos2, sense, min score)

if Alignment found then
Proceed to Rearrangement
Update L

end
nb pairs← nb pairs− 1
nb pairs← nb pairs

initial nb pairs ∗ L ∗ µn

end
Algorithm 2: Aevol Rearrangement Process Algorithm

Results
Our model being quite complex, our experimental methods
are very similar to those used in “wet” experimental evo-
lution. We let 60 populations of 1,000 asexual individuals
evolve during 20,000 generations in near identical condi-
tions where the only changing parameters were the mutation
rate (one common rate µm for the three different types of lo-
cal mutations, 4 values ranging from 5.10−6 to 1.10−4 were
tested) and the neighbourhood rate (µn, 4 values ranging
from 1.10−2 to 5.10−1). During the evolutionary process,
the organisms progressively acquire new genes by duplica-
tion and modify them in such a way that the whole gene
repertoire fulfills the task the organisms are selected for.
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All the simulations proceed qualitatively in a similar way,
evolving quickly in the first stage of evolution (rapid gene
acquisition mostly by duplication-divergence) then slowing
down the process of gene acquisition while optimizing the
sequence of existing genes and promoters.

In the experiments presented here, the rate at which re-
arrangements occur is not constant, it depends on both the
neighbourhood rate µn and on the presence of repeated se-
quences on the chromosome. It is hence free to evolve and
could well be selected for or against. Yet, despite this added
degree of freedom, the rearrangement rate remains a very
strong determinant of genome size and content (figure 5).
These results confirm those obtained with previous versions
of the model in which the rearrangement rates were direct
parameters of the model (Knibbe et al., 2007). Even with
homologous rearrangements, we find again that the sponta-
neous rate of rearrangement has a negative impact on fitness
(figure 5(d)) because it sets an upper bound on genome size
and hence on the number of genes (figure 5(c)). However,
rearrangements are also mandatory for evolution to be effi-
cient. An organism whose genome would have lost its ca-
pacity to rearrange would hardly be evolvable at all.
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Figure 5: (a) Average spontaneous rearrangement rates
observed for each simulation during the whole evolution.
(b,c,d) Genome Size, Genes Number and Metabolic Error
of the best organism after 20,000 generations for each simu-
lation, as a function of the spontaneous rearrangement rate.

Because homologies are created by rearrangements (du-
plications) and gradually destroyed by local mutations, there
must be some sort of complex interactions between the mu-
tation rate, the neighbourhood rate and the rates of both ho-

mologous and nonhomologous rearrangements.
The distribution of the scores of the alignments that led

to rearrangements (figure 6) can help us understand this in-
tricate relationship. If we consider this data vertically, we
can clearly observe that the proportion of homologous rear-
rangements is higher when the neighbourhood rate is high.
However, as we progress downwards, the distributions be-
have differently: while it remains nearly unchanged on the
left hand side, nonhomologous rearrangements become way
more frequent on the right. A noteworthy observation is
that there is a great variation in the number of rearrange-
ment events. In fact, it is not the number of nonhomologous
rearrangements that raises (it actually remains stable), but
rather the number of homologous rearrangements that col-
lapses when the neighbourhood rate decreases.

Figure 6: Distribution of the scores of the alignments that
caused a rearrangement to occur in the whole population
and during the entire evolutionary process, for each value of
µn and µm. Light grey: homologous rearrangements, dark
grey: nonhomologous rearrangements. For computational
performance reasons, the given values are minimal bounds
to the corresponding alignment score (cf. Algorithm 2).

The underlying phenomenon is best understood when
looking at the data in a top-left to bottom-right fashion.
One can then identify a phase transition between a regime
of mainly homologous rearrangements at high µn and low
µm, and a regime of almost exclusively nonhomologous re-
arrangements at low µn and high µm. In fact, for the possi-
bility of homologous rearrangements to be maintained along
the evolutionary process, homologies must be created (by ei-
ther homologous or nonhomologous duplications) at least as
fast as they are destroyed by local mutations. At high neigh-
bourhood rates, this condition is always achieved because
rearrangements are numerous. However, at low neighbour-
hood rates, the damage caused by local mutations can over-
come the creation of homologies and stall the whole process.
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The four histograms at the bottom of Figure 6 are hence
the most interesting. Within this line, throughout which
µn = 1.10−2, the change in rearrangement mode from
mainly nonhomologous to mainly homologous is particu-
larly clear when the spontaneous rate of small mutations
decreases. To better understand the dynamics of homolo-
gous/nonhomologous rearrangements, we further analysed
the simulations from the left hand side, that display both the
greatest proportion of homologous rearrangements (within
the bottom line) and, interestingly, the best final fitness of
all parameter sets. For the three runs of this parameter set
(µn = 1.10−2 and µm = 5.10−6), we kept track of the fam-
ily ties during the evolution. We then retrieved the line of
ancestry of the final best individual and analyzed the muta-
tional events that occurred on this successful lineage. Except
for those that occurred during the very last generations, the
events on this lineage are those that went to fixation, either
by selection or by genetic drift. In addition, every other 10
generations, we used the standard bioinformatic tool Mum-
mer (Kurtz et al., 2004) to find the most significant repeated
sequences in the ancestral genome. Mummer uses an ap-
proach similar to that of BLAST, it first searches for exact
short repeats and then tries to join them together, allowing
for gaps and mismatches. An example of Mummer output is
shown in Figure 7. In this example, there are both direct and
inverted repeats, and most of the repeated sequences are lo-
cated in non-coding parts of the genome. This suggests that
non coding DNA plays a major role in genome evolvability
by providing breakpoints for chromosomal rearrangements.
The emergence of repeated sequences having little or no di-
rect impact on fitness has already been observed in genetic
programming (Langdon and Banzhaf, 2008) though in that
particular case, these repeated sequences could be thought
to participate in robustness rather than evolvability.

Figure 8 shows the results of the analysis of the whole
lineage of ancestors. It shows that fitness improvements
are strongly correlated with the presence of repeats in the
genome and, consequently, with the occurrence of chromo-
somal rearrangements. The impact of chromosomal rear-
rangements on evolvability is thus rather complex: on the
one hand, a very high rate of spontaneous rearrangements
has a negative impact on the final fitness (Figure 5(d)), but
on the other hand, in these simulations where the rate was
low and the final fitness high, we find that the presence of
rearrangements is correlated with fitness improvement (Fig-
ure 8). This suggests that a minimal amount of chromosomal
rearrangements is required for evolution to be efficient.

A closer look to the rearrangements that went to fixation
in these simulations (see Figure 9) reveals that (i) most of
the fixed rearrangements were based on homologous break-
points (score > 40), (ii) most of the fixed translocations and
inversions were neutral, (iii) most of the fixed deletions were
beneficial and (iv) most of the fixed duplications were dele-
terious. This last result is surprising at first sight: one would
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Figure 7: Example of Mummer “dot plot” for the best in-
dividual at t = 2000 generations, for µn = 10−2 and
µm = 5.10−6, seed 2. Both the x- and the y-axis represent
the genome of this individual. Long and strongly similar se-
quences appear as runs of diagonal lines across the matrix
(exact match length = 15 bp, min. cluster length = 200 bp,
max. gap between adjacent matches = 6 bp). Grey areas:
coding sequences.

expect fixed events to be mostly neutral or beneficial. Our
hypothesis is that despite their immediate negative impact,
duplications can be indirectly selected because they allow
for the creation of new gene copies (which can then undergo
small mutations and ultimately realize new functions) and
new repeats (which can then mediate other rearrangements).

Conclusion
These experiments of in silico evolution with similarity-
based rearrangements confirm our previous results regarding
the influence of rearrangements on genome compactness. In
large genomes, repeated sequences (located mostly in non-
coding regions) promote rearrangements that are, most of
the time, deleterious. There is thus an indirect selective pres-
sure to limit the number of rearrangements, which is done by
eliminating repeats (fewer homologous rearrangements) and
by reducing genome size (fewer nonhomologous rearrange-
ments). However, we have also shown that the absence of
rearrangements is correlated with fitness stasis, suggesting
that rearrangements can sometimes be directly beneficial or
provide appropriate genetic background for subsequent ben-
eficial mutations. A minimal amount of rearrangements is
thus required for evolvability. Here, most of the rearrange-
ment kept by evolution are homologous ones. For them to be
possible, repeats must be created at least as fast as they are
destroyed by small mutations. In the end, the best conditions
for evolvability seem to be a small basal rate of nonhomolo-
gous rearrangement combined with a low-enough mutation
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Figure 8: Analysis of the line of ancestry of the final best
individual for µn = 10−2 and µm = 5.10−6. First row:
evolution of the fitness (the smaller the distance to the tar-
get, the higher the probability of reproduction). Second row:
evolution of the number of mutational events, by windows of
500 generations. Third row: number of alignments found by
Mummer on the genome (parameters: see Figure 7).

rate, thus leading to a few stable repeats and to an interme-
diate degree of variability by homologous rearrangements.
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Abstract

In this paper we propose a new computational model of
cell cycle to study the dynamics of cells population in 2-
D monolayer culture. Whereas most of the models are
phase-orientated our model deals with a checkpoint orien-
tated paradigm and uses the phase orientation as an output
to provide the biologists with a relevant view of the simula-
tion result. Through this paper we will present the genericity
of our model, able to reproduce the exponential growth phase
of different cellular processes.

Introduction
Exploring, designing, understanding the complexity of the
living world is of tremendous importance. The accurate as-
sessment of its malfunction, especially those related to hu-
man diseases is a high stake venture. In silico simulation
provides new means of studying and exploring living sys-
tems. In complementarity with experiments or when they
are difficult to address in vitro, virtual environments can
prove to be of interest. The latest computation capacity
explosion allows us to tackle these questions with new ap-
proaches and new methods. System modelling may there-
fore use fitted methodologies to represent living systems at
a systemic level. To this aim, the bottom-up approach tends
to be the general paradigm for system modelling, focusing
on each functional component of the system and in their in-
teractions.

Cancer is often considered as the result of perturbation in
cell cycle regulation associated with mutations that can ap-
pear in key regulators that result in abnormal proliferation,
leading to tumorogenesis. Increasing the understanding of
the cell cycle control is therefore central in cancer research
and there are high issues in finding new regulatory mecha-
nisms. The pharmacological issues foreseen with the in sil-
ico simulation of cellular systems let think that prospective
research of new therapies could be addressed in silico.

In the different fields of computational and molecular bi-
ology, the focus on aspects of the cell cycle differs. Molecu-
lar biology models focus on the modelling and simulation of
the molecular regulatory network of cycline-dependent ki-
nase (CDK) (Novak and Tyson, 2004). These models can

be classified into two kinds of models, the discrete and the
continuous. Continuous models basically describe the evo-
lution of concentration of proteins using a set of ordinary
differential equations, whereas discrete models focus on the
activation state of each regulatory protein thanks to a prede-
fined genetic regulatory network (GRNs) (Kauffman, 1969;
Chavoya and Duthen, 2008). These models have been com-
monly used to simulate the cell cycle in yeast (Chen et al.,
2004; Novak et al., 2001), frog eggs (Novak and Tyson,
1993; Pomerening et al., 2005), fruit flies (Calzone et al.,
2007) and different mamalians cells (Aguda and Tang, 1999;
Singhania et al., 2011). These models are molecular-based
models and do not account for behavioural considerations at
a macro-level, their aims being to focus on the regulatory
mechanisms.

The other family of models used to simulate cell prolifera-
tion are called Individual Cell-Based Models (IBMs) (Loef-
fler and Roeder, 2004). These are a subset of the agent-based
models. Agent-based models have mainly proved their rel-
evance in the simulation of different complex systems from
social networks to the social behaviour of hive insects. Basi-
cally, individual cell based models come under two classes:
cellular automaton (CA) models and off lattice models. On
the one hand, CA are described by a discretization of the
proliferative environment in 2-D/3-D evolution grid, and the
cell shape is reduced to a lattice site. In this case, cell be-
haviour is composed of the different update rules set up (Pa-
tel et al., 2001; Moreira and Deutsch, 2002) . On the other
hand, off-lattice models have the advantages of letting evolv-
ing cells in a continuous media with continuous shapes.
They can introduce topological aspects based on in vitro ob-
servation or knowledge. This involves high stakes for some
investigative considerations. The IBMs have been success-
fully used to study the pattern formation in multicellular
cultures (Galle et al., 2005; Gerlee and Anderson, 2007),
avascular tumour growth (Hoehme and Drasdo, 2010) and
the spatio-temporal organisation of tissues (Meineke et al.,
2001; Drasdo and Loeffler, 2001). These models generally
consider the cell cycle as a single time unit decision and the
update frequency is the global scheduler of the cell cycle.
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Basically, this representation does not allow any considera-
tion on the cell cycle phases.

Moreover, IBMs and hybrid representations with GRNs
have been widely use in Artificial Life to study the mecha-
nisms of morphogenesis (Cussat-Blanc et al., 2010; Doursat,
2006). In these studies the cell cycle has to be seen as the
cell behaviour with a bio-inspiration paradigm.

Whereas molecular-based models well express the dy-
namics of advancement of cells in each phase of the cell
cycle, the individual-based models often do not, due to their
description of the cell cycle. Expressing these dynamics re-
veals interest to simulate some in vitro culture where ex-
ternal compounds are introduced to study their effect in the
dynamics of advancement. In this work, our goal is to simu-
late as closely as possible the population response to an ex-
ternal stress expressing the dynamics of progression of the
cells at a population scale. For that purpose, we use the sim-
plicity of IBM representations to describe the cellular be-
haviour and to introduce temporal considerations thanks to
an accurate description of the cell cycle. This approach leads
us to build an hybrid representation of the cell cycle with a
hand coded regulation network and probabilistic-based cel-
lular processes. In this paper we will show the preliminary
results obtained simulating a particular stage of the cell’s
population dynamics: the exponential growth phase, allow-
ing us to focus on the population dynamics for the sequenc-
ing of the different phases.

The following sub-section presents the biological back-
ground of this study. Section 2 extends the model proposed
in (Pascalie et al., 2010), presenting its computational as-
pects with a formal representation. Section 3 shows prelim-
inary results of cell proliferation in an exponential growth
phase. Finally, the last section concludes and discusses the
problem of parameters tuning based on the results presented
in section 3.

Biological Background
The cell cycle is often drawn as a circular timeline with dif-
ferent phases starting in G1 and ending at mitosis when a
cell divides into two daughter cells. The study of the cell
cycle by the biologists puts major emphasis on the essen-
tial role of the checkpoints (Elledge, 1996). They are the
warrants of the cell’s genomic stability and their integrity
ensures a good progression on the cell cycle timeline. By
the end of the G1-phase, at the commitment point (R), the
cell integrates environmental signals before proceeding to-
wards the G1/S transition. A lack of these signals will lead
the cell to enter a quiescent (G0) state. If pro-apoptotic sig-
nals are detected the cell will undergo death, called apopto-
sis. Alternatively, differentiation signals will drive the cell
out of the cell cycle to a differentiation programme. If the
cell progresses in the cell cycle, it must duplicate accurately
all its internal material (DNA, centrosome etc) and double
its mass before preparing for division. Before entering into

S-Phase where DNA synthesis occurs, the cell must check
for the integrity of its genetic material. This is called the
G1/S DNA integrity checkpoint. Providing that DNA syn-
thesis is fully completed, the cell switches to G2-phase and
it finishes doubling its mass. During S-phase and G2-phase,
centrosome duplication and maturation occurs thus building
the two platforms that will allow the assembly of the mitotic
spindle required for mitosis to occur. However, before pro-
ceeding from G2 to mitosis, the cell must ensure the integrity
of its genetic material again. This is called the G2/M check-
point. At mitosis, when cells are dividing, in order to ensure
even segregation of the genetic material in the two daughter
cells, the mitotic checkpoint (iM) prevents division until the
chromosomes are perfectly aligned on the equatorial plan.
Any alteration in these checkpoint mechanisms (for instance
a mutation in a key regulator) leads to a genetic instability
often associated with transformation and cancer. For these
reasons it is essential to integrate checkpoints as artefacts
(or essential milestones) of our simulation model. Figure 1
shows a cartography of the cell cycle with the localisation of
each cellular processes and checkpoint.

Modelling Cell Behaviour
This work focuses on the temporal behaviour of cells and
the different regulatory mechanisms (i.e the checkpoints) are
emphasized to study their influence over population scale.
This problematic drives the modelling process. For that pur-
pose, the cell cycle specificities are described and embedded
in our representation as closely as possible to in vitro cell
cycle.

The study of the cell cycle points out the cleavage be-
tween the functional level and the regulation level. Simula-
tion models often focus on one of these aspects, however the
effective cell behaviour depends on the interaction between
these two levels. In fact, the changes made on the cell’s in-
ternal state by the functional level (e.g. doubling the DNA)

G1/S G2/M iM

DNA Synthesis

Centrosome Duplication

MitosisInitialisation
Growth

Differentiation
Quiescence

Apoptosis

DNA Repair DNA Repair

G1 S G2 M

R

Figure 1: Localization of different cellular processes and
checkpoints on the cell cycle timeline. Red simple-lined
boxes represent checkpoints with iM being the intra-mitotic
one; blue dotted boxes are processes that could be executed
during the associated checkpoint; in black with arrows are
represented the different processes executed during the cell
cycle; the ringed R is the commitment point, another regu-
lator, and the green double-dotted box represents the three
exiting points
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Initialisation

commitment growth

DNA synthesis

centrosome duplication

G0

R G1/S

G2/MiM
mitosis

Figure 2: The defined regulators are connected to each other
to build a finite state machine (FSM) which embed the reg-
ulatory mechanisms of the cell cycle. The schema also in-
dicates in which position of the FSM are executed each pro-
cesses.

drive the cell on a specific regulatory pathway. To represent
these mechanisms and their interaction with the best accu-
racy possible it is necessary to observe and describe both
levels in a cell cycle accurate modelling.

The two next parts will first present how we designed the
cellular behaviour and its computational implementation.

Cell Cycle Instance
The behaviour of the cell described in the introduction in-
duces a split in sub-behaviours which represents specific
cellular processes. The good sequencing and scheduling of
these processes is therefore managed by the different chek-
points and/or regulators clarified above.

Figure 2 shows the network of regulators we have defined
to manage the cell behaviour at a high level. The cell starts
its lifecycle with as first goal to try to pass the restriction
point (R). The cell cycle is therefore defined by the R =⇒
G1/S =⇒ G2/M =⇒ iM sequence of regulators. This
pathway ends with the mitosis of the cell and represents the
proliferative behaviour of the cell.

This modelling approach allows us to build a generic cell
cycle model which could be used to design specific cells by
instantiating specific checkpoints and processes. The fol-
lowing list describes the different cellular processes we de-
signed in this study. These cellular processes have to be seen
as the behaviour of the cells during the transition between
two nodes:

• Initialisation: this action matches the G1-phase of the
cell cycle. All cells starting their cell cycle observe this
phase, which culminates at the R restriction point. During
this phase, the cells have not yet been committed to pro-
liferation, differentiation nor entry into quiescence. This
process is more a delay prior to commitment point (R)
than a cellular process.

• Commitment: this action is the planning behaviour of
the cell. It occurs when the cell has ended its initialisation

and when it decides which behaviour it will execute.

• DNA Synthesis: this activity represents the S-phase of
the classical cell cycle. It starts at the end of DNA repair
- if necessary - when DNA integrity has been verified at
the G1/S transition. During this action the cell replicates
its DNA.

• Growth: this action represents the cell’s mass doubling.
It starts at the beginning of the S-phase and ends during
the G2-phase.

• Centrosome Duplication: this action represents the du-
plication of the centrosome. It occurs simultaneously with
Growth during the S- and G2-phases.

• Mitosis: it is the last action of the cell cycle. It requires
prior checking of genomic activity at the G2/M transition.
If all pre-conditions are met, mitosis occurs in the final
stage of the cycle and ends with the beginning of the two
new cycles of the daughter cells. Completion of mito-
sis requires chromosome alignment at the equatorial plan
(mitotic checkpoint).

A cell is thus considered to be in G1 phase until it has
passed the G1/S checkpoint (if it is executing initialisation
or commitment activities to be precise). A cell is considered
in the S-phase while it is executing DNA synthesis regard-
less of growth and centrosome doubling. Therefore the cell
is considered in the G2 phase when it has ended its DNA
synthesis and while it is ending its growth and its centro-
some doubling.

The proliferation is not the only behaviour observable in
this model. The regulatory network presents alternative be-
havioural functions of the pathway followed by a cell:

• Differentiation represents one of the exit points of the
cell cycle. If specific conditions are met the cell will dif-
ferentiate. This exiting point is available at the R node
(Restriction Point) of the regulatory network.

• Quiescence, also named G0-Phase, is an active survey
loop used when environmental factors are insufficient for
the cell proliferation. The quiescent cells are able to re-
turn to the cell cycle at any time if the growing conditions
are met. This alternative behaviour occurs when the cell
is at the G0 node.

• Apoptosis represents cellular death. Apoptosis happens
if apoptotic factors or signals are delivered to the cell or
if the cell spends too much time in a specific stationary
situation of its cell cycle. Apoptosis can occur at any time
of the cell cycle.

To process the cell behaviour, the regulators (i.e the nodes
of the network) are composed of a list of activities along
with the preconditions of their activation. The regulators are
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global schedulers for the cell cycle and have the same role
as the checkpoints in real cells. They regulate the cell cycle
and activate the different processes if their preconditions are
fulfilled. If several activities are activated at the same time
the cell executes them simultaneously. The preconditions
are two sets of boolean flags:

• one representing the internal state of the cell or its
disponibility of environmental factors,

• the other indicating which activities are done; under
progress or planned.

The following list presents the different regulators we de-
fined in our computational cell cycle model:

• The R commitment point: cell has to choose between
commitment to the proliferation pathway, the quiescent
stage, or the differentiation process.

• The G1/S checkpoint: here the cell checks its DNA for
lesions. If lesions are found, the cell repairs them or else
it starts DNA Synthesis, Growth and Centrosome cycle.

• The G2/M checkpoint: to pass through this checkpoint
the cell must have replicated its DNA, should not have de-
tected any DNA damage, have duplicated its centrosome
and doubled its mass.

• The intra-mitotic checkpoint: to pass this checkpoint
and to divide into two daughter cells, the cell needs to
have aligned its chromosomes on the mitotic plan and
placed its centrosomes on the mitotic spindle poles.

• The G0 regulator: we choose to model the G0 state as
a regulator because it represents an active survey loop of
environmental factors for proliferation. In order to uncor-
relate the cell functional level and its regulation, we con-
sider this particular state as a regulatory element of our
cell cycle model.

DNA repair has also been added as an activity to include
and study the influence of the timings of DNA damages re-
pair.

Computational Model
A natural population of cells presents heterogeneous fea-
tures. Owing to the variability of the duration of each cell
cycle phase, two cells born at the same time will not di-
vide simultaneously even if environmental conditions were
equivalent. This property is extracted from in vitro cultures.
To represent this heterogeneity we choose to let the parame-
ters embedded in each cell be generated according to a distri-
bution law. Our cell cycle model is thus defined to produce
a population of a specific cell type and not a single cell. If
the population of cells was only represented as a population
of clones of a given cell, the dynamics of the cell population

would suffer from phasing in the sequencing of the different
phases, each sister cell going to division at the same time.

To represent the cellular activity in a temporal manner and
remain at a macroscopic level of representation 1, we based
the cellular process modelling on their scheduling. In this
context, 3 parameters are used for each cellular process i:
the optimal time of realisation, the maximum time before it
eventually results in cell death, and the probability of suc-
cess. A cellular process i is thus modelled using the follow-
ing parameters:

• the average optimal time of a process i: µiavg ∈ R+

• the standard deviation at the population scale of the aver-
age optimal time: σiavg ∈ R+

• the average maximal time of a process i: µimax ∈ R+

• the standard deviation for the average maximal time:
σimax ∈ R+

• the probability of success for the process i, P is ∈ [0; 1],
which has to be interpreted as an efficiency potential.

To integrate the population heterogeneity the previous pa-
rameters are defined for a population. Using these param-
eters, we generate a set of parameters which are used for
the computation. Our processes are represented over time as
Bernoulli processes. The average optimal time determines
the number of successes needed to consider the process as
achieved. The success rate is used to define the probability
of success of one trial.
We can then specify for a given cell and a specific process i:

• the optimal time to finish the process i:

T iopt ∼ ℵ < µiavg, σ
i
avg >

• the maximal time to finish the process i before death:

T imax ∼ ℵ < µimax, σ
i
max >

These parameters are chosen to vary over the population
thanks to a normal law that follows the probability density
function with µ as mean and σ as standard deviation:

∀t ∈ R, φ(t, µ, σ) = 1
σ
√
2π

exp−
1
2 (
t−µ
σ )

This definition does not allow a zero valued σ. To ensure
the availability of building simulation without heterogene-
ity, a standard deviation set up to 0 affects the specified µ
as the value of the parameter for all the cells of the popula-
tion. This kind of parametrisation could be used to compare

1we do not want to model molecular interaction nor the genetic
regulatory network yet
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Figure 3: Example of the configuration of mean probabilities for a given process with variation of the probability p with
different values of the standard deviation σ. The mean value for the process is defined with µ = 10. (a) σ = 1.5. (b) σ = 3.5.
(c) σ = 6.5

the influence of the different parameters or to study specific
abstract behaviours.

These generated parameters help us to customise the
Bernoulli process, which takes place to compute cellular ac-
tivity. Parameters that have to be defined to map the cell
model on the computational model are the frequency of the
Bernoulli experiences over time. This frequency will allow
us to have an accurate temporal model of cells behaviours,
allowing the modeller to express heterogeneity regardless of
the duration of the cellular process. The last parameter that
needs to be defined to end this mapping is the duration of
a simulation step. This has to be done during the setup of
a specific simulation and not during the cell modelling be-
cause the cell model must be as scalable as possible beside
the simulation step. The Bernoulli process i taking place to
simulate a cell behaviour is parametrised as follows:

• the number of successes a cell has to reach to consider its
process i as well terminated: nis ∈ N,

• the probability of success for the bernoulli experience of
the process i: P is ∈ [0; 1],

• the maximum number of attempts to reach nis successes:
nimax ∈ N.

To help the biologist in cell cycle modelling it is important
to provide him with a representative view of the parameter’s
influence. In this case, formal representation can help us to
give a relevant view of the initialisation population. As the
temporality of the cell’s activities is at the centre of the mod-
elling process, the mean probability of success over time is
defined so as to characterise the dynamics of the population
over time.
The probability of success in a specific process i, at the k-th
trial with the probability p, for a specific cell is given by the

negative binomial law:

∀k ∈ N,∀p ∈]0; 1[

Λ(k;n = T im, p = P is) = Cn−1n+k−1.p
n.(1− p)k

This law models the probability of failure (resp. success)
that can appear before reaching a number of successes (resp.
failures) defined by n with each attempt associated with a
probability of success p. More generally the probability of
success of a process i for a given cell is given by the reparti-
tion function applying to the maximum number of attempts
T imax:

Ps(k = T imax) = 1− qk+1
n−1∑
i=0

CiK+i.p
i

The generalisation of the previous equations at a popu-
lation scale needs to take into account the distribution of
the parameters of the binomial law. The following equation
computes the mean probability of success of the process i at
a given Bernoulli trial k with µ:

∀k ∈ N;∀µ, σ ∈ R+;∀p ∈]0; 1[

Φ(k, µ, σ, p) =
1

k

k∑
i=0

P (i, µ, σ) ∗ Λ(k − i; i, p)

Figure 3 shows the interpretation of the previous equa-
tion. It can be observed that a high granularity of represen-
tation for the different cellular processes is offered to the
biologists. This granularity gives to the model its genericity
properties. The next section presents the preliminary results
obtained with an abstract model of cell cycle based on in
vitro observations.

Simulation of Cells in exponential growth
phase

In this paper we will study the dynamics of the cell popula-
tion in an exponential growth phase. In this part we will take
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Figure 4: example of unconstrained cell development for different variability. In (a), figure shows that the system is phasing
because of a too weak standard deviation over the population. Figure (b) shows the phasing pattern attenuating itself thanks to
a higher variability on the G1 phase. Increasing more the standard deviation induces a flattening of the curve and a constant
evolution in each phase over time which matches with in vivo properties.

advantage of specific features of cell proliferation that allow
strong simplification of the environment. Indeed, during ex-
ponential growth phase, cell proliferation is not inhibited by
environmental signals, the environment being saturated in
growth factors. This property allows the simplification of
the chemical aspects of the environment, dispensing it with
diffusion algorithm and chemical reactions.

The other inhibition factor undergone by the cells is the
contact inhibition. It is not observed, in an exponential
growth phase. This specificity allows us to dispense the en-
vironment and the simulation with physical consideration.
The cells do not have shapes and they do not need to interact
with each other. As our goal is to study the dynamics of the
population and not its topological aspects, these simplifica-
tions are adapted to this first step.

In an exponential growth phase, the cell proliferation re-
veals that the ratio of cells in each phase (G1,S,G2,M) of the
cell cycle remains constant over time. This property must be
expressed in our model before testing the immersion of cells
in a complex environment. To test this, an abstract model
of cell behaviour based on the HCT116 cell (a colon cancer
cell line often used by biologists for in vitro studies) lineage
was designed. Experimentally, we have determined, by flow
cytometry analysis, that in in vitro culture conditions, these
cells spend 81% of their cycle in G1-phase, 10% in S-phase,
7% in G2-phase and 2% in Mitosis, for a global duration of
the cell cycle of 18 hours. These measures are used to set up
the Topt value of the different activities.

These percentages also correspond to the distribution of
cells in the different phases of the cell cycle. These parame-

ters determine the initial distribution of the cells for the sim-
ulation. It should remain constant over time if the cell model
is generic enough and if the designed population is hetero-
geneous enough.

Figure 4 shows exponential growth simulations executed
with different values for the standard deviation σmax . Those
results are the average of 10 runs with the same parameters.
It is important to specify that even though the random gener-
ator seed is not the same from one run to another the stability
of the simulation results is not affected.
Curves (a) show the dynamics of the population with an ho-
mogeneous population of cells. We can observe that the dy-
namics of the population oscillates between each phase and
that the initialisation pattern reproduces itself over time.
Curves (b) show a simulation where the variability of the
initialisation action and of the commitment action have been
increased. The initialization pattern is still present but we
can observe that it is attenuating over time. This is essen-
tially due to the fact that, after a cell division, all temporal
parameters are reinitialise in daughter cells.
Curves (c) show the result of a 2-D culture with a high vari-
ability of initialisation and commitment action. The evolu-
tion of the population in each phase is constant over time.
The heterogeneity of the population is high enough to main-
tain a constant rate in each phase.

In order to evaluate the heterogeneity of the population,
the second experiment consists in taking only cells in mito-
sis from a population and to observe the desynchronisation
of that population over time. Figure 5 shows, with the same
parameters as in the previous experiment, the development
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Figure 5: Example of population unsynchronisation, we can observe on the population growth curve the different steps before
reaching a power law, if the simulation had lasted longer the dynamics of the population would have remained constant. (a)
No unsynchronisation is observed because of homogeneous population. (b) and (c) The attenuation pattern is function of the
degree of variability introduced in the simulation.

of a 2-D culture with all the initial population synchronised
in the mitosis phase. The cells are not synchronised in a
temporal manner, this means that they will not divide at the
same time except in the first population which is homoge-
neous. As previously, the experiment (a) with fixed temporal
value does not unsynchronise over time. The second experi-
ment (b) shows that the population unsynchronises over time
but that the phasing pattern needs more than 7 or 8 cycles to
unsynchronise whereas in the third experiment (c) it losts
synchrony by the end of the fourth cycle. More generally,
if the cell population is heterogeneous enough, whatever the
parameters of initialisation are, the dynamics of the popula-
tion will balance itself until it observes a constant evolution
over time.

Conclusion
These preliminary results point out that the model can re-
produce the dynamics of cell proliferation in an exponential
growth phase. What becomes apparent is that the model -
and more globally the simulations - is difficult to tune be-
cause of the high number of parameters. The main difficulty
of tuning is related to undimensional parameters that cannot
be defined with values measured with in vivo experiments.
In the proposed model there are two kinds of parameter sets.
The first one is the set of the known biological parameters.
It is the set of the parameters that can easily be tuned thanks
to biological knowledge or measurement. The other set con-
tains some control parameters, which are difficult to tune
because they define a global dynamics for the system. The
influence of the different values is not predictable, there-
fore predicting the influence of the different combinations

becomes difficult.
We propose a strategy to validate the cell cycle models

before it. The in vitro observation of cells exergues that the
ratio of each cell phase during an exponential growth is con-
stant. With this piece of information, the ratio of cells in
each phase and the global duration of the cell cycle, the op-
timal duration for each activity can be deduced. The Topt
parameter is thus easily definable for each activity. The dif-
ferent Tmax parameters could also be defined thanks to in
vitro observation. As shown in the modelling section, we
need to set up the standard deviation to build a heteroge-
neous population of cells. These values do not have a bi-
ological representation concerning a cell model and fitting
them is difficult. The first step of the modelling process con-
sists in tuning these parameters to obtain a simulation with
a constant evolution of the ratio of cells in each phase.

To help the biologists in this process a dedicated tool is
built for cell cycle modelling. This tool offers to the biolo-
gists a means of visualization for the duration of each activ-
ity, taking into account its different parameters. The mod-
eller can then adjust his parameter values in function of his
knowledge of the temporal behaviour of the cell cycle being
designed.
Figure 3 shows the kind of output offered by this tool. In
this case the output is average duration of a dedicated ac-
tivity function of its Topt value and its rate of success. The
modeller should use this feedback to adjust the different pa-
rameters until the different values suit his purpose.

The second step of the modelling process is to repro-
duce the experiment of mitosis unsynchronisation to verify
if the population is not too heterogeneous. The expected be-
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haviour of a population of cells in this kind of simulation can
be extracted from in vitro culture. In other words, the mod-
eller is able to define the number of cycles needed to observe
a constant evolution in each phase. If the heterogeneity of
the population is too high the unsynchronisation will occur
too early in the simulation and further experiments would be
biased by this behaviour.
The sequential aspect and the properties of the model sug-
gest that this modelling protocol could be automatised. In
further work we could try to express the different prob-
abilities of transition between the different phases (i.e
G1,S,G2,M) and try to find the best set of standard deviation
parameters for an expected simulation result i.e a constant
evolution of the ratio of cells in each phase.

The simplified environment will shortly be extended to a
2-D continuous environment and, finally, to a 3-D continu-
ous environment. This will allow to reach the final aim of
simulating the spatial organisation of multicellular tumour
spheroids. As an intermediate step, all the 2-D monolayer
classical experiments done in vitro will be reproduced in sil-
ico. This step will evaluate the response and the influence
of the physical model by comparison between the results of
the simulation with the proposed simplify environment and
in vitro experiments.
Precisely, this 2-D prototype will be validated by evaluating
the convergence of in vitro experiments and in silico sim-
ulation with specific scenarii. For example, we will use the
following validation experiments: cell cycle synchronisation
through a lack of environmental factors (arrest in G0); cell
cycle synchronisation using a procedure known as double
thymidine block (arrest at G1/S); application of a compound
targeting the assembly of the microtubules (arrest at mito-
sis); etc.
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Abstract

Gene expression is commonly modulated by a set of regu-
lating gene products, which bind to a gene’s cis-regulatory
region. This region encodes an input-output function, re-
ferred to as signal-integration logic, that maps a specific com-
bination of regulatory signals (inputs) to a particular gene
expression state (output). The space of all possible signal-
integration functions (genotypes) is vast and highly redun-
dant: for the same set of inputs, many functions yield the
same expression output (phenotype). Here, we exhaustively
characterize signal-integration space within a computational
model of genetic regulation. Our goal is to understand how
the inherent redundancy of signal-integration space affects
the relationship between robustness and evolvability in reg-
ulatory circuits. Among a number of results, we show that
robust phenotypes are (i) evolvable, (ii) easily identified by
random mutation, and (iii) mutationally biased toward other
robust phenotypes. We then explore the implications of these
results for mutation-based evolution by conducting an ensem-
ble of random walks between randomly chosen source and
target phenotypes. We demonstrate that the time required to
identify the target phenotype is independent of the properties
of the source phenotype.

Introduction
Living organisms exhibit two seemingly paradoxical prop-
erties: They are robust to genetic change, yet highly evolv-
able (Wagner, 2005). These properties appear contradictory
because the former requires that genetic alterations leave the
phenotype intact, while the latter requires these alterations to
be used for the exploration of new phenotypes. Despite this
apparent contradiction, several empirical analyses of living
systems, particularly at the molecular scale, have revealed
that robustness often facilitates evolvability (Bloom et al.,
2006; Ferrada and Wagner, 2008; Isalan et al., 2008). In the
cytochrome P450 BM3 protein, for example, increased pro-
tein stability — defined as the tendency of a protein to adopt
its native structure in the face of mutation — increases the
probability that mutants can exploit new substrates (Bloom
et al., 2006).

To clarify the relationship between robustness and evolv-
ability, several theoretical models have been proposed (e.g.,
Newman and Engelhardt (1998); Wagner (2008a); Draghi

et al. (2010)). A common feature of these models is the
concept of a genotype network (a.k.a. neutral network).
In such a network, each node represents a genotype and
edges connect genotypes that share the same phenotype
and can be interconverted via single mutational events. In
the case of RNA, for example, nodes represent DNA se-
quences and two nodes are connected if their corresponding
sequences confer the same secondary structure, yet differ
by a single nucleotide (Schuster et al., 1994). Large geno-
type networks thus correspond to robust phenotypes, where
most mutations are neutral and therefore leave the pheno-
type unchanged. Phenotypic robustness confers evolvabil-
ity because a population can diffuse neutrally throughout
the genotype network (Huynen et al., 1996) and build up
genetic diversity, which allows access to novel phenotypes
through non-neutral point mutations into adjacent genotype
networks (Wagner, 2008a).

Genotype networks have been used to explore the rela-
tionship between robustness and evolvability in a variety of
biological systems, ranging from the molecular (Schuster
et al., 1994; Cowperthwaite et al., 2008; Ferrada and Wag-
ner, 2008; Wagner, 2008b) to the cellular level (Aldana et al.,
2007; Ciliberti et al., 2007a,b; Mihaljev and Drossel, 2009).
In the latter case, the phenotype of interest is typically a
gene expression pattern and its corresponding genotype is
a gene regulatory network, which consists of a structured
set of gene products that activate and inhibit one another’s
expression. Gene expression is controlled by a gene’s cis-
regulatory region (Fig. 1A), which can be thought to per-
form a computation (Fig. 1B), using the regulating gene
products as inputs. The regulatory program that encodes this
computation is referred to as signal-integration logic.

Previous studies of the robustness and evolvability of gene
regulatory networks have focused on the specific case where
genetic perturbations alter network structure by adding or
deleting regulatory interactions (Aldana et al., 2007; Cilib-
erti et al., 2007a,b; Mihaljev and Drossel, 2009). In this case,
two gene regulatory networks are connected in the genotype
network if they confer the same gene expression pattern, yet
differ in a single regulatory interaction. The correspond-
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ing genotype network is therefore a “network of networks”
(Ciliberti et al., 2007b). These analyses have revealed sev-
eral general properties of gene regulatory networks. First,
robustness is an evolvable trait (Ciliberti et al., 2007b; Mi-
haljev and Drossel, 2009). Second, phenotypes are made up
of vast genotype networks that span throughout the space
of all possible genotypes (Ciliberti et al., 2007a; Mihaljev
and Drossel, 2009); and third, highly robust phenotypes are
often highly evolvable (Aldana et al., 2007; Ciliberti et al.,
2007a).

While these studies have helped to elucidate the relation-
ship between robustness and evolvability in gene regulatory
networks, they are limited by their assumption that genetic
perturbations primarily affect network structure. It is well
known that the presence or absence of regulatory interac-
tions is not the only determining factor of gene expression
patterns (Setty et al., 2003; Mayo et al., 2006; Kaplan et al.,
2008; Hunziker et al., 2010). By altering the arrangement
of promoters and transcription factor binding sites (Fig. 1A,
shaded boxes) in a gene’s cis-regulatory region, the signal-
integration logic of gene regulation can be dramatically in-
fluenced. For example, by simply rearranging the location of
transcription start sites in the promoter region of a reporter
gene in the galactose network of Escherichia Coli, it is pos-
sible to generate 12 out of the 16 possible Boolean outputs
(Hunziker et al., 2010). Thus, it is not only the structure
of regulatory interactions that affects robustness and evolv-
ability, but also the logic of signal-integration used in the
cis-regulatory region of each gene. When genetic perturba-
tions correspond to changes in the signal-integration logic,
two gene regulatory networks are connected in the genotype
network if they are topologically identical and confer the
same gene expression pattern, yet differ in a single element
of their signal-integration logic. The extent to which genetic
perturbations in the signal-integration logic of gene regu-
latory networks affect robustness and evolvability remains
largely unexplored. Further, the ease with which a pheno-
type is accessed by blind mutation, and how this relates to
robustness and evolvability in the signal-integration logic of
gene regulation, has not been addressed.

Here, we investigate the relationship between robustness
and evolvability in the signal-integration logic of model
gene regulatory circuits. These small circuits are ideal for
this investigation because their genotype networks are ex-
haustively enumerable, which allows for a full characteri-
zation of the relationship between robustness and evolvabil-
ity. To understand how robustness and evolvability influ-
ence mutation-based evolution, we conduct an ensemble of
random walks between randomly chosen source and target
phenotypes. We discuss the implications of our results and
present directions for future work.
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Figure 1: (A) Schematic of genetic regulation, where gene
products a and b serve as regulatory inputs, attaching to
their respective binding sites (gray shaded boxes) in the cis-
regulatory region of gene c to influence its expression. The
input-output function encoded in this regulatory region is
called signal-integration logic and can be modeled as (B)
a discrete function that explicitly maps all of the 2z input-
output combinations of a z-input function. Here, z = 2.
(C) All interactions between gene products a, b, and c can
be represented as a Random Boolean Circuit (RBC) with
N = 3 nodes. Gene product c possesses the same regula-
tory inputs and signal-integration logic as in (A) to clearly
depict how the RBC abstraction captures genetic regulation.
(D) The signal-integration logic of every node in the RBC
can be simultaneously represented with a single rule vector
by concatenating the rightmost columns of each node’s look-
up table. (E) The dynamics of the RBC begin with an initial
state (e.g., 〈011〉) and eventually settle into an attractor (gray
shaded region).

Methods
Random Boolean Circuits
We use Random Boolean Circuits (RBCs) to model genetic
regulation (Kauffman, 1969). RBCs are composed of nodes
and directed edges (Fig. 1C). Nodes represent gene prod-
ucts and edges represent regulatory interactions. Two nodes
a and c are connected by a directed edge a → c if the ex-
pression of gene c is regulated by gene product a. Node
states are binary, reflecting the presence (1) or absence (0)
of a gene product, and dynamic, such that the state of a node
at time t + 1 is dependent upon the states of its regulating
nodes at time t. This dependence is captured by a look-up
table associated with each node, which explicitly maps all
possible combinations of regulatory input states to an out-
put expression state. This look-up table is analogous to the
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signal-integration logic encoded in cis-regulatory regions.
The signal-integration logic of all of the nodes in the net-
work can be simultaneously represented using a single rule
vector (Fig. 1D).

The dynamics of RBCs occur in discrete time with syn-
chronous updating of node states (Fig. 1E). The dynamics
begin at a pre-specified initial state, which can be thought to
represent regulatory factors upstream of the circuit (Cilib-
erti et al., 2007a; Martin and Wagner, 2009). The dynamics
then unfold according to the circuit’s structure and signal-
integration logic. Since the system is both finite and de-
terministic, its dynamics eventually settle into an attractor
(Kauffman, 1969), which represents the gene expression
pattern, and is referred to as the phenotype. We refer to the
combination of circuit structure, rule vector, and initial state
as an instance of a RBC.

While simple, the Boolean abstraction has proven capable
of precisely replicating specific properties of genetic reg-
ulation in natural systems. For example, variants of the
model have emulated the expression patterns of the fruit
fly Drosophila melanogaster (Albert and Othmer, 2003), the
plant Arabidopsis thaliana (Espinosa-Soto et al., 2004), and
the yeast Saccharomyces pombe (Davidich and Bornholdt,
2008). Due to their accuracy in capturing the dynamics of
genetic regulation, and because the signal-integration logic
of each gene is explicitly represented, RBCs are ideal syn-
thetic systems for investigating the relationship between ro-
bustness and evolvability when genetic perturbations corre-
spond to changes in signal-integration logic.

Dynamical Regimes of RBCs
An important feature of RBCs is that they exhibit three dy-
namical regimes: ordered, critical, and chaotic (Kauffman,
1969). In the ordered regime, gene expression patterns are
relatively insensitive to perturbations, while in the chaotic
regime they are highly sensitive. The critical regime de-
lineates these two extremes. For randomly constructed cir-
cuits, the transitions between regimes are controlled by two
parameters: the average in-degree z and the probability ρ
of gene expression (i.e., the probability of observing a 1 in
the rule vector). Letting S = 2ρ(1 − ρ)z, the RBC lies in
the ordered regime when S < 1, the critical regime when
S = 1, and the chaotic regime when S > 1. When there is
an equal probability of observing a 0 or a 1 in the rule vector
(ρ = 0.5) the dynamical regime is determined solely by the
average in-degree, with z < 2 yielding the ordered regime,
z = 2 the critical regime, and z > 2 the chaotic regime. In
this study, ρ = 0.5.

Genotype Networks
We refer to the signal-integration logic of a RBC, as repre-
sented by its rule vector (Fig. 1D), as the genotype. There
are a total of 2L unique genotypes for a given combination of
circuit structure and initial state, where L = N2z . We refer

to this set of genotypes as the genotype space, or equiva-
lently, as the signal-integration space. For the RBCs consid-
ered here, the size of the genotype space ranges from 26 for
the ordered regime to 224 for the chaotic regime.

These genotypes map to a significantly smaller set of phe-
notypes. This high level of redundancy is a general feature
of RBCs, and can be formalized using a genotype network,
in which rule vectors are represented as nodes, and edges
connect rule vectors that differ by a single bit, yet yield
the same gene expression pattern (i.e., phenotype). Thus,
we define a neutral point mutation as a single change to
an element of the genotype that does not lead to a change
in phenotype. Such a mutation is analogous to a change
in the position of a transcription factor binding site in the
cis-regulatory region that leaves the gene expression pattern
unchanged. Genotype networks are measured using an ex-
haustive breadth-first search, thus discovering all genotypes
that yield the same phenotype and are accessible via neutral
point mutations, starting from the original genotype of the
RBC instance.

The quantity vij captures the number of unique non-
neutral point mutations to genotypes in the genotype net-
work of phenotype i that lead to genotypes in the genotype
network of phenotype j. We call phenotypes i and j adjacent
if vij > 0. By enumerating all of the phenotypes that are ad-
jacent to phenotype i, and their corresponding genotype net-
works, we capture the mutational biases between adjacent
phenotypes.

Robustness, Evolvability, and Accessibility
Several definitions of robustness and evolvability have been
proposed, at both the genotypic and phenotypic scales (Al-
dana et al., 2007; Wagner, 2008b; Mihaljev and Drossel,
2009; Draghi et al., 2010). Here, we focus on these prop-
erties at the level of the phenotype. We define robustness
Ri as the proportion of signal-integration space occupied by
the genotype network of phenotype i. This metric is inde-
pendent of rule vector length L, and captures the fraction
of all genotypes that yield the same phenotype and can be
accessed via neutral point mutations.

We define evolvability using two metrics. The first E1,i

is simply the number of phenotypes that can be accessed
through non-neutral point mutations from the genotype net-
work of phenotype i (Wagner, 2008b). The second E2,i

captures the mutational biases that exist between the geno-
type networks of adjacent phenotypes (Cowperthwaite et al.,
2008). Letting

fij =
vij∑
k 6=i vik

(1)

denote the fraction of non-neutral point mutations to geno-
types of phenotype i that result in genotypes of phenotype j,
we define the evolvability E2,i of phenotype i as

E2,i = 1−
∑
j

f2ij . (2)
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Since
∑

j f
2
ij captures the probability that two randomly

chosen non-neutral point mutations to genotypes of pheno-
type i result in genotypes with identical phenotypes, its com-
plement E2,i captures the probability that these same mu-
tations result in genotypes with distinct phenotypes. This
metric takes on high values when a phenotype is adjacent to
many other phenotypes and its non-neutral point mutations
are uniformly divided amongst these phenotypes. The met-
ric takes on low values when a phenotype is adjacent to only
a few other phenotypes and its non-neutral point mutations
are biased toward a subset of these phenotypes.

In addition to measuring evolvability, which captures the
uniformity of non-neutral mutations from phenotype i into
adjacent phenotypes, we also consider accessibility

Ai =
∑
j

fji, (3)

which captures the propensity to mutate into phenotype i
(Cowperthwaite et al., 2008). This metric takes on high val-
ues if the phenotypes adjacent to phenotype i are mutation-
ally biased toward i and low values otherwise.

Lastly, we measure the robustness of all phenotypes that
are adjacent to phenotype i, in proportion to the probability
that these phenotypes are encountered through a randomly
chosen, non-neutral point mutation from phenotype i (Cow-
perthwaite et al., 2008). We refer to this quantity as adjacent
robustness,

Bi =
∑
j

fij ×Rj . (4)

This metric takes on high values when a phenotype is mu-
tationally biased toward robust phenotypes and low values
otherwise.

Simulation Details and Data Analysis

For all RBC instances, the rule vector and initial state are
generated at random with ρ = 0.5. The circuit structure
is also generated at random, but subject to the constraint
that each node has exactly z inputs. Self-loops are per-
mitted, mimicking autoregulation. We separately consider
RBCs in the ordered, critical, and chaotic regimes by set-
ting z = 1, 2, 3, respectively. The initial state and circuit
structure are held fixed for each RBC instance. To ensure
that all of the genotype networks considered in this study
are amenable to exhaustive enumeration, we restrict our at-
tention to RBCs with N = 3 nodes. While small, sensitiv-
ity analysis (Derrida and Pomeau, 1986) confirms that these
RBCs exhibit the same dynamical regimes as larger net-
works, albeit with shorter attractors. To assess the strength
and significance of the trends in our data, we employ Pear-
son’s correlation coefficient.

Results
Characteristics of Genotype Networks
To characterize the genotype networks of signal-integration
space in RBCs, we randomly generate 2500 RBC instances
for each dynamical regime and exhaustively characterize the
genotype networks of their corresponding phenotypes, and
the genotype networks of all adjacent phenotypes.

The range of phenotypic robustness R varies with dy-
namical regime, with ordered RBCs spanning the small-
est range (3.12 × 10−2 ≤ R ≤ 1.25 × 10−1), critical
RBCs spanning an intermediate range (4.88× 10−4 ≤ R ≤
1.25× 10−1), and chaotic RBCs spanning the largest range
(1.19 × 10−7 ≤ R ≤ 1.25 × 10−1). The maximum
value of phenotypic robustness is independent of dynami-
cal regime, and corresponds to fixed-point attractors. Since
these attractors comprise a single state, only N bits of the
rule vector are accessed during the RBC’s dynamics, leaving
L − N bits unused. Thus, the corresponding genotype net-
work is of size 2L−N , with phenotypic robustness Rmax =
2−N = 1.25 × 10−1. The average phenotypic robustness
decreases from the ordered (R = 9.44 × 10−2) to the crit-
ical (R = 4.12 × 10−2) to the chaotic (R = 3.02 × 10−2)
regime.

Evolvability E1 and phenotypic robustness R are posi-
tively correlated (Fig. 2A), and the strength of correlation in-
creases from the ordered (r = 0.75, p� 0.01) to the critical
(r = 0.90, p � 0.01) to the chaotic (r = 0.98, p � 0.01)
regime. This indicates that, in this system, no trade-off exists
between robustness and the number of phenotypes accessi-
ble via non-neutral point mutations; the more robust the phe-
notype, the higher its evolvability. Average evolvability E1

increases faster than linearly with increasing z, indicating a
rapid increase in the number of adjacent phenotypes as the
dynamical regime shifts from ordered to chaotic (Fig. 2A,
inset).

When mutational biases between adjacent phenotypes are
taken into account using E2, a slightly different relationship
is observed between evolvability and phenotypic robustness
(Fig. 2B). RBCs in the ordered regime exhibit a weak and
insignificant correlation between E2 and R (r = 0.02, p =
0.41). In contrast, RBCs in the critical and chaotic regimes
exhibit weak, but significant correlations, with the strength
of correlation increasing from the critical (r = 0.10, p �
0.01) to the chaotic regime (r = 0.42, p � 0.01). The
average value of E2 increases approximately linearly as z
increases (Fig. 2B, inset). Thus, the average probability that
two randomly chosen, non-neutral point mutations lead to
distinct phenotypes is only ≈ 15% higher in chaotic RBCs
than in ordered RBCs, despite the four order-of-magnitude
difference in the absolute number of adjacent phenotypes
(Fig. 2A, inset).

Accessibility A and phenotypic robustness R are posi-
tively correlated (Fig. 2C), with the strength of correlation
again increasing from the ordered (r = 0.88, p � 0.01)
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Figure 2: (A,B) Evolvability, (C) accessibility, and (D) adjacent robustness as a function of phenotypic robustness R for each
of the three dynamical regimes: ordered (z = 1), critical (z = 2), and chaotic (z = 3). Each data point represents one of 2500
RBC instances for each dynamical regime. The insets depict the corresponding averages, as a function of z. Lines are provided
as a guide for the eye.

to the critical (r = 0.94, p � 0.01) to the chaotic (r =
0.98, p � 0.01) regimes. This implies that, for all three
dynamical regimes, random point mutations are more likely
to lead to robust phenotypes than to non-robust phenotypes.
Average accessibility increases faster than linearly as z in-
creases (Fig. 2C, inset), indicating a rapid increase in the
relative ease with which phenotypes are found by random
mutation as the dynamical regime shifts from ordered to
chaotic.

Adjacent robustness B and phenotypic robustness R are
positively correlated, with the strength of correlation de-
creasing from the ordered (r = 0.81, p � 0.01) to the
critical (r = 0.66, p � 0.01) to the chaotic regimes (r =
0.35, p � 0.01). This implies that non-neutral point mu-
tations to genotypes within robust phenotypes often lead to

other robust phenotypes, but that the strength of this ten-
dency weakens as RBCs approach the chaotic regime. The
average adjacent robustness B decreases approximately lin-
early as z increases (Fig. 2D, inset), indicating that the
expected robustness of a phenotype encountered via non-
neutral point mutation decreases as the dynamical regime
shifts from ordered to chaotic.

Taken together, these results suggest that a series of ran-
dom point mutations will tend toward phenotypes of in-
creased robustness (Fig. 2D) and correspondingly increased
evolvability (Fig. 2A,B). Further, the ease with which such a
blind evolutionary process identifies an arbitrary phenotype
should increase with that phenotype’s robustness (Fig. 2C)
and as the dynamical regime shifts from ordered to critical
to chaotic (Fig. 2C, inset).
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Random Walks Through Signal-Integration Space
To investigate how robustness, evolvability, and accessibil-
ity influence blind, mutation-based evolution, we conduct
an ensemble of random walks. For each dynamical regime,
we randomly generate 1000 RBC instances and identify the
phenotype of each instance as a source phenotype. For each
instance, we then sample the genotype space at random un-
til we discover a genotype that yields a different phenotype
from the source phenotype, and we identify this as the target
phenotype. For each pair of source and target phenotypes,
we then perform a random walk, starting from the instance’s
genotype and ending when the random walk reaches any
genotype in the target phenotype. Each step in the random
walk corresponds to a single point mutation to the geno-
type. We record the number of steps S required to reach
the target phenotype, which we normalize by the size of the
signal-integration space 2L, and refer to as the waiting time
T = S/2L.

Waiting time T decreases faster than linearly as z in-
creases (Fig. 3A, inset). For all three dynamical regimes,
waiting time is strongly negatively correlated with the ac-
cessibility A of the target phenotype (Fig. 3A), and the
strength of correlation increases from the ordered (r =
−0.41, p � 0.01) to the critical (r = −0.67, p � 0.01)
to the chaotic (r = −0.82, p � 0.01) regime. In contrast,
the correlation between waiting time T and the evolvabil-
ity E1 of the source phenotype is weak and insignificant
(z = 1 : r = −0.03, p = 0.38; z = 2 : r = 0.01, p = 0.82;
z = 3 : r = −0.02, p = 0.56) (Fig. 3B). Similarly weak
and insignificant correlations were observed between wait-

ing time T and other characteristics of the source phenotype,
such as E2, A, and B. These results indicate that the time
required for a blind evolutionary search to identify a tar-
get phenotype is independent of the phenotypic properties
of the starting point and solely dependent upon the pheno-
typic properties of the target.

Discussion
This study has provided the first characterization of geno-
type networks in the signal-integration space of Random
Boolean Circuits (RBCs), highlighting the relationship be-
tween robustness and the evolvability and accessibility of
phenotypes. We found a positive correlation between ro-
bustness and evolvability, as measured by either the absolute
number of adjacent phenotypesE1 (Fig. 2A) or by the prob-
ability that two non-neutral point mutations lead to distinct
phenotypes E2 (Fig. 2B). Our results corroborate the ob-
servation made in previous studies that gene regulatory net-
works can simultaneously exhibit robustness and evolvabil-
ity (Aldana et al., 2007; Ciliberti et al., 2007a,b). Further,
our analyses extend these previous studies by providing an
explicit description of this relationship and by considering
genetic perturbations that alter the signal-integration logic
encoded in cis-regulatory regions, instead of genetic pertur-
bations that alter circuit structure.

We also found a positive correlation between robustness
and accessibility (Fig. 2C), a measure that captures the
relative ease with which a phenotype can be identified by
mutation-based evolution. This result supports the intuitive
notion that phenotypes comprising many genotypes are eas-
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ier for evolution to identify than those comprising few geno-
types. In addition, robust phenotypes are mutationally bi-
ased toward other robust phenotypes (Fig. 2D), indicat-
ing that the robustness of phenotypes encountered by blind
mutation-based evolution should, on average, tend to in-
crease.

To understand how phenotypic robustness, evolvabil-
ity, and accessibility in signal-integration space influence
mutation-based evolution, we considered an ensemble of
random walks between pairs of source and target pheno-
types. We found that the number of random mutations re-
quired to reach the target phenotype was entirely dependent
upon its accessibility (Fig. 3A) and independent of any prop-
erties of the source phenotype (Fig. 3B). This suggests that a
random walk through signal-integration space quickly loses
any memory of its starting location. Consequently, extant
evolvability metrics cannot be expected to predict the dura-
tion of a random walk between phenotypes.

The majority of our results are consistent with those
made in RNA systems (Cowperthwaite et al., 2008; Wag-
ner, 2008b). However, there is one difference worth em-
phasizing: the correlation between robustness and evolv-
ability E2 is negative in RNA (Cowperthwaite et al., 2008).
Since the relationship between robustness and adjacent ro-
bustnessB is positive in RNA systems, Cowperthwaite et al.
(2008) concluded that robust phenotypes act as “evolution-
ary traps.” That is, random mutation will tend toward phe-
notypes of higher robustness, which in turn are less evolv-
able, and therefore stagnate evolutionary search. Since
we observed a positive correlation between (i) robustness
and evolvability E2 and (ii) robustness and adjacent robust-
ness B, we conclude that robust phenotypes in the signal-
integration space of RBCs are not evolutionary traps, but
instead facilitate the discovery of novel phenotypes. Such
contrast between model systems highlights the fact that the
relationships between robustness, evolvability, and accessi-
bility are system dependent.

Evolvability increased monotonically as z increased (Fig.
2A,B, insets) and the maximum achievable robustness was
independent of z (Rmax = 2−N ). Taken together, these
results indicate that robustness and evolvability can be si-
multaneously maximized in chaotic RBCs. This result con-
trasts with previous analysis (Aldana et al., 2007), which
found robustness and evolvability to be simultaneously max-
imized in critical RBCs. This discrepancy can be under-
stood by considering the two primary differences between
the analyses. First, Aldana et al. (2007) focused on ge-
netic perturbations that altered circuit structure (and conse-
quently, in some cases, signal-integration logic) while we
focused solely on genetic perturbations that altered signal-
integration logic. Second, and of greater importance, the
measures of robustness and evolvability considered by Al-
dana et al. (2007) were not based on genotype networks. In-
stead, robustness was defined as the ability of a single mu-

tated genotype to maintain the phenotypic landscape (i.e.,
the set of all phenotypes observed across all possible ini-
tial states), and evolvability was defined as the capacity of
the mutated genotype to expand the phenotypic landscape
(i.e., add new phenotypes to the set of existing phenotypes).
Thus, Aldana et al. (2007) focused on robustness and evolv-
ability at the level of the genotype rather than the pheno-
type (Wagner, 2008b). While these definitions are reason-
able and insightful, our departure from their use precludes
any direct comparison between the two studies. That said,
our observation that chaotic RBCs simultaneously optimize
robustness and evolvability must be interpreted with caution.
For all dynamical regimes, robustness is maximal for fixed
point attractors, and these occur with decreasing frequency
as z increases. Thus, while it is only possible to simultane-
ously observe maximal robustness and maximal evolvability
in chaotic RBCs, this case represents the exception rather
than the rule.

Future work will seek to understand how evolution navi-
gates signal-integration space. Is it possible for mutation and
selection to identify the high-robustness, high-evolvability
phenotypes of chaotic RBCs? If so, can they out-compete
critical and ordered RBCs in static (Oikonomou and Cluzel,
2006) or dynamic (Greenbury et al., 2010) environments?
How are these evolutionary outcomes affected by mutation
rate (Wilke et al., 2001) or recombination (Martin and Wag-
ner, 2009)? Future research will also focus on larger sys-
tems, moving from an analysis of circuits to entire networks.
To accomplish this, Monte Carlo sampling methods will
be required (Jörg et al., 2008), as the increased size of the
signal-integration space will prohibit the exhaustive enumer-
ation of genotype networks. In addition, future work will
seek to understand both the influence of canalyzing func-
tions (Kauffman et al., 2004) and the probability of gene
expression ρ on the size and structure of genotype networks.
These directions, among others, will lead to a more thorough
understanding of how the genetic flexibility of cis-regulatory
regions influence evolutionary processes.
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Abstract

Institutional Robotics is a new approach to the coordination
of distributed robotic systems, drawing inspiration from so-
cial sciences. It aims to provide a comprehensive strategy
for specifying social interactions among robots in the form
of institutions. In this paper, we present a formalism for in-
stitutions in the Institutional Robotics model. We apply this
formalism to two case studies. The first is concerned with a
swarm of simple robots which has to maintain wireless con-
nectivity. The second focuses on role allocation in a robotic
team aimed at improving coordination and performance in a
transportation task.

Introduction
Multi-robot systems are nowadays an important area of re-
search within the broader field of robotics. Using multiple
robots might enhance the overall system performance not
only because of a faster task execution speed but also in
terms of robustness to failures and flexibility in allocation
of subtasks. It is also clear that a team of robots is capa-
ble of completing some tasks that are impossible for single
robots, for instance, because of their physical limitations.
However, in order to leverage these potential benefits, it is
not enough to add robots to the team. Cooperative behavior
has to be present, and therefore interactions among robots
must be coordinated in some way.

Institutional Robotics (IR) (Silva and Lima (2007)) is
a new approach to the coordination of distributed robotic
systems, drawing some inspiration from social sciences,
namely from Institutional Economics’ concepts. It com-
bines the notions of institution, coordination artifact, and
environment, aiming to provide a comprehensive strategy
for specifying social interactions (e.g., norms, roles, hier-
archies) among robots. In order to do so, robots are situ-
ated not only in a physical but also in an institutional envi-
ronment, where their interactions are guided by institutions.
Through cooperative decision-making, these institutions can
be modified by the robots, providing adaptation to a chang-
ing scenario. Coordination is achieved by this regulation of
social interactions since the robots know not only how to be-

have in a given scenario but also what to expect from other
robots and the environment.

One of the goals of our research is to formalize the con-
cepts of IR from a computer science perspective, so as to
create an ontology of the entities that will be part of the IR
model, and to describe ways of interconnecting them (such
as graphs and tuples describing the entities associated to
each node), as well as algorithms to manage a robotic col-
lective based on social science principles.

In this work, we focus on formalizing the central concept
of IR - institutions. Institutions are coordination artifacts
specifying social interactions of different types and encap-
sulating relevant behavioral rules (possibly designed based
on problem-domain knowledge) that, once adopted, avoid
the need for the behavior to be re-learned or re-acquired.
Our goal is to formalize them using an abstract representa-
tion, that will allow us to design these coordination artifacts
and execute them in robots (both in reality and simulation),
so as to obtain behaviors capturing the social interactions of
interest. In order to accomplish this objective we propose to
use Petri Nets as an abstract representation for institutions.
Our method will produce, from a set of institutions, a robot
controller able to execute a desired task.

We apply this formalism to two case studies. The first
is concerned with a swarm of simple robots which has to
maintain wireless connectivity. The second focuses on role
allocation in a robotic team aimed at improving coordination
and performance in a transportation task.

In Section 2 we discuss related work and motivation for
our formalization. This formalization is presented in Section
3 culminating with the definition of a controller based on
our institutional approach. In Section 4 and 5 we apply this
formalism to two different case studies.

Related Work
Institutional economics is a fundamentally different ap-
proach from neo-classical theory, the current trend of eco-
nomics and inspiration for market-based systems of task al-
location in distributed robotics (Dias et al. (2006)).

In Hodgson (2000), the author refines a description of in-
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stitutional economics outlining the following main features:
institutions are the key element of any economy; the econ-
omy is an open and evolving system; and the notion of in-
dividuals as utility-maximizing agents is inadequate. The
institutional approach is characterized also by the rejection
of unbounded rationality. Agents are affected by the insti-
tutional environment they live in, but in no way does that
environment fully determine their behavior. Every agent has
individual goals and motivations that it wants to fulfill. In-
stitutions are developed by these very same agents.

In Crawford and Ostrom (1995) and Ostrom (2005), the
authors propose a formal “grammar” of institutions accord-
ing to the New Institutional Economics (NIE) approach.
NIE is a compromise between the institutional and neo-
classical theories of economics. Therein, the authors study
what are the elements that compose institutional statements.
While at this point most of these elements are not ready to be
applied to multi-robot systems, deontic operators are funda-
mental in our IR version in order to specify how institutions
relate to one another.

IR (Silva and Lima (2007)) aims to provide a comprehen-
sive strategy for specifying social interactions among robots,
by combining the notions of institution, coordination arti-
fact, and environment. According to the IR approach:

1. the coordination strategy is supported by a network of in-
stitutions;

2. institutions are coordination artifacts of different types
(e.g., norms, roles, hierarchies);

3. robots are able to modify both their physical and their in-
stitutional environment;

4. robots need a high degree of autonomy, pursuing goals
based on their “struggle for survival”.

From an institutional perspective, institutions are taken as
the main tool of any sophisticated society, and individuals
are both constructive within and constructed through insti-
tutional environments. In a first attempt at formalizing in-
stitutions in the IR model, Silva et al. (2008) define them as
“cumulative sets of persistent artificial modifications made
to the environment or to the internal mechanisms of a subset
of agents, thought to be functional to the collective order”.

This definition is too abstract to be applied “as is” to
distributed robotics experiments. Thus, we go back to the
idea of institutions as coordination artifacts (Tummolini and
Castelfranchi (2006)). Coordination artifacts (Omicini et al.
(2004); Ricci et al. (2005)) are infrastructure abstractions
in multi-agent systems meant to improve the synthesis and
analysis of coordination activities. The main properties that
describe coordination artifacts are: specialization, encapsu-
lation, and inspectability. Specialization refers to the fact
that coordination artifacts are specialized in automating co-
ordination activities and can be represented with concur-
rency frameworks such as Petri Nets or process algebras.

Coordination artifacts encapsulate a coordination service,
allowing the agents to abstract how it is implemented. En-
capsulation is the key to achieve reuse of coordination. In-
spectability refers to the property that an artifact should sup-
port some procedure to allow engineers or agents responsi-
ble for the system to check for errors in its specification.

Omicini et al. argue that coordination artifacts are ex-
terior to the agents using them and perceived as individual
entities, but can actually be distributed on several nodes of
a multi-agent system. We propose that, when taking institu-
tions as coordination artifacts, they can be part of the agent
controller, working as norms or procedures the agent has to
follow. Even with this assumption, we can still think of in-
stitutions being distributed in our multi-robot system, if we
consider their representation to be replicated in each agent.

Petri Nets and Institutions
Starting from the concept of institutions as coordination ar-
tifacts we model them using a formal representation, leading
to a standard design and execution platform (in real robots,
realistic simulations, and multi-agent systems). Considering
the three main properties of coordination artifacts mentioned
above, we propose to use Petri Nets as formal framework.

Our choice of Petri Nets is based mostly on the ability of
this formalism to deal with distributed systems. State infor-
mation is distributed among a set of places that capture key
conditions that govern the operation of the system. More-
over, Petri Nets not only are able to deal with distributed
systems but are also a suitable computational model for ef-
fective and efficient interaction management, a key aspect of
coordination artifacts. Finally, Petri Nets also have a larger
representational power than Finite State Automata (FSA),
being able to represent, with finite structure, languages that
are not representable by FSA (Cassandras and Lafortune
(2008)).

The Petri Net Plans (PNP) language is a tool specifically
directed to the design and execution of robotic plans us-
ing Petri Nets (Ziparo et al. (2010)). Therein, properties of
safety and liveness of PNs are used to ensure that execution
of robotic tasks in robots follows the designed plan. How-
ever, these properties can also be verified on simpler Petri
Nets models without the need of using the PNP methodol-
ogy, which can be restrictive on the types of tasks that can
be designed.

A multi-layer methodology, introduced in Costelha and
Lima (2010), enables organizing separately the interaction
between multiple institutions and the behavior of the robot
as a single individual (which we will hereafter call “indi-
vidual behavior”). While this is achieved in a higher layer,
the execution of each institution can be described in a lower
layer and represented on the above layer by means of macro
places. By using Costelha and Lima (2010) expansion al-
gorithm we can obtain a full Petri Net that can be tested for
our desired properties. Also, this will allow us to add more
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institutions on-the-fly (during the robots execution) and still
maintain these properties.

Executable Petri Nets
We follow the definitions for Petri Nets and their dynamics
(enabled transitions, state transition dynamics) in Cassan-
dras and Lafortune (2008):

Definition: A Petri Net is a five-tuple (P, T,A,w,X)
where:

• P is the finite set of places;

• T is the finite set of transitions;

• A ⊆ (P × T ) ∪ (T × P ) is the set of arcs from places to
transitions and from transitions to places;

• w : A→ N+ is the weight function on the arcs;

• X is a marking of the set of places P , X =
[x(p1), . . . , x(pn)] ∈ Nn represents the state of the Petri
Net.

Herein, we assume that all the weights of the arcs are 1.
If x(pi) in marking X is equal or larger than 1, we say that
place pi is marked. Each unit in x(pi) is called a token,
i.e., if x(pi) = 1 then pi has one token. State transitions
in Petri Nets occur by moving tokens through the net and
changing the marking by doing so. The sets of input places
I(tj) and output places O(tj) of a transition tj are given
by I(tj) = {pi ∈ P : (pi, tj) ∈ A} and O(tj) = {pi ∈
P : (tj , pi) ∈ A}. Petri Net dynamics are provided by the
following state transition function:

Definition: The state transition function, f : Nn × T →
Nn, of Petri Net (P, T,A,w,X) is defined for transition tj
if and only if

x(pi) ≥ w(pi, tj) for all pi ∈ I(tj) (1)

If f(X, tj) is defined, then we set X ′ = f(X, tj), where

x′(pi) = x(pi)− w(pi, tj) + w(tj , pi), i = 1, . . . , n (2)

If transition tj verifies condition (1) then we say it is en-
abled. When transition tj is enabled, we say that it can fire,
and thus trigger a state change on the net by moving tokens
according to (2).

Our aim is to formalize institutions as Petri Nets both for
design and execution of robotic controllers. This means that
we need to take into account robot actions and sensor read-
ings. We consider three sets of building blocks that will al-
low us to design our controllers.

The set Act contains all robot primitive actions (combi-
nations of two or more primitive actions are not considered
as primitive actions).

The set Cdt contains boolean conditions that can be veri-
fied by checking sensor readings.

Finally, the set Pac contains “parameter actions”, which
are auxiliary actions not concerning actuators but that only
modify variables needed for the actions in Act.

We are now able to define our own version of Petri Nets
used for execution of our robotic controllers.

Definition: An Executable Petri Net (EPN) is a Petri Net
(P, T,A,w,X) where:

• each place pi ∈ P has an associated action ai ∈ Act;

• each transition ti ∈ T has an associated condition ci ∈
Cdt and an associated parameter action pai ∈ Pac.

The basic intuition behind this definition is that by associ-
ating actions with places we are able to define which actions
are to be executed at each time step. This is done simply
by checking if the corresponding place is marked. By asso-
ciating transitions with conditions verified by sensor read-
ings we trigger state changes in the Petri Net due to changes
in the robots environment. The following algorithm is per-
formed by the robots at each time step, allowing the robots
to execute the behavior designed in an EPN.

Algorithm 1 Execute Petri Net
1: repeat
2: for all enabled transitions ti ∈ T do
3: if associated condition ci is true then
4: run associated parameter action pai

5: fire transition ti
6: end if
7: end for
8: until no transition has fired
9: for all marked places pi ∈ P do

10: run associated action ai

11: end for

The implementation code for actions and conditions
present in the sets Act, Cdt and Pac is not explicitly repre-
sented in the code that specifies an EPN. All robots share a
common function table that implements all possible actions
and conditions. These are then represented in the EPN by
means of indices. This allows the EPNs to be generic, in a
sense that although robots may have different implementa-
tions for the same action (e.g., heterogenous robots in terms
of hardware), the same EPN could be used to achieve coor-
dination in the same manner. Also, it enables the sharing of
EPNs among robots without the sharing of the actual imple-
mentation of actions.

Institutional Agent Controller
Our goal is to formalize institutions as coordination artifacts
in a modular fashion. We intend to have each institution rep-
resented by an EPN that can be executed independently or
together with other institutions. The individual behavior for
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the robots is also represented by an EPN. While the institu-
tions specify behaviors that have a social nature, i.e., they
relate the robot to other robots in some way, the individual
behavior specifies a set of basic behaviors that have exclu-
sively an individual nature, i.e., they relate the robot with the
surrounding environment. The composition of the individ-
ual behavior with a set of institutions will generate a robot
controller.

We now present our formalized definition of institution:

Definition: An Institution I is a four-tuple (Inst,
initialI , finalI , dI) where:

• Inst is an EPN;

• initialI , finalI ∈ Cdt are initial and final conditions for
the execution of Inst;

• dI ∈ D is the associated deontic operator.

The EPN Inst specifies the desired behavior that should
be performed by the robot. This behavior is not always be-
ing executed, its start and finish are dictated by conditions
initialI and finalI , which the robot verifies at each time
step. Thus, we say that an institution I at each time step
can be active or idle. Each institution also includes a de-
ontic operator dI which is used when combining it with the
robot individual behavior and further institutions. Despite
Inst being designed by hand, institutions can be kept simple
(e.g., arc weights set to 1) and further behavioral complexity
can reached by composition, in a modular fashion.

A previous abstract definition of institution was presented
in Silva et al. (2008). There, the authors define the institu-
tion as a tuple (ID, Rationale, Modifiers, Network, Institu-
tional Building, History), where each element of the tuple
tries to capture the main constitutive elements of the social
order dynamics. For our purpose of formalizing institutions
using an abstract representation, allowing for a standard de-
sign and execution platform, this definition is not sufficient.
However, the EPN Inst can be seen as part of Rationale,
since it specifies the activity of the institution, and the deon-
tic operator as part of Network, since it specifies how the
institution relates to other institutions.

The composition of the individual behavior with a set
of institutions is non-trivial since concurrent execution
of some of the institutions might be impossible or at
least inadequate to the task the robot is carrying out. An
example of such institutional interplay is that an institution
stating that you must drive on the right side of the road
will be overruled by the institution of the road code of
Great Britain, and thus should not be executed when
in that territory. Crawford and Ostrom (1995) define a
set of deontic operators, D = {P,O, F}, establishing
permitted (P ), obliged (O), and forbidden (F ) operations,
to be applied to institutional statements in order to deal
with this problem. In our formalization, these operators

affect whether institutions are active or idle at each time
step. However, the conditions that govern when a specific
institution is active might refer directly to the activity state
of other institutions. For instance, the institution for driving
on the right is forbidden (and thus should be idle) when the
institution of the road code of Great Britain is active. This
referencing of other institutions creates a problem for our
intended modular approach to formalization. Therefore,
we have chosen to use a more restrictive set of deontic
operators in order to guarantee that institutions do not refer
to any other specific institution but can still prevent the
concurrent execution of undesired behaviors (individual
behavior and other institutions in general).

Definition: The set D of deontic operators for IR institu-
tions includes the following deontic operators: {AllowAll,
StopInd, StopInst, StopAll}. Their corresponding defi-
nitions are as follows:

• AllowAll implies that the associated institution can be
executed concurrently with the individual behavior and all
the other institutions;

• StopInd implies that the associated institution cannot be
executed concurrently with the individual behavior;

• StopInst implies that the associated institution cannot be
executed concurrently with other institutions;

• StopAll implies that the associated institution cannot be
executed concurrently with the individual behavior or
other institutions.

Herein we define the individual behavior simply as an
EPN Ind.

As previously mentioned, Petri Nets (and thus EPN) can
be represented by macro places in a hierarchical fashion, us-
ing two distinct layers. We consider that individual behavior
and institutions are part of a lower layer and are represented
by one macro place in the higher layer, as shown in Fig. 1.
On the left side (lower layer) the EPN Inst of institution I is
displayed. On the right side (higher layer) the macro place
mI representing institution I is displayed. By adding arcs
from each transition in Inst to mI and from mI to each
transition (shown as a single bidirectional dotted arc), we
guarantee that each transition will only be enabled if mI is
marked. When a transition in Inst fires, mI will continue
to be marked since it is a output place of the transition.

Thus, if a macro place is marked, the individual behav-
ior or institution that it represents is active, otherwise it is
idle. This allows us to compose our institutions in the higher
layer where relationships among the institutions and the in-
dividual behavior should be specified, while keeping rela-
tionships between actions and conditions separated in the
lower layer. Both layers can be then merged algorithmically

649ECAL 2011



Action 2Action 1

Condition 1

Condition 2
mI

Lower Layer Higher Layer

Figure 1: Hierarchical representation of an EPN in two lay-
ers. Dotted arcs represent two directional arcs, one from a
transition to a place and one from a place to a transition. Left
side: lower layer, EPN Inst with conditions and actions as-
sociated to transitions and places. Right side: higher layer,
macro place mI in red.

(Costelha and Lima (2010)) to obtain a full EPN that can be
used as controller.

To understand how the composition of institutions is
made, we consider a minimal setup with two institutions I1
and I2 and an individual behavior Ind. A representation of
the higher layer of this setup before composition is presented
in Fig. 2-(a). Places in red (mI1, mI2, mInd) represent in
the higher layer institutions (I1, I2) and the individual be-
havior (Ind) implemented at the lower layer. Places idleI1

and idleI2 further represent the idea that institution Ii is ac-
tive if place mi is marked. Since only one place from the
set mi and idlei can be marked at each time, we have that
institution Ii is active if mi is marked and idle if idlei is
marked. This allows us to regulate the activation and idling
of institutions with their initial and final conditions as shown
in the Fig. 2-(a). The individual behavior does not have an
idle place since it has no initial or final conditions.

The composition of individual behavior and institutions
is controlled by the deontic operators as presented in Fig. 2.
As stated before, composition takes places only in the higher
layer. We will see how different deontic operators for insti-
tution I1 control the composition while always maintaining
the deontic operator of institution I2 as AllowAll. If the
deontic operator of institution I1 is also AllowAll (Fig. 2-
(a)), then no other relationship is necessary since all behav-
iors can be executed concurrently. If the deontic operator
of I1 is StopInd, the structure in Fig. 2-(b) is added. Place
idleInd,I1 represents the individual behavior being idle be-
cause of institution I1 being active. The added transitions
have associated a special condition that is always true. This
specifies that if institution I1 is activated, then the individual
behavior is set to idle and vice-versa. If the deontic opera-
tor of I1 is StopInst, as in Fig. 2-(c), the same structure is
added but now related to the macro places of the other insti-
tution and not the individual behavior. Our setup considers
only two institutions but the structure would be added for

all institutions except I1, if more institutions were present.
This means that institution I2 can be idle if place idleI2 is
marked or if place idleI2,I1 is marked. On the latter case,
institution I2 will resume being active when institution I1
becomes idle. If the deontic operator is StopAll then we
consider a combination of the previous two cases, as show
in Fig. 2-(d). These rules also apply for institution I2 if it
has a different deontic operator than AllowAll.

We can now define our Institutional Agent Controller that
will guide the performance of our robots:

Definition: An Institutional Agent Controller (IAC) is an
EPN resulting from the composition of an individual behav-
ior Ind and a set of institutions {I1, . . . , In} controlled by
the deontic operators dI1 , . . . , dIn .

All macro places and control places (idlei) added during
composition are associated with a void action. Considering
these associations, our IAC is itself an EPN and can be ex-
ecuted by Algorithm 1. A minor change is needed to line 9
of the algorithm to make sure that not only the lower layer
place is marked but also the higher layer macro place of the
institution being executed. Time needed for the formaliza-
tion includes the design time of the institutions and individ-
ual behavior and composition time. While the latter is per-
formed algorithmically with negligible time, the former re-
quires a certain amount of time and experience with design
of behavior-based controllers (the same as with FSA).

The IAC for a desired task can be obtained prior to an ex-
periment and transmitted to the robots. It is also possible
for each robot to obtain the IAC from a given set of institu-
tions at the start of the experiment. Thus, the method is fully
scalable to any number of robots. Complexity of the IAC
increases only with the number of institutions.

Wireless Connected Swarm Case study
In this section we present a case study to illustrate how to
apply our formalism of institutions in order to obtain an IAC
that performs the desired task. Our aim is to be able to spec-
ify behaviors that have a social nature as institutions and be-
haviors that have an individual nature as individual behavior.

We have selected a case study previously investigated by
Nembrini et al. (2002) and Winfield et al. (2008), where a
decentralized control algorithm is able to maintain a certain
degree of spatial compactness of a robotic swarm (with N
robots) using exclusively, as information at the robot level,
the current number of wireless connections to the neighbors.
The communication is local and its bounded range a param-
eter of the robotic system. Let X be the number of con-
nections perceived by a robot. In the default state, the robot
simply moves forward. If at any timeX falls below a thresh-
old α (where α ∈ {0, . . . , N − 1}), the robot assumes it is
going in the wrong direction and turns back. UponX return-
ing to a value above α, the robot performs a random turn and
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mI1

mI2

mInd

I1 deontic operator:
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initialI1 finalI1

initialI2 finalI2

idleI1

idleI2

mI1

mI2

mInd

idleI1

idleI2

I1 deontic operator:
StopInd

idleInd,I1

(by I1)

mI1

mI2

mInd

idleI1

idleI2

I1 deontic operator:
StopInst

idleI2,I1

(by I1)

mI1

mI2

mInd

idleI1

idleI2

I1 deontic operator:
StopAll

idleI2,I1

(by I1)

idleInd,I1

(by I1)

Figure 2: Composition scheme for two institutions I1, I2 and individual behavior Ind. Dotted arcs represent bidirectional arcs,
as in Fig. 1. Places in red are macro places representing implementations of institutions and the individual behavior in the
lower layer. These representations will be used throughout the paper. (a) composition rule with deontic operator AllowAll; (b)
composition rule with deontic operator StopInd; (c) composition rule with deontic operator StopInst; (d) composition rule
with deontic operator StopAll.

moves back to the default state. Robots always execute ob-
stacle avoidance at the same time. This simple algorithm is
quite fragile but allows the swarm to maintain its connec-
tivity to a certain extent, with its spatial compactness being
controlled by the communication range.

Our case study is similar to that of Nembrini et al. (2002)
with the following differences: (i) no random turn is exe-
cuted when the robots are connected again; (ii) our arena is
bounded by a wall. Robots execute an individual behavior
Ind and an institution I , both specified by EPNs with only
two places shown in the left side (lower layer) of Fig. 3.
Individual behavior Ind consists of a simple obstacle avoid-
ance. Robots move forward until they find an obstacle (wall
or other robot), perform a turn with random degree and re-
turn to moving forward. Institution I implements the social

rule, specifying that when a robot loses connections below
α it should turn back.

To consider the institution as defined in Section 3, we
need initial and final conditions and a deontic operator. We
say that initial condition initialI is “number of connections
is less than α” and the final condition finalI is “turn 180◦

procedure has ended”. The associated deontic operator is
StopInd specifying that institution and individual behavior
cannot be executed concurrently.

We now have all the elements needed to obtain the IAC
that specifies our desired behavior. The composition of the
individual behavior Ind and institution I on the left side
(lower layer) of Fig. 3 is shown in the right side (higher
layer) of Fig. 3. The final controller is the full EPN of Fig. 3
after the merging of the two layers. Lower layer actions and
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end random turn

Individual Behavior - Ind

void
turn
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# connections < 1

end 180º turn

Institution - I

Lower Layer Higher Layer

Composition

α

Figure 3: IAC for wireless connected swarm. Left side:
lower layer EPNs for individual behavior Ind and institution
I . Right side: EPN resulting from composition of individual
behavior Ind and institution I .

conditions are implemented in the robot. Thus, to perform
the task the robot needs only to execute Algorithm 1 tak-
ing the IAC as input. Actions associated with marked places
are executed, much in the same manner as in a FSA actions
associated with states would be executed.

Corridor Case Study
A previous study concerning the institutional approach was
presented in Pereira et al. (2010). Therein, institutional
robotics concepts were taken into account when developing
a controller for robots that had to coordinate their movement
in order to traverse a narrow corridor while performing a
simple transportation task. However, no formalization of the
IR approach was proposed in that study. Again, our aim is
to specify behaviors that have a social nature as institutions
and summarize behaviors that have an individual nature as
the robots’ individual behavior. Our setup will consider two
institutions and the individual behavior. As this case study
is of higher complexity than the previous one, due to space
limitations, we will not be able to describe the EPN imple-
mentations in its completeness. Therefore, we will focus
only on the higher layer of the IAC.

The task consists of transporting a virtual payload in an
arena with two rooms connected by a corridor. Navigation of
the robots is done by performing a wall-following behavior.
Transporting robots pick up the virtual payload in the left
room. They must then navigate through the corridor and
deploy the payload in the right room. This is the individual
behavior Ind of the robots.

The corridor connecting the rooms is too narrow for two
robots moving in opposite directions to pass one another.
Thus, the robots must traverse the corridor in one direction
at a time. Robots need to cooperate to avoid collisions and
deadlocks in the corridor. In order to facilitate coordination,

we let a subset of the robots adopt the institutional role of
“traffic regulators” to control the circulation of the remain-
ing robots in the team. The overall traffic regulation implies
robots serving as regulators and robots accepting to give pri-
ority to others in case the regulators will ask them to do so.
We will therefore need two institutions, one to manage the
allocation and execution of the role of regulator, and one to
receive information about priority from the regulators.

If the need of traffic regulating robots arises due to a phys-
ical conflict between two robots in the corridor, these very
same robots assume the role as traffic regulators. The two
traffic regulators place themselves at the opposite ends of the
corridor so that each regulator can control the flow of trans-
porting robots entering the corridor from one of the rooms.
The goal of the regulators is to ensure that robots only move
through the corridor in one direction at a time. The regu-
lating robots are synchronized so that only one of them will
let transporting robots enter the corridor from their respec-
tive rooms at any given time. The regulation is performed
by sending stop and go messages to the transporting robots.

This is clearly a behavior that has a social nature. We
consider that this behavior corresponds to an institution IR
that manages the role of traffic regulator. Its initial condi-
tion initialR is the detection of a conflict in the corridor
and its final condition finalR is the end of regulation (time
limit). Since we do not want this behavior to be executed
concurrently with any other behavior, the deontic operator
of institution IR will be StopAll.

If a transporting robot receives a message to stop, it will
stop in order to give priority to the robots traversing the cor-
ridor from the opposite direction. It will also begin to relay
the stop message so other transporting robots behind it will
stop too. As a result, the transporting robots will form a
queue. When a robot in the queue receives a message to
proceed, it forwards the message to any robots that may be
behind it. After receiving and relaying the message the robot
has priority and will traverse the corridor.

This is again a behavior that has a social nature. The be-
havior corresponds to an institution IM that manages the re-
ception and relay of messages. Its initial condition initialM
is the reception of a stop message and its final condition
finalM is the reception of a go message. We do not want
this behavior to be executed concurrently with the individual
behavior, so its deontic operator will be StopInd.

In Fig. 4 we show the result of the composition of our two
institutions and individual behavior. The IAC for this case
study will be the result of merging this EPN with those on
the lower layer.

Conclusion and Future Work
In this work we introduced an extension to the Petri Net
formalism, Executable Petri Nets. These EPN have associ-
ated actions and conditions that allow them to be executed in
robots through an algorithm presented in the paper. We de-
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Figure 4: Higher layer EPN for corridor study. Place mInd

represents the individual behavior Ind. Place mIR repre-
sents institution IR. Place mIM represents institution IM .

fined institutions and an individual behavior for robots in a
distributed robotic system making use of this new extension.
In our approach, institutions are modular behaviors that can
be specified through an EPN and executed in a robot. Using
a composition scheme controlled by dedicated deontic oper-
ators of a set of institutions we are able to obtain an Insti-
tutional Agent Controller (IAC) in the form on an EPN that
combines several institutions and an individual behavior.

We applied this formalism to a simple case study where
robots have to maintain wireless connections with their
neighbors. We also applied the formalism to a more com-
plex case study dealing with institutional concepts, in this
case, the institutional role.

In the future we wish to study how our formalism of insti-
tutions with EPN allows us to study logical properties of the
controller, such as safeness and liveness. We are also inter-
ested in studying stochastic properties of the controller, such
as the steady state distribution of a given EPN or throughput
of transitions. To enable this study we need to further re-
fine our formalism of institutions to allow for stochastically
timed transitions. We will also study the possibility of using
the IAC as a starting point for the application of a multi-
level modeling methodology. Learning of institutions and
corresponding EPN will also be studied.
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Abstract

Effective coordination is a key social ingredient and social
structure may be approximated by networks of contacts. Us-
ing Stag Hunt games, which provide socially efficient and in-
efficient equilibria, we compare our simulation results using
artificial players and evolutionary game theory with labora-
tory experimental work with human subjects on small-world
type networks and with theoretical results. The conclusion
is that the apparently encouraging results obtained in the few
human experiments in which the local interaction structure
seems to promote efficient equilibria, is neither supported by
simulation results nor by theoretical ones.

Introduction
Many types of conflicting interactions between agents in
biology and society can be usefully described with the
tools of Game Theory (Vega-Redondo, 2003). The Pris-
oner’s Dilemma and the Hawk-Dove games are well known
metaphor for representing the tension that appears in soci-
ety when individual objectives are in conflict with socially
desirable outcomes, and most of the vast research literature
has focused on conflicting situations in order to uncover the
mechanisms that could lead to cooperation instead of so-
cially harmful interactions. However, in many important sit-
uations in society agents are not required to use aggressive
strategies. In fact, many frequent social and economic ac-
tivities simply require individuals to coordinate their actions
on a common goal since in many cases the best course of
action is to conform to the standard behavior. For example,
if one is used to drive on the right side of the road and travels
to a country where the norm is reversed, it pays off to follow
the local norm. Games that express this extremely common
kind of interactions are called coordination games.

Coordination games are apparently simple but they con-
front the players with multiple Nash equilibria (NE) and thus
with the problem of how to choose among them. Evolution-
ary game theory (EGT) offers a dynamical view which is
based on concepts of positively selecting fitter variants in
the population, i.e. strategies that score best are more likely
to survive and provides a justification for the appearance of
stable states of the dynamics that represent solutions of the

game (Vega-Redondo, 2003).
For mathematical convenience, standard EGT is based on
infinite mixing populations where pairs of individuals are
drawn uniformly at random at each step and play the game.
Correlations are absent by definition and the population has
an homogeneous structure. However, everyday observation
tells us that in animal and human societies, individuals usu-
ally tend to interact more often with some specified subset
of partners; for instance, teenagers tend to adopt the fash-
ions of their close friends group; closely connected groups
usually follow the same religion, and so on. In short, so-
cial interaction is mediated by networks, in which vertices
identify people, firms etc., and edges identify some kind
of relation between the concerned vertices such as friend-
ship, collaboration, economic exchange and so on. Thus,
locality of interaction plays an important role. Recently, in
the wake of a surge of activity in network research in many
fields (Newman, 2003), the dynamical behavior of games on
networks that are more likely to represent actual social inter-
actions than regular grids has been investigated (see (Szabó
and Fáth, 2007; Roca et al., 2009) for comprehensive recent
reviews). These studies have been conducted on games of
conflict such as the Prisoner’s dilemma or the Hawk-Dove
in most cases and have shown that there are network struc-
tures, such as scale-free and actual social networks that may
favor the emergence of cooperation with respect to the fully
mixing populations used in the theory (Santos et al., 2006;
Luthi et al., 2008; Roca et al., 2009). Recently, some work
has been done following this approach for games of the co-
ordination type too to try to unravel the effect of structure on
the population behavior, e.g. (Roca et al., 2009; Tomassini
and Pestelacci, 2010).
Several analytically rigorous results are available for coor-
dination games in well-mixed populations (Kandori et al.,
1993), as well as populations with a simple local interac-
tion structure such as rings and grids (Ellison, 1993; Morris,
2000). These results are very useful; however, while game
theory has normative value, its prescriptions are not always
reflected in the way people act when confronted with these
situations. This has been made manifest by a host of results
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of experiments with people (Camerer, 2003). Coordination
games are no exception and also confront the theory with
many puzzles. For coordination games on small-worlds and
regular networks the recent laboratory experiments carried
out in (Cassar, 2007) and in (My et al., 1999; Keser et al.,
1998) are particularly relevant.

It has been argued that multi-agent learning simula-
tions have the potential for greatly improving our knowl-
edge of the game-theoretical interactions in artificial soci-
eties (Shoham et al., 2007). We also believe that numerical
simulations, with their possibility of modeling many differ-
ent situations, may shed light on the factors, both endoge-
nous such as strategy update policy and exogenous, such as
population structure, that have an influence on the game out-
come. In this way, this can be a valuable tool to experiment
in both the theoretical and experimental sides and to build a
bridge between the two.

The paper is organized as follows. In the next section
we present a brief introduction to the subject of coordina-
tion games. Then we describe the dynamical model, as well
as the main results obtained in previous work. The follow-
ing sections deal with the main theme of the present study,
namely, the relationship between recent experimental results
and our simulations. Finally, we present our conclusions.

Coordination Games
General two-person, two strategies coordination games have
the normal form of Table 1. With a > d and b > c, (α, α)
and (β, β) are both Nash equilibria. Now, if we assume
that a > b and (a − d) ≤ (b − c) then (β, β) is the risk-
dominant equilibrium, while (α, α) is the Pareto-dominant
one (Harsany and Selten, 1988). This simply means that
players get a higher payoff by coordinating on (α, α) but
they risk less by using strategy β instead. There is also
a third equilibrium in mixed strategies but it is evolution-
arily unstable. A well known example of games of this

α β
α a, a c, d
β d, c b, b

Table 1: A general two-person, two strategies coordination
game.

type are the so-called Stag-Hunt games (Skyrms, 2004).
This class of games has been extensively studied analyti-
cally in an evolutionary setting (Kandori et al., 1993; Elli-
son, 1993) and by numerical simulation on several model
network types (Skyrms, 2004; Luthi et al., 2008; Roca et al.,
2009).

Evolutionary Games on Networks
The network of agents will be represented by an undirected
graph G(V,E), where the set of vertices V represents the

agents, while the set of edges (or links) E represents their
symmetric interactions. The population size N is the cardi-
nality of V . A neighbor of an agent i is any other agent j
at distance one from i. The set of neighbors of i is called
Vi and its cardinality is the degree ki of vertex i ∈ V . The
average degree of the network is called k̄.

Strategy Revision Rules
Since we shall adopt an evolutionary approach, we must de-
fine the decision rules by which individuals will update their
strategy during time. Let σi ∈ {α, β} be the current strategy
of player i and let us call M the payoff matrix of the game,
see Table 1. The quantity

Πi(t) =
∑
j∈Vi

σi(t) M σT
j (t)

is the accumulated payoff collected by agent i at time step t
and σi(t) is a vector giving the strategy profile at time t.

Here we shall describe two among the most commonly
used strategy revision rules. These rules, although they are
extremely simple, also make sense when human players are
concerned, at least at a very low level of knowledge and in-
formation processing capabilities. The first rule is to switch
to the strategy of the neighbor that has scored best in the last
time step. This imitation of the best policy can be described
in the following way: the strategy σi(t) of individual i at
time step t will be

σi(t) = σj(t− 1),

where

j ∈ {Vi ∪ i} s.t. Πj = max{Πk(t− 1)}, ∀k ∈ {Vi ∪ i}.

That is, individual iwill adopt the strategy of the player with
the highest payoff among its neighbors including itself. If
there is a tie, the winner individual is chosen uniformly at
random, but otherwise the rule is deterministic.

At a slightly higher sophistication level, a well known
adaptive learning rule is myopic best-response (Young,
1998), also called best-reply, which embodies a primitive
form of bounded rationality and for which rigorous results
are known. In the local version of this model, time is dis-
crete i.e. t = 0, 1, 2, . . . and, at each time step, an agent has
the opportunity of revising her current strategy with proba-
bility p. She does so by considering the current actions of
her neighbors and switching to the action that would maxi-
mize her payoff if the neighbors would stick to their current
choices. In other words, σ̂i is a best response for player i if
Πi(σ̂i(t)) > Πi(σi(t)),∀σi. In case of a tie, agent i keeps
its current strategy.

The model is thus completely local and an agent only
needs to know her own current strategy, the game payoff ma-
trix, who are her neighbors, and their current strategies. This
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rule is called myopic because the agents only care about im-
mediate payoff, they cannot see far into the future. In order
to introduce some stochasticity, an agent can make a mistake
with some small probability q. These small random effects
are meant to capture various sources of uncertainty such as
deliberate and involuntary decision errors. Deliberate errors
might play the role of experimentation, and involuntary ones
might be linked with insufficient familiarity with the game,
for example. This dynamic will be called best-response with
noise.

The simulation represents a dynamical system in which
time t is discrete, i.e. t = 0, 1, . . .. Let us call Σ(t) =
(σ1(t), . . . , σN (t)) the strategy profile at time t. For the im-
itation of the best and best response rules the evolution of
Σ(t) is deterministic. In the best response with noise case
the resulting process is stochastic. It can be described by a
Markov chain (Kandori et al., 1993) since the probability of
strategy profile Σ(t) = (σ1(t), . . . , σN (t)) at time step t+1
only depends on the previous time step:

Pr(Σ(t+ 1) | Σ(t),Σ(t− 1), . . .) = Pr(Σ(t+ 1) | Σ(t)).

It is clear that more refined forms of learning, such as rein-
forcement learning could be used to represent the agents’ de-
cisions (Camerer, 2003). However, these more sophisticated
approach do not have yet a firm theoretical basis and could
not be compared with baseline dynamical models. This is
the reason why, in the interest of simplicity, we stick with
very simple basic protocol revision rules here.

Summary of Previous Simulation and Theoretical
Results
This section summarizes previous numerical results on Stag
Hunt games. Several populations topologies have been stud-
ied, including regular lattices (Skyrms, 2004; Roca et al.,
2009), random graphs (Roca et al., 2009; Luthi et al., 2008),
scale-free graphs (Luthi et al., 2008; Roca et al., 2009),
model and actual social networks (Luthi et al., 2008) us-
ing several strategy update rules such as replicator dynamics,
imitation of the best, and best response dynamics. In the av-
erage, for initially equidistributed strategies, at the steady
state the population is monomorphic, with all individuals
playing α or β. For all network types, the more efficient
α strategy is enhanced with respect to what would happen in
a mixing population. This is true for all update rules ex-
cept best reply, for which the topology does not seem to
play an important role (Roca et al., 2009). Social networks
also favor the Pareto-efficient outcome in the average but the
steady state population is often dimorphic, i.e. there is a mix
of the two strategies. The reason why there can be mixed
states in social networks has been attributed (Tomassini and
Pestelacci, 2010) to the presence of communities. In fact,
social networks can usually be partitioned into recognizable
clusters (Newman, 2003); within these clusters strategies

may become dominant as in the pure coordination case just
by chance. In other words, as soon as a strategy dominates
in a given cluster, it is difficult to eradicate it from outside
since other communities, being weakly connected, have lit-
tle influence.

We now briefly comment on the relationship between the
results of numerical simulations and well known theoretical
results on Stag-Hunt games (for a recent review see (Wei-
denholzer, 2010)). These theoretical models are based on
ergodic stochastic processes in very large well mixed popu-
lations and state that, when using best-response dynamics in
random two-person encounters, and in the presence of a little
amount of noise, both for well mixed populations as well as
for populations structured as rings, the risk-dominant strat-
egy should take over the population in the long run (Kandori
et al., 1993; Ellison, 1993). But coordination seems to be
sensitive to the exact type of revision protocol and dynamic.
For example, Robson and Vega-Redondo (Robson and Vega-
Redondo, 1996) found that the Pareto-dominant equilibrium
is selected if players are immediately randomly rematched
after each encounter.

Simulations results on networked populations indirectly
confirm the above, i.e., at the steady state there is always ei-
ther a single strategy, but not necessarily the risk-dominant
one. However, owing to network reciprocity effects related
to clustering, a mix of both strategies is also possible. In
summary, it can be said that network effects tend to re-
inforce cooperation on the Pareto-dominant case, which is
a socially appreciable effect. However, these results must
be taken with a grain of salt. Numerically studies deal
with finite, network-structured populations during a limited
amount of time, while theoretical results have been estab-
lished for large well mixed populations in the very long run.
Thus, numerical results and theoretical predictions based on
different assumptions do not necessarily agree with each
other.

Discussion of Some Experimental Results on
Coordination Games

In this section we comment on some experimental results on
coordination games in the light of the conclusions that have
been reached by numerical simulation and also with respect
to theoretical results. There have been many experiments in
the field and we cannot be exhaustive; however, the main
conclusions are the following. When the analog of a (fi-
nite and generally small) well mixed population of players
have been used, the general result is that polymorphic final
states are rare, the initial state of play i.e. the strategy played
at the first period is a good predictor of convergence, and
the risk-dominant equilibrium is often reached in the labo-
ratory, i.e. coordination failures emerge, although in some
cases, especially in finitely repeated games and by vary-
ing the payoff structure, coordination on the Pareto-efficient
equilibrium can also be achieved (Cooper et al., 1992; Bat-
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talio et al., 2001). It has also been observed that the number
of rounds, the size of the group, and the fact of playing re-
peatedly with the same player may influence the result, i.e.
small groups, higher number of rounds, and repeated inter-
actions have been shown to favor the Pareto-efficient out-
come (Huyck et al., 1993, 1990). This lends support to the
idea that human agents play the games using some imperfect
decision rules that, nonetheless, may be similar to some va-
riant of myopic best response, perhaps with a longer mem-
ory of past encounters instead of just one step behind. No
doubt, human decision-making is a lot more complex, but
simple learning rules should somehow evolve during these
experiments.
A more interesting situation from the point of view of the
present work is the one in which some more specific popu-
lation structure has been recreated in the laboratory setting.
We are aware of three experiments of this type, the work
of (Cassar, 2007), and the studies of (My et al., 1999) and
of (Keser et al., 1998).
Keser at al. used a ring structure where each player has
a neighbor on either side and a well mixed structure for
comparison. Their conclusions were that in the ring the
preferred equilibrium is the risk-dominant one, while the
payoff-dominant equilibrium was the more frequent result
in the globally communicating population. This is in quali-
tative agreement with the theoretical predictions of (Ellison,
1993) for the ring and (Robson and Vega-Redondo, 1996)
for the mixing case.
My et al. performed a comparative experimental study of
Stag Hunt games with three different payoff matrices on
mixing and structured populations. The population with lo-
cal structure was composed by a circle of eight people where
each player only interacts with her immediate right and left
neighbors. They find that the first period modal choice of
strategy, which is the payoff dominant one, plays a major
role in the final outcome. In the global population case, the
steady state generally lies in the same basin of attraction as
the initial state. This result, which is commonly observed in
many laboratory experiments, does not agree with the the-
oretical results of (Kandori et al., 1993) which predict that
all the probability at stochastic equilibrium be placed on the
risk-dominant state. However, we have to bear in mind that
the latter have been established for stochastic processes in
the very long run taking place in large populations and nei-
ther of these conditions can be satisfied in a laboratory set-
ting.
For the ring structure, the convergence to the risk-dominant
outcome is more frequent than in the well mixed case, espe-
cially when the payoff matrix values are such that the Pareto-
superior basin shrinks. However, still often times the sys-
tem converges to the Pareto-dominant state, which disagrees
with the theoretical predictions of (Ellison, 1993) based on
noisy best reply dynamics. By examining the detailed his-
tory of play, the experimenters have found that, while in the

global population subjects on average play myopic best re-
sponse, in the ring with local structure a kind of imitation
rule fits the data better than best reply. This is in quali-
tative agreement with the very extensive numerical studies
of (Roca et al., 2009), where the simple strategy of imitating
the individual having the best payoff in the neighborhood
is the one that best promotes cooperation in the Stag Hunt
played on several classes of networks.

The experimental Study of Cassar and its
Numerical Simulation
The study of Cassar (Cassar, 2007) is the most interesting
one from the standpoint of the present paper as it investigates
network structures that are more realistic than the ring and
the two-dimensional lattice, although the ring is also used in
the experiments for comparison. One particular Stag Hunt
payoff matrix is used in (Cassar, 2007) with the following
payoff values (see Table 1): a = 5, b = 1, c = −1, d = 4.
With this choice the frequency α of stag players at the (un-
stable) mixed equilibrium would be 2/3, since at this point
the expected value playing strategy α, E[α], is equal to the
expected valueE[β], which implies 5p−(1−p) = 4p+1−p,
i.e. p = 2/3, where p is the probability with which α is
played in the mixed strategy or, equivalently, the α fraction
in the population. This leads to a basin of attraction for the
payoff-dominant strategy α that is half the size of the corre-
sponding basin for the risk-dominant strategy.
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Figure 1: Final average ratio of α-players as a function of
their initial ratio in small-world networks of size N = 18
and k̄ = 4. With noise (dashed curve) the system converges
almost always to the risk-dominant steady state. Without
noise (continuous curve) the payoff-dominant steady state
is often reached when the initial ratio is in the correspond-
ing basin of attraction. The dotted line marks the theoreti-
cal Nash equilibria and their basins of attraction. The small
squares represent the results of Cassar’s experiments.
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Figure 2: Final ratio of α-players as a function of their initial ratio. (a): Watts–Strogatz small-world networks scaling; k̄ = 4.
(b): Other network topologies with size N = 1000 and k̄ = 6. The horizontal scale starts at α = 0.4. Results are averages over
50 runs for each network class using myopic best response as a strategy update rule.

Summarizing Cassar’s experimental settings, groups of
18 subjects were used, virtually connected with a local net-
work according to three types of graph topology: ring, ran-
dom, and Watts–Strogatz small world (Watts and Strogatz,
1998). Watts–Strogatz graphs are constructed starting from
a regular lattice of low degree and rewiring each link in turn
with some small probability to a node chosen uniformly at
random. Thanks to the formation of shortcuts between dis-
tant parts of the ring the clustering coefficient remains high,
while the path lengths are dramatically shortened. Although
the resulting graphs are poor representations of actual so-
cial networks, some statistical quantities are qualitatively
correctly reproduced (Watts and Strogatz, 1998; Newman,
2003).
The degree of each node k was exactly 4 for the ring, while
it was k̄ = 4 on the average for random and small-world net-
works. Of course, a single realization of the ring was used,
while three different realizations of each of the other two
topologies were generated.
Cassar’s results can be summarized as follows. In all three
networks the Pareto-dominant equilibrium was the preferred
result, with a significant advantage for the small-world net-
works in terms of coordination on the efficient outcome.
Likewise, the ring was more favorable than the random
graph. The frequency of choice of the Pareto-dominant out-
come on the small-world graphs is unusually high, about
95%. Thus, the qualitative conclusion is that rings, and espe-
cially small-world networks, are favorable topological struc-
tures for coordination on the socially efficient outcome. This
is in contrast with theoretical results on rings using noisy
best response dynamics (Ellison, 1993) while there are no
theoretical results on Watts–Strogatz small worlds to com-
pare with. However, from the extensive numerical work

of (Roca et al., 2009) it appears that several different graph
structures do favor the payoff-dominant equilibrium in the
population for the Stag Hunt for most of the strategy update
rules tried, but not for best reply dynamics. In light of the
above, Cassar’s results seem to us less compelling than they
would appear at first sight.

To obtain more insight into the matter, we decided to
simulate the game behavior on an ensemble of computer-
generated networks of the same size N = 18 as those used
by Cassar with best response dynamics. We are aware of the
limitations of the comparison: artificial agents are not the
same thing as rational or semi-rational humans in the labo-
ratory and time scales are vastly different since only a lim-
ited number of runs can be effectively tested in experiments.
Nevertheless, we think that the exercise is worthwhile and
can shed some light into the question. One important thing
to note is that in (Cassar, 2007) the first period move in most
cases is the payoff-dominant one, which might be due to
psychological reasons in human subjects and is frequently
observed in experiments (see also (Battalio et al., 2001; My
et al., 1999)). In order to explore the whole spectrum thus
avoiding such initial bias in the simulations, we have studied
several different initial proportions between 0 and 1. Small-
world instances were generated anew for each run and each
computed point is the average of 50 runs. We have used a
fully asynchronous update scheme in which a randomly se-
lected agent is chosen for update with replacement at each
discrete time step. To detect steady states of the dynam-
ics we first let the system evolve for a transient period of
5000 ×N ' 5 × 106 time steps. After a quasi-equilibrium
state is reached past the transient, averages are calculated
during 500 × N additional time steps. A steady state has
always been reached in all simulations performed within the

658 ECAL 2011



prescribed amount of time, for most of them well before the
limit.
As an update rule we used both myopic best reply as well as
best reply with a small amount of mutation q = 0.02. Fig-
ure 1 reports the average results of 50 runs for each case. As
prescribed by theory (Kandori et al., 1993; Ellison, 1993)
and confirmed by simulations, the noisy dynamics leads es-
sentially to risk-dominant outcomes. On the other hand,
with deterministic best response dynamics, the results are
that, in general, the system reaches at steady state the basin
corresponding to its initial strategy proportion, with a slight
advantage for the risk-dominant equilibrium, also in qualita-
tive agreement with the expected theoretical results. Focus-
ing more specifically on the average initial conditions that
arose in Cassar’s experiment, i.e. with a proportion of α of
about 0.7, one sees that at this point the amount of coop-
eration found in the simulations is much lower, about 0.30
instead of full or almost full cooperation found in the few
laboratory experiments shown as small squares. Again, note
that the above results are for automata playing mechanically
a deterministic myopic best response. Instead, Cassar’s re-
sults have been obtained with human players; nevertheless,
the difference is striking.
Cassar tried to relate her results to some statistical topolog-
ical features of the networks. Her main suggestion was that
the higher the clustering coefficient 1, the higher the proba-
bility of players choosing the Pareto-superior strategy. Un-
fortunately, given the small size N = 18 of such networks
and only three network realizations each for random and
Watts–Strogatz, all sampled quantities such as the degree
distribution function p(k) and mean clustering coefficient C̄
are too noisy to be statistically significant. For example, for
a random graph, the clustering coefficient C asymptotically
tends to 0 as N → ∞. However, for small N clustering re-
mains high in random graphs, which is actually the case for
the values reported by Cassar. Thus, it is difficult to relate
C̄ with the game dynamics for such small networks. With
those caveats in mind, in order to get an idea as to the ef-
fect on the dynamics of scaling-up the network, we report
in Fig. 2 (a) the results on graphs of size N = 100 and
N = 1000, together with those for N = 18. It is appar-
ent that, apart from smoothing the finite-size fluctuations,
scaling-up the graph has only the effect of shifting the inset
of cooperation on the payoff-dominant outcome a bit further
to the right. In Fig. 2 (b) we report the fraction of population
coordinating on the payoff-dominant strategy α as a function
of the initial proportion of α-strategists in various network
types of size N = 1000 for the payoff values used in Cassar

1The clustering coefficient Ci of a node i is defined as Ci =
2Ei/ki(ki − 1), where Ei is the number of edges in the neigh-
borhood of i. Thus Ci characterizes the extent to which nodes
adjacent to node i are connected to each other. The cluster-
ing coefficient of the graph is simply the average over all nodes:
C = 1

N

∑N

i=1
Ci (Newman, 2003).

(2007). It can be seen that the clustering coefficient does not
seem to play an important role on the population behavior.
In fact, rings and Watts–Strogatz small-world graphs which
both have high clustering values lead to the lowest amount
of payoff dominance. On the other hand, both model and
real social networks, which also have high clustering, show
more coordination on the payoff-dominant strategy for α
below the theoretical 0.66 value, as well as slightly dimin-
ished value in the region above this value. The explanation
for this behavior is related to the community structure that
these networks possess (Tomassini and Pestelacci, 2010). In
fact, very often at steady state the population is polymorphic,
with a minority of clusters in which α dominates below 0.66
and a minority of clusters of agents playing β above this
limit. Table 2 illustrates the above by giving the mean clus-
tering coefficient C̄ and the modularity Q2 of the irregular
network types for N = 1000. The modularity values have
been computed with Newman’s and Girvan’s divisive algo-
rithm based on betweenness Newman and Girvan (2004).

In conclusion, these numerical experiments confirm that
the key factor to promote cooperation in networks of agents
playing coordination games according to best response when
risk-dominance should theoretically prevail, is the network
community structure, not the clustering coefficient. Con-
versely, this same community structure makes it possible for
a fraction of β-strategists to survive in clusters when payoff-
dominance should prevail.
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Figure 3: Final average fraction of α-players as a function
of their initial fraction in the population in small-world net-
works of size N = 18, N = 100, and N = 1000 with
k̄ = 4. Agent strategy update rule is by imitation of the best.

2According to Newman (Newman, 2006), where quantitative
definitions are given, modularity is proportional to the number
of edges falling within clusters minus the expected number in an
equivalent network with edges placed at random.
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Ring Small-World Random Scale-Free Model Social Real Social
C̄ 0.6 0.44 0.006 0.03 0.57 0.69
Q - - 0.31 0.30 0.66 0.69

Table 2: Average clustering coefficient C̄ and modularity Q for various network types of size N = 1000 and k̄ = 6. The values
are averages over 20 independent graph realizations. A - sign means that Q is not meaningful.

Since multi-agent simulations are cheap, while laboratory
experiments demand a lot of time and resources, we have
also simulated the same system assuming that the agents
play unconditional imitation of the best in their neighbor-
hood, instead of playing best response. Imitation of the best
is a primitive strategy for humans, but it could be used in
the absence of more refined reasoning tools, as in the ex-
periment of (My et al., 1999). After all, such imitative be-
havior is very common in the stock market. The results for
different initial shares of α and for three network sizes are
shown in Fig. 3, and should be compared with Figs. 1 and 2
(a). The notable feature is that the fraction of population
playing α is strongly enhanced with respect to the simula-
tions using best reply as a strategy update rule. This is in
agreement with the numerical findings of (Roca et al., 2009)
where it is shown that unconditional imitation of the best
gives rise to the highest amount of efficient coordination on
all network types tested. Indeed, Cassar’s experimental ob-
servations would be much closer to the results using imita-
tion of the best than to those updating with best reply, as can
be seen by comparing Figs, 1 and 3. However, in Cassar’s
experiment, neighbors’ payoffs were not made known to the
players and thus they could not employ a decision rule based
on payoff differences. Indeed, Cassar’s analysis of the sub-
jects’ behaviors favored rules based on myopic best reply
and inertia, which means that after having chosen a strategy,
a player may keep it for some time.

Clearly, a delicate point is the actual decision rule, or
rules, humans do use during these experiments. While the
simulated protocol revision rules used in simulations are
extremely simple and homogeneous in the agents popula-
tion, this is probably not the case with human players. Cer-
tainly, some amount of more sophisticated learning is at
work which is not fully represented in the basic rules, as
explained in Camerer’s book (Camerer, 2003), for exam-
ple. For this reason, we think that it is extremely useful to
validate statistical learning models arising from the experi-
ments. These could then in turn guide and pave the way for
better and more realistic strategy revision rules.

Summary and Conclusions
In this work we have studied general coordination games
on complex networks by numerical simulation and we have
compared the results with those of the few experimental
studies that have been performed on structured populations.

For general coordination games of the Stag Hunt type there
is a tension between payoff-dominance and risk-dominance
and thus it is of interest to know whether there exist pop-
ulation topology conditions that might favor the socially
efficient, Pareto-superior outcome. We have simulated a
particular, yet representative, coordination game on sev-
eral classes of complex networks in order to compare the
results with the laboratory experiments of Cassar (Cassar,
2007). This experiment with human beings is, to our knowl-
edge, the only one to date which employs complex network
structures resembling, at least from some statistical point of
view, real social networks. Our results suggest that Cassar’s
claims on the role of Watts–Strogatz small-world networks,
and especially their clustering coefficient, on the predom-
inance of payoff-dominant outcomes are inconclusive and
are essentially due to favorable average initial conditions.
These, in turn, seem to be a bias that is almost always present
in such experiments and which may well be due to human
psychological propensities, something that cannot be repro-
duced by the artificial agents used in the simulations but
which can be easily simulated by generating the correspond-
ing initial conditions. The numerical work also show that an
important source of promotion of the efficient outcome is
due to the community structure present in some networks
for reasonable-sized networks, i.e. with a size of at least one
hundred nodes. This, however, cannot be directly related to
the experimental studies as the size of the populations used
in the latter have been too small till now for any meaning-
ful partition into clusters. In conclusion, we suggest that
further laboratory work on a larger scale, such as those re-
ported in Grujic et al. (2010) should be performed to eluci-
date the role that complex networks of contacts may have on
the emergence of efficient coordination patterns when hu-
man agents are considered. In conclusion, we think that, al-
though numerical multi-agent simulations cannot be directly
compared with heterogeneous and possibly complex human
decision rules, they are a useful guide for planning and inter-
preting laboratory experiments and social dynamics in gen-
eral.
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Living organisms perform and control complex behaviors
by using webs of chemical reactions organized in precise
networks. Understanding how life-like behaviors emerge
from such complex chemical systems is a challenge for arti-
ficial life scientists. An approach is to implement minimal in
vitro systems, possessing the characteristic dynamic proper-
ties of living systems. In a bottom-up perspective, the ulti-
mate purpose is to lead to the description of minimal func-
tional cells. Taking example on the modularity of biosys-
temsKitano (2002), complex artificial networks can be ob-
tained by the assembly of elementary building blocksQian
and Winfree (2011). In that scope, we developed an exper-
imental framework of dynamic DNA-based modules, that
can be assembled to generate large networks with non-trivial
dynamic.

This study focuses on the description of a minimal cell as
a computing unit. With respect to their environment, sim-
ple organisms like bacteria must perform a number of ba-
sic computing operations: detection of chemical gradients
(chemotaxis), prediction of night and days alternation (circa-
dian rythms) or remembering of past decisions. In molecu-
lar terms, these behaviors correspond to various information
processing abilities, like adaptation, oscillations, or bistable
switching. They are performed within the cell by networks
of intercoupled biochemical reactions, one prominent exam-
ple being the gene regulatory networks.

Our work consisted in building experimental chemical
webs that can implement such dynamic functions. We de-
veloped a modular DNA toolbox based on a simple bio-
chemical machinery, enabling the construction of arbitrary
chemical networks, and their easy in vitro implementation
(Montagne et al., 2011). A theoretical work was performed
in a continuous feedback loop with the experimental imple-
mentation. Simulations of the chemical networks are used
for their design, their optimization and their study. Based
on the knowledge of the thermodynamic and kinetic param-
eters of individual reactions, numerical integrations of the
corresponding ODE sets enable the assembly of novel net-
works for predicting their behavior, and to adapt the network
topologies for obtaining the target behavior.
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Figure 1: A DNA toolbox. An activation module (A) can
be designed for synthesizing a specific oligonucleotide (Inh)
when a signal oligonucleotide (α) is present. An inhibition
module (B) can be built from the synthesis of an oligonu-
cleotide (Inh) that can specifically interact with a module
in order to block its activity. These modules can be assem-
bled in a chemical oscillator (C) that was experimentally de-
signed with a predictable behavior (D).
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This system is based on the replication of DNA strands
by enzymatic reactions (see Fig. 1). Template DNAs are
designed for producing specific message strands, when acti-
vated by specific signal strands. Autocatalytic networks are
obtained when the signal strand is identical to the message
strand. An inhibitor strand can be designed for each tem-
plate. Full networks can be obtained by assembling these
modules, generating positive and negative feedbacks. The
dynamics of the system is guaranteed by the presence of
an excess of activated nucleotide monomers, and the con-
tinuous destruction of the oligomers, for sustaining reaction
fluxes.

This toolbox can be used to build non-trivial behaviors.
As a proof of concept, we recently reported the de novo con-
struction of a biochemical oscillator, by assembling an auto-
catalytic unit with a negative feedback loop (Montagne et al.,
2011). The dynamic behavior (stability, period, amplitude)
of this experimental system can be quantitatively predicted
and modulated. We’ll discuss how the same toolbox can
be used to construct other life-like functions, like bistable
or gradient responsive switches, but also logical gates or
boolean networks. In the future, compartimentalization of
these amorphous systems in vesicles or droplets may provide
a good platform for the design of autonomous protocells.
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Abstract

This paper presents a mechanism of programs self-healing in
an environment of agents looking for food. The failure sys-
tem is defined based on initial failures that each agent (ter-
mite) has on their programs. By using language games con-
cepts and the Q-learning algorithm, termites diagnose failures
on their programs. Termites also have enough information to
determine if their programs are failing based on a simple vot-
ing system that is the result of language games of diagnosis.
The proposed self-healing mechanism was tested on virtual
worlds with 100 and 200 termites and a different failure per
termite. The results show that the proposed approach is capa-
ble, from local interactions, of building a set of very specific
diagnosis questions, allowing the system to diagnose more
than one type of failure at the same time, while the accounted
number of diagnosis questions for instructions with low fail-
ure probability is reduced. By using the voting system and
storing a ranking of possible missing code lines, mutations
are induced on the code and the system is capable of recover-
ing the programs.

Introduction
Self-healing is based on the ability to detect software and
hardware components that are failing. Systems must de-
tect failures on components and then replace, eliminate or
repair them without disrupting the system operation (Nami
and Bertels, 2007).

Self-healing involves: the design and verification of an
autonomic system which has some of the complexity of a
real system in order to locate functions and services offered
by an autonomic element in an efficient manner (Kephart
and Chess, 2003), to make an abstraction of behaviors to
obtain emergent properties and global behaviors from local
actions (Kephart and Chess, 2003; Bicocchi and Zambonelli,
2007; De Wolf and Holvoet, 2003), to reallocate resources
(Arora et al., 2006) and to locate faults as fast as possible
(Gao et al., 2004).

An important part of the problem is to develop a virtual
organization in an area where certain items may have cer-
tain types of failures and to reduce the risk of large losses by
getting a reconfiguration that ensures the continuity of the

system and the potential generation of learning about cor-
rective actions (Nami and Sharifi, 2007; Gao et al., 2004).

Some works try to find the cause of failures on distributed
transaction environments with good times of response (Gao
et al., 2004). One of them is about failure detection on
heterogeneous environments as a NP-hard problem. Its ap-
proach is based on a dependency matrix of transactions ver-
sus resources and consider only binary dependencies i.e. a
0/1 matrix. Another work deals with the concept of self-
regeneration introduced as a survival mechanism of systems
that reduces the role of human experts. This work is fo-
cused on security and shows as an application the project
CSISM, which implements multi-layer reasoning with fast
reaction rules designed to take effective defensive actions
within 250 ms after the initiation of the attack (Atighetchi
and Pal, 2009).

Self-healing has been proposed for operating systems and
distributed network environments (Rott, 2007). Rott decom-
posed this process in four main components: Monitoring,
Adaptation, Interpretation and Resolution. By adopting the
behavior of human administrators, also defined an optimal
self-healing process in a computer environment into three
stages: prevention, first aid and immunization. Rott consid-
ered as an example the ability to restore a service from an
XML policy, which was implemented in Solaris 10. Some
research demonstrated that it is possible to build self-healing
operating systems through simple and effective techniques
such as code reloading, component isolation and automatic
restarts (David and Campbell, 2007).

A code injection mechanism for Java to introduce self-
healing in object-oriented applications also has been pro-
posed (Fuad et al., 2006). The model includes sensors that
capture the state of the variables before calling the functions
and encapsulating the exceptions. When any runtime failure
occurs, the failure is notified and the system tries to recon-
struct the unsuccessful method, so that it could be restarted
at the point where the failure occurred. Otherwise, the sys-
tem notifies the system administrator and some actions are
executed like log generation. Fuad remarked that the code
must be analyzed and the autonomic functionality should be
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inserted in such a manner that it is separated from the service
functionality of the legacy system. Also, a framework based
on Java annotations was presented. This framework creates
and builds applications with self-healing using a simple lan-
guage of annotations (Breitgand et al., 2007).

Self-healing over networks was performed by injecting
different types of faults to a network during training using
cost-sensitive fault remediation (Littman et al., 2004). In
cost-sensitive fault remediation, a decision maker is respon-
sible for repairing a system when it breaks down. To narrow
down the source of the fault, the decision maker can perform
a test action, at some cost, and repair the fault if a repair ac-
tion can be carried out.

A framework to specify, validate and generate autonomic
systems, called Autonomic System Specification Language
(ASSL) presented concrete results to specify a self-healing
behavior model for NASA swarm-based exploration mis-
sions. The system send messages from a worker similar
to heartbeats, or messages with a diagnosis (Vassev and
Hinchey, 2009; Vassev and Paquet, 2007). A mechanism of
self-healing for resource allocation using Ant Colony Opti-
mization is also presented (Zhou et al., 2008). The obtained
results are scalable to different kind of problems.

NASA has an initiative to carry out explorations in
asteroid belts in a project called ANTS (Autonomic
Nano Technology Swarm), based on autonomic comput-
ing (Truszkowski et al., 2004). The system has special-
ized workers to obtain information about asteroids, a central
agent that gives a global goal and some messengers that send
signals between the agents and the spatial station. NASA
prototypes offer autonomic properties and these are defined
in the architecture design that implements a wide level of au-
tonomous and intelligent agents. These prototypes manage
concepts, like specialization, in which an agent is designed
to carry out a specific work and can redefine its task, it can
also adapt itself to the environment and learn from its work
or be easily replaced for other, if it has high-level failures.
A concept mission is currently being planned to be launched
between the years 2020 and 2030 as functional prototypes
(Truszkowski et al., 2006).

In order to work self-healing from a generic perspective,
taking some of the previous works as that of space explo-
ration (ANTS) and the challenge of reproducing a system
that captures part of the complexity of the real world, a vir-
tual world in which termites that can carry out a task in a
given environment is created. The termites simulator is an
environment that includes the interaction among multiple el-
ements, providing a more general solution instead of defin-
ing self-healing over operating systems or software, provid-
ing a motivation and a possible future extension not only for
an application for self-healing in software but also for being
extended to a hardware one.

Swarms have self-organization that makes them interest-
ing. Considering that from self-organization it can be ob-

tained self-administration like an emergent property (Bicoc-
chi and Zambonelli, 2007), not only it is possible to obtain
self-administration but also self-healing. In this paper self-
healing is studied from a perspective of artificial life that
is based on the emergency and self-organization ideas, with
many elements that interact with others through local rules
and a synthetic approach would be adopted in which behav-
iors are understood throughout the construction of the same
ones, using computer simulations (Langton, 1989).

Agents are called ”termites” because they have social or-
ganization (only the worker termites are modeled). Feed-
ing of termites is carried out for trophallaxis, it means that
food is stored in their stomach and it is transfered among
members of a community through mouth-to-mouth or anus-
to-mouth feeding (Wikipedia, 2011). In this case also the
pheromones define a communication mechanism.

In this paper, a simulator of a termite’s swarm, a failure
system, and a self-healing mechanism are introduced. Ter-
mites were modeled as agents with a virtual machine that
execute instructions about motion and diagnosis. An Ant
Colony System algorithm (ACS) was used to locate two
points of food in the space. A failure was defined as a bad
copy of a base program of a termite. Agents also diagnose
others using language games and Q-learning.

Language games involves local interactions between two
agents (a speaker and a hearer), in an environment with
other agents, objects and situations. Some games allow the
speaker to make the hearer perform an action (Steels and
Vogt, 1997). The language game of diagnosis in this paper
consists of one question of diagnosis about the programs of
the termites; if the hearer termite does not have the code line
that the speaker is expecting, the speaker rewards the diag-
nosis question. After recognizing the error, a voting param-
eter about failures is updated on each hearer termite, using a
vector called belief vector of failures per each termite.

This paper is organized in the following way: first, the
agents and the binary programs of the termites are described.
The second part deals with the failure system, the diagnosis
mechanism and the self-healing algorithm. Finally, the ex-
periments with 100 and 200 termites are performed, with 10,
30, 50 and 70 percent of the sick termites at the beginning.
Results are organized in terms of sick termites and termites
that were healed.

The Termites System
Agents and ACS
Agents are termites that look for food, carry it, take it to the
nest and continue searching for more food using Ant Colony
System (Dorigo and Gambardella, 1997). The world is a
toroidal space initialized with a pheromone value of zero
for the termite nest and all termites start from this position
with the simulation. Two points of food were defined with a
pheromone value of one and the other world positions have
a pheromone value of 0.5. Termites are represented as white
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squares if they are looking for food and blue squares if they
are carrying food and have eight possible movements: none,
down, left, right, up, upleft, upright, downright and downleft
(Fig 1).

Figure 1: The Termites World

Termites start making random movements when look-
ing for food and when they finally reach the food its color
changes from white to blue and the pheromone produc-
tion starts. Pheromone values in vicinity of termite and the
search status (seeking, carrying) are the input of algorithm
to select an action (Fig 2). If termite is looking for food,
the first direction with the less amount of pheromone is cho-
sen and if the termite is carrying food, the termite chooses
the first direction with more pheromone. Then the termite
moves in this direction, and the pheromone of termites and
world pheromone are updated (Eq 1 and 2).

tph = (tph+ 0.01 ∗ (0.5− tph)) (1)

wph(x, y) = wph(x, y) + 0.01 ∗ (tph− wph(x, y)) (2)

Where:

• tph is the pheromone of the termite.

• wph(x, y) is the pheromone of world in the new location
of the termite (x,y).

If the termite reaches its nest, its pheromone value is up-
dated to 0, if the termite reaches a food point the pheromone
of the termite gets a value of 1.

The Termites Programs
Each agent has a simple program, which is executed line by
line, that encapsulates the Ant Colony System algorithm and
the mechanism of diagnosis based on language games. Each
program is a vector of binary values that represent the sen-
sations and actions to be performed by the termite. The base
program of termites is exposed in Table . sSeek is a sensor
that indicates if the termites are looking for food, sCarry
indicates if the termites are carrying the food and sNeigh
indicates if termites have only one neighbor. Neighbor and

Figure 2: The Termites Sensors

pheromone sensors are defined in the Moore neighborhood
r = 1 with center in the termite location (Fig 2). acSeek
and acCarry are simple instructions that execute the Ant
Colony System algorithm and acDiag starts a diagnosis.
The first instruction of the base program (Table ), is gener-
ated based on the rule: ”if the termite is looking for food and
the termite does not have one neighbor, then the termite has
to look for food”.

sSeek sCarry sNeigh acSeek acCarry acDiag
1 0 0 1 0 0
0 1 1 0 0 1
0 1 1 0 1 0
0 1 0 0 1 0
1 0 1 0 0 1
1 0 1 1 0 0

Table 1: Base program for a termite

Each termite has an interpreter for its program. The in-
terpreter takes each line of code and compares it with the
perception of each sensor. If the line of code matches the
perceptions, then the action indicated in the code line is
performed. If more than one action is specified, the inter-
preter returns the action with the greatest priority. Priority
is defined in the following order: acSeek > acCarry >
acDiag.

Failures definition
Program failures are simulated as bad coding from the be-
ginning. Each termite has a variation of the program that the
”queen” has (the base program). The programs are copied
with a failure probability, it means not all termites will have
programs with failures. For example, a failure probability
of 0.1 means that approximately the 10% of the population
have a failure.

A failure is a change in a random bit of the code per ter-
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mite, so each termite has a different failure and it makes that
the termites act in unexpected ways (Fig 3).

Figure 3: Failure selection for two termites

Diagnosis Mechanism
Diagnosis based on Language Games
A Language game is a sequence of local interactions be-
tween two agents (a speaker and a hearer) located in a spe-
cific environment (Steels, 2001). Some language games al-
low agents to identify objects in the environment using lin-
guistic means and others allow the speaker to obtain actions
from the hearer (Steels and Vogt, 1997). Some of language
games were taken to design the mechanism of diagnosis for
the programs.

A termite can send messages to a world location, if there
is a termite in this place and the termites are neighbors. A
diagnosis is started if a termite receives a message in its cur-
rent position. This termite has to remain at this location,
to clean the message from the world location and to reply
the message. The diagnosis is encapsulated in the acDiag
instruction in the termites program and was modified follow-
ing the process below (Diagnose instructions are defined on
Table 2):

• Making contact: Two agents are physically close (they
are neighbors) and make contact with each another. One
assumes the role of speaker and the other is the hearer.

• Start Diagnosis: The speaker chooses one line from its
program (using Q-learning) and sends the codeline to the
hearer location using the RUNINSTR instruction.

• Action: The hearer reviews its program, in this case com-
pares its code with the line of code given by the speaker,
and reports weather its program has this instruction or not
(INSTRRES instruction). If the hearer does not have this
line, the code line and a vote are added to a vector of pos-
sible code lines.

Instruction(syntax) Definition
RUNINSTR
(RUNINSTR-
codeline,x, y)

Indicates to the hearer a code line of
the program from the speaker code-
line and the position of the speaker
(x, y)

INSTRRES
(INSTRRES-
result,x, y)

Indicates to the speaker if the hearer
has the codeline or not and the cur-
rent position of the hearer (x,y)

Table 2: Diagnose instructions

• Feedback: If the hearer has this instruction, the diagnosis
ends in failure (it does not discover a possible failure), the
question of diagnosis about this line is punished using Q-
learning. Otherwise, the hearer receives a positive vote
for this code line, and the diagnose question is rewarded
using Q-learning.

Q-learning (Watkins, 1989), is used to optimize the ques-
tions of diagnosis. There are questions of diagnosis about
each code line per agent and weights associated with each
code line which are stored in a vector of diagnosis questions.

If an error is detected (the hearer does not have the
speaker’s line), the question of diagnosis about this line of
code receives a reward and otherwise the question receives a
punishment. The goal of the agents in Q-learning is to max-
imize their total reward (Alpaydin, 2004). Questions of di-
agnosis with the greatest value are selected; if there is more
than one question with the same greatest value, we choose
the first one in the diagnosis vector.

The following equation is the reward when a failure is
diagnosed:

d[c] = d[c] + η ∗ (r + γ ∗Maxi(d[i])− d[c]) (3)

If a failure is not found, the following punishment for the
question of diagnosis is given:

d[c] = d[c]− η ∗ (r + γ ∗Maxi(d[i])− d[c]) (4)

Where:

• d is the vector of weights about diagnosis questions.

• c is the selected codeline for the diagnosis.

• η is the learning rate (0 < α < 1).

• r is the reward for taking the action.

• γ is the discount factor for the maximum of the weights.
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Voting system
Each termite has a vector called belief vector of failures
which stores the feedback of the diagnosis based on lan-
guage games (a vote is added if the hearer does not have the
code line that the speaker indicated). In this case, a value of
1 is added for this line of code if it belongs to the vector, oth-
erwise the code line is added to this vector with a vote equal
to 1. Table , shows four votes for the code line 100100, and
three votes for the line 101011.

codeline votes
100100 4
101011 3
101100 2
100101 1
110001 1

Table 3: belief vector of failures for a termite

Self-healing
Self-healing is defined using some concepts of evolutionary
algorithms. Evolutionary algorithms (EA) are optimization
techniques based on the principles of natural evolution (Hol-
land, 1992). First, a threshold was defined for the code lines
in the belief vector of failures. If a code line of the belief vec-
tor of failures reaches this threshold (five votes in this case),
it is introduced in a random position of the termite program,
instead of adding another line. It could be considered like
an operator of an EA. When this operator is applied, the in-
troduced code line and its votes are removed from the belief
about failures vector of this termite and the termite will dis-
able the diagnosis instruction (Termite is sick so it cannot
diagnose others), which is useful for avoiding failure propa-
gation (Fig 4).

Figure 4: Self-healing process

Dynamic of the process
Each termite gets their programs from the queen (base pro-
gram). The base program is copied to all the termites and
some termites of the population get bad copies of their pro-
grams (see failures definition section to get details). Some
termites will be healthy and others will be sick and will act
in unexpected ways. After that, the termites load and ex-
ecute their programs. Thanks to the program, the termites
know that they must look for food, carry food or make diag-
nostics.

Sick termites can diagnose healthy termites, so if a
healthy termite receives bad diagnosis from sick termites
(reach the threshold of the belief vector of failures), a code
line of the healthy termite would be replaced and the healthy
termite can get sick (see Self-healing section to get details)
and disable its diagnosis instruction. In the same way a sick
termite that is diagnosed by healthy termites, change their
code, disable their diagnose instruction to avoid failure prop-
agation and can be healed. With the time, the self-healing
mechanism of programs avoid failure propagation and to in-
duce changes in the lines of code of the sick termites de-
creasing disease.

Experiments and Results
A virtual world was defined and each agent and food point
were given a size of 1x1. For the Q-learning equations (Eqs
3 and 4) the following parameters were set: η = 0.01,
γ = 0.06, and a r = 1. Each question of diagnosis has
an initial weight of 1/codelines. There was a population of
100 and 200 termites with 0.1, 0.5 and 0.7 as the probability
of failure (pf) in the program for the population at startup
(see the faiures definition section for details). Code to val-
idate if a program has been healed was introduced, but the
agents have no knowledge about it.

Each experiment was performed 30 times, with 100000
iterations (movements per termite) per experiment. Data in
Tables 4 and 5 presents the mean and the standard deviation
of the experiments in terms of:

• PF = probability of Failure

• TS = Termites Sick at the Beginning are the termites that
get sick by bad copy of their programs.

• TSBD = Termites Sick by Bad Diagnosis are the termites
that get infected by bad diagnosis.

• TH = Termites Healed are termites which changed their
code and got a code with the same instructions of the base
program.

• TSDS = Termites Sick During Simulation are all the ter-
mites that got sick during the simulation (TS+TSBD).

• TSAS = Termites Sick After Simulation (TSDS - TH).
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PF TS TSBD TH TSAS
0.1 9.76 ± 2.31 7.13 ± 4.59 16.4 ± 5.92 0.5 ± 0.68

0.3 30.2 ± 4.32 18.6 ± 5.44 42.43 ± 5.70 6.4 ± 4.07

0.5 49, 6 ± 7.43 24.23 ± 6.60 47.06 ± 7.89 26.7 ± 6.14

0.7 68.5 ± 10.02 20.1 ± 5.89 20, 2 ± 11.34 68.4 ± 13.92

Table 4: Experiments with 100 termites.
PF = probability of Failure, TS = Termites Sick at the Be-
ginning, TSBD = Termites Sick by Bad Diagnosis, TH =
Termites Healed, TSAS = Termites Sick After Simulation

PF TS TSBD TH TSAS
0.1 20.26 ± 4.64 9.63 ± 5.54 29.26 ± 7.89 0.63 ± 1.12

0.3 57.30 ± 7.42 27.53 ± 9.37 72.53 ± 8.67 12.30 ± 8.73

0.5 97.87 ± 15.24 53.43 ± 9.86 97.70 ± 15.59 53.60 ± 24.23

0.7 134.97 ± 9.52 32.27 ± 8.03 48.17 ± 13.52 119.07 ± 23.72

Table 5: Experiments with 200 termites.
PF = probability of Failure, TS = Termites Sick at the Be-
ginning, TSBD = Termites Sick by Bad Diagnosis, TH =
Termites Healed, TSAS = Termites Sick After Simulation

To determine if the algorithm is efficient, a t-test for re-
lated samples was performed with the following hypothesis.
Results are organized in terms of total sick termites that got
sick during the simulation (TSDS) and termites sick at the
end of the simulation (TSAS):

• Ho : the mean of the termites that got sick during the
simulation TSDS (TSDS = TS+TSBD) is equal to the
mean of sick termites at the end of the simulation TSAS
(TSAS = TSDS − TH).

• Ha : the mean of the total of termites sick > the mean of
the termites sick at the end of the simulations (TSDS >
TSAS).

A value of α = .05 is selected for the tests (this value is
the most used in social sciences), this means that five times
out of a hundred a statistically significant difference between
the means is found even if there was none.

For experiments with 100 termites, the means showed a
difference between the termites sick during the simulation
and the termites sick at the end of the simulation. The dif-
ference between the means is 15.467, the value of t is 14.096
for experiments with 0.1 as the failure probability. In the ex-
periments with 100 and 0.3 of failure probability the differ-
ence between the means is 42.433, the value of t is 40.750.
With 100 and 0.5 of failure probability the difference be-
tween the means is 47.067, the value of t is 32.651. For 0.7
we have a difference between means of 20.233 and a t value
of 9.773. For 100 termites and pf = 0.1, Table 7 presents
a sig value greater than .05 but the Paired Samples Test of
table 8 reveal a statistically reliable difference between the
means. The null hypothesis is rejected in all cases, so the

Pf Mean Std. Deviation. Std. Error mean
0.1 TSDS 16.167 5.977 1.091

TSAS .70 .952 .174

0.3 TSDS 48.833 7.368 1.345
TSAS 6.40 3.490 .637

0.5 TSDS 73.833 10.952 1.999
TSAS 26.77 15.542 2.838

0.7 TSDS 88,633 7,513 1.372
TSAS 68.40 13.922 2.542

Table 6: Paired Samples Statistics (100 termites, N = 30)

Pf Correlation Sig
0.1 .045 .812

0.3 .660 .000

0.5 .879 .000

0.7 .582 .001

Table 7: Paired Samples Correlations between TSDS and
TSAS (100 termites, N = 30)

algorithm is efficient for the 100 termites and pf (0.1, 0.3,
0.5, 0.7) (Tables 6 and 8).

For experiments with 200 termites, the means also
showed a difference between the total sick termites and the
termites sick at the end of the simulation. For pf = 0.1
the difference between the means is 29.266, the value of t
is 20.314. In the experiments with pf = 0.3 the difference
between the means is 75.533, the value of t is 45.848. With
pf = 0.5 of failure probability the difference between the
means is 97.700, the value of t is 34.325. For pf = 0.7 we
have a difference between means of 48.167 and a t value of
19.518. The null hypothesis is rejected in all cases, so the
algorithm also is efficient for 200 termites and pf (0.1, 0.3,
0.5, 0.7) (Tables 9, 10 and ).

Pf mean Std. Deviation. Std. Error mean
0.1 TSDS 29.9 8.442 1.541
0.1 TSAS .633 1.129 .206

0.3 TSDS 84.833 13.774 2.515
0.3 TSAS 12.30 8.730 1.594

0.5 TSDS 151.300 17.542 3.203
0.5 TSAS 53.60 24.234 4.424

0.7 TSDS 167.233 13.566 2.477
0.7 TSAS 119.07 23.718 4.330

Table 9: Paired Samples Statistics (200 termites, N = 30)

Conclusions and Future Work
A mechanism of programs self-healing based on language
games, Q-learning and evolutionary computing was pre-
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Paired Differences pf = 0.1 Paired Differences pf = 0.3
Std. Std. Std. Std.

Mean Deviation Error Mean Mean Deviation Error Mean
TSDS- 15.467 6.010 1.097 TSDS- 42.433 5.704 1.041
TSAS 95% Confidence Lower 13.223 TSAS 95% Confidence Lower 40.304

pf = 0.1 Interval for the difference Upper 17.711 pf = 0.3 Interval for the difference Upper 44.563
t df sig t df sig

14.096 29 .000 40.750 29 .000

Paired Differences pf=0.5 Paired Differences pf = 0.7
Std. Std. Std. Std.

Mean Deviation Error Mean Mean Deviation Error Mean
TSDS- 47.067 7.896 1.442 TSDS- 20.233 11.340 2.070
TSAS 95% Confidence Lower 44.11841 TSAS 95% Confidence Lower 15.999

pf = 0.5 Interval for the difference Upper 50.01493 pf = 0.7 Interval for the difference Upper 24.46781
t df sig t df sig

32.651 29 .000 9.773 29 .000

Table 8: Paired Samples Test (100 termites)

Paired Differences pf = 0.1 Paired Differences pf = 0.3
Std. Std. Std. Std.

Mean Deviation Error Mean Mean Deviation Error Mean
TSDS- 29.266 7.891 1.441 TSDS- 72.533 8.665 1.582
TSAS 95% Confidence Lower 26.320 TSAS 95% Confidence Lower 69.298

pf = 0.1 Interval for the difference Upper 32.213 pf = 0.3 Interval for the difference Upper 75.769
t df sig t df sig

20.314 29 .000 45.848 29 .000

Paired Differences pf=0.5 Paired Differences pf = 0.7
Std. Std. Std. Std.

Mean Deviation Error Mean Mean Deviation Error Mean
TSDS- 97.700 15.589 2.846 TSDS- 48.167 13.516 2.468
TSAS 95% Confidence Lower 91.879 TSAS 95% Confidence Lower 43.120

pf = 0.5 Interval for the difference Upper 103.521 pf = 0.7 Interval for the difference Upper 53.214
t df sig t df sig

34.325 29 .000 19.518 29 .000

Table 11: Paired Samples Test (200 termites)

Pf Correlation Sig
0.1 .539 .002

0.3 .794 .000

0.5 .767 .000

0.7 .876 .000

Table 10: Paired Samples Correlations between TSDS and
TSAS (200 termites, N = 30)

sented. The system diagnoses and heals failures in an ef-
ficient way even with a 70% of the sick population. We ob-
served that each termite is able to identify its own failures
given the diagnosis of others.

Local interactions in the mechanism of diagnosis allow

the system to be specialized in the detection of more than a
failure at the same time even if the failure is different per ter-
mite. By running the simulation, it was observed that some
sick termites caused bad diagnosis, which induced failures
in other termites. However, the rule that states that a termite
cannot diagnose other if a failure is detected (votes thresh-
old = five), makes that after some iterations, the termites stop
propagating the failure and the population continues evolv-
ing their code until programs are recovered and the number
of programs that were bad is reduced. In all cases the healing
mutations stop after several iterations (Tables 4 and 5).

In all the experiments performed, the mean of the termites
sick during the simulation (TSDS) is greater than the mean
of the termites sick at the end of the simulation (TSAS) (Ta-
bles 6 and 9), so the null hypothesis (Ho : the mean of the
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termites that got sick during the simulation is equal to the
mean of sick termites at the end of the simulation) is rejected
given the statistical analysis. With the time, the self-healing
mechanism avoids failure propagation and induces changes
in the lines of code of the sick termites obtaining less sick
termites that the termites sick during the simulation. In this
way, self-healing is an emergent property that arises from
local interactions between termites (diagnosis based on lan-
guage games).

As future work we are going to include some improve-
ments like allowing the termite to locate the code line of the
failure and perform diagnosis to others even if a failure is
detected.
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Abstract

Multilevel selection and the evolution of cooperation are fun-
damental to the formation of higher-level organisation and the
evolution of biocomplexity, but such notions are controver-
sial and poorly understood in natural populations. The theo-
retic principles of group selection are well developed in ide-
alised models where a population is neatly divided into mul-
tiple semi-isolated sub-populations. But since such models
can be explained by individual selection given the localised
frequency-dependent effects involved, some argue that the
group selection concepts offered are, even in the idealised
case, redundant and that in natural conditions where groups
are not well-defined that a group selection framework is en-
tirely inapplicable. This does not necessarily mean, however,
that a natural population is not subject to some interesting lo-
calised frequency-dependent effects – but how could we for-
mally quantify this under realistic conditions? Here we fo-
cus on the presence of a Simpson’s Paradox where, although
the local proportion of cooperators decreases at all locations,
the global proportion of cooperators increases. We illustrate
this principle in a simple individual-based model of bacte-
rial biofilm growth and discuss various complicating factors
in moving from theory to practice of measuring group selec-
tion.

Group selection in theory and practice
Some argue that the theoretic principles of group selection
are well developed and crucial for understanding evolution
in natural populations (Wilson and Wilson, 2007; Okasha,
2006). Indeed, many artificial life models seeking to ex-
plain the evolution of cooperation make either explicit or im-
plicit reference to group-level selection (e.g., Scogings and
Hawick 2008; Goldsby et al. 2009; Wu and Banzhaf 2009).
The group selection position, however, suffers from at least
two serious problems. The first is whether the phenomena
involved, though undisputed, formally require group selec-
tion concepts. The second is whether the idealised condi-
tions they assume are applicable in natural populations. We
briefly overview the standard model of multilevel selection
and discuss these limitations. Our aim is to devise a practi-
cal theoretical approach to assess whether something inter-
esting is happening in a natural population with respect to
the scale of selection. As a practical exemplar, we have in

mind the possibility of group selection occurring within nat-
ural bacterial biofilms. Biofilms are formed when bacteria
attach to a surface and develop into dense aggregations, and
they are in fact the most common mode of bacterial growth
(compared to well-mixed planktonic populations). Bacteria
living in biofilms are known to engage in many cooperative
interactions, including the sharing of various ‘public goods’
such as extra-cellular enzymes. Biofilms also exhibit col-
lective properties, such as anti-biotic resistance, that are sig-
nificantly different from those of free-living bacteria (Ghan-
noum and O’Toole, 2004). Accordingly, they have potential
to serve as an ideal model empirical system for studying the
transition to multicellularity (Penn et al., 2008). However to
do so, we need to be able to connect idealised models of mul-
tilevel selection (for example, where groups are discrete and
non-overlapping) with real-world biological systems (where
the “groups” may simply be local neighbourhoods with no
discrete boundary). In this paper, we discuss the theoretic
and practical issues involved in studying multilevel selec-
tion in biofilms and other natural populations. We illustrate
our discussion with a simple individual-based model of bac-
terial growth, in which growth rate depends upon the local
concentration of a ‘public good’ that is costly to produce.
As such, this system might be expected to fit standard theory
on the evolution of cooperation. However in our individual-
based model, as in many real-world cases, the groups are not
discrete and so it is not immediately obvious how, if at all, a
multilevel selection framework can be useful. How, for ex-
ample, can we measure the relative strengths of within- and
between-group selection if the groups do not have discrete
boundaries?

Despite this practical difficulty, theoretical and philosoph-
ical work suggests that multiple scales of selection should
still be present in such systems (Wilson, 1980; Sober and
Wilson, 1998; Nowak and May, 1992). Here, we illustrate
the use of Simpson’s Paradox (Simpson, 1951; Sober and
Wilson, 1998) as a quantifiable indicator of a group-level
selection effect. Crucially, we illustrate that this need not
rely on a priori knowledge of the exact group structure, or
even on the presence of discrete group boundaries. A Simp-
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son’s paradox occurs when, although the proportion of co-
operators decreases in every locality, the global proportion
of cooperators nevertheless increases. This can be measured
in situ and does not require comparison with a well-mixed
population, nor that we know the exact evolutionary game
(fitness function) that individuals are engaged in. Then, by
measuring the magnitude of the discrepancy between local
and global proportions of cooperators over a range of lo-
cal scales, we can identify the effective selective scale in a
natural population. We also illustrate several further compli-
cating factors that arise in moving from idealised theoretic
models to more realistic biological scenarios.

The idealised model of multilevel selection and
its limitations

The idealised model of multilevel selection involves a pop-
ulation of individuals that is divided into discrete (equal-
sized) sub-populations or demes (Wilson, 1980; Sober and
Wilson, 1998), Fig. 1.

t=1 t=2

Figure 1: Growth of cooperators (green) & selfish individ-
uals (red) living in groups. Individuals in each group (only
two are depicted) are drawn randomly from a global popu-
lation (left) such that the proportions of types (cooperators
and defectors) varies slightly between groups. Groups with
more cooperators grow more than groups with fewer cooper-
ators and therefore contribute more individuals (specifically
cooperators) to the global cell-count. Hence, the global pro-
portion of cooperators increases (right).

Note this model assumes that localised fitness interactions
are contained within neatly circumscribed groups. To sus-
tain cooperation at high levels the population must be sub-
ject to multiple episodes of ‘aggregation and dispersal’, al-
ternating between phases with a single ‘migrant pool’ (the
global population or a representative sample thereof), and
phases with multiple localised interaction groups. Without
a group mixing stage, selfish behaviour would eventually go
to fixation within each group founded by one or more self-
ish individuals (assuming Prisoner’s Dilemma cooperative
interactions; Powers et al. (2008); Powers (2010)).

Is this really group selection? It has been widely argued
that this classic model shows nothing more than individual

selection given localised frequency-dependent effects (May-
nard Smith, 1976; Nunney, 1985; Sterelny, 1996; Grafen,
1984), and hence does not involve group selection at all.
That is, rather than saying groups with more cooperative in-
dividuals are fitter than groups with fewer cooperative indi-
viduals, we could equally say that individuals in groups with
more cooperators are fitter than individuals in groups with
fewer cooperators. In fact, our position is that if we could
not explain the outcome of such models in terms of (context
dependent) individual selection the result would be ‘mysti-
cal’ - that is, we would not have an evolutionary explanation
at all. The behaviour of such models is fully explainable, as
it must be, in terms of modified selective pressures on in-
dividuals given the group-living assumed. Nonetheless, it
is at least interesting to note that the increase in levels of
cooperation are consistent with the differential productivity
of groups, i.e., more cooperative groups are fitter in terms
of the genetic contribution they make to future generations,
as well as consistent with the differential productivity of in-
dividuals, i.e. individuals in more cooperative groups are
fitter in terms of the genetic contribution they make to future
generations (Dugatkin and Reeve, 1994; Kerr and Godfrey-
Smith, 2002). Indeed, this has to be the case because in this
(very common) kind of multilevel selection model, group fit-
ness is by definition the mean individual fitness of the group
members (Damuth and Heisler, 1988; Okasha, 2006). How-
ever, even this pluralist position seems to be on shaky ground
when the groups are not neatly defined. For example, how
can we empirically measure group phenotypes (e.g., level of
cooperation within the group) if we cannot identify discrete
groups? In this case, a group based account will lose ac-
curacy whereas the individual selection perspective remains
undeniably precise (Godfrey-Smith, 2006).

Is the standard model relevant to natural popula-
tions? The standard model describes neatly partitioned
sub-populations where the benefits of cooperative acts are
distributed equally to members within each group, but not
with members of other groups (Wilson, 1980; Godfrey-
Smith, 2006). Such idealised conditions are likely to be rare
in natural populations. Of course, the effect does not im-
mediately vanish when groups are less neat. But in such
cases, localised frequency-dependent selection seems a per-
fectly adequate explanation (Maynard Smith, 1976), and
there seems to be little value in arguing for a ‘group se-
lection’ account. Moreover, even if we wanted to retain
a group selection framework, it is not clear how we could
measure and quantify the differential productivity of groups
in realistic scenarios where groups are somewhat ill defined
(Godfrey-Smith, 2006).

These considerations should not lead one to conclude,
however, that there is nothing of consequence presented in
the idealised models (Okasha, 2006) nor that nothing inter-
esting can happen in natural populations. But it is a bit tricky
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to say what it is exactly, and more tricky to know how to
measure it in a natural population. Certainly, if we were
to assess the level of cooperation in a natural population,
and then (assuming this were practically possible) assess it
again in an artificially well-mixed version of the same ex-
periment, we might see a difference in the two levels. This
would at least tell us that localised frequency-dependent ef-
fects were significant in this system. But frankly, it does
not sound all that interesting – it is rather obvious that se-
lective pressures will be different in well-mixed populations
if locally dispersed resources or public goods are involved.
Simply examining the global frequency of cooperation tells
us nothing about the mechanism behind its evolution, e.g., is
cooperation a simple mutualism or is it individually-costly?

Moreover, although a comparison of well-mixed versus
spatial or viscous populations is possible in synthetic sim-
ulations, the practicalities of say, mechanically mixing a
biofilm or adding surfactants to break-up the extra-cellular
matrix that holds cells together would not merely alter spa-
tial relationships, but potentially affect many important en-
vironmental factors that could confound the result. We are
left, therefore, with a significant gap between the theoretic
idealisations of group selection and methodology that would
be useful in practical situations (West et al., 2008).

An alternative is to look for a Simpson’s paradox in situ.
A Simpson’s paradox clearly emphasises the crucial me-
chanics of multilevel selection (Sober and Wilson, 1998),
see below, and it can be measured in situ so that it does not
require disruption of the natural population structure.

Group selection and Simpson’s paradox
Simpson’s paradox is a statistical phenomenon that arises
when correlations or trends within sub-groups of a data set
fail to represent the overall correlation when all the data is
assessed together (Simpson, 1951; Sober and Wilson, 1998).
Table 1 shows a very simple hypothetical example based on
a group selection scenario. It shows the numbers of cooper-
ators and selfish individuals in two groups, A and B, at two
time points, t = 1 and t = 2. Note that both groups show a
decrease in the proportion of cooperators in this time inter-
val, yet overall, from the same data, there is nonetheless an
increase in the total proportion of cooperators.

It may be useful to clarify that at a given point in time,
the average within-group proportion of cooperators can be
different from the global proportion of cooperators. This is
simply because the average within-group proportion weights
all groups equally, whereas the global proportion is im-
plicitly the same summation but with each group contri-
bution ‘weighted’ in proportion to its size. In the exam-
ple, at t = 1 the groups are equal sized and the average
within-group proportion and the global proportion are there-
fore the same. But in the second time point, the groups
are different sizes and the average within-group proportion
((31% + 62%)/2 = 46.5%) is not equal to the global pro-

portion (51%).
In this example then, the growth trend paradox (i.e., co-

operation decreases within groups but increases globally) is
caused by the fact that one group grows much more than the
other. Specifically, the B group, with twice the initial pro-
portion of cooperators, is assumed to grow at about twice
the rate as the A group in this example. So, although self-
ish individuals always grow faster than the cooperators in
any given environment, some cooperators grow faster than
some selfish individuals (specifically, when cooperators are
in an environment of many other cooperators). Accordingly,
because highly cooperative groups grow more, cooperators
can increase in total proportion even though they decrease in
proportion within each group.

Using Simpson’s paradox to indicate group
selection

Simpson’s paradox as a basis for group selection is well un-
derstood. However, it is generally not used as a direct indica-
tor of group selection. Instead, the norm is simply to assess
the global level of cooperation and see if it increases. But
in practical experiments this is insufficient to conclude that
group selection is responsible for such an increase. When
the exact form of the evolutionary game that individuals are
engaged in is unknown, due to numerous modes of interac-
tion and multiple ‘public goods’ for example, or competi-
tion for multiple resources, it can be difficult to genuinely
ascertain whether the ‘cooperator’ is really cooperating and
whether the ‘selfish’ type is really selfish. That is, should we
be surprised that the global level of cooperation increases,
or is it a simple case of mutualism? The obvious control is
to compare with a well-mixed population or to increase the
diffusion rate in a spatial model, but aside from the prac-
tical difficulties of this in natural populations (even bacte-
rial ones), this cannot maintain the ‘all other things being
equal’ condition necessary to determine that only the local-
isation of interactions is producing the difference in results.
Instead, by looking for a divergence between the average
within-group and global proportions of types, we can both
verify that the types are behaving as expected (that in any
given environment the selfish individuals have the advan-
tage) and identify a group selection effect if there is one.
Thus Simpson’s Paradox provides an in situ measurement
of group selection in the sense that we do not need to dis-
rupt groups to provide a control, and can therefore assess
the effect that groups are having merely by observing how
the frequencies of types change in the natural population.

To measure Simpson’s Paradox in scenarios that have
poorly defined groups requires an additional small step. For
this we propose the following practical methodology for a
spatially distributed population. Rather than attempt to de-
fine boundaries around one group and distinguish it from
another, we can simply divide the physical space into equal-
sized local regions and measure both the average local pro-
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t = 1 t = 2
Coop Selfish %Coop Coop Selfish %Coop

A 2 4 33% 4 9 31%
B 4 2 66% 16 10 62%
Total 6 6 50% 20 19 51%

Table 1: Numbers of cooperative and selfish individuals in two hypothetical groups, illustrating Simpson’s paradox. Bold
highlighting indicates the time point where the proportion of cooperators is highest. Note that within both group A and group
B the proportion of cooperators decreases over this period, but overall, the proportion of cooperators increases.

portion of cooperators within all regions, and the global pro-
portion of cooperators. If the selfish individuals are indeed
selfish individuals then the average local proportion of coop-
erators must be always declining. But if, at the same time,
the global proportion of cooperators is increasing then there
is significant group selection activity.

Note that if every region exhibited approximately the
same amount of total cell growth, then a paradox could not
occur; but if some local regions are growing much faster
than others (because local frequency-dependent fitness ef-
fects are sufficiently strong) a Simpson’s Paradox may be
observed. In principle, it does not matter whether the space
is divided into contiguous tiles (as we employ below), or
whether regions are selected at random with random centres.
But it does matter that regions are not selected in any manner
that is biased by cell density, for that would amount to taking
a weighted average. Taking a weighted average would nec-
essarily make the local average the same as the global, and
so would result in the local group dynamics disappearing
from the analysis. This is the “averaging fallacy” described
by Sober and Wilson (1998), which causes the appearance
of group selection to vanish. For example, measuring the
proportion of cooperators in the vicinity of each and every
cell or within its radius of influence will bias measurements
of local proportions in such a manner that dense areas con-
tribute more to the average in exact proportion to how dense
they are – in this case, the average local proportion cannot
be different from the global proportion.

In the remainder of this paper we develop a simple
individual-based model of bacterial growth, such as would
apply to a locally-dispersing ‘public good’, to illustrate the
use of this methodology and as a basis for discussion of sev-
eral additional complicating factors that are important in its
application. Of particular interest is the possibility of mea-
suring the local proportions at several different spatial scales
to determine the effective scale of selection.

An individual-based model
Bacterial Biofilms
In developing the following model we have bacterial
biofilms in mind. Social evolution in bacterial systems is
currently receiving considerable attention both as a model
system of social evolution and because of the practical im-

plications of biofilms (Crespi, 2001; Griffin et al., 2004; Bur-
molle et al., 2006). Biofilms show a physical structure espe-
cially suited for localised fitness interactions via the forma-
tion of semi-isolated micro-colony structures (Hall-Stoodley
et al., 2004). However, the following model is general – not
dependent on any of the particulars that pertain to specific
bacterial strains or types of fitness interaction. The vital as-
sumptions are that there are two types of individual, that the
presence of one of these types (but not the other) is benefi-
cial to other individuals within a certain spatial radius, and
that this type bears a cost for providing this benefit. For ex-
ample, one type may be a wild-type strain of Pseudomonas
Aurigenosa, that releases into the environment an enzyme
useful for binding iron (Griffin et al., 2004). This enzyme
can be understood as a ‘public good’ because it can be used
by others within the diffusion radius of the molecule. The
other type may be a selfish mutant strain that does not pro-
duce the public good and is therefore not burdened by its
production, but can, like any other individual, benefit from
the public good produced by cooperators.

Model definition
The state of the model at any point in time is defined by
a population of individuals each of which has a type (co-
operate/selfish), an age, a location in continuous 2D space
and a ‘reproductive potential’. Reproductive potential can
be thought of as the resources the individual has accumu-
lated over time. There is no explicit modelling of the public
good, diffusion constants, extra-cellular matrix, or such like
- and in the default model, cells do not move. At every point
in time, the fitness potential of each cell is incremented by
a fitness benefit, W . This is a function of both the individ-
ual’s own type, and of the number of cooperators in the local
vicinity. Specifically, the fitness benefit of an individual is:

W = m+ Pb− c, (1)

where m = 1.5 is a constant representing the intrin-
sic growth rate, P is the proportion of cooperators within
a given radius, r1 = 15, of the individual (including it-
self), b = 4 is a constant representing the fitness benefit
received from cooperators, and c = 0 for selfish individuals
and c = 1.8 for cooperators is the cost of being a coopera-
tor (i.e., the cost of producing the public good). This fitness
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function is standard in evolutionary models of altruism (Wil-
son, 1980), and amounts to an n-player public goods game /
Prisoner’s Dilemma (Fletcher and Zwick, 2007).

The model proceeds by updating each individual, in each
time step, according to Algorithm 1.

Algorithm 1 Individual update algorithm.
1. The age is incremented by 1.

2. If the age is 5 the cell dies.

3. Otherwise, the fitness benefit is calculated (as above) and
added to the individual’s current reproductive potential.

4. Whilst the reproductive potential > 4,

(a) Reproduce, placing descendant cell in a new location
according to a placement algorithm (see text). An off-
spring is an exact genetic clone of its parent.

(b) Decrement reproductive potential by 4.

The model is initialised with equal numbers of cooper-
ators and selfish individuals distributed uniformly at ran-
dom. Each initial cell (and new cell from reproduction) is
initialised with reproductive potential=0, and age=0. The
placement algorithm may take account of competition for
space (and possibly fail to produce an offspring if space does
not allow) but by default it simply places an individual in a
random location within a radius, r2 = 5. Thus, an offspring
is placed close to its parent.

Measuring the global proportion of cooperators is triv-
ial. To measure the average local proportion of coopera-
tors, the space is divided into contiguous square regions of
size, r3 = 15 (note that the area of each square local region,
(r3)

2 = 225, in which local proportions are measured, is
the same order of magnitude as the circular area over which
a cooperator may affect other individuals, π(r1)2 = 707.
See Fig. 5.).

In an advanced version of the model, cells are motile and
move toward cooperators. This represents attraction towards
concentration of the public good, for example. At each time
step, a vector is calculated which is a distance-discounted
sum of vectors to all other local regions, weighted by the
number of cooperators in that region. The regions used are
the same as those used for calculating the average local pro-
portion of types. Each cell then moves a random distance d
in the direction of this vector; d is uniformly distributed in
the range 0 to 15r4, where r4 is a constant controlling the
amount of movement.

Model illustrations
We initialised each simulation with 150 cooperators and 150
selfish individuals, distributed randomly across a square grid
of size 250 ∗ 250. Each simulation was repeated 50 times,

and the mean of both the average local and global propor-
tions of cooperators recorded.

Figure 2 shows that although the initial distribution of
bacterial cells is random, the cells grow into spatial clus-
ters due to non-motility and the fact that offspring are placed
close to their parents (as per Model definition).

Figure 2: Illustration of biofilm growth in the model. Green
cells are cooperators, red are selfish cheats.

From standard social evolution theory, we would not ex-
pect cooperation to increase or be stable in the absence of lo-
calised interactions (Wilson, 1980). Thus, in such cases we
should not see a Simpson’s Paradox, since without localised
interactions there should be no difference in the growth-rates
of different localities, ceteris paribus. We verified that this
was the case in our model by making the radius of social
interactions, r1, equal to the size of the whole grid. Thus,
each individual would experience the global proportion of
cooperation for the purposes of determining their fitness.
This corresponds to complete mixing of the public good,
but not of the individuals themselves. Thus, we still mea-
sured the local proportion of cooperation across squares of
size r3 = 15. As Figure 3a shows, the global frequency of
cooperation steadily declines in this case, and there is no ob-
servation of a Simpson’s Paradox. This is because although
there are still spatial groups in the system, membership of
these groups does not affect fitness when the public good is
global, and hence they are meaningless to evolution. This
serves as an illustration of the fact that the groups we can
readily observe in a system (e.g., the clusters in our model)
may not be the same scale as the groups that matter for the
evolution of cooperation (in the case of well-mixed public
goods, the ‘group’ is the whole population).

On the other hand, in Figure 3b we set the radius of
the public good to r1 = 15. This represents localised in-
teractions, and so we might expect cooperation to evolve.
Moreover, we set the window size over which we measure
local proportions of cooperators to be of this same scale
(r3 = 15). In this case cooperation evolves, and we observe
a difference between average local and global proportions
of cooperation, and hence a Simpson’s Paradox. It should

676 ECAL 2011



be noted that Simpson’s Paradox is present even when the
global proportion of cooperators is falling, so long as the
average local proportion of cooperators is falling at a faster
rate (e.g., generations 1-6 in Figure 3b). In this case there is
a non-zero between-group component of selection, but this
is weaker than within-group selection.

Figure 3b also illustrates that the paradox cannot be sus-
tained indefinitely. This is because selfish individuals are fit-
ter than cooperators sharing the same public good (same P
value but c = 0 in Equation 1). Thus, they must necessarily
increase in frequency within each locality. As this happens,
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Figure 3: A) When the average of interaction, r1 covers
the entire space, cooperation does not evolve and Simpson’s
Paradox is not observed. B) When r1 = 15 cooperation
evolves, and there is a difference between local and global
proportions. C) Multiple aggregation and dispersal cycles
with r = 15.

the differential growth of different localities decreases, and
hence the paradox reduces. In Figure 3b, the paradox peaks
at 14 generations, after which the global frequency of coop-
eration starts to fall back down. This seemingly inevitable
decrease in cooperation as the generations go by need not
occur, however, if individuals are periodically mixed and re-
distributed in space (Sober and Wilson, 1998). Essentially
this is because such a redistribution of individuals reestab-
lishes variance in the proportion of cooperators (and hence
in the amount of the public good) between groups, and so
once again allows for differential group productivity to have
an effect and create a paradox. This is illustrated in Fig-
ure 3c, where dispersal from clusters and global mixing oc-
curs every 14 generations. These dispersal events explain the
see-saw shape of the average local curve: at each dispersal
event, the average local proportion is returned to the global
proportion of cooperators. Dispersal is known to occur in
natural biofilms (Ghannoum and O’Toole, 2004) (although
simultaneous and complete mixing is a simplifying assump-
tion of our model), and the single-celled bottleneck in the
development of multicellular organisms provides a similar
redistribution of genetic variance (Maynard Smith and Sza-
thmáry, 1995; Michod, 1999). Thus, some degree of dis-
persal is likely to be important in maintaining cooperation
in natural populations (West et al., 2002), and may actually
be an evolutionary adaptation at least partly for this purpose
(Maynard Smith and Szathmáry, 1995; Michod, 1999).

Figure 4 shows the effect of cell motility on the obser-
vation of Simpson’s Paradox. Again, from standard theory
we would expect increasing motility to reduce global levels
of cooperation. We see that increasing motility decreases
Simpson’s Paradox. This is because it increases the hetero-
geneity of localities, making their P values more similar and
hence the differential in group productivity lower.
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Figure 4: Effect of increasing cell motility on the observa-
tion of Simpson’s Paradox. Error bars show standard devia-
tion.

Figure 5 shows how the peak observation of a Simpson’s
Paradox changes depending on the scale at which local pro-
portions of cooperators are measured. Observation of the
paradox will peak when this scale corresponds to the actual
scale of social interactions in the system, e.g., to the radius
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in which the public good is shared. The peak in Figure 5
is where the measured locality size corresponds, approxi-
mately, to r1, the actual scale of interaction. Measuring
Simpson’s Paradox using different local scales could thus
be used to determine the actual scale of social interactions
in a real-world system, where this may well not be known a
priori.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Window size used to calculate average local proportion

M
a
g
n

it
u
d
e
 o

f 
p
a
ra

d
o
x

Figure 5: Effect of the magnitude of the locality size mea-
sured on the observation of Simpson’s Paradox (difference
between local average and global proportion of cooperators).
The observed paradox is strongest when the measured local-
ity size corresponds to the actual scale of social interaction;
measurements were taken after the number of generations
that yielded the peak difference between global and local
frequencies, for each window size. Error bars show stan-
dard deviation. The length of the error bars increases with
the window size because a larger window size corresponds
to fewer localities and hence fewer samples to average over.

Discussion
We have presented a methodology for measuring the effect
of group-level selection in natural populations. Real-world
populations may often not be formed of clearly observable
groups with discrete boundaries, which makes the applica-
tion of standard multilevel selection theory non-trivial. In
particular, theoretical techniques for measuring the strength
of group selection, such as the Price Equation or contextual
analysis, rely on being able to measure properties of dis-
crete groups (Godfrey-Smith, 2006). Thus, their application
to systems such as bacterial biofilms remains problematic.

Here, we have suggested observation of Simpson’s Para-
dox as a way to quantify the effect of group-level selec-
tion in a natural population. It is now widely appreciated
that Simpson’s Paradox, the difference between average lo-
cal and global frequencies of cooperation, will be present
whenever individually-costly cooperative behaviours evolve
(Sober and Wilson, 1998). Moreover, its presence indicates
multiple scales of selection in a system (Sober and Wilson,
1998). However, discussions of Simpson’s Paradox have so
far remained in the theoretical domain. In particular, illus-
trations of it have, to our knowledge, only been conducted
in models with discrete group boundaries. By contrast, we

have shown that Simpson’s Paradox can be readily mea-
sured in populations where individuals are continuously dis-
tributed throughout space. Thus, the exact group structure
does not have to be known a priori for this technique to be
applied. We have illustrated the measurement of Simpson’s
Paradox in such a case with an individual-based model of
public goods production in bacterial biofilms.

Significantly, measurement of Simpson’s Paradox can be
used to determine the effective group structure in a natural
population. Specifically, the difference between average lo-
cal and global proportions of cooperation will peak when the
size of localities measured is of the same scale as that over
which the public good is shared. That is, when the measure-
ment window size matches the scale of fitness-affecting so-
cial interactions. Wilson (1980) terms the scale over which
social interactions occur “trait groups”. He stresses that the
groups which matter to natural selection are subsets of in-
dividuals in which fitness-affecting interactions occur, and
that these subsets may not correspond to the apparent groups
that are most readily observable in a population. For ex-
ample, although discrete clusters may be observable in a
biofilm, these may not correspond to the radius over which
a public good diffuses. Varying the window size over which
the change in local proportions of cooperators is measured,
and looking for the peak difference with the global propor-
tion, can identify the effective trait groups in the population.
Searching for the trait groups in this way can be done by im-
age analysis at the end of the experiment – the experiment
does not have to be re-run in order to measure Simpson’s
Paradox on different scales. Regarding biofilms, one may
also measure local proportions using regions that specifi-
cally enclose micro-colonies to see if micro-colony struc-
ture is a stronger selective unit than arbitrary local regions.
That is, our methodology can be used to determine whether
the micro-colonies correspond to trait groups, or whether the
trait groups are in fact smaller or larger.

In future work, it would be interesting to investigate
whether the Price Equation can be meaningfully applied to
the appropriate window size. In particular, our methodol-
ogy identifies non-arbitrary groups. Thus, once we have
identified the effective trait group size, we could calculate
the covariance between group character (local proportion of
cooperators), and group productivity. Likewise, we could
calculate the covariance between individual character (co-
operator or not) and individual fitness (number of cell di-
visions). Our methodology also fits within a kin selection
framework (Hamilton, 1964), as used by Griffin et al. (2004)
to study bacterial social evolution, for example. Finding the
trait groups corresponds to finding the scale at which genetic
relatedness should be measured in a natural population.
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Abstract

A main challenge in Evolutionary Algorithms (EAs) is deter-
mining a termination condition ensuring stabilization close to
the optimum in real-world applications. Although for known
test functions distribution-based quantities are good candi-
dates (as far as suitable parameters are used), in real-world
problems an open question still remains unsolved. How can
we estimate an upper-bound for the termination condition
value ensuring a given accuracy for the (unknown) EA so-
lution?

We claim that the termination problem would be fully solved
if we defined a quantity (depending only on the EA output)
behaving like the solution accuracy. The open question would
be, then, satisfactorily answered if we had a model relat-
ing both quantities, since accuracy could be predicted from
the alternative quantity. We present a statistical inference
framework addressing two topics: checking the correlation
between the two quantities and defining a regression model
for predicting (at a given confidence level) accuracy values
from the EA output.

Introduction
Evolutionary Algorithms (EAs) are a class of stochastic op-
timization methods that simulate the process of natural evo-
lution. EAs maintain a population of possible solutions
that evolve according to rules of selection and other oper-
ators, such as recombination and mutation. Several evolu-
tionary methodologies have been proposed for solving real
world optimization problems: genetic algorithms (Holland,
tion), evolutionary strategies (Schwefel, 1995) and differ-
ential evolution (Storn and Price, 1997) among others. By
their ability to optimize non-analytic multi-modal functions,
EAs have been successfully applied to a wide range of real
life problems, such as parameter estimation (Ravikumar and
Panigrahi, 2010), pattern and text recognition (Rizki et al.,
2002) and image processing (Cagnoni et al., 2008).

As any iterative technique, EA requires a stop criterion.
Unlike optimization methods adapting a single initial value
(which rely on real analysis theory), by their stochastic na-
ture, there is not a solid mathematical theory ensuring con-

vergence of evolutionary methodologies in general (Safe
et al., 2004; Bäck et al., 1997).

The simplest (and most extended (Safe et al., 2004; Price
et al., 2005; Tagetiren and Suganthan, 2006)) stopping crite-
rion consists in reaching a number of iterations or function
evaluations. This stopping criterion is not useful by itself
(the number of iterations that guarantee convergence signif-
icantly varies across problems (Safe et al., 2004)), though it
can be necessary when used in addition with alternative cri-
teria to ensure that the algorithm stops (Zielinski and Laur,
2008).

Existing approaches defining general alternative termi-
nation conditions address two issues. First, the defini-
tion of a quantity reflecting the amount of change between
consecutive iterations and, second, the condition that such
quantity should fulfill. The quantities reported in the lit-
erature (Zielinski and Laur, 2008; Safe et al., 2004) mea-
sure either the rate of change in the objective function
(improvement-based) or the distribution of the evolving pop-
ulation (distribution-based). Concerning the termination
condition, two different conditions are considered. The first
condition terminates EA if the measure of the amount of
change is below a given threshold. The second one termi-
nates EA in the case that such measure is below a thresh-
old for a number of generations. Improvement-based crite-
ria may lead to early termination (possibly far from the opti-
mum) due to the stochastic nature of EA (Zielinski and Laur,
2008). Meanwhile, distribution-based quantities compare to
the accuracy of the solution (distance to the optimum) in
terms of number of function executions, as far as suitable
parameters (threshold and number of generations) for the
termination condition are set (Zielinski and Laur, 2008).

A main limitation for application to real-world problems
is that the parameters of the termination condition strongly
depend on the function shape of the objective function
(Zielinski and Laur, 2008). Another concern is that current
approaches constrain to statistically comparing the number
of iterations reached by the termination condition to the
number of iterations required to achieved a given distance
to the optimum (Zielinski and Laur, 2008). Although ex-
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periments report promising results, the statistical tools used
so far can not answer two main (still open) questions. How
can we define a termination condition? Given a confidence
level, how can we estimate an upper-bound for the number
of iterations required to ensure convergence?

We propose posing the termination problem in statistical
inference terms. From the perspective of statistical infer-
ence, the termination problem consists in designing a mea-
sure (depending only on the EA output) that correlates to
the accuracy of the solution, so that they can be swapped.
This paper introduces a general inference model for predict-
ing the accuracy of the EA solution from the EA current
state. We show that a linear regression model in logarith-
mic scale accurately relates accuracy and distribution-based
quantities. We use the inference model to compare several
types of distribution-based quantities reported in the litera-
ture (Zielinski and Laur, 2008). Our experiments indicate
that the maximum distance to the best individual is the best
choice in terms of computational efficiency and capability
of predicting EA accuracy.

Inference Model
All measures are taken in the domain of definition of the
objective function, that is in the parameter space of the pop-
ulation being evolved. The distance to the (known) function
minimum is our gold-standard reference convergence crite-
rion, given that is directly associated to the algorithm accu-
racy. This criterion can only be computed if the optimum of
the test function is known and, thus, is useless in real-world
problems. We compute it as the maximum distance to the
function minimum of a certain percentage p of the individ-
uals (Zielinski and Laur, 2008) and denote it by RefCrit.
Regarding the alternative quantities, which we will denote
by AltCrit in general, we have considered the following
distribution-based quantities (Zielinski and Laur, 2008):

1. Maximum Distance (MxD). It is given by the maximum
distance of the population to the best individual.

2. Population Variability (Std). It is the maximum of the
standard deviations (computed using the population indi-
viduals) of each dimension of the search space (in our
case, the number of dimensions is limited to two).

Both quantities can be computed using all individuals or
considering only a percentage p of the individuals. The latter
is computationally faster and will be indicated by the suffix
Quick.

Our final goal is to control (predict) the values taken by
RefCrit from the values taken by the alternative measure
AltCrit. In inference statistics, this is achieved by relating
both quantities using a regression model. From now on and
when appropiate, x stands for AltCrit (explicative variable)
and y for RefCrit (response variable).

Regression Model
Given a sampling of two random variables (x and y), the
linear regression of y (response variable) over x (explicative
variable) is formulated as:

yi = β0 + β1xi + εi (1)

where xi, yi are the sampling of x and y and εi a random
error satisfying:

Model Assumptions

1. Linearity: E(εi) = 0

2. Homocedasticity: V AR(εi) = σ2, ∀i

3. Uncorrelation: COV (εiεj) = 0, , ∀i, j

4. Gaussianity: εi ∼ N(0, σ2), for N(0, σ2) a normal dis-
tribution.

The parameters of the regression model (1) are the regres-
sion coefficients β = (β0, β1) and the error variance σ2. The
regression coefficients describe the way the two variables re-
late, while the variance indicates the accuracy of the model
and, thus, measures to what extent x can predict y.

Given that, in our case, the inference is over RefCrit,
our model is:

RefCriti = β0 + β1AltCriti + εi (2)

for RefCriti, AltCriti the values of RefCrit and
AltCrit obtained at the i-th iteration.

For a sample of length N (in our case N is the number
of iterations), the regression coefficients, β̂ = (β̂0, β̂1), are
computed by Least Squares Estimation (LSE) as:

β̂ = (XTX)−1XTY (3)

for X =

 1 x1
...

...
1 xN

, Y = (y1, . . . , yN ) and T denot-

ing the transpose of a matrix. The differences between the
estimated responses, ŷi = β̂0 + β̂1xi, and the observed re-
sponses yi:

ei = yi − ŷi
are called residuals. Their square sum provides an estima-
tion of the error variance:

SR = σ̂2 =

∑
e2i

N − 2
(4)

The four model conditions endow desirable properties to
the LSE of the regression coefficients (Ashish, 1990). By
the Gauss-Markov theorem under the first three assump-
tions, the LSE are best linear unbiased estimators and assure
that predictions made by least squares fitted equations are
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Figure 1: Residual diagnosis plots for Rastrigin function

good. By adding the fourth assumption (error gaussianity),
the LSE has minimum variance among all unbiased estima-
tors (not just linear) and allows the use of parametric tests,
such as the Student’s t-test for testing hypothesis on parame-
ter values. The central limit theorem (asymptotically) guar-
antees this last property for large samples. Therefore, given
that we have as many samples as EA iterations, in our case,
the gaussianity is not a critical issue.

The standarized residuals:

eni = (ei − µ(ei))/std(ei)

, for µ the average and std the standard deviation, are used
to verify the model assumptions. The plot of eni over ŷi is
called the versus fit plot and reflects linearity (in the measure
that it is centered at zero) and homocedasticity (uniform de-
viation from zero). The plot of en vs the sorted explicative
variable is called the versus order plot and serves to detect
any correlation pattern. Finally, the histogram of the stan-
darized residuals reflects Gaussianity (Newbold et al., 2007).

Figure 1 shows the residuals diagnosis plots for Rastrigin
function. From left to right, we plot the versus fit plot, the
versus order plot and the histogram for the standarized resid-
uals en. The plots at normal scale in the first row show that
linearity (versus fit plot is centered at zero) and uncorrela-
tion (versus order plot presents no pattern) are fully satisfied.
Meanwhile, we observe a clear heteroscedasticity in the ver-
sus fit plot which presents an increasing deviation from zero.

This heteroscedasticity is due to a decrease in the popula-
tion sparseness at advance stages of EA and also affects the
Gaussianity assumption, as shown in the histogram of the
first row. A monotonous increase in σ2 is usually solved
by taking logarithms in both variables (Arnold, 1997). The
residuals plots for the regression model in logarithmic scale
(second row in fig. 1) indicate a good homocedasticity and
Gaussianity for the standarized residuals.

From now on, the values ofRefCrit andAltCritwill be
assumed to be in logarithmic scale for the inference model:

log(RefCriti) = β0 + β1log(AltCriti) + εi (5)

We note that, by taking exponentials, the regression model
in the original scale is polynomial with multiplicative errors:

RefCriti = eβ0AltCritβ1

i e
εi (6)

Model verification Previous to any kind of inference, it
is mandatory to verify that the estimated parameters make
sense. That is, whether it really exists a linear relation be-
tween x and y. By the Gauss-Markov theorem, such linear
relation can be statistically checked using the following T-
test (Newbold et al., 2007)

H0 : β1 = 0 H1 : β1 6= 0

where a p−value close to zero (below α) ensures the valid-
ity of the linear model with a confidence (1− α)100%.
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Prediction Model
In order to predict the values of RefCrit from the values
achieved by AltCrit, we use the regression prediction in-
tervals (Newbold et al., 2007):

PI(x0) = [LPI(x0), UPI(x0)]

since, for each x = x0, they provide ranges for y at a given
confidence level 1 − α. That is, given x0, the values of the
response y are within LPI(x0) ≤ y ≤ UPI(x0) in (1 −
α)100% of the cases.

Given x0 = AltCrit0, the confidence interval at a confi-
dence level (1-α) predicting RefCrit is given by:

PI(x0) = [LPI(x0), UPI(x0)] =

= [ŷ0 − tα/2SR
√
1 + h0, ŷ0 + tα/2SR

√
1 + h0] (7)

for tα/2 the value of a T-Student distribution with N − 2
degrees of freedom having a cumulative probability equal to
α/2 and:

ŷ0 = b0 + b1x

h0 = (1 x0)(X
TX)−1

(
1
x0

)
= a0 + a1x0 + a2x20

Where (a0.a1, a2) stand for the coefficients of the quadratic
polynomial resulting from the previous algebraic expres-
sion.

The exponential of PI already provides (with confidence
1−α) an upper bound for the accuracy of EA solution given
EA current state. In order to obtain the upper bound for
AltCrit ensuring a given accuracy UPI(x0), it suffices to
find the value x0 that solves:

ŷ0 + tα/2SR
√
1 + h0 = UPI(x0) (8)

Using the expressions for ŷ0 and h0 in (8) and solving for
x0, we obtain:

x0 =
2b0b1 − t2α/2S

2
Ra1 − 2b1UPI(x0) +

√
D

2(t2α/2S
2
Ra2 − b21)

(9)

where the discriminant is given by:

D = (t2α/2S
2
Ra1 − 2b0b1 + 2b1UPI(x0))

2−

− 4(t2α/2S
2
Ra2 − b21)(t2α/2S

2
R(a0 + 1)−

− b20 + 2UPI(x0)b0 − UPI(x0)2)

By taking exponentials from (9) we get the upper bound for
AltCrit.

Experimental Settings
In this study we have compared the predictive capability
of the following distribution-based measures given at the
beginning of the previous Section: MxD, MxDQuick and

StdQuick. We have used p = 30% of the population for
computing Quick scores. We have considered six well-
known test functions (Digalakis and Margaritis, 2002) hav-
ing a minimum value of zero:

1. Esphere:

f1(x) =
n∑
i=1

x2i

2. Rosenbrock:

f2(x) =
n−1∑
i=1

[100(xi+1 − x2i )2 + (xi − 1)2]

3. Rastrigin:

f3(x) =
n∑
i=1

[x2i − 10 cos(2πxi + 10)]

4. Ackley:

f5(x) = 20+ e− 20e−0.2
√

1
2

∑n
i=1 x

2
i − e 1

2

∑n
i=1 cos(2πxi)

5. GoldstenPrice:

f6(x) = (1 + (x1 + x2 + 1)2.

(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)).

(30 + (2x1 − 3x2)
2.

(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22))

6. Easom:

f7(x) = − cosx1. cosx2.
exp(−((x1 − π)2 + (x1 − π)2))

We have used a Differential Evolution (DE) technique for
the minimization task. Differential evolution is a real param-
eter encoding evolutionary algorithm for global optimiza-
tion over continuous spaces (Storn and Price, 1997; Das and
Konar, 2005). In this paper, we use the 3-parameter DE1
scheme (Storn and Price, 1997) for solving DE. For a real
search space of dimension D, the population is randomly
initialized with ND vectors (for ND the first algorithm pa-
rameter). Each vector v in the population is evolved by mu-
tation and recombination operators. Given a mutation rate
F ∈ [0, 2] (second parameter of the algorithm), the mutation
operator produces a new vector vm by adding a vector dif-
ference of two randomly chosen population vectors v1 and
v2 to another randomly chosen vector v3:

vm = v1 + F (v2− v3)
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Figure 2: Scattered plots for Rastrigin test function and 10 different runs of DE in logarithmic scale.

For the recombination step, a new vector vf is created from
the mutation vector by means of a combination rate CR
(third parameter of the algorithm) as follows:

vfi =

{
vmi if ri < CR or i = k
vi otherwise

for vfi the i-th component of vf and ri ∈ [0, 1] a random
number and k a random number uniformly distributed in
[1, D]. Finally a selection operator is applied. The vector
vf and the initial vector v are compared and the vector that
better fits the objective function is selected and remains in
the next population. This process is iteratively repeated until
a stopping criterion is reached. Following the literature (Das
and Konar, 2005), we have chosen the following values for
DE parameters: D=2, ND=20, F=0.9, CR=0.5. For each test
function, we have executed 100 runs of the algorithm during
10.000 iterations each one.

For each test function and alternative quantity, two differ-
ent experiments have been carried out:

1. Model Assessment. The suitability and accuracy of the
linear model in logarithmic scale has been assessed by
the T-test on the regression coefficients, as well as, the
analysis of the residuals variance (SR).

2. Model Prediction. In order to assess the prediction capa-
bilities of each model two different experiments have been
addressed. On one hand, we have explored the relation be-
tweenRefCrit andAltCrit by analyzing the confidence
intervals of the regression coefficients. On the other hand,
we have compared the prediction intervals across the three
distribution-based quantities.

Experiments and Results
Model Assessment
Figure 2 shows scattered plots associated to the regression
model for the Rastrigin test function. The y axis represents

RefCrit values and the x axis each of the alternative quan-
tities (from left to right MxD, MxDQuick and StdQuick.
Each plot shows 10 different runs marked with distinct col-
ors and markers. For all alternative quantities, we observe
a uniform behavior across DE executions, which present the
same linear pattern with a small variation.

Table 1 reports the estimation of the model parameters
(the regression coefficients β̂0, β̂1 and the residual variance
SR) and the p-value of the model verification T-test. We
report values for each test function (rows) and alternative
quantity (columns). For all cases, there is a clear linear rela-
tion between accuracy and the alternative quantities (with p
close to the working precision). Besides the goodness-of-fit
is excellent, given that SR is extremely small compared to
the variable ranges (see fig. 2).

Concerning the relation between the two variables, it is
worth noticing two aspects. Firstly, we observe that the es-
timated slope β̂1 is close to 1 for all cases. This implies
that the relation in logarithmic scale is a translation of the
identity and the regression model in the original scale is also
linear. Secondly, the constant coefficients β̂0 are sorted as
follows:

β̂0(MxD) ≤ β̂0(MxDQuick) ≤ 0 ≤ β̂0(StdQuick)

The above commented points indicate that there might be
the following tendency:

StdQuick ≤ RefCrit ≤MxDQuick ≤MxD

This already suggests that the value of maximum distances
itself might guarantee an upper bound for the EA accuracy.
In order to really confirm such hypothesis, we should ana-
lyze the prediction intervals.

Model Prediction
Figure 3 shows the prediction intervals for the 6 test func-
tions. Each plot shows the prediction interval for all al-
ternative quantities, as well as the identity line (solid line)
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MxD MxDQuick StdQuick
p b1 b0 SR p b1 b0 SR p b1 b0 SR

Esfere ≤ 10−32 1.000 -0.487 0.12 ≤ 10−32 1.000 -0.183 0.05 ≤ 10−32 1.000 0.685 0.03
Rosenbrock ≤ 10−32 1.002 -0.478 0.16 ≤ 10−32 1.002 -0.122 0.09 ≤ 10−32 1.003 0.761 0.05

Rastrigin ≤ 10−32 0.996 -0.557 0.07 ≤ 10−32 1.006 -0.207 0.06 ≤ 10−32 1.007 0.686 0.03
Ackley ≤ 10−32 1.000 -0.487 0.07 ≤ 10−32 1.004 -0.148 0.06 ≤ 10−32 1.004 0.725 0.03

GoldstenPrice ≤ 10−32 0.998 -0.504 0.16 ≤ 10−32 1.001 -0.127 0.07 ≤ 10−32 1.002 0.804 0.05
Easom ≤ 10−32 1.001 -0.484 0.05 ≤ 10−32 1.011 -0.143 0.04 ≤ 10−32 1.011 0.766 0.03

Table 1: Model fitting scores

Figure 3: Prediction intervals

for a better visual comparison between AltCrit prediction
and RefCrit values. The alternative quantity can substi-
tute RefCrit in the measure that the identity line is within
the range given by the prediction interval. This is the case
for quantities based on maximum distances. In the case of
StdQuick the predicted values are above the reference iden-
tity line. This implies that StdQuick and RefCrit can not
be directly swapped and, thus, we need the upper bound
given in (9) for predicting RefCrit values.

Table 2 reports the upper bounds for each alternative
quantity ensuring a given accuracy for RefCrit. For each
test function (rows), we report values for two accuracies
10−6 and 10−9. As suggested by the plots in fig. 3, for Ras-
trigin, Ackley and Easom test functions, the upper bound for
MxD is almost equal to the accuracies 10−6 and 10−9. This
is also the case for Easom test function and MxDQuick. For
the remaining cases, MxD and MxDQuick upper bounds
are a little lower (though still comparable). We would like
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MxD MxDQuick StdQuick
10−6 8.3 · 10−7 7.5 · 10−7 3.5 · 10−7

Esfere 10−9 8.3 · 10−10 7.5 · 10−10 3.5 · 10−10

10−6 7.5 · 10−7 6.4 · 10−7 3.1 · 10−7

Rosenbrock 10−9 7.6 · 10−10 6.5 · 10−10 3.2 · 10−10

10−6 9.8 · 10−7 8.4 · 10−7 4.0 · 10−7

Rastrigin 10−9 9.5 · 10−10 8.7 · 10−10 4.2 · 10−10

10−6 9.7 · 10−7 7.6 · 10−7 3.5 · 10−7

Ackley 10−9 9.7 · 10−10 7.8 · 10−10 3.6 · 10−10

10−6 7.3 · 10−7 7.0 · 10−7 3.0 · 10−7

GoldstenPrice 10−9 7.2 · 10−10 7.0 · 10−10 3.1 · 10−10

10−6 1.0 · 10−6 8.9 · 10−7 3.9 · 10−7

Easom 10−9 1.1 · 10−9 9.6 · 10−10 4.2 · 10−10

Table 2: Upper-bound ensuring a given accuracy of EA

to note that this does not contradict the swapability of the
two quantities. The upper bound condition requires that
RefCrit equals UPI . This is a stronger condition than
the swapability one, which just requires RefCrit ≤ UPI .
Concerning StdQuick, its upper bounds are clearly lower (a
40% at most) than the two accuracies. This confirms that
StdQuick and RefCrit are not directly swapable.

Conclusions and Future work
In real-world problems (which have unknown optimums) it
is mandatory to design a termination condition for EA en-
suring stabilization close to the unknown optimum. As far
as we know, this is the first work addressing EA termina-
tion condition in terms of statistical inference. In this con-
text, we have explored to what extent a reference quantity
(not available in real-world problems) measuring EA accu-
racy (RefCrit) can be substituted by an alternative quantity
(AltCrit) computed from EA population.

According to our experiments on several known test func-
tions, there is a strong (almost ideal) linear relation be-
tween distribution-based quantities (MxD, MxDQuick and
StdQuick) and the distance to the optimum. This allows
analyzing the prediction capabilities of each distribution-
based quantity by means of the regression prediction inter-
vals. From our analysis, we conclude that quantities based
on maximum distances (MxD, MxDQuick) have the high-
est concordance to EA accuracy and, thus, can substitute it
as termination condition. Given that MxDQuick is compu-
tationally faster than MxD, it is the best candidate for termi-
nating EA in real-world problems.

We consider that there are some issues that should be fur-
ther developed. The test functions used are a small set of
benchmarking data sets (we cover two out of the five cate-
gories described in (Hansen et al., 2010)) and only 2-D prob-
lems have been solved. However, the functions used include
three properties (multimodality, global structure and scala-
bility) reported in a recent study (Mersmann et al., 2010)

to have a high influence in the performance of EA’s. In or-
der to fully test the applicability to real-world problems, we
will enlarge the test set to include groups of functions with
specific key features (Hansen et al., 2010) affected by noise
and stochastic variability. Regarding size, although it defi-
nitely influences convergence rate (more iterations of EA are
required (Hansen et al., 2010)), this is independent of the re-
lationship between RefCrit and AltCrit. Thus, size is not a
limitation for the prediction model, which links convergence
rate with population stability.

In this study we have restricted to DE algorithm. We
are currently extending our analysis to other EA methods in
order to cover existing EA paradigms: genetic algorithms
(Goldberg and Richardson, 1987), evolutionary strategies
(Beyer and Schwefel, 2002), particle Swarm optimization
(Barrera and Coello, 2009), among others. Nevertheless,
we do not expect any significant changes in our conclusions
since DE already presents the main features of EA (Ronkko-
nen, 2009).

In our experimental setting test functions have been stud-
ied separately. We consider that the influence of the test
function should be taken into account, so that the inference
can be done independently of the function features. This will
be studied by using generalized regression models including
random effects (Lee et al., 2006) modelling the impact of the
test function group.

Finally, it is worth noting that in numerical analysis, a ter-
mination condition for an iterative scheme only makes sense
in the case that the algorithm converges (that is, it reaches a
steady point). The convergence rate of an iterative minimiz-
ing method depends on some properties of the target func-
tion (whether there is a minimum or not) and the method
itself (its capability to find the minimum). In complex real-
world problems, there is no guarantee that such conditions
will be satisfied. Therefore, in practice, a termination con-
dition in terms of a number of iterations or function eval-
uations is required in order to guarantee that the algorithm
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stops. We note that this is not a specific limitation of our
methodology, but a general feature of real-world applica-
tions, which might present a poor convergence rate.
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Abstract

The three boids rules of alignment, separation and cohesion,
introduced by Reynolds to recreate flocking behaviour have
become a well known standard to create swarm behaviour. In
this paper we want to demonstrate how similar flocking be-
haviour can be created by a local, agent based model, follow-
ing a principle of information maximisation. The basis for
our model is an extension of Vergassola’s infotaxis model,
where agents determine their actions based on the highest ex-
pected reduction of entropy. We adapted this approach to a
grid world-based search task, and extended the agents abil-
ities so they could not only perform a Bayesian update with
information gained from the environment, but also with infor-
mation gained from other agents. The resulting global flock-
ing behaviour is then analysed in regard to how well it resem-
bles the basic boids rules.

Introduction
Flocking behaviour is a natural phenomenon found in a di-
verse selection of life forms, such as birds, fish, herd animals
and insects. And, as demonstrated by Dyer et al. [8], in spe-
cific circumstances even humans exhibit similar behaviour.
One of the first models to create this behaviour in a com-
puter simulation is the boids steering model, introduced by
Reynolds [14]. The model is a prime example of a power-
ful artificial life idea, namely how local self organisation can
create emergent global phenomena. Originally developed to
animate the movement of fish and birds for graphical pre-
sentation, the boids model has developed into a “de facto”
standard for flocking algorithms.

The three basic rules, alignment, separation and cohesion,
are agent based and local, so they allow every agent to de-
termine its own actions by itself, using only local data:

• Alignment: steer towards the average heading of local
flock mates

• Separation: steer to avoid crowding local flock mates

• Cohesion: steer towards the average position of local
flock mates

This model, or variations thereof, are not only the basis
for many fcurrent flocking and swarm simulations, but are
also a powerful example for how simple, local rules can lead
to the emergence of complex, life-like properties.

What we want to probe further in this paper is how the
global phenomenon of self-organised flocking can be ex-
plained; but instead of motivating the individual atomic
rules, we intend to challenge the notion that those rules are
necessarily atomic. As an alternative, we offer a model
where the individual agent‘s actions, and the resulting global
flocking behaviour, is created and motivated by obtaining as
much relevant information about the environment as possi-
ble. This is an additional result of our previous efforts to ex-
tend information theoretic-behaviour generation in general,
and in particular the biologically inspired infotaxis model by
Vergassola et al. [25], to a multiagent system. In the origi-
nal model the sensor inputs from the environment are used,
via a Bayesian Update, to update an internal probabilistic
model about a specific location. Actions are chosen based
on how much expected information gain they provide for
the internal model. In the multiagent model, the actions of
other, observable agents are treated with the same Bayesian
update, and the resulting agent movement starts to resemble
flocking behaviour.

In this paper we are first going to describe our model, and
how the single principle of maximal information gain can be
used to generate agent behaviour. We shall then demonstrate
how information, both from the environment and from other
agents, is integrated into the Bayesian model of the agent.
The resulting behaviour of those models is then analysed by
measuring how well it resembles certain basic characteris-
tics of boids flocking behaviour. We also offer a less formal
explanation on how the mechanism of information maximi-
sation leads to flocking behaviour, and how this could be
generalised.

Related Work
Information Theory was originally conceived by Shannon
[17] to deal with the limits of transatlantic communication;
the main focus being the optimal use of a limited commu-
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nication channel. But its considerable mathematical versa-
tility, since it can be applied on any system that can be for-
malised in terms of random variables, also allows for the
analysis of a diverse variety of systems in terms of their in-
formation theoretic properties and limitations [5].

A recent information theoretic analysis of a boids-like
swarm model by [4] demonstrated the ability for informa-
tion transfer between the flocking agents. Few “informed”
agents were capable of steering a swarm. Corresponding
results have been observed in the flocking behaviour of hu-
man crowds by [8]. If we take a closer look at coordinated
systems in nature, it is not surprising that there is a certain
degree of mutual information between the organised compo-
nents. Organisation requires a certain degree of causal de-
pendence, and if we follow the argument of [12], this leads
to a certain degree of mutual information between the appro-
priate variables. Similar conclusion can be drawn for the ne-
cessity of information flow, as defined in [2]. The mere pres-
ence of some non-vanishing correlation, i.e. nonzero mutual
information in nature is, of course, not surprising. However,
it is striking that there are many indications that biological
organisms tend indeed to operate close to the physical limits
for sensory and informational capacities [11, 15]. This can
be formulated as an information optimality principle which
provides a constructive way to generate behaviours. The
use of information theory to model the complexity of cogni-
tive processes [18, 21] has lead to systematic approaches to
model agent decision making [22, 23, 6] utilizing informa-
tion theory in a constructive way, beyond the use as a merely
analytic tool. To mention a few examples; it has been used to
optimize behaviour in a Reinforcement Learning-like con-
text by [20]. Also, for behaviour generation, there is the
predictive information maximization [1] which is related to
the dynamical systems homeokinesis principle by [7].

Another example is the idea of empowerment by [9],
where an agent tries to act as to maximise the channel ca-
pacity between its actuators and sensors which essentially is
an optimization of its sensorimotor niche. [3] demonstrates
that this principle on its own can already leads to coordinated
multiagent behaviour. Note that this shows how, seemingly
in opposition to the original philosophy behind information
theory which had been designed to carry no semantics, our
current work is based on ideas that one is able to distinguish
between relevant and non-relevant information.

The information bottleneck perspective by [19] demon-
strates how the notion of Shannon information can be im-
bued with relevance, and this can be achieved either through
the presence of goals or reward structures [13, 24] or, al-
ternatively, imprinted by the agent-environment interaction
itself [10].

This concept of relevant information[13] is one we refer
to when we later talk about an agent maximising informa-
tion. Relevant information is interpreted here according to
the information bottleneck formalism [19, 13]. It quantifies

not all information (i.e. possible reduction of uncertainty) in
the environment, but only that information which identifies
the selection of optimal actions by the agent. Under this per-
spective, any information in the environment beyond that is
ignored.

Information Theory
We consider random variables X which can assume concrete
values x. Write P (X = x), or p(x) by abuse of notation,
for the probability of X assuming the specific value x. We
can now define the entropy H(X) of the random variable X
as

H(X) = −
∑
x

P (X = x) · logP (X = x) (1)

This is often used to describe the uncertainty about the out-
come of X . An alternative, equivalent interpretation is to
consider H(X) as the average expected ”surprise” or the in-
formation gained if one was to observe the state of X , if all
one knows about X is only its distribution P (X).

The entropy has a number of important properties.
Among others, as it is an a priori uncertainty, the entropy
is larger if the outcomes are more evenly distributed than if
the outcomes are more concentrated on a particular value —
in other words, concentrated values are easier to predict (and
less uncertain) than uniformly spread ones.

Consider now two jointly distributed random variables, X
and Y ; then we can calculate the conditional entropy of X
given a particular outcome Y = y as:

H(X|Y = y) =
∑
x

P (X = x|Y = y)·logP (X = x|Y = y)

(2)
This can also be generalised to the entropy of X , given the
random variable Y in general, and is obtained by averaging
over all possible outcomes of Y :

H(X|Y ) =
∑
y

p(y) ·H(X|Y = y) (3)

This is the entropy of X that remains if Y is known. Finally,
consider H(X) and H(X|Y ), the entropy of X before and
after we learn the state of Y . Thus, their difference is the
amount of information we can learn about X by knowing
Y . Subtracting one from the other, we get a value called
mutual information:

I(X;Y ) = H(X)−H(X|Y ) (4)

This is the value we will refer to if we use the term informa-
tion and it is measured in bits; if one variable is said to have
information about another it means that the mutual informa-
tion between them is non-zero. As the mutual information is
symmetrical ([5]), this works both ways, so one variable A
contains as much information about B, as B does about A.

Importantly, note that this original notion of information
does not include any semantics and only depends on the joint
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distribution of X and Y . Therefore, in calculating the en-
tropy and the mutual information measures, the labels of the
values of the variables are not relevant.

In the specific model described in the next section, we will
maximise the information in respect to a specific location of
a resource, but the model is entirely general and the infor-
mation could correspond to any kind of information about
the state of the agent’s environment needed for the agent to
increase it performance.

Experimental Model
Scenario
We consider a model consisting of agents situated in a torus-
shaped grid world of size n × m with periodic boundary
conditions. Each location in this world is in the set W =
Z/nZ × Z/mZ. There is one single location of interest
F ∗, defined also over the set W . To contextualise, we will
call the location the food source, but one can interpret it as
any other relevant location information, such as position of
shelter or mates. The goal of the agents is to determine (not
reach) this location in the shortest possible time. The agents’
initial location, and the location of the food are randomly
generated at the start of the simulation, and each time step an
agent can execute a move action which moves it one cell up,
down, left or right. The agent then gets new sensor inputs;
it is able to see the state of the world in all cells not more
than r cells away from it. Its sensor signal for each cell is
a two-state random variable that indicates either that those
cells are empty or that they contain the (here unique) food
source. After this observation, the agent decides where to
move next. This behaviour is repeated until the agent finds
the food.

Once the agent finds the food, the agent disappears. An
agent that has disappeared does not block other agents, can-
not be observed, and its behaviour is not taken into account
for the statistical measurements. Note that the food source
itself is unaffected from agents finding it.

The above scenario determines the basic properties of our
setting. Now, as we are interested in flocking behaviour,
for an effective evaluation, the simulation will be run con-
tinuously, so the agents have time to form a swarm. Thus,
instead of reinitializing the simulation every time one or all
agents find the food source, at each time step there is a 3 %
chance that the food will be randomly relocated. In this case,
all agents’ internal model is reset, so they start a new search.
Those agents which have disappeared because they found
the food will also be put back into the world in the location
they previously disappeared from. The purpose of this is
to allow swarms that have already formed to continue their
coordinated movement.

Agent Behaviour
In our model, the agents determine their actions by using
an internal probability distribution F , which stores informa-

tion about the world. This internal distribution implements
a Bayesian model for the location of the food source. More
precisely F is also defined over W , and P (F = f) corre-
sponds to the probabilty of the food source beeing in loca-
tion f , given the agent’s current information.

Initially, all cells have the same probability of ∀f ∈ W :
p(f) = 1/(n ·m), since the agent has no information about
the location f . However, as the agent moves around, it can
observe different locations in W , and discovers that some
locations are either empty or contain the food source. If f
contains the food, then p(f) = 1. If f is empty, then p(f) =
0.

In both cases the probabilities of the other locations are
normalised accordingly, so the sum of probabilities is al-
ways one. This operation is functionally identical to actually
performing a Bayesian update with the observable environ-
mental random variables, namely, the food state of the cells
within the agent’s sensor range.

The remaining uncertainty of the agent about the location
of the food source is reflected by the internal probability dis-
tribution and can be measured in terms of entropy H(F ),
where F is the agent-internal random variable correspond-
ing to the expected position of the food.

Infotaxis Search
To generate the agent’s behaviour, we adopt a greedy in-
formation gain-maximisation algorithm, called Infotaxis by
[25]. Infotaxis was shown to provide a biologically plausible
principle as to how a moth could use the very sparse infor-
mation provided by their olfactory sensors to determine the
source of pheromones inside a wide area. The main idea is
to act in a way that increases the expected gain in informa-
tion at each time step. We adapted the infotaxis approach for
our discrete grid world scenario.

Infotaxis behaviour is generated by the followig steps:

1. Determine which action a will likely lead to the largest
reduction in entropy H(F ), the uncertainty regarding the
position of the food source.

2. Take action a and update F with the resulting sensor in-
put.

3. If H(F ) > 0, then repeat from step 1.

In step 1 the agent has to determine the likely reduction of
entropy based on F , the agent’s current ”knowledge” about
F ∗.

Depending on the position w ∈ W of the agent, there is a
set S ⊆ W of the locations that are visible to the sensor of
the agent. The visible location are those within the agent’s
sensor range, meaning they are r or less cells away from
the agent’s position. If the agent, starting from the current
position, takes the action a from its set of available actions
A, it will enter a new state wa. In this new state the agent
can now sense a new set of locations, denoted by Sa.
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To calculate the expected entropy reduction of action a,
∆H(a), two cases have to be considered. In the first case,
the actual location of the food source f ∈ W would be in-
side the newly observed set of positions Sa, inside the sensor
range after the action a was taken by the agent. The agent
assumes that this occurs with the probability of

P (f ∈ Sa) =
∑
f∈Sa

P (F = f) (5)

in reference to the agent internal model F . In this case the
agent’s uncertainty after carrying out action a, H(Fa) would
be reduced to zero, and the reduction of entropy would be
the difference H(F )−H(Fa) = H(F ).

In the other case, the location f of the food source is not
in Sa. This occurs with a probability of 1 − P (f ∈ Sa).
In that case, we have to calculate an updated probability
distribution for F , called Fa. According to Bayes’ rule,
P (Fa = f) = 0 for all f ∈ Sa, the resulting probabilty
for all observed, empty locations to contain the food source
is zero, and the remaining locations are normalized accord-
ingly by:

∀(f /∈ Sa) : P (Fa = f) :=
P (F = f)∑

w/∈Sa P (F = w)
(6)

This divides the remaining non-zero probabilities, by the
sum of their probabilities, normalizing the overall sum of
all probabilities to 1. This updated version of Fa can then be
used to calculate the reduction of entropy in the second case,
which is given by the difference H(F ) −H(Fa). If we put
all this together, the expected reduction of entropy for taking
action a is:

∆H(a) = P (F ∈ Sa)·H(F )+P (F /∈ Sa)·
(
H(F )−H(Fa)

)
(7)

To summarize, each step the agent selects the action a that
maximises ∆H(a). If several actions lead to the same ex-
pected entropy reduction, the agent selects one of them at
random. The sensors are then updated as described above,
and this behaviour is repeated until the food source is lo-
cated. Essentially, this behaviour implements a version of
Vergassola et al.’s infotaxis search and we will refer to it as
such in the subsequent text.

Social Bayesian Update
Earlier studies of single agent infotaxis behaviour in [16]
demonstrated that the agent’s actions contain information
about the food source location. If we look at Fig.2, we see
how the probability of the food source location is distributed
conditioned on an agent moving north. More importantly,
every agent which has to take in (a minimum amount of) rel-
evant information to attain a certain performance level also
must necessarily encode at least that amount of information

Figure 1: Graph showing P (F |A = north), the probability
distribution of F , the food source position, given a specific
agent movement (in this case north). The data was obtained
from 10000 single agent simulations in a 20×20 grid world,
agent position is (11, 11). Note that there is a peak north of
the agent, meaning that it is more likely for the food source
to be directly north of the agent when it moves north.

in its actions, and this is the case even if it does not have an
explicit intention to communicate. This digested informa-
tion, as discussed in [16], has several properties which are
interesting for an observing agent with similar goals:

1. Actions must contain relevant information, even if the
agent does not want to communicate

2. Better agent performance requires more, or the same
amount of relevant information

3. The actions of an agent are likely to exhibit a higher den-
sity of relevant information than other parts of the envi-
ronment

4. The actions of an agent might contain information that is
not available in the current space or time.

From these properties it follows that a reasonable next
step in our information maximisation model would be for
the agent to use this digested information and incorporate
it in their internal probability distribution. We extend the
model so the agent can now, for all cells in its sensor range,
detect whether one or more agents are in that cell and where
they came from. So, the four new sensor states for each cell
are agent that moved in from the north, . . . south, . . . east,
. . . west. Each observed move will lead to an adjustment of
the assumed internal probability distribution, using a similar
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form of Bayesian update already used to integrate the infor-
mation from the environment. This adjustment of probabili-
ties can be comfortably integrated into our existing infotaxis
search.

Note that for the now described simulation all agents are
equipped with those new “social” abilities and all of them
use the other agents’ actions to update their internal world
models. But they only use this ability if they accidentally
encounter another agent. They do not deliberately seek out
other agents.

Bayesian Update
Let F denote the agent’s current internal probability model
for the location of the food source F ∗, and a the state of the
random variable A that encodes the last move action of an-
other agent it’s observing. The agent then use Bayes’ The-
orem to update the probability distribution of F , with the
observed action a.

What the agent is interested in is the probability of the
food source to be in a specific location, given the evidence of
another agent’s action and relative position P (F ∗ = w|A =
a). According to Bayes’ Theorem this is calculated for every
potential location f of the environment as:

P (F = f |A = a) =
P (A = a|F ∗ = f)

P (A = a)
· P (F = f) (8)

Whenever an agent encounters one or several agents it
uses this formula to adjust its internal probability P (F = f)
for every location of f ∈ W .

• P (F = f), the a priori probability, is the internal model
of the agent for mapping the probability distribution of
F ∗, as gained by their own experience so far;

• P (A = a) is the probability of an agent taking the move
action a. Rotational symmetry suggests a probability
of 1/4 for each action a ∈ {north, west, south, east}.
Measurements in our single agent simulation confirm this.
This is a normalisation factor, so the overall sum of prob-
abilities is still one.

• P (A = a|F ∗ = f) is the probability of another agent per-
forminging action a if the food is in position f . Note that
the position f in this case will always be calculated in re-
lation to the position of the observed agent. So, the ques-
tion we are asking is for example “If the food is known to
be 3 cells north of the agent, what is the probability of the
agent performing move action a”. We then record all the
cases in the past where an agent has been observed 3 cells
south of a food source together with the action it took.

To obtain these statistics for the computer simulation, we
observed 10000 single infotaxis agents searching for the
food. Note that the agents we used were non-social and thus

“blind” to the actions of other agents. They behaved accord-
ing to the “Infotaxis” part of this paper. So, even though
all the agents in the infotaxis simulation have the ability to
sense other agents and update their internal world models,
they still calculate their Bayesian update under the assump-
tion that all others were non-social agents. We used the data
obtained from non-social agents to create the statistics for
the probabilities P (A = a) and P (A = a|F ∗ = f).

After the agent updates F , it resumes the previously de-
scribed infotaxis behaviour to generate its next move ac-
tion. Note that agents which have successfully located the
food stopped moving and were neither perceivable by other
agents, nor blocking them. This was done to increase the
challenge since it would have been trivial for another agent
to infer from seeing another non-moving agent that the food
must be within sensor range of that agent. As a result, the
agents could not “cheat” by observing any agents which al-
ready knew where the food was.

This model, which includes the Bayesian update not only
based on environmental variables, but also on other agents
they encounter will be called the Social Bayesian model.
Apart from the update of the internal model before the next
infotaxis action is chosen, it is identical to the infotaxis
model.

Measurements
While flocking behaviour might be intuitively visible at this
point in our model, defining an objective overall measure
which quantifies the emergent flocking behaviour seems dif-
ficult. Instead, we aimed to measure the immediate effects
of behaving according to the boids rules should have. We
defined the following three measurements:

Alignment
To quantify the alignment of the different agents, we added
up all the agents’ movements and took the length of the re-
sulting vector and normalised it. I.e., every agent x ∈ X has
an associated vector

~vx ∈ {(1, 0), (0, 1)(−1, 0)(0,−1)} (9)

corresponding to the last direction it moved in. The global
alignment is then calculated as the length of the sum of all
agent‘s vectors, divided by the number of agents:

alignment =
|
∑

x∈X ~vx|
|X |

(10)

This results in a value between 1.0 and 0.0. The max-
imum value is reached when all agents move in the same
direction, and the lowest value of 0.0 is attained when the
movement of all agents is distributed evenly between those
moving north and south, and those moving west and east, re-
spectively. Note again that agents which have found the food
are not taken into consideration for this measurement, since
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it would be irrelevant to measure how well aligned they are,
once they are not moving anywhere.

This measurement are taken for every simulation step,
and an average over all simulation steps is calculated for the
whole simulation.

Cohesion
To measure cohesion, we simply count, for every agent, how
many other agents are within the agent‘s sensor range for
any given time step. This value is then averaged over all
agents, and over all time steps, and the result we call the
local agent density, or simply density. This value, different
from the global alignment, is only taken locally, and reflects
how well agents keep other agents within their own sensor
range.

Separation
The hardest value to measure is separation, since it basi-
cally quantifies an objective of what should not happen. To
approximate this, we measure how often one agent tries to
enter the cell of another agent, and thus colliding with it. In
this case, the agent trying to move will simply fail doing so.
The resulting number of overall collisions is then divided
by the number of time steps, providing an average amount
of collisions per round, or simply collisions. This number
is of course also dependent on the number of agents in the
simulation, but this correlation if not linear, is therefore not
normalised with respect to agent number. Thus, one needs
to take care to only compare values where similar amounts
of agents have been involved. Again, agents who have found
the food are not considered for collisions detection.

Results
All measurements were taken in a open ended simulation
where the food had a 3 % chance of being moved every time
step. When this happens, all agents’ internal models are re-
set, and those agents who have already found the food are
put back into the simulation. The simulations were run for
100,000 time steps, with 20 agents, in a 20×20 torus-shaped
grid world. As a baseline for comparison, we also measured
those values for a group of agents that chose their actions at
random, only stopping if they chanced upon the food source.

Alignment Density Collisions
Random 0.23 1.03 0.72
Infotaxis 0.29 1.33 1.31

Social B. Update 0.39 1.68 0.49

Table 1: Flocking indication measurements taken for three
behaviour models. (Random, Infotaxis, Social Bayesian

If we move from the random behaviour to the single agent
infotaxis search, we see both the local agent density and the
number of collisions increase. Since agents are not yet react-
ing to each other in the plain infotaxis model, this seems to

Figure 2: Two screen shots from a social infotaxis simula-
tion with 15 agents, sensor range 5 in a 50 x 50 world. The
grey box is the food source, the black boxes are agents. The
lines indicate the vector of movement in the last 9 turns, in
steps of 3.

be a result of the improved search algorithm. If we measure
how long it takes, on average, for a random agent to find
the food (ca. 450 time steps), and compare it to the time it
takes an infotaxis agent to find the food (ca. 70 time steps),
we see that the infotaxis search has a much better perfor-
mance, resulting in agents actually finding the food before it
changes position. This in turn leads to a local concentration
of agents, which is likely to result in increased density and
collisions. Note, however, that if we look at the alignment
indicator we also see, that even for a group of agents that
moves at random the average alignment is not 0.0, but 0.23.
This is a statistical effect and not surprising, since it would
actually take coordination to ensure that all agent‘s move-
ments are always balanced between the different directions.

The interesting comparison is now between the two sim-
pler models and the Social Bayesian Update. In the lat-
ter, we see a further increase in alignment, indicating that
a high number of agents now move in similar directions dur-
ing most of the simulation. Keep in mind that to achieve an
average of 1.0, all agents would have to move in that same
direction, in every turn. We also get a further increase in lo-
cal agent density, while at the same time the number of col-
lisions is reduced. So while there are now even more agents
within the sensor range of each other, the agents manage to
collide much less.

Interpretation
We presented a model were the agents’ behaviour is mo-
tivated by one single principle or goal, namely to gain as
much information about a relevant variable in the environ-
ment. To achieve this, the agents take any kind of sensor
variable, be it an environmental variable, such as the state
of a grid world cell, or the action variables of another agent,
and performs a naive Bayesian update on its internal proba-
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bilistic model about said relevant variable. The agent’s own
actions are chosen in regard to which of them provides the
greatest expected reduction of entropy, based on the agents’
own internal model.

In this section, we would now like to discuss possible
explanations on how this information maximisation model
leads to the three different rules which create the boids-like
flocking behaviour.

Alignment
When an agent is controlled by non-social infotaxis be-
haviour moves, then its action contains information about
the relative position of the food source. If we take a look at
an agent moving north (due to rotational symmetry, the ac-
tual direction is exchangeable), then the food is more likely
to be in a position north of the agent, and less likely to be
in a position south of it. This effect, even though the agent
does not know where the food is, results from the fact that
the agent knows where the food is not. As seen in Fig. 2, the
probability distribution has its highest peak directly north of
the agent, and the minimum of the distribution is in the area
south of the agent. Both peaks flatten out the further the cells
are away from the agent.

Another agent who observed the first agent move north
would perform a Bayesian update on its own assumed prob-
ability distribution of the food source. Everything else being
equal, this would lead him to “believe” that the food is more
likely to be north. The resulting move action would also be
to rather move north than in any other direction. A flock
of agents, each observing each other, could thereby create
a “travelling wave” of high probability immediately outside
of their sensor range, driving them all in a similar direction.

The generalised principle here is that an agent 1 observing
actions by an agent 2 assumed to have similar goals would
lead the original agent 1 to conclude that agent 2 has infor-
mation that would make such an action reasonable, and in
turn, this would make the same action more reasonable for
agent 1.

Separation
Whenever agent 1 observes an agent 2 moving in our grid
world model, it performs a Bayesian update for the posi-
tion of the food source. The biggest impact of this up-
date is on the probabilities of the area immediately around
agent 2. The cells of the world agent 2 observed in its pre-
vious turn are definitely empty, so most of the current area
around agent 2 cannot contain any new information for the
observer. So while observing another agent is an efficient
way to gain information, the immediate environment around
that agent becomes informationally unrewarding afterwards.
An information-driven search would therefore try to steer
away from the immediate area around an observed agent.

In general, if an agent 2 in a specific position reveals in-
formation it gets from being in that position to agent 1, then

the more information agent 1 gets from that agent, the less
informationally interesting does being in that position be-
come.

Cohesion
In our current model, most of the cohesion seen in our agent
groups seems to be a direct result of the high amount of
agent alignment. If agents that meet each other move into
a similar direction, with similar speed, then they also hap-
pen to stay together. In general, it would actually be reason-
able to include a further term into the infotaxis mechanism
which would account for the amount of information gained
from other agents. Following from the “digested informa-
tion” principle, it is informationally advantageous to keep
other agents in sensor range, to be able to use them for a So-
cial Bayesian Update. Seeing another agent, and being able
to use the information in its actions increases each agent’s
expected entropy reduction.

All in all, if we take into account both separation and co-
hesion, the best solution in terms of information gain seems
to be to keep other agents just inside your own maximum
sensor range.

Future Work
Since all agents observe each other we suspect there is the
distinct possibility that a positive feedback loop can emerge,
which detaches itself completely from the environmental in-
formation. As an example, an agent might take, for lack of
better information, a random action; for example to move
up north. Another agent might observe the first, and if it
did not know anything apart from the fact that another agent
moved north, he also would move north. The first agent in
turn might now see the second, observe that the other agent
moved north, and take this as good reason to also move
north. This vicious feedback circle then continues, reaffirm-
ing both agents internal beliefs that “they are doing the rea-
sonable thing”. This phenomenon warrants further study,
since it could illuminate how in social settings seemingly
reasonable assumptions lead to strong “convictions” that are
utterly wrong and detached from reality.

Furthermore, it might also be interesting to move the
present model from a grid world scenario into a continuous
world. This would not only create more realistic animations,
but would also be necessary to establish that the observed ef-
fects are not just artefacts of the grid world model. The chal-
lenge here would be the extension of previously described
information theoretic tools to the continuous domain.

Conclusion
We found that information-based social observation mecha-
nisms are able to reproduce several postulated mechanisms
of flocking. This is confirmed both by qualitative observa-
tion as well as using quantitative measures. Starting with
the assumption that every agent needs to obtain some kind
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of relevant information from the environment to act intelli-
gently, then most of the arguments follow directly from that.
Infotaxis seems to be not only conceptually grounded, but
both biological plausible ([25]), as it leads to behaviour that
is very similar to actual moth behaviour, and reasonably effi-
cient for some scenarios; its performance in these scenarios
is close to that of an optimal strategy ([16]). Our extension
to also include the information offered by other agent’s ac-
tions is well motivated by the properties of “digested infor-
mation”, and the result is a performance increase beyond the
level achievable for a single lone agent ([16]).

At this point in the argument, we already observe emer-
gent flocking behaviour, only motivated by one single utility,
the maximum information gain. Note that the relevant infor-
mation we have been discussing does not necessarily have to
be the location of a food source. It could refer to the position
of predators, or the location of mates or other types of desir-
able states, and might lead to similar flocking behaviour via
similar mechanisms. The relevant information hypothesis
can also be applied to a wide variety of agent types, whether
birds, fish, herd animals or humans, and could offer a possi-
ble ab initio explanation for an immediate evolutionary gra-
dient leading to flocking behaviour for a diverse spectrum of
organisms.
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Abstract 
This paper presents the first implementation results of a novel 
Unitronics (Unicellular Electronics) architecture based system 
that uses a bio-inspired prokaryotic model. It is a programmable 
cellular FPGA-like system inspired by unicellular bacterial 
organisms, and transposes self-healing and fault tolerant 
properties of nature to electronics systems. An e-puck object 
avoidance robot controller was built to demonstrate all the 
underlying theories of our research, the validity of the bio-
inspired model and the capabilities of the Unitronics architecture 
that it facilitated. The robot successfully demonstrated that it 
was able to cope with multiple, simultaneously occurring faults. 
Integrity of the system is continuously monitored on-line, and if 
a fault is detected its location is automatically identified. 
Detection will trigger a self-repair mechanism and only when it 
is complete will normal system operation resume. 

Introduction 
Bio-inspired system design is a relatively new emerging field 
for the realisation of electronic systems. It attempts to learn 
from processes and characteristics of living things, such as 
self-replication and self-repair properties, adapting them to 
electronic systems. Bio-inspired systems depending on this 
type of motivation can be classified in two categories: 
Eukaryotics (multicellular) or Prokaryotics (unicellular) 
systems. 
 The early 90’s saw the first attempts [1, 2] to construct bio-
inspired electronics systems using a cellular array type 
architecture. They were based on properties and characteristics 
of and used mechanisms found in multi-cellular eukaryotic 
organisms. Here, similar to nature, all the cells of the system, 
in order to configure them for a specific function, contained a 
full or a partial copy of the organism’s DNA (genome). This 
approach has invariably resulted in a large amount of DNA 
memory in each cell. The task of the memory is to store the 
genetic behaviour (DNA) of each cell of the system, in the 
form of configuration bits (genes) for both its functional 
characteristic and for the necessary interconnects. Embryonics 
and the POEtic projects are examples of eukaryotic bio-
inspired systems [3, 4]. CellMatrix offers an alternative 
approach for cellular implementation of systems [5]. 
 Self-healing properties, immunological protection and 
learning abilities are amongst the advantages offered by the 
eukaryotic model. All previously proposed Embrionic systems 
suffer from several disadvantages:             
• Inefficient functionality vs. silicon area requirement due to 

large genome redundancy. 
• Storing large amount of redundant information (each cell 
required a copy the entire DNA of the system or a large part of 
it) increases the probability of hardware faults and information 
mutation in the memory cells. 
• Inefficient self-repair: row or column elimination kills an 
unnecessarily large number of healthy cells in response to the 
occurrence of a single fault. 
• Demanding routing resources, especially for long-distance 
communication. 
We suggest that if a model with at least similar performance 
advantages but based on a simpler form of biological life 
could be developed, then there is a chance that it might 
provide a solution to the above problems. We believe that the 
Unitronic artificial system, which is inspired by primitive 
unicellular beings called prokaryotes, in particular, bacteria, 
with its structure and characteristics does indeed offer the 
answer. It combats the problem of high genome redundancy, 
thus increases system reliability and is in all respect superior 
to all Embrionics based systems. 

The novel artificial prokaryotic model we have proposed [6, 
7] is a solution to build efficient fault tolerant hardware 
systems. It offers: efficient optimisation of genome 
redundancy, smaller silicon area, smaller memory for the 
storage of redundant (back-up) configuration information and 
requiring less logic support [6]. In our prokaryote model, the 
cell is only required to store its own configuration bits and 
some non-configuration bits that support self-repair and not a 
large part or the entire DNA of the system. Self-repair is 
achieved by a simple cell elimination process. A new self-test 
methodology was proposed [8] that offers an acceptable 
overhead compromise between time and hardware redundancy 
and guarantees that not only functionality, but all interconnect 
lines of the cellular system, are also tested. 

Prokaryotic Bio-inspired Model 
The prokaryotic bio-inspired model is described in details in 
[6, 7] with a recommended self-test method given in [8]. This 
section summarises the main features of the model and the 
proposed self-test. 
 The prokaryotic bio-inspired model offers a multi-layer 
architecture of programmable universal cells. Each cell 
consists of a function unit (FU), a communication block and a 
memory block. The latter contains the configuration bits 
(gene) of the cell that define the required behaviour of both the 
function unit and that of the communication block, and non-

696 ECAL 2011



configuration bits which assist self-repair if a fault is detected. 
Since the task of the gene in the configuration register (CR) is 
to code the behaviour of a cell so it is termed as a coding gene, 
while the gene in the non-configuration register (non-CR) that 
assists self-repair is a non-coding gene. Thus each cell’s 
genome could be viewed as consisting of one coding and one 
non-coding gene. The non-coding genes are assisting the 
functionality and the recovery of the coding genes both for the 
cell in which they reside and for other cells. 
 In a multi-layered prokaryotic model, cells form clusters, 
which in turn form colonies and on the top level biofilm 
communities are formed by colonies. Although the individual 
bacterial cells' genomes, in a family of species, are the same, 
due to continual evolution that takes place, mutation will 
differentiate them. Disregarding these small amounts of 
differences there will always be a strand in their DNA which 
they all share and is common to them all. Similarly therefore, 
in an artificial system family, clusters could be formed with 
cells that demonstrate similarity in their configuration bits. 
These cells, although they are unique and different in their 
own rights, do display similarity through a shared value (Csv) 
that is common to every cell in a cluster. Characteristics of 
artificial cells are stored in the form of bits in their 
configuration register and form its configuration vector (Ccv). 
Therefore every cells’ configuration vector is made up of a 
value that the cells share (Csv) and is common to them all, 
and by a differential value (∆g) that distinguishes the cells 
from another. The configuration vector of a cell can therefore 
be described by Equation 1. 

Ccv = Csv + ∆g              (1) 
or generally as: 

 Ccv = f(Csv, ∆g) 
where f in refers to the evolutionary function and in the 
simplest form could be considered as XOR or subtraction 
functions. 
 Cluster forms the first community layer. It is a convenient 
collection of cells to aid self-repair. A cluster is a community 
of genetically related entities that need not have any functional 
relationship. In the simplest form, two different types of 
clusters may be defined: as shared value cluster (sv-cluster), 
and gene difference value cluster (∆g-cluster). The first one 
refers to those cells in the colony that have the same shared 
value of their configuration bits and hence originate from the 
same species. The second one refers to those cells that have 
the same genetic difference from their base species. 
Components of cells and clusters are shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A colony made up of inter-related clusters and cells 

 A colony layer is obtained where a correlation between 
different clusters exists. Colonies are groups of correlated cells 
that facilitate self-repair. Similarly to clusters they are 
genetically and not functionally grouped hardware entities. 
Our artificial colonial layer is equivalent with the biological 
mixed bacterial colony and is made up of several sv-clusters 
(species). When a new daughter cell for one of its species is 
created the species shared value is differentiated by ∆g. This 
differentiation process in nature amongst different bacteria 
occurs through the horizontal gene transfer mechanism (HGT). 
Here genes are transferred from one bacterium to another that 
changes their characteristics (e.g. acquire antibiotic 
resistance). HGT, in an artificial system, provides a correlation 
mechanism between different sv-clusters, so that Δg of a cell 
in one sv-cluster can be used to evolve the gene of another cell 
in another sv-cluster. In this case the shared value of the new 
cell is differentiated with the Δg from another cell, Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2, Prokaryotic Bio-Inspired Model. 

T-Space 
Let’s suppose that an artificial system, as shown in Fig. 3a, 
consists of x number of cells, where x = n∙m and the 
configuration vectors of the cells are Ccv1, Ccv2, ..., Ccvx. In 
this case the genome of the system (G) could be described by a 
set of genes of the individual cells as:  
 

GP = {g1, g2, ..., gx} 
 = {Ccv1, Ccv2, .., Ccv(m∙n)}         (2) 

 
where g stands only for the configuration vector (Ccv) part of 
the cell’s memory and excludes the non-configuration bits. In 
system’s_genome GP p also shows how this x set in the 
physical space is defined by TSV and T∆g addresses. 
 If we now also include the non-coding genes (non-
configuration vector) of the cells in their genome G, then the 
HGT (horizontal gene transfer function) function will map the 
coding genes from physical space (equation 2, Fig. 3a) to a 
new set of two dimensional T-Space (Fig. 3b), that is defined 
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by TSV and T∆g address tags.             
  

GT = HGT(GP)               (3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Example of cells’ placement : a) physical, b) T-Space. 
 
With this HGT function, inspired by bacterial communities 
and differences in its species, artificial cells in clusters can 
also be defined by a common strand and their differences. 
Thus grouping of cells into sv-clusters and Δg-clusters will 
show their similarities and differences, which are also 
identified by the TSV and T∆g address tags. If tag combinations 
are unique, then to refer to any specific and individual cell in 
the array, instead of physical addresses tags could be used. 
The HGT function will transfer the gene of the ith cell of array, 
addressed by i, from the physical space into tag space as: 
 

g(Tsv,TΔg) = HGT(Celli)           (4) 
 
where g is the configuration vector (Ccv), the coding gene of 
the cell. The Tsv shared value tag (Csv) identifies a group of 
similar cells. The TΔg differential parameters tag refers to a 
group of cells that have already been differentiated with the 
same Δg that ith cell needs to be evolved with. Therefore 
equation 4 could be rewritten as: 
 

Ccv(Tsv, TΔg) = f(Csv(Tsv), Δg(TΔg))         (5) 
Tsv = {1, 2, ..., v} 
TΔg = {1, 2, ..., w} 

 
Where v is the number of shared values and w is the number 
of differential parameters (gene differences). v could also be 
considered as the number of different species of cells which 
collectively define the system. Function f in equation 5 could 
be any simple logical or algebraic function such as XOR, 
summation or subtraction of the shared value and the 
differential parameter. This equation precisely describes the 
functionality of every cell during its normal, test and self-
repair modes of operation using a configuration vector (Ccv), a 
shared value (Csv) and a differential parameter (Δg). TSV and 
T∆g tags together assign a unique address to every cell. This 
address is only a ‘soft’ entity and is not used as a sequential 
physical address location of cell placements in the unitronic 
architecture. Instead cells based on their tag addresses are 
grouped to achieve the best possible compression and 
correlation solution for clusters and colonies. The number of 
cells in the array is always x = n∙m, where n and m may have 
different values to v and w. This means that tag addresses do 

not refer to a physical cell because such cells do not actually 
exist in the array. 
 Shared value (Csv) given in equation 4, is a non-existent 
entity and there are no cells in the unitronics array that include 
such value in their memory. It is the result of a compression 
operation and a feature of the bio-inspired prokaryotic model. 
Genome of the cell (G) can be defined as: 
 

G(Tsv,TΔg) = {g(coding), g(non-coding)} 
    ={(Ccv(Tsv,TΔg)),(Tsv,TΔg, Δg)}    (6) 

 
Biofilms are the top layer of bio-inspired prokaryotic model. 
This is another software entity that expands T-space from 2 to 
three dimensions. Here colonies are grouped so that a faulty 
cell in one colony may be correlated to other cells in other 
colonies. In this case, to facilitate the repair of faulty cells, a 
larger search area is available in the T-Space world. 

Self-Repair 
Although each and every cell has its own BIT (Built-in-Self-
test), colony is the lowest level that supports system self-
repair. Functional system operation is synthesised to cell and 
not community level (cluster, colony, and biofilms). Each cell 
in the array, through its individual configuration vector (Ccv), 
is programmed to do a specific task so that the cells 
collectively execute the required functionality and define 
overall system operation. If faulty operation is detected 
community layers will provide system recovery self-repair 
support. 
 For the sake of the foregoing discussion let us consider the 
system’s genome, consisting of Ccv, Δg, TSV and T∆g, as a 
software entity, and all the functional, communication 
elements of the cells and their physical memory requirement 
for genome storage, as hardware entities. Faults may develop 
in both the software and in the hardware part of system. If the 
fault is hardware related then its associated cell will need to be 
killed and operationally eliminated from the system. In this 
case through the process of cell division a new cell, of the 
same species (same Csv) as the faulty one, should be ‘given 
birth’ during which, to recover the system, a repair process 
will take place. 
 Cell division requires a ‘new’ cell which during the repair 
process will be configured the same as the eliminated faulty 
cell. Since, unlike in nature, our current technology does not 
facilitate birth of hardware cells, artificial systems must have 
some redundancy through the availability of spare cells. If a 
system consists of n available cells of which a specific 
application uses m cells, then the number of available spare 
cells is n-m. 
 Consider that cell k (between cells 1 to m) is detected as 
faulty (Fig. 4). In this case all cells located between k+1 to m 
are shifted one cell forward to cells k+2 to m+1, where cell 
m+1 is part of the system’s redundant available cells. Cell k+1 
will act as a ‘spare cell’ and will replace the faulty cell. Cell 
division is a two step process: 

i.  Shifting prepares a spare cell adjacent to the faulty one. 
ii. Calculating and loading the shared value of faulty cell 

into the spare cell. 
 These will be followed by a differentiation process where 
from the shared value the cell’s configuration vector (Ccv) will 
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be evolved. 
 Lack of the shifting process is the only difference between 
hardware and software fault repair. If several faulty cells 
simultaneously develop a fault then, following their 
elimination, the same shifting process will take place and the 
number of available redundant cells will be accordingly 
reduced. During shifting, cells are individually checked for 
integrity and simply by-passed if they were previously killed, 
while their neighbours will serve as spare cells and will take 
over the functionality of the faulty ones. 
 An example of a system consisting of n cells is shown in 
Fig. 4b. Here the implementation of a specific application 
requires m number of cells and the remaining ones are 
redundant cells acting as available spare cells. Fig. 4b shows 
the situation when two cells simultaneously develop a fault. 
The faulty cells (shown in black) are killed (Fig. 4c) and all 
cells are shifted to prepare a spare cells next to the faulty ones. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4, Shifting process of self-repair mechanism. 
 
We mentioned previously that clusters are communities of 
software related cells that have the same shared value, or the 
same differential parameter. The genome (CGen) of a sv-cluster 
is made up as a union () of the genes (g) of its individual 
cells and can be expressed as: 
 

CGen(Tsvi) = g(Tsvi, TΔgj),             (7) 
i  {1, 2, ..., v}, 
j  {1, 2,..., w} 

 
where j refers to the individual cells in the cluster having the 
same shared value addressed by Tsvi and i refers to the ith sv-
cluster, Tsvi. These clusters are shown by the vertical lines in 
the Fig. 5. A similar equation can be formulated for Δg-
clusters that have the same differential parameters: 
 

CGen(TΔgj) = g(Tsvi, TΔgj),          (8) 
   i  {1,2, ..., v}, 
   j  {1, 2, ..., w} 

 
where i refers to the individual cells in the cluster having the 
same differential parameters addressed by TΔgj and j refers to 
the jth Δg-cluster, TΔgj. These clusters are shown by the 
horizontal lines in Fig. 5. It also shows an example of how the 
physical placement of a faulty cell in the array differs from its 
placement in T-Space. 
 Every cell in Fig. 5 has its place both in the sv-cluster and 

in the Δg-cluster. When faults are detected, for as long as one 
healthy cell exists in both CGen(Tsvi) and in CGen(TΔgj), the 
gene of faulty cell can always be recovered with Tsvi and TΔgj. 
Fig. 5 also shows that cells do not need to be physically sorted 
when comparing their locations in T-Space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5, An example of faulty cell, its physical placement in the 
array, and in the T-Space. 

 
 Equation 7 shows that how, in a prokaryotic model based 
system, clusters compress the system’s genome. Every cell in 
the appropriate clusters of CGen (Tsv) (vertically sorted in Fig. 
5) is expressed with a same shared value and some differential 
parameters. The self-repair process uses this shared value 
during cell division by copying that of the faulty cell into the 
spare cell. It is only the differential parameter (Δg) that 
distinguishes the cell now from other cells in the cluster. The 
healthy configuration vector can be recovered by 
differentiating this shared value with the faulty cell’s Δg. It 
can be extracted from the Δg-cluster of CGen(TΔg) by TΔg, 
where the faulty cell belonged. Since all cells in a sv-cluster 
have the same Csv, it is readily available from any of its cells. 
It is a calculable entity and therefore requires no storage. 
Finally, the configuration vector of the faulty cell can be 
calculated as CCVi = CSVi + Δgj (Equation 5). For safety and 
for easy self-repair purposes neither Δg nor TΔg is saved in the 
cell’s own non-configuration register but another cell will host 
them. In this way, every cell in the cluster has a back-up 
memory in the form of a non-configuration register that stores 
information for other cells. 

Self-repair process takes place in three steps:  
i. Cell division.  

ii. Identifying the species of the faulty cell, the sv-cluster 
and the actual shared value.  

iii. Differentiating the shared value with Δg obtained from, 
Δg-cluster. 

 
Steps 2 and 3 can only be executed if the faulty cell’s tags 
remains healthy. Since the bit requirement of the tags is 
considerably less than that of Ccv and Δg, this condition is not 
difficult to meet. However should the tag values still mutate, 
additional safety storage is provided by fault tolerant RAMs in 
an external backup memory. 
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Self-Test 
The bio-inspired self-test we are proposing is based on two 
characteristics of biological systems: 

• In nature, the DNA is a double helix, a duplicated 
sequence of complementary genes. It means that both 
sequences define exactly the same organism with exactly 
the same features. Therefore one strand is sufficient for the 
growth and development of an organism [9]. 
• Transposons (formally termed jumping genes) are 
sequences of DNA that can move around to a different 
position within the genome of a single cell. Such mobile 
genetic elements can move within the genome from one 
position to another using a “cut and paste” mechanism [10]. 

These two characteristics found in nature can be used to 
inspire the development of a bio-inspired self-test model for 
artificial systems by observing that: 

i. If we could guarantee that by configuring the processing 
elements of an artificial cell with both its gene and 
complementary gene, their functionality would remain 
the same and 

ii. That using the concept of the jumping genes mechanism 
could offer a solution to switch over and substitute input 
signals of such processing elements and interchange 
their outputs. 

The DNA is a double helix of two complementary genetic 
sequences. Both sequences will configure the cell for exactly 
the same function. Fig. 6 shows the placement of cells for the 
proposed artificial prokaryotic cell when the cell is configured 
by the sequence of the original genome and by its 
complementary (*) one. Because of the nature of the sequences 
it is sufficient to store only one of them in the cell’s memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6, A cell configured in two different modes, normal 
and test modes. 

 
All functional components of the cell, such as FU, SB, CB and 
IO registers, are in pairs (Fig. 6). In normal operation they are 
cascaded to implement a higher order function. For instance, a 
SB is divided to two mini-SBs. Each mini-SB has a simple 
switching function, but joined together they can implement 
more powerful functions.  If the controlling genes of mini-SB 
1 and 2 are switched over, their functionality will also be 
switched over. Applying rules i. and ii. to Fig.6 a new test 
methodology is created. Configuration vector Ccv and its Ccv* 

complement will respectively configure the circuit for a 
normal (Fig. 6a) and a complementary (test) mode (Fig. 6b).
 Cells of the array execute their assigned functions in one 
machine cycle. The cycle however is divided into four discrete 
sequential activities: 
 Update of inputs. 
 Normal mode of operation 
 Switch over genes and switch over inputs and outputs. 
 Test mode: check results  
 Switch back genes, and inputs and outputs 
 update outputs (cell passed) or kill cell (cell failed) 

During a machine cycle both the functionality of the cells’ 
components are switched over and also their external signals 
are swapped round. Only such simultaneous swap and switch 
mechanism can guarantee correct functional set-up and input 
data for self-test. Detailed description of this algorithm is 
given in [8]. 
 In normal mode of operation all cell output results are saved 
but not yet propagated. In the following test mode all cells are 
subjected to input swap and functional change over. These 
results are also saved. If it is found that the two results 
correspond then their outputs are released and normal 
functional operation can continue. If however the outputs 
differ then self-repair is requested. Only once this is complete 
and error free operation is recover, will normal system 
operation resume. 

Unitronics Architecture 
Embryonics, inspired by multi-cellular eukaryotic organisms, 
was the first project that attempted to map biological 
processes to electronic hardware. A newly emerging field that 
uses models of prokaryotic organisms such as bacteria to 
create bio-inspired man-made systems is a related but different 
architecture. Here, we name the artificial electronic systems 
inspired by these unicellular creatures, ‘Unitronics’ [6, 7, 8]. 
The Unitronics system uses two different types of cells; core 
cells (C-cell), surrounded by peripheral cells (P-cell) around 
its perimeter (Fig. 7). The basic architecture of both cell types 
is based on the block diagram of Fig. 6, except that P-cells do 
not have a function unit (FU). 
 Core cells are configured to implement specific functions, 
as defined by the genes in their configuration register. 
Peripheral cells on the other hand only manage the input and 
output information flow, including signal swapping during 
test mode. Unitronics adapts a ‘see-of-gates’ architecture (Fig. 
7) similar to that used by commercial FPGAs but partitions 
the system into prokaryotic islands. Islands are formed by 
groups of C-cells surrounded by P-cells. 
 Peripheral cells (Fig. 8) of the array provide an interface 
between the island of C-cells and the outside world. They 
consist of two flip-flops and a signal controller. They have 
four bi-directional pins, two of which (P1 and P2) provide 
communication with the peripheral bus (P-BUS), and the 
other two (E1 and E2) provide communications with the 
global bus (G-BUS). Signal directions in E and P are defined 
by the appropriate configuration bits for the P-Cell. The flip-
flops receive their data either from the External (E) or from the 
Peripheral (P) bus lines, under the control of two multiplexers. 
External communication can be disabled in order to swap data 
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of P1 and P2. This is accomplished by the two flip-flops; 
connected in this case as a circular shift register. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7, Schematic diagram of Unitronics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8, Peripheral cell, P-Cell. 
 
During test mode, data from the P-lines are loaded into the 
flip-flops are swapped round, and placed back onto the same 
lines. As a result the lines now have swapped data, as 
compared with what they had before. Fig. 8 shows only those 
components of the peripheral cell that provide data switching 
between P1 and P2 lines. 
 The array has 2 different types of buses: G-BUS, P-BUS 
and P-BUS (Peripheral Bus). G-BUS is used for distant 
communication between C-Cells in different islands via their 
own P-Cells where signal swapping is also possible. 
 P-Cells provide flexible connection between any two lines 
of the G-BUS to any two P-BUS lines. Lines are grouped in 
pairs, so that once a line is selected as input/output from G-
BUS to P-BUS, the second line provides switch over when 
(e.g. in test mode) required. For self-repair there are additional 
redundant spare P-Cells. 
 P-BUS, on entering the array of C-Cells, is divided to C-
BUS (Configurable Bus) and L-BUS (Local Bus). They are 
interconnecting wires, lines and channels, similar to 
commercial FPGAs. C-BUS provides the required cell to cell 

interconnect. It is configured by the core cells according to 
their functional and communicational requirements. Lines of 
the configurable bus can be grouped, cut, joined and swapped. 
The bus also supports cell elimination during self-repair if a 
cell developed a hardware fault. In this case, the faulty cell is 
killed, its functionality is shifted to the next cell along the 
configurable bus and all preceding cells are also shifted until a 
healthy stand-by cell is found. The L-BUS, though can be 
divided to sub-sections, usually passes through the cells and 
only makes connection to those with which long distance data 
communication is required. It is local to the island, and would 
normally connect to the P-BUS only at the first and the last 
cell of the island. 
 C-Cells are the processing and communication elements of 
the system and as such they provide processing Function (F), 
signal Routing (R), information storage as Memory (M), and 
switching as Void (V) tasks. The two slices of the cell can 
work in tandem and undertake any combination of the above 
tasks as for instance FF, FR, MV, RM and etc. The detailed 
architecture of configurable bus is beyond the scope of this 
paper, but its important characteristics are indicated in Fig. 6. 
The cell’s Connection Box (CB) manages how the cell should 
be connected to the network of other cells in the island. Inputs 
to the cell’s Function Unit (FU) are provided either from the 
bus via the CB or from the cell’s neighbours via dedicated 
neighbouring connections lines. 
 FU includes two 2-bit slices. Each slice is supported by the 
cell’s genome, which is essentially an LUT. It can either 
define the precise function the slices should execute, or can 
configure them for signal routing. Slice function can either be 
logical or algebraic. When for example a cell is configured as 
RF then slice 2 will undertake signal routing, while slice 1 
will execute a function on its output. FF set-up enables the cell 
for a more sophisticated function. 
 The cell can be used as a memory to implement registers, 
counters and, in case of a distributed memory, an 8, 16, 24 or 
32-bit RAM. It is called a distributed memory because one 
cell can only provide upto two memory locations. The 
configuration bit (Ccv) register is not an addressable memory. 
To allow such functionality a distributed memory feature has 
been designed. In this case another cell is used as a memory 
controller. When the cell acts as a “Void” it provides a 
connection between C-BUS and L-BUS. If a cell is used for M 
or V the functionality of its slices’ is reduced. 
 In summary the Unitronic architecture, inspired by 
biological colonies and the circulatory system of a Biofilm, is 
a network of colonies supported by adequate routing and 
communication facilities for the cellular array. Both hard and 
‘soft’ entities of the architecture demonstrate biological 
inspiration. Cells, islands and the circulatory system are the 
hardware components, and clusters, colonies and biofilms are 
the ‘software’ components of the Unitronic system (Table 1). 
There is no physical location in the array that can be identified 
as being a cluster, or colony. Both are ‘soft components’ 
providing immune protection for the system for fault detection 
and repair. The architecture in Fig. 7 is a substrate where 
cells, cluster, colonies and biofilms are grown in the islands 
located in the network of voids and circulatory system. 
 

 Software  Hardware 
Cell (C-Cell, P-Cell)_ Yes Yes 
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Cluster Yes No 
Colony Yes No 
Biofilms Yes No 
Island No Yes 
Circulatory System Yes Yes 

Table 1. Hard and ‘soft’ entities of Unitronics 

Robot Controller Demonstrator 
In this example, to demonstrate the self-healing and self-repair 
capability of Unitronics, the timer part of a movement 
controller for an e-puck object avoidance robot (Fig. 9a) from 
EPFL [11] is implemented on a Unitronics array. The block 
diagram of the robot control system, operating in normal 
environmental condition,s is shown in Fig. 10. The Unitronic 
timer part is synthesised on a Xilinx XUPV5-LX110T 
development board (Fig. 9b) [12], while the movement part of 
the controller and the interface between the robot and the 
Unitronics system is provided by Matlab.  Using hardware co-
simulation, data from the Unitronics array is transferred to 
Matlab in a 2-bit data. One bit defines whether a right or left 
turn is required from the robot, while the other is a fault 
indicator for the Unitronic system. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.  a) e-puck,   b) XUPV5-LX110T 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Block diagram of the robot controller system 
 
The timer is a 16-bit up counter the implementation of which 
required eight Unitronic cells. Fig. 11 shows the cells’ 
genomes that implement the timer. The slices of all the cells, 
in this example, are configured as function-function (FF) and 
define a full adder. In reality the circuit offers a 16-bit full 
adder, but with inputs set to ‘0’ and carry-in set to ‘1’, it 
behaves as a 16-bit counter. MSB bit of this counter describes 
whether robot should turn right or left. Combination of turning 

right and left makes the robot to move in a figure 8-like 
manner. Since the genome of every cell is the same, their 
identical CSV translates into one sv-cluster and their Δg 
(equalling to zero) into one Δg-cluster. TΔg, and Tcv tag values 
are chosen arbitrarily as “10” and “11” respectively. 
 Since all cells are located in the same sv-cluster and in the 
same Δg-cluster, fault recovery is always guaranteed for as 
long as there is one healthy cell in the system. This example 
uses the simple algebraic function in Equation 9: 
 

Ccv(Tsv, TΔg) = Csv(Tsv) + Δg(TΔg)        (9) 
 
Since in this example Δg = 0 means that CCV = CSV. Consider 
a situation when seven out of the 8 cells are faulty and only 
one functions correctly. If we assume that all tags are correct 
and cell 5 is the faultless cell then after eliminating the faulty 
cells the next step is a shift process. With this, if the cells are 
sequentially placed along the bus, cell1 will assume the 
position of cell5 and the remaining cells occupy positions cell 
9 to cell 15 of the stand-by cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Unitronic timer implementation (values shown in hex) 
 
The next step is to search in the sv-cluster space and identify 
the faulty cell’s shared value. This is achieved by sending a 
token that will locate the first faulty cell, in this case cell 15. 
In order to find the shared value of this cell its Tsv tag is sent 
to all cells in the cluster. Since only cell 12 is healthy, the tag 
requests the extraction of its shared value using the re-
arranged form (i.e. Csv = Ccv - ∆g) of equation 9. This here 
will coincidentally yield the same as the Ccv value of cell 12 
and be released to the bus. All those cells which need the 
recovery of their shared value and have the same Tsv as cell 
15, will receive it. In this case it will affect all cells of the 
cluster except cell 12. The final step of the repair process is to 
differentiate it with all the faulty cells’ Δg. Since Δg is zero for 
them all, their configuration vector can now be simultaneously 
recovered, using equation 9. 
 In this example cluster identification is trivial due to the 
repetitive nature of the cell functions required. This in larger 
digital systems becomes more difficult. These however are 
typically composed of regular building blocks, i.e., registers, 
counters, multipliers etc; where this regularity can be 
exploited to simplify cluster formation. Our fault recovery 
mechanism is applicable to circuits with any complexity. 
Since motion cannot be demonstrated on paper the actual 
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behaviour with run-time fault detection and fault repair is 
shown under the following youtube link http://www.youtube. 
com/watch?v=GO0YfVf0tMw 
 Another example of a PD controller is shown in Fig. 12. 
The waveform illustrates the actual behaviour of the hardware 
(not simulation results!) and the fault recovery process of the 
controller. The PD controller was also implemented, also as an 
interim step before VLSI implementation, on a Xilinx 
XUPV5-LX110T development platform. The controller 
required 40 Unitronic cells and a ‘soft’ fault was injected in 
the genome of cell 3. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12, Implemented robot controller fault recovery. 
 
During the operation of the robot controller a fault was 
inserted into cell3. Fig. 12 shows the fault recovery process of 
the implemented system: 

1. Fault is injected at fault injected point into the system. 
2. The effect of the fault causes the gene to mutate at 
CodingGenes_ConfigurationVector. 
3. Simultaneously self-test using input data and control 
sequence complementation recognises it, identifies the 
faulty cell and initiates self-repair. 
4. Self-repair requests the mutated faulty cell’s CSV at 
sv_Cluster_Request. For this TSV at Put_Tsv_on_BUS 
identifies the cluster and the cells that share the same 
portion of the configuration vector with the faulty cell. With 
the aid of the cluster’s cells, CSV is calculated at 
Shared_Value_is_availabe. 
5. Recalculation of the faulty cell’s corrupted CCV 
configuration vector also requires its Δg. 
6. Δg’s address TΔg is triggered at Put_dgTag_on_the_BUS 
in order to locate the same Δg. 
7. When Δg is also available, using Equation (9) the faulty 
cell’s CCV can be calculated (dg_Value_is_available=’1’). 
8. With its recovery, on-line repair of the faulty cell is 
complete and the recovered correct response result of the 
cell is now allowed to propagate to its final output. 
9. Normal system operation (at System repaired) in the 
next machine cycle resumes as if fault never occurred. 

Conclusion 
On-line fault detection and fault repair capability of our 
Unitronics architecture, based on the bio-inspired prokaryotic 
model, is demonstrated using an e-puck object avoidance 
mobile robot. Implementation of the robot required 8 
Unitronic cells appropriately interconnected and then mapped 
onto a Xilinx XUPV5-LX110T development board. The fault 

tolerance model of the system guarantees that “if similarities 
and differences between healthy and faulty cells are known 
then, full recovery of any Unitronic implemented system is 
possible”. The system is able to cope with and repair any 
number of simultaneously occurring dynamic (SEU) or static 
(hardware) faults. The amount of fault repair only depends on 
the number of spare cells the system is equipped with. Its fault 
repair uses significantly less memory for gene storage and 
considerably less hardware overall for target system 
implementation than any previously proposed bio-inspired 
architecture. 

In future work we plan to undertake a more detailed 
performance analysis as a function of the number of errors, 
investigate the implementation of more complex digital 
systems, and look at the implications for cluster formation. 
Additionally, we plan to investigate implementing higher level 
fault tolerance techniques using Unitronics as the substrate. 
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Abstract

Rodents are optimal real-world foragers that regulate internal
states, such as security, arousal, energy, etc., maintaining a
dynamic stability with their surroundings. Free exploration is
an interesting scenario as rodents display behavioral patterns
that are very different from being random, even in the ab-
sence of reward. Our aim is to understand foraging behavior
by implementing an artificial rat that behaves as real ones do.
We depart from the hypothesis that rodents, when perform-
ing free exploration, may be minimizing the unpredictability
of the environment in terms of internally mapping its struc-
ture and discovering all the actions that it can afford. This
drive for exploration is counterbalanced by a drive for secu-
rity. Building from a self-regulation model based on the Dis-
tributed Adaptive Control architecture (DAC), we implement
a biomimetic control that uses this predictability principle to
generate behavior. We validate the controller by solving a
benchmark task in which the agent learns to displace a mov-
able obstacle to discover unexplored areas of an arena.

Introduction
In this paper we take a behavioral approach to the deeper un-
derstanding of what it means to survive, explore and forage
in complex environments, specially focusing on rodents. We
provide a biomimetic control based on self-regulation that
uses predictability as main principle to generate behavior,
map the environment and discover the actions that the en-
vironment can afford. In a benchmark task the agent learns
to displace a movable obstacle to discover unexplored ar-
eas. In free exploration, rodents exhibit a structured behav-
ior following a specific pattern. If the environment is un-
known, rats start the exploration following the walls, estab-
lishing a preferred corner and traversing the arena occasion-
ally (Dvorkin et al., 2008). An example of rat trajectory in a
squared arena can be seen in figure 1.

The question arises if this structured but still complex be-
havior can be explained by a minimal set of basic principles.
Predictability has been exploited as a possible candidate for
driving behavior and learning mechanisms of artifacts (Duff
and Verschure, 2010; Weiller et al., 2010). As a more gen-
eral principle, predictability has also been considered in the

free energy principle in the form of the minimization of sur-
prise (Friston et al., 2006). In the free energy principle sur-
prise is defined in statistical terms and can be minimized
both by the behavior of the artifact as well as by adapting
the internal model of the artifact.

All these approaches have a limited sense of the real con-
sequences of what it means to act in a world. For instance,
scenarios where the agent’s actions can change the state of
the external world, i.e. the state of objects in the environ-
ment, are not considered. Moreover, the described optimiza-
tion algorithm (Weiller et al., 2010) and free-energy prin-
ciple (Friston et al., 2006) are conceptually far from being
biomimetic implementations and don’t deal with fundamen-
tal physiological mechanisms such as self-regulation.

Here we explore predictability together with security as
an internal drive for free exploration. Predictability in our
case will depend on the agent ability to map the environment
and discover the affordances available in it. Affordances, as
introduced by Gibson (1986), are considered to represent all
the action repertoires available to an agent in an environ-
ment. The more the agent learns about the possible actions
in an environment and their consequences, the better it can
predict the next sensory state he will be in. The environment
will not be surprising any more when the agent knows its
structure and knows what it can do in it.

The robotics community has also shown an interest for the
predictability driven learning (also called curiosity) through
object interactions (Oudeyer et al., 2007; Ugur et al., 2007).
Our main contribution is to provide a biomimetic solution
by introducing in a self-regulatory loop, the necessity of
making the environment a predictable place. We build from
previous work on the Distributed Adaptive Control (DAC)
architecture (Verschure et al., 2003; Duff and Verschure,
2010). DAC provides a continuous sensorimotor loop com-
bined with memory, organized in a layered structure. We
have investigated affordances and the acquisition of senso-
rimotor contingencies in the context of DAC (Duff and Ver-
schure, 2010). In (Sanchez-Fibla et al., 2010b) we have
equipped the lowest layer of DAC, the reactive layer, with a
self-regulatory process based on the physiological notion of
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allostasis. Self-regulation was decomposed into a minimal
number of homeostatic loops and allostasis was the meta-
process that controlled stability of the system at a higher
level, changing the desired values (the objectives to reach)
of each subsystem. We validated the model by comparing
the generated behavior with the one displayed by rodents in
different environments. In the case of free exploration of
a squared arena, only two subsystems were considered: se-
curity and arousal. Security was the subsystem controlling
the distance of the agent to a familiar place, like the home-
base, and arousal controlled the exposure to the open space.
Each subsystem in the allostatic control was defined by a
gradient (in accordance to motor schema based behaviors,
see introductory book of behavior-based robotics by Arkin,
R. C. (1998)), an actual value and a desired value. The se-
curity and arousal gradients were assumed and predefined
in (Sanchez-Fibla et al., 2010b), here we adapt the com-
plete sensorimotor loop to be able to learn those gradients
as the agent explores the environment. To do so we directly
link arousal to unpredictability following the principle that
an unpredictable space will induce a higher state of arousal.
The drive to explore/discover the environment is thus con-
sidered equivalent to the urge for higher arousal. Therefore
behavior is driven by security and predictability of the envi-
ronment being regulated inside a sensorimotor loop.

Building from (Sanchez-Fibla et al., 2010b), we state that
exploration in this simple scenario is also driven by the
agent’s ability to predict the environment in two aspects: its
structure and its affordances. To further develop this hy-
pothesis we enrich a squared arena environment with the
presence of an object, in our case a cube. To understand
behavior it is important to include elements that allow an
agent to exploit affordances. For this purpose, we validate

Figure 1: Trajectory plot of a rat. The plot displays the
trajectory of a rat when performing free exploration in a
squared arena. Axis units are in centimetres. According to
the model that we presented in (Sanchez-Fibla et al., 2010b),
this would correspond to a low aroused rat, in the sense that
the traversals of the middle of the arena are scarce.

our controller with a benchmark task where an object in a
squared arena is obstructing an alley that accesses a hidden
room. The paper structure is as follows: first we describe in
the methods section the allostatic control and how we mod-
ify it for the task that we want to solve. In the results section
we compare the implemented controller based on minimiz-
ing unpredictability to a random controller. In the discussion
we point out the links of the model to the behavioral studies
of rodent

Methods
In this section we describe the self-regulation mechanism
driving the agent. We present a process for mapping the en-
vironment and discovering the available affordances as they
are a prerequisite for minimizing the unpredictability of the
environment. We then explain in more detail the arousal sub-
system as it contains the main changes from previous stud-
ies (Sanchez-Fibla et al., 2010b) and (Sanchez-Fibla et al.,
2010a).

Allostatic control revised
We have proposed a biomimetic architecture of perception,
cognition and behavior, called Distributed Adaptive Control
(DAC) architecture, which aims at explaining how the in-
teraction of different structures along the neuraxis can give
rise to adaptive behavior (Verschure et al., 2003). In the lat-
ter, drive based behavioral control is modelled subserving
perception and cognition from the perspective of the inter-
action of appetitive and aversively motivated behaviors. In
this case the reactive regulation between these two orthog-
onal behavior tendencies was achieved through predefined
rules for conflict resolution; i.e. aversion and avoidance su-
persedes consumption and approach. Hence, in this system
the relationship between these two drive systems was fixed
and could not be dynamically regulated.

In (Sanchez-Fibla et al., 2010b) we included in DAC the
ability to regulate drive based behaviors with the objective
to identify a solution that scales with respect to the number
of behavioral subsystems, that provides a common currency
for the regulation of behavior in order to unify multiple lev-
els of a real-world cognitive architecture and that is biologi-
cally valid. Animals are driven by internal variables such as
hunger, temperature, security, etc. which have to be main-
tained within certain limits in order to be stable and predic-
tive over changing environments. We follow this behavioral
driven top-down approach instead of modelling the low level
interactions of homeostatic processes (as for example the
homeostatic regulations happening in the Endocrine system
(Moioli et al., 2009; Xu and Wang, 2011), which we could
consider to be a more bottom-up approach than the one fol-
lowed here). For this, we decomposed self-regulation into
a minimal set of homeostatic subsystems (such as arousal,
security, energy, etc.) that can be plugged together orches-
trated by what we named allostatic control in (Sanchez-Fibla
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Figure 2: Rat-robot behavior comparison. On the top row we
plot the trajectory of one rat along with its security AV time
series (in green) and the arousal AV time series of the same
session (below, in red). The bottom row corresponds to the
generated behavior of the allostatic control system described
in (Sanchez-Fibla et al., 2010b). First we plot the trajectory
of the robot next to its security and arousal time series.

et al., 2010b). Each homeostatic loop consists of a gradient,
an actual value (AV ) of the agent in that gradient, a desired
value (DV ) and a regulator able to perform the appropriate
actions to bring the actual value closer to the desired one.
See for example the security subsystem in figure 3 where all
these elements are shown. Objectives of different homeo-
static loops may be conflictive, is in that stage that allosta-
sis enters into play. We define allostasis as the regulation
through changes of the desired values so that stability of in-
dividual homeostatic loops can be achieved or compromised
and changing through time. In (Sanchez-Fibla et al., 2010b)
we used a probabilistic changing policy of desired values
also dependant of its level of content (the difference between
DV and AV ).

The assumption in (Sanchez-Fibla et al., 2010b) was that
behavior of a rat in a squared arena is driven by the constant
equilibrium of its need for security (the distance to the home
base or preferred corner) and the need for exploration con-
veyed by its need for arousal (exposure to the open space).
An example of a trajectory generated by the model can be
seen in figure 2, bottom row. The security gradient was max-
imum at the top left corner and the arousal was a fixed gra-
dient having its maximum in the middle of the arena. The
time series of the AV values of both subsystems are shown
in the right and corroborate that the allostatic control sys-
tem interleaves stays in the preferred corner with occasional
traversals of the arena.

In (Sanchez-Fibla et al., 2010b), both the security and the

Figure 3: Allostatic control in DAC. The adaptive layer con-
tains the main ingredients for the self-regulatory loop man-
aged by the allostatic control. See text for further explana-
tion.

arousal gradient are predefined. Here we learn the arousal
gradient following the assumption that arousal is directly
linked to unpredictability. Thus a high desired value for
arousal corresponds to a high level of exploration. However
when the rat explores the environment it is also increasing
the predictability of the environment: meaning that its drives
are influenced by its necessity of knowing the structure of
the arena and all the possibilities that the environment offers
in terms of affordable actions. Thus, we consider that the
need of increasing arousal is directly related to the notion of
curiosity.

As in the squared arena setup of (Sanchez-Fibla et al.,
2010b), we continue to decompose self-regulation into two
minimal subsystems, security and arousal, but now arousal
is redefined as a conjunction of the need for mapping the
structure of the arena and the need for discovering its affor-
dances. Security is represented by a gradient S that is maxi-
mum in a preferred place of the agent (Sanchez-Fibla et al.,
2010b). Arousal is calculated using three gradients that we
now list; M the map gradient of the environment, the one
which the agent uses to accumulate evidence of the presence
of walls and obstacles. A the affordance gradient where the
agent accumulates evidence where the environment affords
an action, V the visited gradient that the agent fills during
exploration. From these three gradients M , A and V we
build an arousal map that plays the role of a saliency map of
places that remain worth visiting. The arousal gradient is the
one used by the arousal subsystem. An schema of the DAC
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Figure 4: Simulation environment. A squared object origi-
nally placed in the middle of the arena, its being pushed by
the epuck robot. Its ”pushability” has been detected and the
affordance gradient A has been updated accordingly.

architecture reduced to the allostatic control loop is shown
in figure 3.

Original DAC is organized along three levels of control
of increasing complexity: reactive, adaptive and contextual.
We don’t need contextual control for the tasks that we solve
here. The reactive layer provides a pre-wired repertoire of
reflexes. The adaptive layer acquires representations of sen-
sory events and associated responses supporting the acqui-
sition of simple tasks. In the adaptive layer we acquire the
different internal structures like the gradients M , A and V .

Security and arousal subsystems propose their motor ac-
tions, trough a regulator process which computes a motor
plan that could bring closer the actual value and the desired
one. In (Sanchez-Fibla et al., 2010b), this computation was
done having access only locally to the gradient around the
position of the robot. This does not need to be so. We as-
sume now that the gradients are sensory motor representa-
tions acquired by the adaptive layer and thus the regulator
can have global access to its values. The outputs of both
subsystems are then linearly summed (represented by the
”Integrator” box of figure 3) and sent to the motors.

A difference from (Sanchez-Fibla et al., 2010b) is that the
gradients that we use are computed during the exploration
and not assumed and given to the model. In the following
sections we explain how we compute them.

Mapping the environment
We describe here how the agent builds the map gradient
M while it explores the environment. When implementing
controllers in a mobile robot, usually because of their lim-
ited sensor models, we face the difficulties of estimating the
world state with their local sensing capabilities. Here we use
the e-puck robot (Mondada et al., 2009), its infrared (IR)

Figure 5: Top view of the e-puck sensor model. We indi-
cate the position of the top/down camera and the angle in
degrees of the 8 infrared sensors (IR1...8). IR5...8 have neg-
ative angles with respect to the front direction of the robot.
For instance, IR8

α = −18◦. The direction and position of
the robot are denoted by r⃗ and p, respectively. We also plot
a possible I⃗Rmean computed from the IR reading when ap-
proaching a squared object. See text for further explanation.
In the bottom right part of the picture we show a general
view of the e-puck robot.

sensors, indicated in figure 5 and motors. We assume the
robot has an odometry model that can estimate its position
and direction in the environment: p and r⃗. If we are think-
ing of a biomimetic solution, we could implement a grid cell
system that would provide odometry plugged together with
a place cell system that could synchronize to precise loca-
tions with the help of external cues, an approach that has
been proven effective in (Milford and Wyeth, 2008). Also In
(Wyss et al., 2006), a neuronal network is trained for acquir-
ing place cell activity from one single camera input stream.

Using this information, we describe now how we com-
pute the gradient that will capture the structure of the envi-
ronment (see algorithm 1). Whenever the front IR sensors
detect the presence of a wall or an object, the evidence of the
presence of this object can be added to corresponding gradi-
ent M . In figure 5 we show the e-puck sensor model. Red
lines represent the range of the IR sensors. The IR sensors
have a decay and we have assumed is quadratic. This decay
has to be compensated to correctly estimate the position of
the border of an object. This compensation is computed in
line 2 of the algorithm and then multiplied by an arbitrary
grid unit constant (in this case 30). We denote IRi

val the
value of the IR sensor i normalized to take values from 0 to
1, being the latter the closest that an object can be sensed.
IRi

α is the angle of the sensor with respect to the direction
of the robot. The operator ̸ used as super-index denotes
the vector rotation operator. In line 3 we compute the point
of contact by summing the radius of the robot and the com-
puted distance in the direction of the IR sensor with the
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agent position p. We then add a gaussian in the M gradient
map at the computed point pmap with sigma σ.

Algorithm 1: Mapping()
for i = 1 to 4 do

1 if IRi
val > 0.65 then

2 dist← 30(
1−IRi

val
0.25

)2d⃗
̸ IRi

α

3 pmap ← p+ (radius+ dist)∥d⃗∥
4 M ←M + gσ,pmap

The visited gradient V can be trivially filled by adding
evidence in the agent position p at each time step. Due to
objects placed in the environment that can act as obstacles
when approached from one direction, and can be pushed
from another, the agent can add in M evidence of presence
of a wall when it is in fact not the case. For this reason, we
add a decaying mechanism that uses the information in the
visited gradient V to bring down to 0, areas in the M gra-
dient where there was evidence of a wall but can in fact be
visited and traversed.

Affordances in the environment
We discuss in this section how an agent can discover the af-
fordances of an environment. From the action repertoires
that an object can potentially serve (its affordances), we
restrict ourselves to the ”pushability” of an object, that is,
knowing when an object can be moved or it is a fixed part of
the environment. In SLAM the agent learns about the world
through passive exploration of the environment, that is, no
real action of the agent can change the state of the world,
except its position. In some cases dynamic obstacles are
considered but their appearance or disappearance is not de-
pendant on the agent’s actions but governed by external in-
terventions, as in (Kawewong et al., 2010). To extend SLAM
to include the usage of affordances one could simply use an-
other sensor modality to detect the sliding direction. One
could think of using optical flow or tactile sensing. Sliding
detection is a prerequisite for an agent to be able to distin-
guish from two situations: pushing unmovable objects and
pushable objects. Detecting an object in front of the agent
while having full forward speed would mean that the object
is being pushed if there is a consistency of the signal sent
to the motors and the detected optical flow main direction.
In the other case where the agent detects an object in front,
the motors are running forward but no consistent movement
is detected by the optical flow would mean that we are slid-
ing in front of a static obstacle/wall/object. In the custom
e-puck simulator, we give global access to the agent to its
real direction of movement. This vector could be computed,
with the described mechanism using a camera pointing to
a chessboard-tailed floor. The agent then compares this di-
rection vector to the signal it is sending to the motors and
can know when it is pushing a movable object or just being

blocked by an obstacle or a wall. This detection mechanism
is used by the agent to fill gradient A. Whenever it detects
that it is pushing an object, instead of accumulating evidence
in the gradient map M (as in previous section), it does so in
the affordance map A.

This accumulation is sufficient for the task that we want
to solve here, which is guiding exploration. It would be not
enough if we wanted to map the position of movable objects
and know its position and orientation in the environment.
For this purpose we have investigated in another paper in
preparation, object-centred representations.

The agent can estimate the center of the object and its
contour. There is a straightforward way of estimating the
center and that is using a weighted mean of the vectors at
each IR sensor direction. We call this vector I⃗Rmean and
we show an example of it in figure 5 and also 4. We compute
it with the following vector sum:

I⃗Rmean =
8∑

i=1

IRi
valr⃗

̸ IRi
α

Then the center of the object can be estimated by sum-
ming I⃗Rmean to the current agent position: pobj ← p +

I⃗Rmean.
The agent can also estimate the contour of an object by

turning around it and mapping its border using the IR sen-
sors and the described mechanisms.

The arousal subsystem
The arousal subsystem combines the map M , the affordance
A and the visited V gradients to generate another gradient
that can be interpreted as a saliency map of places worth vis-
iting, places where predictability of the environment can be
increased. As M , V and A are built while exploring the en-
vironment, the resulting gradient can only consider the vis-
ited gradient border. We cannot assume that the agent knows
a part of the environment that has not been explored yet. For
capturing the visited border we choose random points hav-
ing V (i, j) > 0.01. If a random point satisfies this last con-
dition we add a Gaussian weighted by a saliency value into
the new gradient. The saliency value inversely depends on
the sum

∑
i,j V (i, j) around a predefined radius. This will

promote the fact that places that have not been visited yet
have high saliency. We also weight the saliency by the sum
of the map gradient

∑
i,j M(i, j) and

∑
i,j A(i, j). This last

condition considers parts next to the walls or objects that
have not been mapped/pushed yet. We then give preference
to points that are close to the agent current position. This
combination of gradients to compute the resulting saliency
is represented by the box ”Combine” in figure 3.

Results
We validate the arousal subsystem based on the predictabil-
ity principle using a benchmark task designed for mobile

708 ECAL 2011



robotics (implemented in a custom simulation environment).
The agent has to map and explore the totality of an environ-
ment in which a hidden alley has been obstructed by a push-
able object. A snapshot of the used environment is shown
in figure 6. It consists of a squared arena joined with a
smaller rectangular chamber through a small alley. In the
initial state, the squared object is placed obstructing the alley
connecting to the hidden part of the arena, as shown in the
figure. Superimposed in the arena we show the trajectory of
the agent in one trial (dashed red line). The movement that
the square displayed during the trial is plotted with a series
of blue square contours.

To be able to benchmark different controllers solving the
mapping task we introduce two measures: rmapped and
rvisited. These allow us to quantify how much the environ-
ment has been mapped and how much it has been explored
respectively. The rmapped and rvisited measures take values
between 0 and 1 whether the whole environment has been
mapped/visited, then r = 1 or the agent has just been in-
serted in the environment r = 0. rmapped is computed by
counting how many points in the arena shape have activity
in the map gradient M and then dividing by the total num-
ber of points. Similarly, rvisited is computed by counting the
number of points in the environment that have been covered
by V and dividing by the total number of points.

We define a random controller that allows us to bench-
mark the exploration and mapping capabilities of the de-
scribed controller. The random controller builds an arousal
saliency map (described in previous section ) by choosing a
random point in the border of the visited gradient.

In figure 7 we compare the rmapped and rvisited measures
for the random controller and the described arousal subsys-
tem. One trial is sufficient to show that the environment
is mapped quicker with the improved arousal subsystem.
While in the random controller case, rmapped and rvisited
increase in a rather monotone constant way, in the improved
controller case we observe a quicker increase in the begging
until reaching a flat part between iterations 4000 and 7000
(corresponding to the explored square arena part). When the
hidden alley is discovered the measures increase again. In
the random controller case, the hidden chamber of the arena
is not discovered during the shown 12000 iterations.

Discussion
Little is known about rodent’s ability to exploit affordances.
Nevertheless it has been shown their ability to internally rep-
resent objects, proven by the fact that rats lose interest of ob-
jects which they have been able to interact and gain interest
of objects which they did not encountered before. This is
what it is called the novelty preference in (Ennaceur, 2010).

Experiments show that object properties are accessible to
rodents along various dimensions such as shapes, textures,
odour, color and brightness. Although this vast range of
recognition characteristics, rats show a preference for ob-

Figure 6: One trial of the robot task. The dashed red line
corresponds to the trajectory of the robot. The blue squares
correspond to the movement displayed by the squared object
when pushed.

jects that have affordances for common rat activities, for
example, in (Chemero and Heyser, 2005) it is found that
rats prefer objects they could climb onto to those they could
not. Similarly, rats show interest for the manipulation (e.g.
grasping,pushing) of objects that could interfere with ac-
cessing new unexplored areas of the arena, alleys, corridors,
and thus could be rewarding in a later state. These facts
have informed the realization of the benchmark task that we
solve in this paper and also have opened future directions
for generating new benchmarks and experimental tasks us-
ing rodents.

It’s worth noting the absence of reward function in our
paradigm. This fact set us apart from classical Machine
Learning approaches. Self-regulation is the responsible of
building the reward function indirectly, combining all the
objectives of the different subsystems.

Several neuronal based computational models exist that
address the issue of reproducing rodent behavior focusing
on navigation and relating it to the hipocampus, see for ex-
ample (Sheynikhovich et al., 2009). We addressed this is-
sue from this perspective in (Sanchez-Fibla et al., 2010a).
This was not our aim in this research. Same applies to the
mentioned research on homoeostasis as a low level regula-
tory process present in the Endocrine System (Moioli et al.,
2009; Xu and Wang, 2011). Here we wanted to focus on
the unpredictability minimization principle that drives ex-
ploration introducing affordances as a new dimension to be
considered.

Conclusions
We have presented a biomimetic controller based on the sel-
fregulation of two internal variables: security, defined as the
distance to a familiar established place, and arousal, in terms
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Figure 7: Simulation results. The x axis corresponds to the
simulation time steps. Solid lines indicate the environment
mapped measure (in blue) and the visited measure (green)
for the modified allostatic control. Dashed lines correspond
to the same measures for a random behaving controller. Red
dots indicate the time steps when the agent detect that it
was pushing an object (during the allostatic control session).
Two snapshots of the gradient map being built are shown on
top.

of the predictability of the environment. This implementa-
tion is based on the hypothesis that rodents, when exploring
an environment, may be interleaving its need for security
and the minimization of the unpredictability of the environ-
ment, in terms of internally mapping its structure and ex-
ploiting all the actions that it can afford. We use a simulated
epuck robot to validate our controller and expose an agent
to an environment with a squared object. In a final bench-
mark task, the object is obstructing an alley having access
to a hidden part of the environment. We show that using the
described controller the agent is able to map more rapidly
the environment and the actions it can afford than a simple
random controller.

A future step would be to compare the model with exper-
imental data of rodents performing free exploration in envi-
ronments that afford actions: push objects, push doors, etc.
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Abstract

Previous work has shown that a pheromone-based visual
saliency map can be computed by a swarm of simple agents
inhabiting the robot’s input image. It was also shown that,
with a proper set of behaviours controlling the agents, the
saliency map can be used to localise trails present in the
robot’s visual field. Under the assumption that the robot starts
its autonomous operation already on the trail, this paper ex-
tends that work by enabling the agents to learn online an ap-
pearance model of the trail. The learned model is then used
to increase the level of pheromone deployed in the regions of
the input image that are more probable of belonging to the
trail. This is motivated by the well-known importance that
a priori object knowledge has to improve visual search. The
outcome of this extension is a self-organising behaviour capa-
ble of detecting trails in 98% of the evaluated situations, out-
performing the original work. The agents being simple their
computation is fast, resulting in a 12Hz performance. Thus,
by introducing a parsimonious learning mechanism, this pa-
per contributes to increase robustness of swarm-based robot
vision systems.

1. Introduction
An important sensory modality for autonomous robots is vi-
sion. However, the richness of vision comes with the price of
complex processing. The complexity inherent to vision calls
for fine and contextualised focus of computational resources
on the most relevant stimuli obtained from the environment.
This process is called visual attention, which has been exten-
sively studied in humans (Oliva and Torralba, 2007; Wolfe
et al., ress). By focusing perception: (1) computation, and
consequently, energy are more efficiently used; (2) the robot
becomes less sensitive to noise and perceptual aliasing; and
as a consequence of the previous two, (3) faster robot mo-
tion, lower cost, and reduced robot size are enabled.

Models of visual attention typically assume the exis-
tence of a sensory-driven bottom-up pre-attentive compo-
nent (Treisman and Gelade, 1980; Itti et al., 1998), which
is modulated by top-down context aware pathways (Tsotsos
et al., 1995; Neider and Zelinsky, 2006). The use of top-
down modulation is important when bottom-up saliency in-
formation is insufficient to focus attention in the presence

of distractors. These distractors are other objects or percep-
tual aliasing in the environment that happen to detach from
the background at least as much as the object being sought.
However, top-down information (e.g., expected colour and
morphology of the object) is quite dependent on the envi-
ronmental context. As a result, adapting this knowledge is
key when facing unstructured environments.

Visual attention ultimately drives the motion of sense or-
gans, e.g., eyes, towards the relevant stimulus source. This
is called overt attention. A faster process is the one of men-
tally focusing particular aspects of the sensory stimuli. This
is called covert attention and its modelling is the focus of
this work. Studies on human subjects support the hypoth-
esis that multiple covert attention processes co-exist in the
brain (Doran et al., 2009).

In previous work (Santana and Correia, 2010, 2011), we
have explored the idea of existing multiple covert attention
processes to model visual attention on autonomous robots
as the product of a self-organising process supported by a
set of virtual agents inhabiting the sensorimotor space of the
robot. In particular, we have devised a model where the ac-
tion selection process is used as top-down context knowl-
edge to guide visual obstacle detection. In that work, agents
perform local covert visual attention loops, whereas the
self-organising collective behaviour maintains global spatio-
temporal coherence. In a related research line (Santana
et al., 2010), we have shown that a swarm of agents is able
to create saliency maps using implicit knowledge about the
object being sought. The model was shown to be able to de-
tect and track trails in natural environments. This top-down
knowledge was defined in terms of the behaviours control-
ling the agents. Focusing on the shape of trails, rather than
in their photometric appearance, is advantageous given trails
variability. However, photometric appearance may be useful
to compensate for situations where shape information is not
reliable. Due to its variability under different contexts, pho-
tometric appearance must be considered under an adaptive
framework, capable of being tuned to the specificities of the
environment. The current paper addresses this problem by
including an adaptive mechanism into the agents compos-
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ing the swarms responsible for the localisation and tracking
of the trail. Concretely, the output generated by the swarm
in previous frames is used to supervise the learning process
of a trail’s appearance model. In turn, this model is used
to modulate the pheromone deployed by the agents, thus
helping them concentrate their activity on the image regions
whose appearance is more similar to the one of the trail be-
ing tracked.

2. System Overview
Typically, object-related a priori knowledge is used by top-
down boosting of the set of features (e.g., colour) known
beforehand to be more representative of the object being
sought. Instead, the object’s overall layout, which is a more
stable and predictable feature in the case of natural trails,
whose local appearance often blends with the background,
is used in this work. This type of a priori knowledge is
specified indirectly in the proposed model as perception-
action rules controlling the behaviour of simple agents in-
habiting the robot’s visual input. These agents are called
p-ants (from perceptual-ants) and represent local covert at-
tention processes. Their self-organising collective behaviour
results in a saliency map of the input image, and thus, in a
global covert attention process.

Fig. 1 depicts the base model (Santana et al., 2010) of
this work. In short, at each new frame I, two conspicu-
ity maps, CC ∈ [0, 1] for colour and CI ∈ [0, 1] for in-
tensity information, are computed (Santana et al., 2010).
The intensity of a pixel in a given conspicuity map signals
how much the pixel detaches from the background at sev-
eral scales (i.e., resolutions), in the scope of a given visual
feature. A set of n p-ants is then deployed on each map.
These p-ants interact based on the ant-foraging metaphor
for several iterations in order to build two pheromone maps,
PC ∈ [0, 1] and PI ∈ [0, 1]. The behaviour of these p-ants
is designed to exploit some a priori knowledge about typical
trails approximate layout. The activation of the pheromone
maps is therefore expected to match the trail’s location bet-
ter than the activation of the conspicuity maps, which are
only sensory driven. Additionally, by allowing p-ants on a
given pheromone map to also affect the other pheromone
map, cross-modality influences are implicitly, i.e., through
stigmergy (Grassé, 1959), maintained in the system. This
increases robustness by allowing p-ants to exploit multiple
cues indirectly, in a simple and fast to compute way.

Rather than blending both conspicuity maps to generate
the final saliency map S ← 1

2C
I + 1

2C
C , as typically done

(Itti et al., 1998), in this work S is obtained by blending both
pheromone fields, S← 1

2P
I + 1

2P
C . This way the saliency

map is no longer a result of purely bottom-up sensory-driven
process; instead, the bottom-up information is exploited un-
der the context of some a priori knowledge about typical
trails approximate layout. The result is a more robust and
accurate focus of attention at the cost of a residual computa-

Figure 1: System’s operation overview (Santana et al.,
2010). The red overlays in both pheromone fields, PC and
PI , are two illustrative p-ant paths. Motion compensation
aspects are not represented. Note that the brightest region in
the neural field, F, correctly corresponds to the trail location
in the input image, I.

tional overhead.
For across-frames integration of trail location evidence,

the final saliency map S feeds a dynamic neural field,
F ∈ [0, 1], that is, a 2-D lattice of dynamical neurons
with Mexican-hat shaped lateral coupling (Amari, 1977).
This coupling implements inter-neuron local lateral excita-
tion and long-range inhibition, which helps the neural field
on the production of a single focus of attention (Rougier and
Vitay, 2006). In order to decouple the dynamics of the neu-
ral field from the dynamics of the robot, the projective trans-
formation estimated between frames is applied to the neural
field. Finally, the output of the system is given by the current
state of the neural field, in which the higher the activation of
a given neuron the higher its chances of being associated to
a trail’s pixel (refer to (Santana et al., 2010) for details on
dynamical field processing).

In order to allow p-ants’ creation and activity to be af-
fected by history, at the onset of each frame, both pheromone
maps are initialised with a small ratio λ of the neural field
after being motion compensated, PI ← λF,PC ← λF.
This induces stability and robustness to noise and temporar-
ily mis-behaved conspicuity maps (i.e., unable to properly
discern between trail and background in the presence of dis-
tractors), as well as it enables across-frames progressive im-
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provement.
With the purpose of reducing the effects of strong dis-

tractors when tracking the trail, this paper includes into the
swarm-based system an adaptive mechanism. The goal is to
learn and update in each frame a simple appearance model
of the trail, so that p-ants can strengthen the deployment of
pheromone on regions whose appearance match the learned
one. The result is a stronger stigmergic behaviour around the
true location of the trail. Learning occurs by sampling the
region of the visual input corresponding to the region of the
neural field with highest activity. That is, the model is up-
dated under the assumption that the trail location estimated
in the previous frame is correct.

3. Pheromone Maps Computation
This section describes how the two pheromone maps, PI

and PC , are built from the two conspicuity maps, CI and
CC . For this purpose, a given p-ant, pm, is created and as-
sociated to a given visual feature m ∈ {I, C}. The other
visual feature is represented by m′. While being iterated for
η times, pm will move on Cm, influenced by the pheromone
present in Pm. In the non-adaptive model, while moving,
this p-ant deploys pheromone in each position visited in Pm

with a magnitude ϵ0, and a small portion of ϵ0, υ, in Pm′
.

After the iterations for this p-ant, a p-ant associated to the
other visual feature, pm′ , is created and iterated following
the same procedure. Afterwards, the two p-ants are removed
from the system and the process is repeated n times, mean-
ing that 2n p-ants are created and iterated. As it will be
shown, the deployed pheromone is a function of p-ants’ sen-
sations across their trajectories on their associated conspicu-
ity maps. Hence, it is influenced by the activity occurring in
distant regions of the map. This long-range spatial connec-
tivity allows handling the potentially large size of trails in a
robust and parsimonious way.

3.1. P-Ant’s Creation
The chances of creating a p-ant pm on a given location
opm of the conspicuity map Cm depends on the level of
conspicuity at that location and on the level of pheromone
at the same location in the corresponding pheromone map,
Pm. Hence, p-ants are progressively and probabilistically
deployed where there are more chances of being a trail, un-
der the assumptions that: (1) trails tend to be conspicuous;
(2) the trail has been successfully detected in the previous
frame (represented by the feedback provided by the delayed
neural field state); and (3) that the pheromone accumulated
by p-ants deployed in the current frame builds-up mostly
around the actual trail’s location.

By assuming that trails often start from the bottom of the
image, p-ants are deployed with a small randomly selected
offset z ∈ [0, 0.1 · h] of the bottom of the conspicuity map
in question, i.e., at row r ∈ [h− z, h], where h is the height

of the map1. This random small offset reduces sensitivity to
any noise potentially present at the map’s boundaries.

In order to determine the column where pm is deployed,
a unidimensional vector vm = (vm0 , . . . , vmw ) is first com-
puted. The element vmk of vm refers to the average con-
spicuity level of the pixels in a small window centred on
column k and with a randomly selected offset with respect
to the bottom row of the map, r,

vmk =
∑
l,j

Cm(l, j)

δw · δh
(1)

where l ∈ [k − δw/2, k + δw/2], j ∈ [r − δh, r], Cm(l, j)
returns the conspicuity level in position (l, j), and δw and δh
are the width and the height of the window, respectively. The
same windowing process is applied to build a vector for the
pheromone field in question, um = (um

0 , . . . , um
w ). Element

um
k corresponds to the maximum pheromone level found in

the window:

um
k = max{Pm(l, j)}l,j (2)

where Pm(l, j) ∈ [0, 1] returns the pheromone level in po-
sition (l, j). The max operator is employed to benefit those
regions where the paths of p-ants overlap more often and
consequently where there is a higher consensus on the trail’s
skeleton position.

Using these two vectors in the following test, which is re-
peated until it succeeds, the chances of deploying a p-ant in a
randomly selected column z2 ·w is as high as the conspicuity
and pheromone levels at the deployment region,

z1 <
(
ρ · um

z2·w + (1− ρ) · vmz2·w
)

(3)

where z1 ∈ [0, 1] and z2 ∈ [0, 1] are numbers sampled from
a uniform distribution each time the test is performed and
ρ is a weight factor used to trade-off the influence of both
pheromone and conspicuity information. By starting with
a small value, ρ0, and by linearly growing at each iteration
by an amount ∆ρ, ρ operates as an adaptive process, com-
pelling the system to move from a conspicuity-driven oper-
ation (exploration) to a pheromone-driven operation (refine-
ment/exploitation).

3.2. P-Ant’s Execution
Before specifying p-ants behaviours, it is necessary to
specify their sensory and action spaces. To reduce both
sensitivity to noise and computational cost, the sensory
input is defined by 5 coarse receptive fields disposed
around the p-ant’s current position, R1 . . . R5 (see Fig. 2).
For a given visual feature m and p-ant’s position opm ,

1 Rows are indexed in increasing order from the top to the bot-
tom of the map.
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Figure 2: P-ants’ sensory and action spaces. Regions sur-
rounding current p-ant’s position, opm , are segmented into a
set of receptive fields, R1 = {1, 6, 11}, R2 = {2, 7}, R3 =
{3, 8}, R4 = {4, 9}, R5 = {5, 10, 12}, whose composing
pixels are numbered as in the figure. If a given action a ∈ A
is selected, then the next p-ant’s position will be the closest
pixel to the p-ant, represented by the pixels in bold.

Cm(Rk,opm) and Pm(Rk,opm) return the average con-
spicuity and pheromone levels of the pixels constituting re-
ceptive field Rk, respectively. Parameter opm is used to
transform the p-ant’s centred receptive field onto the map’s
frame of reference. To refer directly to the pixel-wise
conspicuity and pheromone levels at the p-ant’s position,
Cm(opm) and Pm(opm) are used, respectively. An action
a ∈ A moves the p-ant to one of the 5 neighbour pixels not
behind the current p-ant’s position. The action space is thus
defined by the set A = {1, 2, 3, 4, 5} (see Fig. 2).

At each of η iterations, p-ant pm executes a set of be-
haviours B = {greedy, track, centre, ahead, commit},
which independently vote on each possible action in A.
Then, the most voted action is the one taken by the p-ant.

In order to allow the system to operate with unstructured
trails, these behaviours are simple and make little assump-
tions regarding the trail’s structure. Each behaviour ex-
ploits a priori knowledge of trail’s shape or appearance so as
to make p-ants producing trajectories that approximate the
trail’s skeleton. For instance, under the assumption that trails
are somewhat monotonous structures, p-ants should move
under the influence of some inertia. This is implemented by
having the commit behaviour voting more strongly on the
action that is most similar to the one selected in the previous
iteration.

The following describes which regions in the local neigh-
bourhood of the current agent position are selected as its next
position by each of the five behaviours, and thus embody
top-down knowledge about trails:

1. Greedy: Regions of higher levels of conspicuity, under
the assumption that trails are salient in the input image;
2. Track: Regions whose average level of conspicuity is
more similar to the average level of conspicuity of the pixels
visited by the agent, under the assumption that trails’ ap-
pearance is somewhat homogeneous;
3. Centre: Regions that maintain the agent equidistant to
the boundaries of the trail hypothesis being pursued;
4. Ahead: Upwards regions under the assumption that trails

are often vertically elongated;
5. Commit: Region targeted by the motor action at the pre-
vious iteration, under the assumption that trails’ outline is
somewhat monotonous.

Formally, for a given p-ant pm, behaviours are described
as functions that return a vote in the interval [0, 1] for each
possible action a ∈ A. As an example consider the greedy
behaviour (refer to (Santana et al., 2010) for the other be-
haviours),

fgreedy(pm, a) = Cm(Ra,opm). (4)

As it will be shown, all these behaviours contribute to
p-ants trajectories that closely represent the trail’s skeleton.
The absence of an explicit scoring function, which would re-
quire a model-based imposition of constraints on the trail’s
shape, hampers a post-ranking of all deployed p-ants to de-
termine the “best trajectory”. Moreover, not all p-ants will
be deployed on the trail and so not all are able to follow the
actual trail. To overcome these challenges two ingredients
of the system are determinant.

The first ingredient comes in the form of positive feed-
back raising from the amplification of random fluctuations.
With additive random fluctuations at p-ants actuation level,
those that are deployed off the trail will diverge, whereas
p-ants deployed on the trail will converge towards its van-
ishing point, thanks to the centre behaviour. Hence, there
will be higher concentrations of pheromone on trail regions.
This happens because the presence of the trail tends to be a
global constraint which is only felt by the p-ants deployed
on it. In a sense, the trail operates as an attractor for the
self-organising system.

The second ingredient is the use of stigmergy in the form
of pheromone-based interactions. By making p-ants at-
tracted to high pheromone concentration regions, we posi-
tively reinforce the difference between diverging and con-
verging p-ants (symmetry breaking). Hence, this second in-
gredient ensures that, along time, the structure imposed by
the presence of the trail on the centre behaviour is stronger
than the effects of random fluctuations. This effect is mag-
nified by the fact that p-ants are deployed according to the
level of pheromone already present in the pheromone maps.
Moreover, the fact that robot forward motion tends to make
the neural field skew towards the bottom of the image makes
regions of higher activity in deep visual field more likely
to invoke p-ants. The use of pheromone-based interactions
has the additional advantage of overcoming the brittleness
of controlling p-ants based on myopic behaviours. The local
interruption of a trail, that could inhibit the centre behaviour
from properly leading the p-ant along the trail, is over-
come by having p-ants progressively building a pheromone
“bridge” over the interruption thanks to commit and ahead
behaviours.

In order to take these considerations into account, in each
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iteration a p-ant pm selects its action by maximising the
following utility function, which incorporates behaviours’
votes, pheromone-based interactions, and random fluctua-
tions,

apm = argmax
a∈A

(∑
b∈B

αbfb(pm, a) +Pm(Ra,opm) + γq

)

where: αb is a user defined weight accounting for the contri-
bution of behaviour b ∈ B; and γ is the weight accounting
for stochastic behaviour, being q ∈ [0, 1] a number sampled
from a uniform distribution each time the action is evalu-
ated. To match the randomness magnitude with the scale of
the image, which is typically smaller for pixels in upper re-
gions of the image, the weight γ starts with an initial value
γ0 and exponentially decays by a constant factor γτ at each
iteration.

In case an immediate loop is detected, namely, the p-ant
moving recurrently from one pixel to another, then the ac-
tion for the current iteration is randomly selected. Finally,
the p-ant’s position opm is updated according to the selected
action2.

4. Adaptive Process
This section describes how (see Section 4.1) and when (see
Section 4.2) the appearance model of the trail is learned and
updated. To help p-ants disambiguate in situations where the
conspicuity information is not sufficient by itself, the learned
model is used to promote the deployment of pheromone on
regions of the image whose appearance is more likely to be-
long to the one of the trail (see Section 4.3). To allow learn-
ing the model from scratch, some assumptions regarding the
initial position of the trail with respect to the robot are made
(see Section 4.4).

4.1. Appearance Model
The trail’s appearance model of the current frame is a simple
colour histogram, h, of the pixels in the region of higher
neural field’s activity. To reduce sensitivity to illumination
effects, the HSV colour space is used. To further reduce
this sensitivity, the H(ue) component is described by 12 bins,
the S(aturation) component by only 8 bins, and the V(alue)
component is discarded altogether.

This frame-wise appearance model is used to update an
across-frames appearance reference model,

href ← Θ(F)href +
(
1−Θ(F)

)
h (5)

where Θ(F) = κ · max(F) makes the speed the reference
model adapts to changes in the trail’s appearance propor-
tional to the neural field’s maximum activity. This weighted

2For the sake of completeness, the pseudo-code of the mod-
els here described can be found at: http://www.uninova.pt/∼pfs/
ecal2011trail.html

approach allows the appearance model to be updated more
strongly when the system is more sure of its output being a
correct segmentation of the trail from the background. This
assumption follows from the fact that the more stable the
pheromone maps’ activity across-frames the higher the neu-
ral field’s maximum. Hence, the presence of distractors is
less prone to affect the reference appearance model.

4.2. When to learn
To further reduce the chances of learning erroneous appear-
ance models due to the presence of distractors, the appear-
ance reference model, href , is only updated with Eq. 5 if
the neural field in the current frame reports the trail as being
roughly located (± 10% of the map’s width) at the centre of
the image. This is a reasonable heuristic under the assump-
tion that the robot is actively centring itself along the trail in
order to follow it.

This learning gating process allows the reference model
not to learn the appearance of transient distractors appearing
in the sides of the trail. Furthermore, it allows the system
to delay the learning phase when the robot does not start
centred on the trail.

4.3. Adaptive pheromone deployment
In Santana et al. (2010), p-ants deploy a constant level of
pheromone along their paths, ϵ0 (see Section 3). In this
work, instead, a given p-ant pm deployed in map m deposits
a non-fixed level of pheromone,

ϵ = ϵ0 + β · p(T |Vpm
) (6)

where β is an empirically defined weighting factor and
p(T |Vpm) is the probability of the p-ant’s path, Vpm , to be-
long to the trail (T).

The probability p(T |Vpm) is approximated by the aver-
age probability of pixels visited by the p-ant of belonging to
the trail. These pixels are represented by the set Vpm , and
their individual probabilities are obtained directly from the
normalised histogram href , according to a technique known
as histogram back-projection (see Fig. 3 for typical results).
As the experimental results will show, this simple approach
suffices to help p-ants tracking the trail.

4.4. The First Frames
The advantages of using learning comes at the price of solv-
ing the bootstrapping problem. That is, in the absence of a
learned model, the detector has a reduced chance of gener-
ating a good output to supervise the learning, which in turn
hampers the learning of the model altogether. To solve this
problem we start from the assumption that the detector is
turned on when the robot is already roughly located on the
trail. Therefore, we can assume that in the first frames the
trail is centred on the robot’s input image.
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(a) input image (b) trail probability

(c) input image (d) trail probability

Figure 3: Pixel-wise trail probability (brightness level) for
two typical images.

Bearing this in mind, in the first frames, instead of con-
sidering the maps’ entire width, w, when selecting the de-
ployment column of a newly created p-ant (see Eq. 1 and
Eq. 2), the adaptive model assumes that the deployment re-
gion is constrained by a band centred on the map and with
a frame-wise upper-bounded growing width. Concretely, in
the first frame, the width of the band is 10% of w. Then,
this width is increased by 0.5% at each new frame until the
upper-bound w is reached. From then on, it remains static.
At this moment the learned model is sufficiently mature to
help the detector tracking the trail.

5. Experimental Results
This section quantifies the improvement the adaptive mech-
anism brings to the overall method and how well it suits the
fast computation requirements imposed by physical robots.
In order to measure the performance of the adaptive model,
we relied on the same data-set used to evaluate the non-
adaptive model (Santana et al., 2010). This data-set consists
of 25 colour videos, encompassing a total of 12023 frames
with 640× 480 resolution, which have been obtained with a
hand-held camera3. This camera was carried at an approx-
imate speed of 1ms−1. The trail detector was evaluated on
an Intel T4300 2.1 GHz dual core, running Linux. OpenCV
was used for low-level routines. To handle the probabilistic
nature of the agents behaviour, a set of 5 runs was performed
per video. In some of these videos the robot does not start
on the trail, which is important to validate the ability of the
detector to delay the learning phase.

Performance is measured as the percentage of frames in
which the biggest blob of neural field activity above 0.85
(from a maximum of 1) is fully within the trail boundaries.
The system parameters related to the adaptive mechanism,
κ, β, and ϵ0, have been empirically set to 0.001, 0.01, and

3The model’s output overlaid on these videos is available at:
http://www.uninova.pt/∼pfs/ecal2011trail.html

0.008, respectively. The remainder of the free parameters
have been set as in the original model (Santana et al., 2010).

With a success rate of 92.98% ± 0.16% over the 25
videos, the base model already attains an impressive result,
operating ≈ 4 times better than a classical saliency model
and in situations where previous detectors fail (details in
(Santana et al., 2010)). However, a single failure in an em-
bodied setup may result in dramatic consequences. There-
fore, full success must be pursued. With the adaptive mech-
anism, the model reaches a success rate of 97.94%±0.17%
over the 25 videos, and a 100% success rate in 12 of the 25
videos (see Table 1). Conversely, the non-adaptive model
obtains a 100% success rate only in 6 of the 25 videos.
Fig. 4 shows frames from some videos belonging to the 25
video data-set where the non-adaptive model fails to detect
the trail, whereas the adaptive one succeeds. Although typ-
ically transient, these failures could drive the robot off trail.
They usually occur when the assumption that trails are con-
spicuous structures fails due to the overall scene configura-
tion. Sometimes it also happens that a sudden camera mo-
tion is not captured by the motion detection method, result-
ing in a mismatch between the neural field and the environ-
ment.

In terms of computation time, the non-adaptive model
runs at 13Hz whereas the adaptive one runs at 12Hz. Note
that only roughly 8% of the computation time refers to
swarm-based activity - the remainder includes robot motion
estimation, neural field update, and conspicuity maps com-
putation. The conclusion is that the adaptive mechanism,
which improves the method’s accuracy, adds little computa-
tional overhead.

It is important to point out that the dependency of the
overall process on an appearance model makes the learn-
ing process a critical one. This is reflected on the need for
a learning bootstrapping process and for trail’s appearance
transitions to be smooth. That is, the improvement in per-
formance is obtained at the cost of introducing assumptions,
which are, nevertheless, acceptable under a trail tracking
framework.

6. Discussion
Rather than static structures, like neurons, agents are better
viewed as active information particles that flow and change
in the system. Hence, using agents, the design focus is on
the process and not so much on its supporting substrate.
Additionally, agents being sensorimotor coordinated units
can exploit the benefits of active vision (Bajcsy, 1988; Bal-
lard, 1991) at the information processing level. These in-
clude the ability of agents to actively select and shape their
sensory input so as to increase noise-to-signal ratio and in-
crease their discriminatory power, to augment rotation and
scale invariance, and also to exploit sensorimotor history
with the purpose of inducing long-range influences and in
the limit of improving their own behaviour (Scheier et al.,
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(a) non-adaptive (b) adaptive

(c) non-adaptive (d) adaptive

(e) non-adaptive (f) adaptive

Figure 4: Examples of situations where the adaptive method
outperforms the non-adaptive method. The red blobs rep-
resent the estimated trail location, which corresponds to the
neural field activity above 85% of its maximum. In the adap-
tive case, besides localising the trail, the red blob is well
aligned with its orientation. This means that the system is
able to output both position and orientation of the trail.

Video Nr. of Non-adaptive model Adaptive model
ID frames correct frames [%] correct frames [%]
1 278 100.00± 0.00 100.00± 0.00
2 204 100.00± 0.00 100.00± 0.00
3 422 93.03± 0.21 99.15± 0.13
4 135 100.00± 0.00 100.00± 0.00
5 2854 93.90± 0.02 97.79± 0.03
6 186 97.53± 0.29 95.91± 0.48
7 121 100.00± 0.00 100.00± 0.00
8 124 88.06± 0.36 100.00± 0.00
9 309 98.38± 0.32 95.79± 0.32
10 147 92.11± 0.61 97.41± 1.12
11 386 100.00± 0.00 100.00± 0.00
12 158 88.48± 0.28 100.00± 0.00
13 134 87.31± 0.53 100.00± 0.00
14 676 99.14± 0.07 98.46± 0.17
15 683 91.22± 0.10 91.51± 0.10
16 770 82.96± 0.14 86.83± 0.30
17 403 93.90± 0.14 94.14± 0.83
18 335 86.21± 0.13 98.81± 0.30
19 230 76.43± 0.19 100.00± 0.00
20 439 82.92± 0.23 95.54± 0.38
21 490 93.31± 0.09 100.00± 0.00
22 230 100.00± 0.00 100.00± 0.00
23 600 90.10± 0.15 100.00± 0.00
24 802 95.06± 0.07 99.10± 0.10
25 907 94.42± 0.06 98.10± 0.09

Total 12023 92.98± 0.16 97.94± 0.17

Table 1: Comparative results summary.

1998; Nolfi and Marocco, 2002; Beer, 2003; Floreano et al.,
2004; Sporns and Lungarella, 2006; Mirolli et al., 2010).
Furthermore, the use of multiple agents in the task of mod-
elling cognitive behaviour exploits biological knowledge ob-
tained from similar processes that can be found in Nature.

In our line of research, we have used a model inspired by
swarm cognition of social insects, whose considerable sim-
ilarities with brain cognitive function are becoming widely
recognised (Passino et al., 2008; Couzin, 2009; Marshall and
Franks, 2009; Trianni and Tuci, 2011; Santana and Correia,
2010; Turner, 2011; Trianni et al., 2011). In this work, the
ant foraging metaphor previously used was extended with
learning capabilities, resulting in a system that can better
adapt to different environmental contexts.

The use of learned appearance models to swarm-based
object tracking has already been explored in the context of
PSO-based models (Zhang et al., 2008). However, our work
is the first applying learning to the problem of swarm-based
trail detection and tracking. This is an important difference
as the appearance of trails change more drastically than the
one of typical objects. Furthermore, our model uses the ap-
pearance model to modulate pheromone deployment, a con-
cept inexistent in PSO models.

7. Conclusions
This article proposes a model to incorporate an adaptive
mechanism into a swarm-based trail detector previously
published. The goal of this mechanism is to allow the detec-
tor to learn and exploit appearance models of the trail being
followed. Experimental results confirmed the ability of the
adaptive model to outperform the non-adaptive one, under
the assumption that the robot starts its operation already on
the trail.

The learned trail’s appearance model is used to modulate
the swarm operation, rather than, to directly classify the in-
put image as in a convolution-like typical computer vision
operation. First, this approach allows the system to ex-
ploit synergistically both appearance and shape information,
which is pivotal to handle sudden trail’s appearance changes.
Second, this multi-modal approach allows the use of simple
appearance models, i.e., histograms. Third, the appearance
model and the behaviours controlling the agents being sim-
ple enable a fast to compute system.

With a bottom-up self-organising approach, the model is
capable of handling highly unstructured trails without ex-
hibiting a high computational load. In fact, we have shown
in previous work (Santana et al., 2010) that the non-adaptive
model performs in situations where previous detectors em-
ploying classical computer vision techniques would fail. In
this work, we have improved the previous model by intro-
ducing elementary learning of the photometric appearance
of the trail. All this leads us to conclude that swarm-based
models are an interesting alternative to classical computer
vision techniques. This means that besides contributing with
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a useful model to improve off-road robot navigation, this
work intends to encourage the artificial life community to
employ their bulk of knowledge at the service of the high
impact problem of synthesising robust and fast computer vi-
sion systems.

An interesting future development would be to expand the
learning capabilities to other aspects of the model. An ex-
ample is the adaptation of the weights controlling how much
each agent’s behaviour contributes to the overall behaviour.
It would also be interesting to learn the behaviours them-
selves. An additional aspect that might be considered is the
emergence of hierarchical organisation among the agents.
Finally, the method’s ability to deal with strong camera mo-
tion must be evaluated on a physical robot embodiment.
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Abstract 
Understanding the evolutionary mechanisms that promote and 
maintain cooperative behavior is recognized as a major 
theoretical problem where the intricacy increases with complexity 
of the participating individuals. Costless pre-play communication 
[1] with signals that have no preexisting meaning (also known as 
cheap-talk) might not, on the face of it, be expected to do much. 
With the current extended abstract, here we would like to present 
a new analysis of this problem. This analysis has been recently 
reported in [Santos, F.C., Pacheco, J.M., Skyrms, B.: Co-
evolution of pre-play signaling and cooperation. J Theor Biol 274 
(2011) 30-35] [2].  

  Here, we show how pre-play signaling leads to profound 
changes in the evolutionary dynamics of cooperative games, 
favoring cooperation in finite populations. Cooperation freely 
emerges from the co-evolution of signals, assigned meanings and 
actions which are not built-in in the individual, addressing in a 
general framework the study of central aspects of Human 
evolution, from the self-organized drive towards an individual 
adoption of a given signaling system to the emergence of the 
latter [1].  

  We analyze two important metaphors of cooperation: The Stag-
Hunt (SH) (or coordination) game and the Prisoner’s dilemma 
(PD). We show how, on coordination dilemmas, individuals 
willing to cooperate learn how to use the information encoded in 
each signal to identify other cooperators, reducing the risk of 
facing defection upon a cooperative act. In addition, the existence 
of a large number of signals enhances the tendency to cooperate, 
as it enlarges the portfolio of available signals that cooperators 
may use at profit to coordinate. Since mutual cooperation is 
always the best possible outcome in coordination dilemmas, 
cooperators who are able to discriminate between their own 
strategy and the one of others are robust against the invasion of 
mutants. Consequently, the emergence of evolutionary stable 
strategies (and signals) requires that these strategies are i) 
cooperative, ii) discriminative and iii) self-reinforcing, that is, 
they cooperate with individuals who adopt the same signal.  

     Remarkably, the enhancement of cooperation through 
signaling also applies to games where deception constitutes a 
profitable option, and where defection is the only stable strategy, 
as in the PD. In the presence of pre-play signaling, those 
strategies that opt invariably to defect are no longer stable in the 
PD. However, the same remains true for any type of cooperative 
strategy. Let us suppose that mutant arises who can utilize an 
unused signal. The mutant sends the signal, cooperates with 
others who send it, and defects against the natives - who do not 
send it. All goes well for the invaders until another mutant arises 
who sends the signal and then defects. Thus, in the absence of 
any evolutionary stable strategy, the fate of cooperation emerges 
from the conflict between deception by fake signaling and 
development of reliable “secret handshakes” [3].  

  Finally, all results are shown to be strongly dependent on the 
number of signals available. In particular, cooperation can 
emerge as a result of the arms race between i) the exploration of 
new signals by cooperators (to avoid being cheated by defectors) 
and ii) the search of cooperative signals by defectors (to deceive 
cooperators). By increasing the number of signals, cooperators 
have a larger portfolio of signals to pick from, something they 
learn to use to their own advantage. This result illustrates the 
advantages of a complex signaling system (or incipient language 
system). Language, even if minimal may open a route to 
cooperation. Indeed, signaling systems, together with a rich 
communication portfolio, may give rise to a developing 
mechanism of intention recognition, from which future behaviors 
may be assessed and trust bonds established.  
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Abstract 

In this paper, we propose an experimental and computational 

model to challenge the dynamic body boundary problem, as seen 

in the rubber hands illusion and phantom limbs.  Our strategy 

examines an agent‟s “attention shift”. A computational model 

(Iizuka & Ikegami, 2005) was used to explore how a body and 

sensor can be made inseparable. A model agent was required to 

determine the number of vanes on a windmill by touching the 

windmill blindly with a stick. By adding an additional windmill 

to the first one, we investigated the agent‟s shift of attention, i.e. 

the agent could either determine the vanes on the first windmill, 

or the second windmill by using the first one as a tool. In other 

words, an agent‟s body image can shift from its arm tip to the 

boundary between the first and second windmill. We then 

introduced an experiment with a real windmill model to test the 

hypothesis shown by the theoretical model. Subjects were tasked 

with determining the number of vanes on the second windmill. 

We found that sensory-motor correlations between their actions 

and perceptions of the movement of the windmills were helpful 

for the attention shift but still not enough to extend their body 

boundaries.  

 

Introduction 

 

A Model to Bridge the Gap between the Self and the 
Environment 

 
In order to overcome philosophical and scientific problems 
such as the “hard problem”, which asks how and why certain 
neural processes give rise to subjective experiences 
(Charlmers 1996); or the symbol grounding problem, which 
asks how symbols get their meaning (Harnad 1990), we need a 
radical new framework or model to recast the dichotomies of 
mind and body, subject and object, agent and the environment, 
and perception and action. 

How we model our cognition is directly connected to how 
we understand it. Studies on embodied robots and simulations 
are based on sensory-motor ideas that attempt to describe our 
psychological processes from sensory-motor connections and 
interactions with the environment (Walter 1950, 1951; 
Braitenberg 1984; Pfeifer & Scheier 1999; Brooks 1991a, b). 
For example, Walter (1950, 1951) discusses cognitive, play-
like, and social behaviors by synthesizing artificial vehicles, 
while Braitenberg (1984) made conceptual robots to discuss 
the higher functioning of cognition. However, even if the above 
approaches succeed in shedding light on sensory motor 
experiences through interaction with the environment, the 
approaches still fails to consider psychological concepts such 
as body image, ownership, agency and active perception, 
which play an important role in resolving the dichotomies. 

There are many phenomena in empirical 
neuropsychological studies that can be described with these 
psychological concepts. Yamamoto and Kitazawa (2001), for 
example, demonstrated in the arm-crossing experiment that the 
perceived temporal ordering of haptic stimuli was reversed 
when the successive stimuli were temporally close enough. 
Maravita and Iriki (2004) demonstrated that a macaque 
monkey‟s body image was extended to the tip of a tool bar 
when the monkey learns to use it. Ramachandran and 
Blakeslee (1998) showed that a human body image can be 
easily created or destroyed by using visual or auditory 
information. These experiments and others have revealed that 
body images and ownership have very dynamic natures, 
something we would like to implement in our system. 

Our body image and ownership bridge the gap between the 
highly abstract sense of “self” and the physical world where 
our body is situated. Francisco Varela (1979) proposed a 
principle of autonomy, stressing the idea of a self-generated 
boundary. He exemplified autonomy as a “self” that emerged 
from a chemical system through structural coupling with the 
environment. In his model, it was shown that some reactive 
particles created a boundary, which regulated internal reactions 
of the particles, thus maintaining the boundary structure. The 
circularity of the physical boundary and the internal dynamics 

721ECAL 2011



 

 

produce the coherence of the self-state. In other words, the self 
has not been strictly defined but can be described as a dynamic 
process, and the sensory-motor experiences from the 
perspective of the emergent self, account for the psychological 
or highly abstract concepts such as life. One such challenge, 
with respect to a proto-cell system, can be seen in Suzuki and 
Ikegami (2004). 

Mere sensory-motor modeling surrenders the self because 
it is pre-defined as a completely different entity to the 
environment and the boundary is given as the firm distinction 
between them. Therefore, we provide a new framework for 
modeling in order to achieve a balance between both ideas of 
emergent self and sensory-motor flow. In the new framework, 
we assume no explicit distinction between a sensor and a 
motor that defines the boundary. An interface between an 
agent and its environment is only dynamically constructed. 
Exploiting the model, we investigate active perception and 
body image as dynamic processes in the emergent self. The 
psychological notions are clarified first in this paper, after 
which the computational modeling and results are described. 
We also report some tentative results of a real windmill model, 
which has recently been made to investigate how human 
subjects feel their body boundaries. 

 

Body Image 

Our body images are not restricted to the physical boundary 
that separates our bodies from the external world. When an 
expert driver drives a car, he/she can traverse narrow streets 
easily, as though the car were part of his/her own body. 
Indeed, he/she is aware of the whole car, and when the car 
runs over a rock, he/she feels as though he/she has stepped on 
it with his/her foot. Another example is an artificial tooth. We 
feel uncomfortable and cannot taste food when using an 
artificial tooth for the first time. However, over time, we adapt 
to the artificial tooth and learn to taste again. Yet another 
instance of this can be seen in a blind person‟s stick. As he/she 
adapts to its use, the stick changes from mere matter to a real 
body part, and the person is eventually able to perceive his/her 
environment with the stick. These examples show that one‟s 
body image can be extended beyond his/her physical body 
boundaries. Body images are formed through interactions 
between brain, body, tool, and environment. Nevertheless, the 
dynamic mechanisms underlying the changes of body images 
are still not fully understood, despite their importance in areas 
such as medical care, robotics, cognitive development, 
enactive cognitive science (Varela et al. 1991; Thompson 
2007), the “extended mind” (Clark et al. 1998), and “radical 
embodied cognitive science” (Chemero 2009). We propose a 
model for body images by extending the windmill model 
proposed by Iizuka and Ikegami (Iizuka & Ikegami 2005). The 
windmill model proposed by Iizuka and Ikegami is a computer 
simulation model to study “active perception” (Gibson 1962).  

Active Perception 

A difference between human perception and an artificial 
system based on current technology is the fact that two modes 
of perception exist in humans, active and passive modes of 
perception. When we touch an object with our hands, we 
perceive the shape, texture, and temperature of the object. 

Gibson (1962) reported on experiments in which blind subjects 
touched different shapes of cookie cutters. When the cutter 
was pushed randomly on the subject‟s palm, the subject 
recognized the correct shape with 72% accuracy. By touching 
the cutter in a self-guided manner, the subjects recognized the 
object more than 95% of the cases. The former case is an 
example of passive perception and the latter case is active 
perception. This study illustrates that perception does not 
merely entail receiving information from the outside. It is 
instead a form of exploration. Moving our hands is not just a 
method we use to arrive at perception, but rather, the moving 
of one‟s hands is an ongoing exploratory process, which we 
think of as a generic property of perception. Edward Reed 
(1996) has further developed Gibson‟s idea, and this idea of 
perception has become a core principle of new psychology 
(often called ecological psychology).  

Even though the idea of active and passive perception is 
subjectively apparent and has been studied empirically, it is 
still difficult to implement the two modes within the context of 
an artificial model. Iizuka and Ikegami (2005) studied the 
simulation model of object discrimination, which implement 
the two modes of perception. The present study further 
develops this research by studying the changing of body 
images. 
 

Computational Model 

 

Windmill Model for Active/Passive Perception 

 
In this section, we briefly introduce the model for 
active/passive perception, and in the next section, we propose 
a model for body images and report results. In the proposed 
model, the agent consists of a body with a straight arm that can 
move and touch an object (Figure 1). The object is a windmill 
with a certain number of vanes, and the agent can rotate the 
windmill by pushing the vanes. This is what we call an active 
condition. When the agent perceives the windmill by its arm 
being pushed by the vane, this is a passive condition. In other 
words, the windmill has an infinite mass in the passive 
condition, and the agent cannot change the initial velocity of 
the windmill by pushing its vane. One of the aims of this 
windmill model was to examine the difference between the 
two methods of perception in terms of dynamic systems. 
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Figure 1: Windmill model for active/passive perception. The 

agent consists of an arm, a “body neuron”, and internal 
neurons. The windmill has 5 or 7 vanes. Differentiation of the 
windmills is made by comparing the activities of neurons 1 and 
2.  
 
Firstly, the dynamics of the arm and the windmill are 

controlled by the deterministic equation: 
 

,0),(  wacolaaaaa FFDM    (1) 
 

,0),(  wacolwwww FDM    (2) 
 
where 

a  and 
w  denote the angles of the arm and the 

windmill, respectively; 
aM  and 

wM  denote the mass of the 
arm and the windmill, respectively; 

aD  and 
wD  denote the 

friction coefficient of the arm and the windmill, respectively; 

colF  is a function giving the potential of collision; and 
aF  is 

the force of the agent used to rotate the arm. 
 
Secondly, this agent also has a “brain” that consists of internal 
neurons (Figure 1). The dynamics of these neurons are 
controlled by a continuous-time recurrent neural network 
(CTRNN) (Beer 1995). The dynamics of the neural system are 
expressed by the following equations:  
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where y  is the state of each neuron,   is its time constant, 

b  is a bias term, and 
jiw  is the strength of the connection 

from the neuron, j to i . It should be noted that we adopted a 
sparse structure rather than a fully-connected network. The 
neurons are arranged in 3 layers. 
Thirdly, the agent has a body neuron at the interface between 
the arm and the internal neurons. The body neuron 
simultaneously plays the role of sensor and motor. That is, this 
neuron determines the value of 

aF  and the angle of the arm is 
assigned to the body neuron (Figure 2). The agent has no 
explicit functional division of sensors and motors. The 
distinction between moving and being moved becomes 
implicit. Whether an arm motion is caused spontaneously or 

externally, it is internally evaluated by investigating the body 
neurons and internal neurons. In an empty space, an agent can 
freely move his/her arm. When an arm hits an object, the 
collision produces de-coherence of the arm movement, which 
is interpreted as sensory information.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2: Updating the state of the body neuron, which plays 
the role of sensor and motor at the same time. 

ty denotes the 
increment of the body neuron, which is given by equation (3). 

ty  is used to determine the force to rotate the arm. 
 

Active/Passive Agents. An agent interacts with the windmill 
and distinguishes the number of vanes present (5 or 7) given 
the two conditions (cf. the beginning of the previous section). 
Specifically, an active agent distinguishes a windmill by 
actively touching the vanes. A passive agent does the same 
task by being pushed by the windmill. In both cases, this 
differentiation is made by comparing the neural activities of 
two neurons, neuron 1 and neuron 2 (Figure 1). If 

1y  is 
greater than that of 

2y , the agent distinguishes the windmill 
as having 7 vanes, and if 

1y  is less than 
2y , the agent 

distinguishes the windmill as having 5 vanes.  

To train both active and passive agents, we adopted a 
standard genetic algorithm (GA) (Holland 1975) by encoding 

jiw  (the neural weight), 
i  (time constant), and 

ib  (bias 
neural states) (cf. equation (3), (4)) into the real-valued strings. 
These strings are taken as artificial genomes and will be 
selected according to the fitness value of the corresponding 
agent (Figure 3). The value is calculated by multiplying the 
percentage of correct answers. The best-performing agent is 
preserved in the population without a genetic operation 
(elitism). The other agents are reproduced from the best agents 
by adding small random values (without sexual reproduction).  
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Figure 3: A schematic view of the genetic algorithm (GA) 
used in this study. We prepared 80 agents with different 
artificial genomes. The best-performing agent is selected 
according to the fitness value of the corresponding agent. The 
best-performing agent is preserved in the population. The other 
agents are reproduced from the best agents by adding small 
random values. 
 

General Observations. A computational model shows that an 
agent becomes sensitive to the number of vanes. One 
difference exists in active and passive classifications: active 
classification is less stable against time delay compared to 
passive classification (Iizuka & Ikegami 2005). This is the 
dynamic system‟s interpretation of active and passive 
perception. In the following sections we further extend this 
model by adding the second windmill next to the first and gear 
the two windmills to move associatively. Our concern is to 
study how an agent‟s discrimination capability can be extended 
to the second windmill. We shall also discuss the synthesis of 
body images with the windmill. 

 

Coupled Windmill Model 

In studying the coupled windmill model, we fix the number of 
vanes of the first windmill to 5 and require the agent to 
determine the number of vanes of the second windmill (which 
has 5 or 7 vanes). See Figure 4 for an illustration. An agent 
now uses the first windmill as a “tool” to determine the 
number of vanes on the second windmill. If an agent can 
successfully use the first windmill as a tool, we can say that, 
for the agent, the first windmill has shifted from an object to a 
tool. At this time, the agent‟s body image is thought to be 
extended to the first windmill. In the following sections, we 
only focus on the “active” agents, which actively use their arms 
to rotate the windmill in order to classify the number of vanes 
present.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: A coupled windmill model for studying body images. 
This agent determines the number of vanes on Windmill 2. In 
the previous windmill model, Windmill 1 was an object to be 
distinguished. On the other hand, in the coupled windmill 
model, Windmill 1 changed from an object to be distinguished 
to a tool to determine the number of vanes on Windmill 2. At 
this time, the agent‟s body image is thought to be extended to 
Windmill 1. 
 
Is the First Windmill a Tool or a Mere Object? The first 
windmill is proposed to become an extension of the agent‟s 
body, thereby shifting his/her body image. If an agent can 
judge the number of vanes of the second windmill, can we 
identify this as an emergence of the body image? In this case, 
even if the agent can distinguish between the windmills, we 
cannot simply say that the agent has shifted his/her body 
image. The agent might just distinguish two windmills as (5, 
5)

1
 and (5, 7). In other words, the first windmill might not be a 

tool but a mere object. We cannot decide which is right if the 
agent differentiates between two combinations of windmills. 
These are, (5, 5), (5, 7). 
  To overcome this problem, we required the agent to 
distinguish not two combinations ((5, 5), (5, 7)), but four 
combinations, which are, (5, 5), (5, 7), (7, 5), and (7, 7). We 
want to compare two different agents to discuss the boundaries 
of body images. If an agent classifies the four combinations as 
two groups, which are, {(7, 5), (7, 7)} and {(5, 5), (5, 7)}, 
then the agent is sensitive to the vanes of the first windmill 
(this is called Agent 1) (Figure 5). This is because Agent 1 
classifies the combinations within the same/different category 
if the first windmill has the same/different number of vanes 
and the agent does not care about the second windmill. In 
contrast, if an agent classifies the combinations as {(5, 5), (7, 
5)} and {(5, 7), (7, 7)}, the agent is sensitive to the vanes of 
the second windmill (this is called Agent 2) (Figure 6). Here, 
Agent 2 classifies the combinations with respect to the second 
windmill and does not care about the first windmill. In other 
words, for Agent 1, the first windmill functions as an object to 
be distinguished, and the second windmill works as a noise 
(Figure 5). Or, we might say that the first windmill is 
perceived as a “figure” by Agent 1 and the second windmill is 
seen as a “ground”. In contrast, for Agent 2, the second 
windmill becomes an observed object (or a “figure”), and the 
first windmill is a tool (or a “ground”) to distinguish the 
second windmill (Figure 6).  
 
                                                             
1 The first and second components ( , ) are the number of 
vanes of the first and second windmills, respectively. 
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Figure 5: Agent 1. This agent is sensitive to the first windmill 
in the classification and does not care about the second 
windmill. The first windmill functions as an object to be 
determined, and the second windmill works as a noise, which 
means that the first windmill is not a part of the body image of 
Agent 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Agent 2. This agent is sensitive to the second 
windmill in the classification and does not care about the first 
windmill. The second windmill becomes an observed object, 
and the first windmill is a tool to distinguish the second 
windmill, which means that the first windmill is a part of the 
body image of Agent 2. 

Shift of Attention. We think that this “shift of attention” is 
essential in defining the boundary of body image. For example, 
when we use a word processor for the first time, we pay 
attention not to the characters on the screen, but to the 
keyboard. At this stage, the keyboard is still an observed object 
and our body image is not extended to the keyboard. However, 
the attention is shifted from the keyboard to the screen as we 
become accustomed to typing. At this time, the keyboard‟s 
status changes from being a mere object to a real tool, and our 
body image is extended to the keyboard. In our model, Agent 1 
pays attention to the first windmill and does not care about the 
second windmill, which means that the first windmill is not 
part of the body image of Agent 1. In contrast, Agent 2 pays 
attention to the second windmill and does not care about the 
first windmill, which means that the first windmill is a part of 
the body image of Agent 2. 
 

Key Observations By using a genetic algorithm, we 
successfully trained agents to become sensitive to the vanes of 
the first (Agent 1) or of the second windmill (Agent 2). 

Changing the number of vanes successively from (5, 5) to 
(5, 7) to (7, 7) to (7, 5), we see that in the case of Agent 1, 
neuron 1 and neuron 2 are sensitive to the first windmill and do 
not care about the second windmill (Figure 7); in the case of 
Agent 2, neuron 1 and neuron 2 are sensitive to the second 
windmill and do not care about the first windmill (Figure 8).  

For example, from (5, 5) to (5, 7), as in the case of Agent 1, 
no transition occurs in the neural states. However, in the case 
of Agent 2, a sharp transition occurs, and the magnitude 
relation is changed. In contrast, from (5, 7) to (7, 7) in the case 
of Agent 1, a sharp transition occurs, but in the case of Agent 
2, the neural states maintain the magnitude relation.  

As far as we know if we change the number of vanes, it 
won't give the same result. However, as we already reported, a 
system properly count the number of the vane, when there is 
only one wheel (Sato et al. 2009). But counting two wheels 
case was also tough for the computational model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Agent 1: the time series of the arm, the first 
windmill, the second windmill (top) and of neurons 1 and 2 
(bottom).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Agent 2: the time series of the arm, the first 
windmill, the second windmill (top) and of neurons 1 and 2 
(bottom). 
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Experimental Setup 

Real Windmill Model 

In order to test the hypothesis shown by the theoretical model, 
we have conducted a real experiment and constructed two 
windmills with crossed metal bars. In this setup we fix the 
number of vanes on the first windmill to 5 and ask subjects to 
determine the number of vanes on the second windmill (which 
has 5 or 6 vanes).  

 Subjects wear a blindfold and touch the first windmill with 
only a stick, which is also fixed in space. The stick is 
introduced to constrain the movement of the subjects. Subjects 
are requested to determine the number of vanes on the second 
windmill in 30 seconds. The experiment is repeated over 30 
trials. 

 
Result. Subjects (N=5) come to discriminate windmills about 

80 percent accuracy at the end (Fig.9a). Observationally, in the 
early stages, the stick and the windmills move randomly but 
they switch to regulatory behavior in the end in cases of a 
single (Fig. 9b) and coupled windmill experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9; (a) The percentage of correct answers in a coupled 
windmill experiment. (b), (c) The time series of the stick and 
the windmill in a single windmill experiment. Movement of the 
stick changes from random motion (b) to periodic motion (c) 
as the subjects adapt to its use. 
   
The body boundary of subjects is still not extended. 
Although subjects could count the number of vanes usually, 
they reported that they just paid attention to the touch feeling of 
collisions between the stick and the first windmill (Fig. 10a).  
  Because the number of vanes on the first windmill is fixed 
to 5, the collision events between the stick and the first 
windmill increase in frequency when the second windmill has 
6 vanes, and decreases if it has fewer vanes (=5). With this 
trick, subjects could count the vanes on the second windmill. 
In this case, the first windmill is still an object to the subjects 
so that the body boundary is not extended to the boundary 
between the first and second windmill.  

Figure 10b shows the time series of the positions of the stick 
and the vane of the first windmill which collide with the second 
windmill (the red vane in Fig. 10a). The supporting point of 

the stick and the windmills are fixed on the horizontal line in 
Fig 10a. But the center of the oscillation of the stick and the 
vane of the first windmill is not on the line (Fig.10b).  

Something is needed to extend a subject‟s body boundary. 
Our hypothesis is that subjects need more visual information 
about the windmills to learn the sensory-motor correlations 
between their action and the movement of the windmills. But if 
subjects can see the windmills they also recognize the number 
of vanes of the second windmill. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10: (a) The subjects reported that they paid attention to 
the collisions between the stick and the first windmill. The 
supporting point of the stick and the windmills are fixed on the 
horizontal line. (b) The direction of the first windmill from the 
supporting point of the stick is 0 radian (the horizontal line in 
Fig. 10a), but the center of the oscillation of the stick is more 
than 0 radian and that of the vane of the first windmill which 
collide with the second windmill (the red vane) is less than 0 
radian. (c) In the new setup some subjects paid attention to the 
collisions between the first windmill and the second one and 
did not care about the collisions between the stick and the first 
windmill. The supporting point of the stick and the windmills 
are fixed on the horizontal line. (d) The direction of the first 
windmill from the supporting point of the stick is 0 radian (the 
horizontal line in Fig. 10c), and the center of the oscillation of 
the stick and the vane of the first windmill which collide with 
the second windmill (the red vane) is 0 radian.  
 
 
 New Setup 
 
In order to extend the body boundary of subjects, we 
introduced visual inputs (Fig. 11). A video camera captures the 
windmills and displays them on the monitor, while subjects do 
the task, watching the monitor.  
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Figure 11: New setup. Here, there is a stick, the first windmill, 
and the second windmill, which is white. There is also a 
monitor, camera and one black mark attached to a vane on the 
second windmill. The camera captures the windmills and 
displays them on the monitor.  
 

Now subjects can observe the global configuration of two 
windmills and how they move around (the left image of Figure 
12). By using a black-white screen and painting the two 
windmills in different colors, a subject can only see the 
movement of one windmill at a time.  

In the right image of Figure 11, subjects can only see the 
second windmill. Since we only put a mark on one vane, 
subjects can‟t recognize the number of vanes, but they can see 
the movement of the second windmill. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12: Two kinds of images on the monitor. The left image 
has full color. In this case subjects can see all and recognize 
the number of vanes. On the other hand, the right image is in 
black and white. In this case, subjects can only see the black 
mark attached to a vane of the second windmill. 
 
Observations of the new setup 
 

In the 14th trial, a subject reported that he discovered how 
to use the first windmill to distinguish the number of vanes on 
the second windmill. He tried to use one vane on the first 
windmill (the red vane in Fig. 10c) to oscillate the second 
windmill. He reported that he felt as if the first windmill was 
the stick to distinguish the second one. He also reported that he 
paid attention to the collisions between the first windmill and 

the second one and did not care about the collisions between 
the stick and the first windmill (Fig. 10c).  

Figure 10d shows the time series of the stick and the vane 
on the first windmill which collides with the second windmill 
(the red vane) in the 14th trial. The center of the oscillation of 
the stick and the vane of the first windmill is on the horizontal 
line in Fig.10c.  

A remarkable difference between Fig.10b and Fig.10d is the 
following. When the visual information is available (Fig.10d), 
subjects try to use a vane of the first windmill (the red vane) as 
a "controlling handle" to move the second windmill. As a 
result, that vane and the stick before the first windmill align in 
a straight line. 
 

Summary and Discussion 

In this paper, we firstly demonstrated that even simple 
computational agents can have two different sensitivities to the 
windmills. It should be worth noting that the agents can ignore 
the number of vanes of the unattended windmill. An agent 
becomes either sensitive to the first windmill or the second 
one, neglecting the other. We claim that this shift of attention 
from the first windmill to the second is a dynamic shift of the 
body boundary. 
  In the real windmill model, we found that there are two 
ways to distinguish the second windmill. In the previous setup, 
subjects do the task with a blindfold. In this case subjects 
could not learn the sensory-motor correlations between their 
action and the movement of the windmills‟ vanes, and felt that 
the first windmill was an object to be distinguished. On the 
other hand, in the new setup subjects could see the movement 
of a vane on the second windmill, so some subjects could learn 
the sensory-motor correlations between their action and visual 
information of the second windmill. In this case, some found 
how to use the first windmill as a tool to distinguish the second 
windmill, and they could pay attention not to the collisions 
between the stick and the first windmill but to the collisions 
between the first windmill and the second one.  

But this shift of attention is still weak and not enough to 
extend their body boundaries for most of the subjects. We are 
now planning to change the material of the ball attached to the 
tip of the vanes to a heavier material, so that subjects can feel 
the collisions between the first windmill and the second one 
clearly. It will help subjects with a blindfold to determine the 
movement of the second windmill and to learn the sensory-
motor correlations between their action and perception. Some 
reported that due to the noisy setting up of the experiment, it 
was difficult to predict the movement which prevented the 
body boundary from extension. Also we are afraid that since 
the present setting up uses a single stick + a first windmill + 
second windmill, the discrimination task became inevitably 
complex. We are improving the point to simplify the structure.  
   The value of this paper lies in the ambiguity of the first 
windmill, which is a tool (a part of a subject) and an object (an 
environment) at the same time. Our insights are beneficial for 
the biology of cognition, enactive cognitive science, the 
“extended mind” (Clark et al. 1998), and “radical embodied 
cognitive science” (Chemero 2009; Dotov et al. 2010). In our 
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study, the dichotomy of object and subject is rejected and the 
active role of an observer in perception is considered.  

We argue that the ambiguity of the first windmill 
corresponds to the ambiguity of our body, something that is 
known in German as Körper (a physical living body) and Leib 
(a subjectively lived body) (Thompson 2007: 231). The two 
aspects of our body are intimately related to changes of our 
body images. For example, a blind person‟s stick changes 
from a mere object (Körper ) to a real hand (Leib) when he/she 
adapts to it. In our model, on the one hand, the first windmill is 
observed as a material thing in the world (by Agent 1), which 
means the first windmill is Körper at this time. On the other 
hand, the first windmill is used to perceive the second windmill 
(by Agent 2), which means the first windmill functions as Leib 
at this time.  

From this point of view, we need to recast the “hard 
problem”. Thompson recasts the explanatory gap between 
mental and physical as the body-body problem: the problem of 
relating one‟s subjectively lived body to the organism or living 
body that one is (Thompson 2007: 244).  

Moreover, we are extending the current model to study 
communications between two agents by introducing one more 
agent instead of the second windmill. The two agents interact 
with each other through the first windmill and discriminate 
each other‟s neural state. The agents convey and receive 
messages. At this time the windmill functions as their interface 
or some kind of “language”. Also, these agents eventually 
conform their neural states with each other. We think this is a 
kind of primitive communication (empathy or imitation).  

  In this way we could understand the course of 
humankind‟s mental development from active perception to 
extension of body images, and to inter-subjective 
communication by extending our windmill model further. We 
will also employ our model for robot learning by using a servo 
motor.  
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This paper reports our recent efforts to quantitatively charac-
terize the evolutionary dynamics of self-organizing patterns 
observed in Swarm Chemistry. 
 Swarm Chemistry (Sayama 2009) is an artificial chemistry 
framework that can demonstrate self-organization of dynamic 
patterns of kinetically interacting heterogeneous particles. A 
swarm population in Swarm Chemistry consists of a number 
of simple self-propelled particles moving in a two-
dimensional continuous space. Each particle can perceive 
average positions and velocities of other particles within its 
local perception range, and change its velocity in discrete time 
steps according to kinetic rules similar to those of Reynolds’ 
Boids (Reynolds 1987). Each particle is assigned with its own 
kinetic parameter settings (similar to genotype) that specify 
preferred speed, local perception range, and strength of each 
kinetic rule. Particles that share the same set of kinetic para-
meter settings are considered of the same type. Several model 
extensions introduced in our recent work, including local in-
formation transmission among particles and their stochastic 
differentiation/re-differentiation, have made the model capa-
ble of showing morphogenesis and self-repair (Sayama 2010) 
and autonomous ecological/evolutionary behaviors of self-
organized “super-organisms” made of a number of swarming 
particles (Sayama 2011; see Fig. 1). 
 

 
Figure 1. Typical evolutionary processes emerging in Evolu-
tionary Swarm Chemistry (taken from (Sayama 2011)). Time 
flows from left to right. Four cases with different initial condi-
tions are shown. 
 
 Our latest results (Sayama 2011) produced a hypothesis that 
the introduction of a high volume of mutations and dynamic 
exogenous perturbations helps a swarm population to break an 
established status quo and demonstrate more continuous evo-

lutionary exploration. However, the experimental results were 
evaluated so far by visual inspection only, with no objective 
measurements involved, and hence the hypothesis was not 
tested in a quantitative way. 
 To address the lack of quantitative measurements, we de-
veloped and tested two simple measurements to quantify the 
degrees of evolutionary exploration and macroscopic structu-
redness of swarm populations. These measurements were de-
signed so that they can be easily calculated a posteriori from a 
sequence of snapshots (bitmap images) taken in past simula-
tion runs, without requiring genotypic or genealogical infor-
mation that was typically assumed available in other proposed 
metrics (Bedau and Packard 1992; Bedau and Brown 1999; 
Nehaniv 2000). 
 Evolutionary exploration was quantified by counting the 
number of new RGB colors that appeared in a bitmap image 
of the simulation snapshot at a specific time point for the first 
time during each simulation run. Since different particle types 
are visualized with different colors in Swarm Chemistry, this 
measurement roughly represents how many new particle types 
emerged during the last time segment.  
 Macroscopic structuredness was quantified by measuring a 
Kullback-Leibler divergence (Kullback & Leibler 1951) of a 
pairwise particle distance distribution from that of a theoreti-
cal case where particles are randomly and homogeneously 
spread over the entire space. Specifically, each snapshot bit-
map image was first analyzed and converted into a list of 
coordinates (each representing the position of a particle, or a 
colored pixel), then a pair of coordinates were randomly sam-
pled from the list 100,000 times to generate an approximate 
pairwise particle distance distribution in the bitmap image. 
The Kullback-Leibler divergence of the approximate distance 
distribution from the homogeneous case is larger when the 
swarm is distributed in a less homogeneous manner, forming 
macroscopic structures. 
 We first applied these measurements to two experimental 
conditions studied before (Sayama 2011): one with low muta-
tion rates and static environments, called “original-low”, and 
the other with high mutation rates and dynamical exogenous 
perturbations, called “original-high”. Results are summarized 
in Figs. 2, 3 and 4 (marked by circles and squares, respective-
ly). Figure 2 clearly shows the high evolutionary exploration 
occurring in the “original-high” condition, supporting our 
hypothesis quantitatively (but the exploratory dynamics gen-
erally decline over time). However, Figure 3 shows a down-
side of the “original-high” condition that it tends to destroy 
macroscopic structures by allowing swarms to evolve toward 
simpler, homogeneous forms.  
 A possible reason for this degradation of structuredness 
over time was already indicated in (Sayama 2011). Namely, 
the previous implementation of collision detection in Swarm 
Chemistry mistakenly depended on perception ranges of par-
ticles, so if a perception range of a particle evolves close to 
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zero, its kinetic properties will no longer change through inte-
raction with other particles, and therefore the near-zero per-
ception range worked as an artificial genotypic attractor. 
 We fixed this problem by implementing a minor modifica-
tion to the collision detection rule so that a non-zero collision 
distance is always maintained. We call these conditions “re-
vised-*” (where * is either “low” or “high”). The effect of this 
modification on evolutionary dynamics was measured by run-
ning a new set of simulations and then applying the proposed 
measurements to them. Results are marked by diamonds and 
triangles in Figs. 2, 3 and 4, which quantitatively showed that 
the “revised-high” condition successfully maintained macros-
copic structures at the minor cost of evolutionary exploration.
 This work was supported in part by the Binghamton Uni-
versity EvoS Small Grant (FY 2011). 
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Figure 2. Temporal changes of the evolutionary exploration 
measurement (i.e., number of new colors per 500 time steps) 
for four different experimental conditions, calculated from 
snapshots of simulation runs taken at 500 time step intervals. 
Each curve shows the average result over 12 simulation runs 
(3 independent runs × 4 different initial conditions given in 
(Sayama 2011)). Sharp spikes seen in “high” conditions were 
due to dynamic exogenous perturbations. 

 
Figure 3. Temporal changes of the macroscopic structuredness 
measurement (i.e., Kullback-Leibler divergence of the pair-
wise particle distance distribution from that of a purely ran-
dom case) for four different experimental conditions, calcu-
lated from snapshots of simulation runs taken at 500 time step 
intervals. Each curve shows the average result over 12 simula-
tion runs (3 independent runs × 4 different initial conditions). 
The “original-high” condition loses macroscopic structures 
while other conditions successfully maintain them. 
 
 

 
Figure 4. Evolutionary exploration and macroscopic structu-
redness averaged over t = 10,000 ~ 30,000 for each indepen-
dent simulation run. Each marker represents a data point taken 
from a single simulation run. It is clearly observed that the 
“revised-high” condition most successfully achieved high 
evolutionary exploration without losing macroscopic structu-
redness.
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Abstract

Internal representations employed in cognitive tasks have to
be embodied. The flexible use of such grounded models al-
lows for higher-level function like planning ahead, coopera-
tion and communication. But at the same time this flexibility
presupposes that the utilized internal models are interrelating
multiple modalities. In this article we present how an inter-
nal body model serving motor control tasks can be recruited
for learning to recognize movements performed by another
agent. We show that—as the movements are governed by an
equal underlying internal model—it is sufficient to observe
the other agent performing a series of movements and that
there is no supervised learning necessary, i.e. the learning
agent does not require access to the performing agents pos-
tural information (joint configurations). Instead, through the
shared underlying dynamics the mapping can be bootstrapped
by the observing agent from the sequence of visual input fea-
tures.

Introduction
Internal representation are essential in higher-level cognitive
tasks. Following the view of embodied cognition internal
models have to be grounded and are therefore nowadays as-
sumed to be directly linked to the action-perception-cycle.
Grounded models appear to be a byproduct which originally
served a quite specific action and co-evolved in this con-
text (Steels, 2003). But on a later-stage cognition has taken
over and the same models could be applied in a more flexi-
ble way outside the original context of the grounding action.
An example are targeted movements which can be found
even in quite simple lifeforms as are insect. Nonetheless,
making a targeted movement presupposes an internal model
allowing to choose the correct muscle activation to reach a
target which was perceived before in a three dimensional
space. The ability to use this model not only in the context
of one specific type of movements, but to also use the incor-
porated knowledge—i.e. how muscle activations and target
positions are related—in a broader context appears to be es-
sential for cognition. It is assumed that internal simulation
is a key mechanism to recruit internal models for high level
tasks (Hesslow, 2002). Planning ahead can be understood in
this way as using only the internal representation decoupled

from the represented body to simulate behaviors and pre-
dict their consequences. This allows to try out possibly haz-
ardous actions and to evaluate possible alternatives or slight
modifications. Findings from diverse fields as neuroscience,
psychology and behavioral sciences have contributed over
the last years and shaped this view (Jeannerod, 2006). It is
now more and more apparent that such a mechanism is at the
core of cognition, but also subserves—and is grounded in—
action and perception. Perception seems to be shaped by the
encoded knowledge and when perceiving others performing
actions it seems that internal models of the own body are
used (Schacter et al., 2007). Perception tries to fit the per-
ceived input to the representation grounded in motor control
to make sense of what is perceived in the sense of the lan-
guage of the own motor system. This becomes of course
even more important in cooperation or communication as
different roles between different subjects require different
representations of what is going on.

A central issue is the multimodal nature of the underlying
representational system. It appears that our conceptual sys-
tem is—besides organizing concepts—binding diverse sets
of features from different modalities and on different lev-
els of abstraction. But how is it possible to come up with
these connections and interrelate multiple modalities? In
this paper, we want to address how associations between
an internal body model used for motor control and visual
representations can be established in an unsupervised way,
i.e. only through observing another agent performing body
movements an observing agent can come up with a mapping
of the perceived visual features onto its own body model
representation (segment orientations). As an example we
use a three segmented arm and will first introduce a neural
network which allows for motor control and makes targeted
movement. In the third section we will explain how this
body model can be incorporated into the perception loop
and how it can subserve perception as it provides predic-
tions of the movement and helps to disambiguate or filter
noisy input. Even though only visual input is accessible
when observing another agent performing movements, we
afterwards show in principle that it is possible to come up
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Figure 1: Graphic representation of a three segmented arm,
consisting of upper arm (L1), lower arm (L2) and hand (L3).
Vector R points to the position of the end effector (tip of the
hand). D1 and D2 describe additional diagonal vectors. The
arm is restricted to work in a plane (coronal plane).

with a mapping from the visual features to ones own mo-
tor system. The shared governing dynamics are enough to
allow bootstrapping this mapping from the sequence of vi-
sual features. First results from computer simulations will
be presented indicating that this mapping can be established
quickly.

MMC Networks as a Body Model
Mean of Multiple Computation networks are a type of
recurrent neural networks (Cruse and Steinkühler, 1993;
Steinkühler and Cruse, 1998). They are based on the Mean
of Multiple Computation (MMC) principle which is allow-
ing to use known constraints to set up the network instead of
training the weights. In principle the constraints are given as
equations which form the attractor space. The network is in
this way similar to a self-organizing map as the constraints
are enforced on any input given to the network. MMC net
works have been used in the past for diverse kinematic tasks
and we will use a simple example from this domain for ex-
plaining the principle. The general approach will be illus-
trated using a three segmented arm which can be moved
around in a plane. The orientation of each segment is de-
scribed as a two dimensional vector for illustrative purposes.
A joint angle representation can be used as is applied usu-
ally in robotics and the approach has been extended to three
dimensional movements (Schilling, 2011), for describing
movement dynamics (Schilling, 2009) and a hierarchical or-
ganization in order to represent complex structures has been
introduced (Schilling and Cruse, 2007). It is important to
note that even though the task used here is quite simple, it is
so complex that an analytical solution is not feasible as there
are more degrees of freedom to be controlled as there are in
the target space (Bernstein, 1967). The arm is redundant.
Therefore, even in this simple example all the demanding
characteristics are present we are facing in the control of
complex movements, e.g. of a robotic or a human arm.

The manipulator is shown in fig. 1. Kinematic equations

yL1

yD1

yL2yR

yD2

yL3

xL1

xD1

xL2xR

xD2

xL3

Figure 2: The MMC network consists of two identical net-
works, one for the x-components (black lines) and one for
the y-components (grey lines) of the vectors. The units rep-
resent the components of the six vectors L1, L2, L3, D1, D2

and R of the planar arm. Connections with a positive weight
are indicated by a black arrowhead and negative weights are
shown as black dots. All connections are bidirectional. The
example equation xD1 = xL1 + xL2 is shown on the right:
connections between the three nodes on the right encode all
the equations derived, e.g. xL1 is given through xD1 and the
negative value of xL2 .

describing the arm can be easily set up. The main idea of
the MMC approach is to not compile the kinematic rela-
tions into one single equation, e.g. representing the end
position of the arm, but to establish a set of local relation-
ships capturing the redundancy of the arm. As illustrated
in the figure, additional diagonal vectors are introduced. A
local relationship then corresponds to a triangle formed by
three vectors, e.g. the first two segments and the first di-
agonal constitute such a triangle. As each triangle estab-
lishes a closed polygon chain, these relationships can be ex-
pressed as an equation, e.g. for the example above we will
get xD1 = xL1 +xL2 . (and an analogous equation for the y-
component) Overall a set of equations can be compiled fol-
lowing this approach when all possible triangle relationships
are constructed. Each vector variable is taking part in multi-
ple of these equations. In the next step for setting up the net-
work, for each variable all equations containing that variable
are solved with respect to that variable. In our example, the
first segment is contained in one additional equation. Solv-
ing these two equations for the first segment variable we get:

xL1 = xR − xD2

xL1 = xD1 − xL2 (1)

Following the Mean of Multiple Computation principle
these multiple computations for one variable are integrated
through calculating the Mean value. In order to restrain that
abrupt and fast changes in one equation affect the whole pro-
cess, usually as an additional term the weighted old value is
included into the mean computation which introduces a sort
of damping (Makarov et al., 2008). As a result in our exam-
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Figure 3: Application of the network to solve kinematic
tasks. Initially, the network is in a stable state reflecting
the current configuration of the arm (see Fig. 1). In a) it
is shown how the net solves the forward kinematic task, i.e.
when the segment orientations are known the end effector
position can be computed. In b) the application for solv-
ing the inverse kinematic task is shown. A target position
is given as input to the network and the network adjusts the
segment vectors accordingly. If an input is given, the corre-
sponding recurrent channels are suppressed (symbolised by
the open arrow heads).

ple this leads to

xL1(t + 1) =
1
d
(xR(t)− xD2(t)) +

1
d
(xD1(t)− xL2(t))

+
d− 2

d
xL1(t) (2)

This set of equations describe the relations between the vari-
ables and can be understood as defining the connections of
a neural network. The network is shown in fig. 2. As the
resulting network is a recurrent neural net, the activation of
the network is developing over time in which the state of
the network can be calculated in an iterative fashion. The
encoded constraints enforce this behaviour and the attractor
space reflects states fullfilling all the kinematic equations.
Obviously, when we give a valid configuration of the arm
to the network all constraints are met and the network is
in a stable state (Steinkühler and Cruse, 1998). The inter-
esting cases are the cases in which we only provide partial
information. Acting like a self-organising map the MMC
net completes the given input pattern into a corresponding
activation of the whole network which matches the require-
ments. In this way the net is able to solve any kinematic
problem.

The forward kinematic problem can be solved straight-
forward. As an input the segment vectors are fed into the
network (fig. 3 a). The corresponding diagonal and end-
effector vectors are approached in a few time steps (depend-
ing on the damping factor, i.e. the weight of the recurrent
connection). Importantly, the input to the network is given
to the network the whole time and is directly setting the in-
put variables.

For the inverse kinematic task, we only give as an input
the desired end-effector position to the network (shown in
fig. 3 b) after initialising the network with a valid starting

L1 L2

Movement of the arm towards (1.0, 2.0)

L3

x

b) Distance tip of hand from target over time

Figure 4: Solution of the inverse kinematic problem through
the linear MMC model. A planar arm with three segments
(i.e., one extra DoF) should point to a given position, marked
by a cross, starting from an initial configuration. The state
of the arm for every second iteration step is shown.

configuration. Through enforcing the new end effector value
onto the network, a disturbance is introduced and the net-
work is not in an attractor state anymore. But over time this
activity is spread to all variables. The encoded kinematic
constraints enforce that the network settles back on its solu-
tion space. The network relaxes to a stable state in which the
target end effector value still holds true and the other vari-
ables have adopted corresponding values. As an example,
we show in figure 4 an example run of the network. Initially,
the arm is fully stretched to the right (bright line, end effec-
tor position x = 0.3, y = 0, with all segments having an
equal length of 0.1 units). For every second iteration step
the current configuration of the arm is shown (dashed grey
line), until the 25th iteration in which the arm has reached
the target position (x = 0, y = 0.2, drawn as a solid dark
line).

As can be seen in this example—and as has been shown
in the past (Steinkühler and Cruse, 1998)—the MMC net-
work is able to solve the inverse kinematic task in only a
few iteration steps. We presented the linear MMC network
above which has one serious drawback as it allows the vari-
ables to change freely. There is no cross connection be-
tween the x and the y component of the networks. As the
x and y components of the variables can be modified in-
dependently the length of the vectors can change. This is
usually unwanted and problematic for the segment variables
which should stay of constant length. This problem can be
easily solved through a normalisation step. Even though this
introduces non-linearities into our network this does not dis-
rupt the overall performance (Steinkühler and Cruse, 1998).
In this article we will apply such a normalisation step on
the MMC segment variables (not shown in the diagrams) af-
ter each iteration step which could be totally circumvented
when using other representations like a joint angle represen-
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Figure 5: Application of the internal model in action (shown on the left) and perception (right). The internal model is used in
one agent for motor control. Given a target vector as input it comes up with a movement to the target. On the other side, an
equal internal model is utilized in another agent during perception. The embedded dynamics of movements allow to establish
a connection from visual features to body postures and to recognize postures of another actor when seeing them.

tation(Schilling, 2011).
A property one immediately recognises when looking at

the behaviour of the network is that the arm is moved in the
beginning very fast and later-on dramatically slows down.
The distance to the target decreases exponentially. Biolog-
ical movements, e.g. human arm movements, are charac-
terised by very different properties (Morasso, 1981). Again,
we introduced MMC networks in the past which incorporate
dynamic influences and which nicely fit to experimental data
for human reaching movements (Schilling, 2009).

Application of the Body Model in Perception
Internal models are used in motor control, e.g. in reaching
tasks inverse models transform target points into joint posi-
tions or muscle activation. The introduced MMC network
implements such an internal model of the own body and al-
lows for making targeted movements. But the same inter-
nal models have been found active in other tasks, e.g. per-
ception, planning ahead or communication (Grush, 2004).
It appears that internal models are recruited by these other
function. While in this way the utilized internal model is
grounded in action, it remains unclear how it can be con-
nected to seemingly quite different tasks. As we want to
show in this paper, the underlying organisation of the body
model is providing enough structure (in time) to allow for es-
tablishing such connections. We are focussing on the use of
an internal body model in perception of movements. A key
question is how humans and even simple animals are able
to recognize and understand movements of conspecifics. It
has been pointed out that mapping an observed behaviour
to ones own body model is essential (Decety and Grezes,
1999). But how can this mapping be established? We want
to analyse this relation between perception and motor con-
trol through applying our simple body model in perception.
As during this learning one has only access to the resulting

perceived visual input, the learning has to take place in an
unsupervised manner. Therefore, the acquisition of such a
mapping from seeing someone moving around to ones own
movement systems seems quite difficult if not intractable.
The main idea in our approach is that the introduction of
the body model into the processing chain of perception dra-
matically simplifies the acquisition of a mapping. Both pro-
cesses share the underlying body model in our setting and
in this way the dynamic development of both processes is
constrained in the same way. We want to show that this is
enough to come up with a mapping and how this simplifies
finding the mapping.

In figure 5 it is shown how the two models are connected
and how they are incorporated into their respective system.
On the left side, an acting agent is shown. Here the internal
MMC network model is used in the same way as explained
in the preceding section. A target value is set as an input to
the model. The network is approaching a solution and at the
same time moves the connected arm. The movement of the
arm is perceived by the observing agent on the right sight.
In a preprocessing step characteristic visual features are ex-
tracted from the visual image. The aim is to correlate the
visual features with assumed body configuration. This has
to be done in an unsupervised fashion as only the evolving
visual features are available and the observer has no infor-
mation on the segment vectors (only in the initial situation
in which a resting position is assumed). But the observing
agent can exploit its knowledge about the dynamics of the
unknown segment vectors as this dynamics are shared be-
tween both agents and are encoded in the body model. The
general idea is that the observing agent tries to hook the body
model up to the visual features and close the loop in trying
to predict the visual features. The underlying assumption is
that the predicted change of the visual features can only be
correctly produced by the dynamics of the observer’s body
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Figure 6: Steps when applying the internal body model in
perception and how this allows for learning associations to
visual features. At first (in a) visual features are associated
towards the current body model activation. After one pro-
cessing step of the body model connections back to percep-
tion are learnt which associate the new predicted values of
the body model with the updated visual features. Initially
the connections are random and only by accident correla-
tions will occur. These will be strengthened over time and
mappings between the two spaces evolve.

model when it is in a similar state as the actor’s body model.
We want to test this assumption for our simple model and in
addition how easily this then allows to bootstrap the connec-
tion to visual features from the body model.

The internal model in the observer is used as a predictor.
It can be regarded as a hidden mediating layer of a neural
network linked to the visual features. The input layer are
the visual features at a certain time t and the task would be
to learn projections from these visual features to the body
model (fig. 6 a). After one time-step in the mediating body
model layer the activations of the body model should be
routed back to the visual features which have new values
now for time t + 1. This mapping should also be learnt (fig.
6 b) and as we only have access to the visual features—given
as input and output—both mappings have to be learnt at the
same time. The basic idea is that this is possible and that
the correlation of the sequence of observed features is corre-
lated with the body model dynamics. Hebbian-type learning
should be sufficient to identify the associations and establish
the mapping (Hebb, 1949). Figure 7 shows a different per-
spective on the whole network. The network is spread out

xL1 xD1 xL2 xRxD2xL3

xt+1 yt+1

xt yt

win}
wout}

Hidden Layer = Body Model
recurrent weights are fixed

Input Layer
Visual features at time t

Output Layer
Prediction of visual features at time t+1

backpropagation

backpropagation

Figure 7: Schematic sketch of the network architecture used
for learning the input and output mapping between visual
features and body model. The recurrent connections of the
hidden layer are fixed and setup as a MMC network. As the
network shall be used in the same mode as when used for
motor control the target vector R (right) corresponds to the
predicted target position estimated from the known dynam-
ics of the network.

into a three layer neural network. The input layer is given
through the visual features at a certain point in time t. The
body model constitutes the middle layer. As the dynamics
of the two models are essential for establishing a coupling,
this network must be driven in the same way as the original
network. Therefore, the R vector (shaded in the figure) does
not represent the current end effector position, but the target
position of a movement. This is unknown to the network
and the network can only observe the current state, but in-
corporating knowledge about the known dynamics the end
state can be easily estimated (see (Schilling, 2009)). The
weights are predetermined for the hidden layer as it repre-
sents the MMC network, but the activation of this layer is
hidden during learning. The output layer represents the pre-
dicted output for one timestep later (t + 1). Here we have
simplified the view on the overall architecture as we are in-
troducing this output level for representing the visual fea-
tures at time t+1. The back projection on the visual features
in the overall framework is more complex as the function of
these connections depend on the context. In perception the
body model is not supposed to re-activate the visual features
in general. But in specific cases it would be an advantage
to use the prediction, e.g. when part of the movement can
not be observed (the arm might move behind an object and
is occluded for a short time). Therefore, it must be possi-
ble to use this connections in different ways depending on
the context and inhibit their reactivation during perception.
During learning these connections are essential for correlat-
ing the predicted state of the body model to the new visual
features. Introducing these new visual features as separate
units in an output layer allows us to come up with the simple
general structure shown in fig. 7 and to use standard back-
propagation-through-time learning (Rumelhart et al., 1986)
to learn the two weight matrices at the same time. The fea-
ture values from one time step ahead can in this way be used
as the target output values.

In a preprocessing stage visual features are extracted from
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the perceived image of the arm. We use visual image mo-
ments. Image moments (Mukundan and Ramakrishnan,
1998) reflect characteristics of a foreground object in a given
image. They capture the statistical regularities of the object
pixel and describe in this way shape properties of the fore-
ground object, e.g. size, orientation. The main advantages
of image moments are that they provide a descriptive repre-
sentation and at the same time are inexpensive to compute.
They can be easily calculated from a binary pixel-based im-
age with the intensity function I(x, y) where all object pix-
els are represented as a one and all other pixel have a value
of zero:

Mpq =
∑

x

∑
y

xpyqI(x, y) (3)

Usually a set of image moments of different orders is used
with the order of an image moment given as the sum of the
two exponents p and q used in the equation above. The ze-
roth order moment is a count of the object pixel and from the
first order image moments one can derive the visual center
of gravity (COG, the centroid x, y of the object):

x =
M10

M00
, y =

M01

M00
(4)

Higher order moments allow to compute orientation and
shape properties of the object shown in the image.

We are only using the centroid information in our simula-
tions. Using higher order image moments would of course
allow for a better reconstruction of the visual image. But
the focus of our work is on how the body model contributes
to recognizing and tracking the seen arm. Relying only on
insufficient information emphasizes the contribution of the
body model.

The centroid information can be directly calculated from
the segment vectors of the moving arm. The overall center
of gravity is constituted as the mean of the individual seg-
ment visual COG(we assume uniform length and width of
segments).The equations describing the segment COGs can
be integrated through calculating the mean value:

xges =
1
3
(xL1 + xL2 + xL3) (5)

Results
We want to mainly focus on the qualitative result that the
network is able to establish input and output connections in
a way that both networks activities’ are coupled. We used
a simple back-propagation learning rule on a set of initially
random weights. Back-propagation is known for depending
on the initial configuration and converging onto local min-
ima, therefore we started a series of simulations for different
initial weights covering the whole space of weights. While
in many simulations the network converged, it was not suf-
ficiently able to predict the next visual features at all. The

y

x
L1

L2

L3

Figure 8: Shown is the initial configuration of the three seg-
mented arm as solid black lines. The 12 targets are shown
as white crosses.

network got stuck in a local minima. In these cases a con-
stant value was returned or simply the input value. In the
following we want to concentrate on the other simulations
which were able to successfully predict the next visual fea-
tures and want to look what the internal model was doing
during predicting sequences. In general, the behaviour of all
these networks was similar and in the following we use one
example simulation series.

The network was trained from an initial arm configuration
(shown in fig. 8 with all 12 targets). Both, the moving arm
and the perceiving arm were initialised in this configuration,
this means we assume for the simulations that there is a cer-
tain resting posture from which all movements start. There
are 12 targets around this resting posture and we selected 9
for training and 3 later for testing on generalisation. The in-
put and the output network (fig. 7) were then set to initial
values. The perception network was trained on the visual
data which resulted from the movement controlled by the
movement network (see equation 5): a target was given to
the movement network and the visual data before doing one
iteration step in the movement control network was used as
an input to the perception network. The visual features of the
arm after the iteration step of the control network had been
carried out was then used as the target value for the percep-
tion network which should learn to predict this value from
the visual input. A movement lasted 15 iteration steps and
the network was trained on a random order of the 9 train-
ing targets for 250 epochs (as mentioned above, the weights
are not completely random, as we only cover a subset of the
whole weight space here, see also discussion). The arm did
not reach the target during the 15 iteration steps, but as the
movement of the classical MMC is slowing down at the end,
we only used the part of the movement containing rich dy-
namics, i.e. the arm is still considerably moving.

In fig. 9 a movement to an example target is shown for
both arms. The body model used in the perception loop
is following the leading moving arm. Both networks are
in good agreement and synchronized. One advantage of
the presented approach is that it extends also to movements
not shown before as underlying knowledge about kinematics
and body constraints is incorporated in the perception pro-
cess. Figure 10 shows the behavior of the perception model
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Figure 9: An example of the perceived arm movement.
Course of time is going from left to right, top to down.
Shown are snapshots of iteration 0, 5, 10 and 15. In the
first figure at the left, top the initial configuration is shown
in light gray. The moving arm is shown as a dashed line and
the current state of the MMC model used for perception is
represented as the dark grey line.

when the moving arm is approaching a novel target.
There was no observable difference between targets used

for training and novel targets. During each test run the mov-
ing arm reached out during a period of 15 iteration steps
towards one target from the initial configuration. We are not
interested in finally reaching the target as during the last part
of the movement the arm is only moving slowly for the clas-
sic MMC approach and the interesting part for our compar-
ison is the comparison for the more dynamic starting phase.
In general, the two networks converged for the final part of
the movement to their respective endpoints. The observing
network adopted in all cases a qualitatively similar configu-
ration (as shown in the example, i.e. the segments of both
networks are orientated in a similar way). We compared the
differences of the single segment orientations to evaluate dif-
ferences in configurations of the networks states. The differ-
ence angle for the segment orientations of the perceived arm
and the moving arm were computed for each segment. The
mean difference overall segments was 0.125 rad (standard
deviation ±0.396 rad). Mostly differences of the last seg-
ments were responsible for the high variation. This can be
explained by the fact that the orientations of the first seg-
ment is weighted very high in the computation of the visual
features.

Discussion
We have shown first results indicating that sharing a com-
mon principle organizing movement dynamics is sufficient
to bootstrap associations from the internal control network
to visual features. After successful learning, the body model
is coordinated with the motor control network solely through
the simple visual features which in themselves would not be
sufficient to estimate the manipulator configuration. Until
now the simulation results are a first step providing a qual-
itative finding and the high variation is also a result of the
simple visual features used to describe the postures.

One problem with the presented approach is that the sim-
ple back-propagation learning method on its own is not able
to converge as the method depends on the initial configu-
ration. Therefore, we started a series of simulations with
different initial weight configurations (only for the input
weights) covering large parts of the weight matrix space.
To test that—in the successful cases—the success was not
already predetermined through the selection of a suitable
weight matrix, we tested the impact of the input network.
Even in a supervised case it was not possible to learn the
projections of the visual features onto the manipulator vari-
ables. The visual features in themselves do not carry enough
information to predict the manipulator state. Therefore, the
success of the network seems not given through the input
transformation, but depends on the interplay between all the
parts. In the future, we want to extend our approach and ap-
ply a more powerful learning algorithm (like a least-square
method) which is able to overcome local minima and does
not depend on the initial weight configuration. In addition,
we want to perform a correlational analysis of the resulting
weight matrices.

Other approaches to learn internal models of the body
usually apply a supervised learning method. A nice example
is the learning of a visual body model by Spranger (Steels
and Spranger, 2008) in which a robot performs actions in
front of a mirror and starts learning to associate the propri-
oceptive features to the observed visual features. Hoffmann
et al. (2010) gives a thorough review about other approaches
along the same line and on the integration of other modali-
ties into the body schema in robots.

In the future, we will apply our approach in a real world
robot scenario in which a robot is at first learning to rec-
ognize what another robot is doing when both apply their
internal MMC-type body model. The task shall be imple-
mented as a communicative scenario and in a second step
a group of robots shall come up with a shared conceptual-
ization of body postures through performing short interac-
tions (language games (Steels and Belpaeme, 2005)). Be-
sides additional preprocessing steps this would require to
incorporate more descriptive visual features as are higher
level centralized visual moments. The implementation on
the robots is done in cooperation with the CSL group (Luc
Steels, Paris). In the final system, each agent would have de-
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Figure 10: Movement to a novel target. Course of time is
going from left to right in two rows. Shown are snapshots
of iteration 0, 5, 10 and 15. In the first figure at the left, top
the initial configuration is shown in light gray. The moving
arm is shown as a dashed line and the current state of the
MMC model used for perception is represented as the dark
grey line.

veloped a conceptual space from a simple grounded internal
representation of the own body which is now multimodal in
its nature. Therefore, this internal model and the mapping
onto visual features allow to be utilized in perceiving others
making movements and coming up with conventional—and
in a population agreed on—symbols. This would open the
door for a simple form of communication and cooperation
inside the rules given through the language game.
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Abstract

We present a developmental model to simulate swimming
digital organisms following an animat’s cell doctrine. Mor-
phology and control are encoded in one genome concurrently
using artificial cells as the basic building blocks for both.
Each individual starts with one cell in the middle of a com-
putational environment, and its development is controlled by
a gene regulatory network. The cells can differentiate into
central pattern generators that control the movements of the
resulting individual. After the developmental process, the in-
dividual is placed into a physics simulation environment and
the distance it swims in a defined time is evaluated. Contrary
to most existing models, one genome for both, morphology
and control is used and the CPGs representing the dynamic
control contribute to the morphology of the organism.

Introduction

Following the work of Matthias Jakob Schleiden on plant
tissues, Theodor Schwann postulated in 1839 that the tissue
of all living organisms is made up of individual cells. At first
this excluded the nervous system, which was later rectified
by the seminal neuro-anatomical work of Ramón y Cajal and
others. This principal concept is known as the cell or the
neuron doctrine of biology.

In biology, the cell doctrine (including the nervous sys-
tem) is an integral part of the evolution, development and op-
eration of all living organisms. The cell as the carrier of the
hereditary information is not just the basic functional unit of
organisms, it is also the basic unit for the evolutionary pro-
cess. Turning this argument around, we can hypothesize that
the direction of the evolutionary process and its diverse re-
sults are a consequence of the cell doctrine. More strongly,
evolution would have not been successful1 without the cell
as its basic unit. We also note that most of the evolutionary
history has been devoted to single cell organisms rather than
to multicellular ones.

1What does it mean, evolution being successful? To circum-
vent a philosophical discussion, we will resort to an artificial life
perspective, equaling success with progress in the criterion chosen
for the process.

In artificial life, biological paradigms are frequently
sought to facility the development of digital organisms or
animats. The purpose of this paper is to outline a model that
allows the simulation of digital organisms based on basic
cell-like units, thus paving the way to an animat’s cell doc-
trine including the nervous system or in more abstract terms
the control system of the animat.

Since the seminal work of Karl Sims (Sims, 1994) the co-
evolution of the morphology (=body) and the control sys-
tems (=brain) of digital organisms has received continuous
attention. In Sim’s work a developmental model using a di-
rected graph has been used for both neural controller and
body plan. The role of the morphology to reach a cer-
tain functionality has also been discussed in robotics. The
passive walker (McGeer, 1990) demonstrated convincingly
how the specific mechanical configuration alone can lead to
a walking behavior that closely resembles the one we ob-
serve in humans without complex control algorithms. How-
ever, not least due to the mechanical difficulties the body
is mainly unchanged in most evolutionary or developmental
robotics approaches. Evolving the developmental steps of
a controller in a static morphology has no justification and
its limitations have been recognized, see e.g. (Pfeifer et al.,
2007). Although some advances have been made using me-
chanical cell blocks to enable a changing morphology, the
mechanical restrictions are still fundamental (Murata and
Kurokawa, 2007; Meng et al., 2011).

In the digital world, we face much fewer restrictions and
it is possible to simulate completely cell based animats, see
e.g. (Schramm et al., 2009). Several computer models for
brain-body co-evolution have been proposed in the litera-
ture, see e.g. (Hornby and Pollack, 2001; Miconi and Chan-
non, 2006; Spector et al., 2007). However, models have ei-
ther been detailed with regard to neural development (Ki-
tano, 1995) or with the development of the morphology (An-
dersen et al., 2009; Eggenberger Hotz et al., 2003). Using a
more abstract representation for the body morphology, Jones
et al. (2011, 2008) analyzed the effects of the body plan on
neural organization using energy constraints. Bongard and
Paul (2000) studied the correlation between morphological
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symmetry and locomotive efficiency using a direct encod-
ing. The advantage of being able to evolve a bilaterally sym-
metric body plan or neural controller has been reported in-
dependently in (Mazzapioda et al., 2009; Oros et al., 2009).
Bongard (2003) uses a gene regulatory model to develop lo-
comoting animats or animats that should grow to touch an
object.

A number of computational models have been developed
to model biological gene regulatory networks (see e.g. the
review of de Jong (2002)). Artificial embryogeny simu-
lates biological cellular growth and pattern formation start-
ing with one single cell (Andersen et al., 2009; Eggenberger
Hotz et al., 2003; Harding and Banzhaf, 2008; Joachimczak
and Wròbel, 2009; Doursat, 2009; Kowaliw et al., 2004).
Steiner et al. (2008) evolved the structure and the parame-
ters of a gene regulatory network for growing 3D cellular
structures that are mechanically stable and lightweight. The
model was refined in (Steiner et al., 2009) using cell polar-
ization to represent more complex inner structures. Stan-
ley and Miikkulainen (2003) develop a taxonomy for artifi-
cial embryogeny based on cell fate, targeting, heterochrony,
canalization, and complexification.

In this contribution, we implement an animat’s cell doc-
trine by representing the whole body or morphology of the
digital organism by cells some of which perform the control
of the animat’s behavior. Therefore, the nervous system is
an integral part of the morphology and the neurons are ba-
sic cells that differentiate during embryogeny assuming their
specific neural functionality. Therefore, the system evolves
the shape and the control of animats concurrently. Further-
more, the representations of shape and control are not sepa-
rated, instead morphology and control are phenotypic char-
acteristics of the artificial organisms that are the result of
a common gene regulatory network that organizes the cel-
lular growth of the animat. Indeed the separation between
morphology and control becomes arbitrary even on the phe-
notypic level, because the cells that control the behavior also
contribute to the morphology of the animat. This straightfor-
wardly results from using artificial cells as the basic struc-
tural as well as functional components of our animat.

For the simulation of the cellular neural control we use
central pattern generators (CPGs) which represent a higher
level of abstraction compared to the spiking neural system
employed in (Jin et al., 2008). CPGs facilitate the evolution
of an oscillating movement, which makes it easier for the
evolutionary process to develop the swimming behavior.

In the next section, we introduce CPGs in general and the
specific CPG model used in this paper in greater detail. The
following section is devoted to a description of our model of
gene regulatory networks (GRNs) and how it is used to rep-
resent cellular growth. Thereafter, the physics simulation
and the experiments are described followed by a discussion
of the results. In the last section, the main findings of the pa-
per are summarized and an outlook into future experiments

u

v

Figure 1: The model of a central pattern generator contains
two neurons that interact with each other.

Table 1: Properties of the CPG Model

k ω ρ λ σ
0.01 0.3 1 1 1

is presented.

Central Pattern Generators (CPGs)

Many animals use coupled rhythmic muscle activations for
movements. This movement is not controlled by the brain,
but by coupled oscillators, the central pattern generators
(CPG). It can be shown, that the pattern occurs also after
the spinal cord has been separated from the brain (Murray,
2008).

Several models of CPGs exist, e.g. (Murray, 2008; Ijspeert
and Kodjabachian, 1999; Verdaasdonk et al., 2006; Chung
and Slotine, 2010; Beer, 2009), in general the CPG consists
of two neurons which interact with each other, see Figure 1.
The difficulty with most models is the stability of the output
of many CPGs depending on their connections. The output
of the CPGs should ideally be sinusoidal with phase shifts
between the output signals of the different CPGs depending
on their synapse connections and weights. Each CPG oscil-
lates, they synchronize with other CPGs using their connec-
tions, so no global clock is used.

Chung and Slotine (2010) use coupled Hopf-Kuramoto
oscillators and show their ability to synchronize almost glob-
ally. This model is used for the experiments presented in the
following because of its good ability to synchronize. There-
fore, xi(t) = (ui(t), vi(t))

T and the following equations
are used:

ẋi = f(xi; ρi)− k

mi∑

j∈Ni

(
xi −

ρi
ρj

R (φij)xj

)
(1)

and

f(x; ρ) =

(
−λ/ρ2

(
u2 + v2 − ρ2σ

)
u− ω(t)v

ω(t)u− λ/ρ2
(
u2 + v2 − ρ2σ

)
v

)
. (2)

The properties of the model for the simulations in this paper
are described in Table 1.
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Figure 2: An example chromosome for the development.
The first gene (gene 0) starts at the first RU of the genome.
Each SU-RU changeover defines a boundary between two
genes.

A Computational Model for the Development
of Morphology and Control

The morphological development simulated in this work is
under the control of a gene regulatory network (GRN) and
physical cellular interactions. The morphological develop-
ment starts with a single cell put in the center of a two-
dimensional computational area of size100× 80. Each cell
can die or divide. The cells are not fixed on a grid and un-
derlie physical interactions, i.e. overlapping cells push each
other away and cells that do not overlap attract each other
with decreasing forces with larger distances.

The GRN is defined by a set of genes, each consisting
of a number of regulatory units (RUs) and structural units
(SUs). SUs define cellular behaviors, such as cell division,
cell death or the production of transcription factors (TFs) for
intra- and inter-cellular interactions. Whether the SUs of a
gene are expressed is determined by the activity level of the
RUs of the gene, refer to Fig. 2. Note that a single or multi-
ple RUs may regulate the expression of a single or multiple
SUs and that RUs can be activating(RU+) or repressive
(RU−). The activation level of RUs is influenced by the
TFs that can “bind” to the RU. If the difference between the
affinity values of a TF and a RU is smaller than a predefined
thresholdǫ (in this workǫ is set to0.2), the TF can bind to
the RU to regulate the gene activation. The affinity values
are encoded in the RUs and the SUs that produce a TF and
are, as well as all values in the genome, limited to an inter-
val of [0, 1]. The affinity similarity ( γi,j) between thei-th
TF andj-th RU is defined by:

γi,j = max
(
ǫ−

∣∣affTFi − affRUj
∣∣ , 0

)
. (3)

If γi,j is greater than zero, then the concentrationci of the
i-th TF is checked whether it is above a thresholdϑj defined
in thej-th RU:

bi,j =

{
max(ci − ϑj , 0) if γi,j > 0

0 otherwise
. (4)

Thus, the activation level contributed by thej-th RU (de-

noted byaj , j = 1, ..., N ) can be calculated as follows:

aj =
M∑

i=1

bi,j , (5)

whereM is the number of TFs that bind to thej-th RU.
Assume thek-th gene is regulated byN RUs, the expression
level of the gene can be defined by

α = g(c), (6)

gk(c) = 100
N∑

j=1

ljaj(2sj − 1), sj ∈ (0, 1). (7)

2sj −1 denotes the sign (positive for activating and negative
for repressive) of thej-th RU andlj is a parameter repre-
senting the strength of thej-th RU. If αk > 0, then thek-th
gene is activated (δk = 1) and its corresponding behaviors
coded in the SUs are performed.

An SU that produces a TF (SUTF) also encodes all param-
eters related to the TF, such as the affinity value, the decay
rateDc

i , the diffusion rateDf
i , as well as the amount of the

TFi to be produced. Which TFi is produced is defined in
terms of the affinity value.

A = h(α),

hi(αk) =

{
β
(

2

1+e−20·f·αk
− 1
)

if αk > 0

0 otherwise
, (8)

wheref andβ are both encoded in the SUTF.
A TF produced by an SU can be partly internal and partly

external. To determine how much of a produced TF is ex-
ternal, a percentage (pext

∈ (0, 1)) is also encoded in the
corresponding gene. Thus,∆cext

i = pext
· Ai is the amount

of external TF to be produced and∆cint
i = (1− pext) · Ai is

that of the internal TF.
External TFs are put on four grid points around the center

of the cell, which undergo first a diffusion and then a decay
process. Note, that the external TFs are computed on a grid
but the positions of the cells are continuous and therefore not
limited to this grid. The internal TFs underlie only a decay
process. All internal and external concentrations of TFs are
limited to an interval of[0, 1].

Figure 3 shows a block diagram of the main components
of a GRN in one cell, describing the cell dynamics. The cell
dynamics can become coupled through external transcrip-
tion factors, which underlie a diffusion and decay process
and are position dependent. The number of TFs involved in
gene regulation of the cellular behaviors is defined by the
genome and the parameters in the resulting GRN as well.
The number of cells also changes during development, start-
ing with one single cell and two external TFs. The maximum
number of cells is limited to 700 cells for reducing compu-
tational cost. From a control system point of view, the de-
velopmental system is composed of a changing number of
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δ
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α0

Figure 3: Block diagram of the model of a single cell.

nonlinear dynamical sub-systems with a changing number
of system states, and the dynamics of the sub-systems are
strongly coupled with each other.

In our experiments, we put two prediffused, external TFs
without decay and diffusion in the computation area. The
first TF has a constant gradient in thex-direction and the
second iny-direction.

The SU for cell division (SUdiv) encodes the angle of di-
vision, indicating where the daughter cell is placed. A cell
with an activated SU for cell death (SUdie) dies at the devel-
opmental timestep it is activated. When both cell death and
cell division are active at the same developmental step, only
cell death is performed.

A cell with an active SU for neuron formation (SUneuron)
becomes a CPG for the rest of its lifetime. All cells on the
outside of the individual that are not CPGs at the end of
the development are termed muscle cells. The threshold for
whether thei-th CPG is to be connected to thej-th CPG is
calculated as follows:

ϕij =
c1

1 + ec2·(dij−10c3)
, (9)

wheredij is the distance between thei-th andj-th neuron
andc1, c2 andc3 are encoded in the SUneuron. Then, a ran-
dom numberp (p ∼ N (0, 1)) is generated, and ifp < ϕij , a
connection between the two CPGs will be generated.

There is one additional SU for other possible actions,
which are not used in this work. As a result, it can hap-
pen that some genes perform no action, that is one cause of
redundancy.

The muscle cells contract with the output of one of the
neurons of the closest CPG. When the distance to the closest
CPG is higher than8, the muscle cell is passive. A contrac-

Figure 4: Illustration of a body plan consisting of cells con-
nected by springs. The CPGs are depicted in green. The
springs on the outside of the body (red) are able to change
their natural length, except the springs associated to a CPG.

tion of a muscle cell means a change in the rest length of the
associated spring at the outside of the individual (counter-
clockwise).

Since each CPG contains two neurons (u andv), an ori-
entation of the CPG is introduced to define to which neuron
a cell is connected. The orientation of the CPG itself is de-
fined by the gradient of a TF, which TF is used is defined
in the SU for neuron formation. Parameters4 in the SU de-
fines an affinity value, the TF with the closest affinity to the
affinity encoded ins4 is used for the orientation of the CPG.
Cells which connect to the CPG on its first0−180◦ are con-
nected to the neuronu and cells connected with an angle of
180− 360◦ are connected to the neuronv of the CPG.

Physics Simulation
The physics simulation engine used to simulate the behavior
of the animats is BREVE2

A simple model for simulating the effects of water forces
is added, which has also been adopted in (Sfakiotakis and
Tsakiris, 2006). In this model, the water forces for different

2see www.spiderland.org/
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Table 2: Constants for the mechanical simulation environ-
ment

Mass of cellsm 0.5
Radius of cellsr 0.5
Damping constantd 1
Spring strengthc 5
Normal natural length of springsln 2
Short natural length of springsls 1.2
Minimal periodic timeTmin 10
Maximal periodic timeTmax 400
Simulation lengthtsim 500.0

elementsi (sphere of thei-th cell) are computed as follows:

F i = F i
T + F i

N , (10)

F i
T = −λT · sgn(vi

T ) · (v
i
T )

2, (11)

F i
N = −λN · sgn(vi

N ) · (vi
N )2, (12)

whereλT andλN are the drag coefficients for each direc-
tion. λ depends on the effective area, a shape coefficient
of the element and the fluid density.vi

T andvi
N are the

velocities of elementi in normal and tangential direction.
λT = 0.001 andλN = 2.5 are used in this work. The wa-
ter forces are computed for cells in the outside of the body
plan. The normal and tangential vectors of the body parts
(i-th sphere) can be calculated by:

ti =
pi−1

− pi+1

|pi−1
− pi+1

|

, (13)

ni =

(
0 −1
1 0

)
· ti, (14)

wherepi is the position vector of thei-th cell andpi−1 and
pi+1 are the positions of the neighboring cells on the outside
of the morphology.

vi
N = ni

· vi, (15)

vi
T = ti · vi, (16)

wherevi is the velocity of thei-th cell.

Experiments
The goal of the experiments is to evolve individuals that
swim the furthest in a desired time. The fitness function for
swimming is defined as follows:

fswim = −

∣∣∣∣∣

(
n∑

i=0

xi(t = 0)

)
−

(
n∑

i=0

xi(tend)

)∣∣∣∣∣ , (17)

so the center of mass of the individual at the beginning and
the end of the swimming period are computed and the dis-
tance is calculated.

Table 3: Properties of the evolutionary optimization

µ 45
λ 300
Elitists 3
initial # RUs and SUs 50, 50
σ 10−4

pdup, ptrans, pdel 0.05, 0.03, 0.02
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Figure 5: Fitness curves to evolve swimming individuals,
their movements are controlled by CPGs.

The size of the individuals is limited, so the number of
cells (nc) is constrained between10 and500. A penalty of
600 − nc will be applied ifnc < 10 and a penalty ofnc if
nc > 500. If the cells in the developed morphology are not
fully connected, a poor fitness of100 will be assigned.

When the individual consists only of neurons or has no
neurons, there will be no movement and the fitness for swim-
ming is therefore set to zero (fitswim = 0). If the CPGs are
not connected, which means there is no path to another CPG
via synapses, the CPGs cannot synchronize and their phase
shift is random and therefore depends on the initial values of
the differential equation. To avoid that not connected CPGs
get established during the evolution, but still not to penalize
it too strong, the fitness for swimming is then halved.

The EA setup is defined in Table 3, four different runs
with different random seeds have been performed.

Results
The fitness curves of the four different runs are shown in
Figure 5. The resulting individuals all swim between 53 and
82 length units (53.9, 82.3, 53.5, 62.2). Run 2 is analyzed
in more detail in the following section.

Analysis of Run 2

The fitness curve and the morphologies of some individuals
from run 2 are shown in Figure 6. An elongated shape de-
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Figure 6: Fitness curve of run 2. The morphologies of
the best individuals of generation90, 200, 400 and999 are
drawn.

t=73 t=78 t=84

t=90 t=95 t=101

Figure 9: Tail fin of the best individual of run 2. Blue cells
are CPGs, all other cells are black.

velops quickly (generation 90), and subsequently the shape
smoothens in later generations. The number of the CPGs
also increases and their positions change.

Figure 7 shows the development of the best individual of
run 2, while Figure 8 shows its swimming behavior. Most
cells first divide, transform to a CPG and die afterwards.
Because of the neurons on one side of the individual, the
springs on this side do not change their natural length and
the movement of the individual is only caused by the springs
on the other side of the individual. At the end of the indi-
vidual a triangle forms which has the appearance and seems
to fulfill the function of a tail fin, as shown in Figure 9. It is
also interesting that the resulting individual is unsymmetric,
contrary to the results of Jones et al. (2008) that show the
advantage of symmetric morphologies.

The output of the CPGs are plotted in Figure 10, which
shows that the phase shifts between the different CPGs are
small. Figure 11 shows the orientations of the CPGs and we
can see that some CPGs are turned around which results in
a larger phase shift for the muscle cells.
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(a) Time series of the different neurons.
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(b) Phase shifts between the sinus curves of the dif-
ferent neurons relative to u6.

Figure 10: Output of all CPGs from the best individual of
run 2.

Summary and Outlook

In this paper, we have proposed a model that follows an ani-
mat’s cell doctrine, i.e., an evolved gene regulatory network
controls the cellular growth of a digital organism whose be-
havioral control is realized by some of the cells differenti-
ating into central pattern generator cells representing neu-
rons. Therefore, morphology and control of the animat are
not merely co-evolved but co-represented by one regulatory
system whose parameters are optimized during the evolu-
tionary search process. Both on the genotypic and on the
phenotypic level the distinction between morphology and
control merely becomes descriptive.

The evolutionary optimization of the gene regulatory net-
work resulted in a simple animat that is capable to per-
form swimming behavior by plausible movement. Body
cells that differentiated into central pattern generators pro-
vide the ability to obtain an oscillating pattern with only a
few neurons without limiting the connections or requiring
long learning phases. In some cases the evolved morphology
includes structures resembling tail fins, which seem to ease
the functional or behavioral task. In principle, this is similar
to the example of the passive walker that we mentioned in
the introduction, where the dynamic control is eased by the
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Figure 7: The development of the best individual of run 2 at theend of the evolution. Blue cells will divide in the next timestep,
red cells transform to a CPG and will die in the next timestep.
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Figure 8: Swimming behavior of the best individual of run 2. Blue cells are CPGs, all other cells are black.
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Figure 11: Orientation of the CPGs of the best individual of
run 2. Since some CPGs are turned around, some muscle
cells are connected tou and some tov, which causes the
large phase shifts between the contractions of the springs.

morphology of the organism.

Compared to the work of Jones et al. (2011, 2008), which
is based on a more abstract representation which is less bi-
ologically inspired, the evolved organisms do not exhibit
symmetric morphologies. It would be interesting to find out
under which constraints symmetry would also evolve in our
framework.

The target of this research has been to demonstrate that
the evolution of organisms exhibiting simple but meaning-
ful behavior based on an animat’s cell doctrine is possible.
Finding the right parametrization of the gene regulatory net-
work to develop a suitable morphology that incorporates the
adjusted neural control is not a trivial task. At the same time,
it is now necessary to analyze the properties of our model in
more detail. First steps have been made in Figure 6 where
we have observed the evolutionary path of the morphology
for one run and in Figure 10 where we have analyzed how
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the control is organized with the central pattern generator
neurons. One of the next steps would be to relate the evolu-
tion of morphology to the evolution of the dynamics of the
CPGs and how both are over time represented in the gene
regulatory network. Unfortunately, even for digital evolu-
tion, the functional analysis of gene regulatory networks is
a rather complex tasks, although promising first results have
been obtained for evolving cellular morphologies, see e.g.
Schramm et al. (2010).
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Abstract

Since its inception, ALife has moved from producing large
numbers of highly-idealised, theoretical models towards
greater integration with empirically collected data. In con-
trast, demography — the interdisciplinary study of human
populations — has been largely following the principles of
logical empiricism, with models driven mainly by data, and
insufficient attention being paid to theoretical investigation.
Such an approach reduces the ability to produce micro-level
explanations of population processes, which would be coher-
ent with the phenomena observed at the macro level, without
having to rely on ever-increasing data demands of complex
demographic models. In this paper we argue that by bring-
ing ALife-inspired, agent-based methods into demographic
research, we can both develop a greater understanding of the
processes underlying demographic change, and avoid a limit-
ing over-dependence on potentially immense sets of data.

– But you are paying a lot of money for the dragon!
– And what, should we just give it to the citizens in-

stead? [...] I see you know nothing about the principles
of economics! Export credit warms up the economy and
increases the global turnover.

– But it also increases the dragon as such – I
stopped him. – The more intensely you feed him, the
bigger he gets; and the bigger he gets, the higher his
appetite. What kind of a calculation is it? He will fi-
nally devour you all!

Stanisław Lem, Pożytek ze smoka [The Use of a
Dragon] (1983/2008: 186)

Introduction
After attending the very first Artificial Life conference in
1987, the evolutionary biologist John Maynard Smith fa-
mously quipped that ALife appeared to be “fact-free sci-
ence”. His comment was made in response to early ALife
work (see, e.g., Langton, 1989) that tended to be abstract and
conceptual, not to mention ontologically ambitious, making
no connection to empirical data in the conventional sense.

Over time, the early enthusiasm for highly abstract mod-
els in ALife has lessened somewhat, as it has become in-
creasingly clear that making such models empirically rele-
vant involves a highly contentious theoretical commitment

to artificial life as an instantiation of biological life (Silver-
man and Bullock, 2004). Instead, abstract and conceptual
ALife models have come to be viewed as tools for theoreti-
cal enquiry (Di Paolo et al., 2000), i.e., ways of explaining
the qualitative dynamics of complex systems. At the same
time, some modellers under the ALife banner have moved
toward a greater connection with empirical data (e.g., To-
quenaga et al., 1995; Smith V., 2008). ALife has expe-
rienced greater scientific respectability, we maintain, due
to the collective recognition that modelling and simulation
stand alongside theory generation and data collection in the
scientific cycle — or, as Rossiter et al. (2010) put it, models
are “first class citizens of science”.

Thus, ALife has been in a somewhat unique position:
starting from methods almost completely disconnected from
empiricism, the field has gradually moved toward a greater
integration with empirical data, while retaining a focus on
using simulation as a tool for theoretical investigation. In
this paper we consider a discipline which appears to be
following the opposite trajectory. Demography — the in-
terdisciplinary study of the development of human popula-
tions — has long been a field devoted to predictive statistical
modelling based on vast storehouses of data, while theory-
building has mostly taken a back seat.

Demography’s intense devotion to data has served the
field well when making projections of future demographic
change in human populations. Nevertheless, traditional de-
mographic methods struggle to develop well-founded expla-
nations of these changes, going beyond simple generalisa-
tion of the observables (Burch, 2003). One of the motiva-
tions driving ALife’s shift toward greater connection to em-
pirical data has been the recognition that neither theory nor
data alone are enough to provide coherent explanations of
phenomena. ALife has addressed this dilemma by bring-
ing more data into a largely theory-focused modelling enter-
prise, and we propose that demography, in order to develop
beyond its current epistemological limits, must also make
a move towards the centre by incorporating conceptual and
theoretical investigation into its heavily data-focused frame-
work.
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The scientific benefit to such an approach would be the
enrichment of the theoretical foundations of demography.
In this paper however we will also discuss another, perhaps
more pragmatic, advantage to ALife-inspired demographic
models: as a means for escaping some of the burdens of the
time-consuming and combinatorially expensive data collec-
tion required to continue in the traditional fashion.

We begin our discussion in the next section with a sum-
mary of demography’s struggles with its data-collection de-
mands. We then move on to suggesting some potential ap-
plications of agent-based models for demographic research,
describing the relevant strengths and weaknesses of the ap-
proach. Next, a detailed analysis of several demographic
simulation models allows us to develop a more nuanced un-
derstanding of how agent-based models may provide new
utility and insight. Finally, we offer our conclusions, and
suggest some directions for future work in this area.

Motivation: Meet The Beast
In the context of large, policy-focused projects in social sci-
ence, modelling and simulation in some form has become
ever more important as a means of providing useful infor-
mation to stakeholders. Models provide a means of pro-
ducing predictions or characterisations of complex systems
which can give the stakeholder what they need: a target
number, a summary of current numbers, or numbers to be
wary of. However, many such modelling projects can be-
come quite large and unwieldy. We often find that we require
extensive amounts of data in order to feed into a large-scale
model (hereafter, for illustrative purposes, referred to as ‘the
beast’), and the process of collecting that data is inevitably
expensive and time-consuming. Plus, as our models get in-
creasingly complex, the beast becomes ever hungrier.

Demography offers a unique predictive potential given
the information embodied in the age structure of popula-
tions. However, for reasons we will discuss later, these pre-
dictions still remain largely uncertain. In an effort to alle-
viate some of the epistemological limitations, recent work
in demography has attempted to bridge the gap between
micro- and macro-level analysis (Courgeau 2007 and the
MicMac project — see Willekens 2005 and Zinn et al.
2009). Advances in event-history analysis and microsimula-
tions linked with multilevel statistical analysis have been of-
fered as potential solutions to the micro-macro divide. How-
ever, such methods still have one major weakness: poten-
tially enormous requirements for data due to the ‘combinato-
rial explosion’ of the parameter space. So, even as extended
modelling frameworks, such as MicMac, try to bridge the
micro-macro gap by producing linked simulations at both
levels of analysis, we still find ourselves hamstrung by the
need for large amounts of data.

Thus, we see demography reaching for more sophisti-
cated modelling paradigms and for ways to produce more
micro-level explanations of factors that drive population

change. Unfortunately, current modelling methods require
us to continue ‘feeding the beast’: pumping models full
of ever-increasing amounts of data, each dataset requir-
ing vast amounts of resources (time and money) to collect.
This has further impacts on the overall modelling enter-
prise: turn-around time for producing models grows out of
control; stakeholders find themselves confronted with nigh-
incomprehensible models and endless reams of data; and the
primacy of post-hoc statistical analyses inevitably leads us
toward certain types of models which seem to fit the data
well.

In the other part of the methodological spectrum, the use
of agent-based models à la ALife in recent years has become
increasingly popular in certain areas within the social sci-
ences. Starting from Schelling’s (1978) famous residential
segregation model, and moving on to Axelrod’s Complexity
of Cooperation (1984), Cederman’s (1997) work on inter-
national relations, and the current wide spectrum of agent-
based models in social science (cf. Epstein, 2008 or Gilbert
and Troitzsch, 2005), the prospect of using agents to exam-
ine properties of human societies which are difficult or im-
possible to measure empirically has become increasingly at-
tractive. Understandably, many social scientists are excited
by the possibility of examining fundamental properties of
social phenomena without being forced to devote excessive
resources to primary data collection.

To date, much of the work extolling the virtues of agent-
based models for the social sciences have focused on the
potential explanatory benefits (Epstein, 2008). After all, by
examining the processes occurring between agents, perhaps
we can gain a greater understanding of how macro-level so-
cietal effects happen (although even this is debatable; see
Sawyer 2005). However, we feel that another, perhaps more
immediate benefit of agent-based modelling has been largely
ignored in the literature: the prospect of escaping the expen-
sive, time-consuming process of continual data collection.

Thus, in this paper we propose that agent-based mod-
els, informed by work in artificial life and social simula-
tion, can provide a way forward for demographers who seek
to escape the ‘hungry beast’ of highly data-driven research.
This approach allows us to create models which develop a
new understanding of population change without undue de-
pendence on excessive empirical data, and create an envi-
ronment in which models can be continually tweaked and
worked on as new information comes to light, rather than
simply sitting in stasis until the next wave of surveys comes
back.

In the next section we will briefly outline the current state-
of-the-art in demography, with focus on the contemporary
limits of demographic knowledge.
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Where the Beast Lies: Demographic
Knowledge and its Limits

Demography is currently facing major epistemological chal-
lenges. In particular, demographers’ knowledge seems to
have reached its limits with respect to the predictability of
future population developments, as well as the ability to
combine micro- and macro-level information and to find a
compromise between the complexity and simplicity of an-
alytical tools. This section discusses these issues in more
detail.

The first problem with the limits of demographic knowl-
edge is the issue of predictability. Amongst social science
disciplines, demography has a unique predictive potential.
Unlike in economics or sociology, very important informa-
tion on the future development of populations is already em-
bodied in their own age structures. The main mechanism
of demographic dynamics is known, too: human popula-
tions change through births, deaths and, if considered at
sub-global levels, migrations. However, when considered
on their own, these three components of population change
remain largely uncertain (Hajnal, 1955; Orrell, 2007). They
also differ with respect to their degree of predictability: mor-
tality is considered to be the best-predictable component;
migration — the worst; fertility being usually located in the
middle (National Research Council, 2000).

In the context of the uncertainty of forecasts, predictabil-
ity limits have been extensively discussed elsewhere (Key-
fitz 1981; Keilman’s contribution to Willekens 1990; de
Beer 2000; Bijak 2010), with two main methodological con-
clusions. Firstly, it is argued that demography should em-
brace uncertainty more closely (Alho and Spencer, 2005), in
particular by moving from traditional deterministic projec-
tions to probabilistic forecasts. Secondly, there is an agree-
ment that with longer horizons — beyond 10 to 20 years
— uncertainty anyway becomes too large to be usefully de-
scribed in probabilistic terms, and hence there is a need to
turn to scenario-based approaches (see also Orrell and Mc-
Sharry, 2009; Wright and Goodwin, 2009). An open ques-
tion is, which elements should be included in such scenarios
and how should they be constructed?

The second limitation of demographic knowledge stems
from the problem of aggregation. Populations are composed
of individuals and, as argued by Courgeau (2007), focus-
ing exclusively on macro or micro-level analysis can gen-
erate problems with either ecological or atomistic fallacy.
Whilst demography until the 1980s was almost entirely pre-
occupied with the macro level, and since then increasingly
more with the individual level (mainly in a form of the event-
history analysis allowing for microsimulations), attempts to
bridge both levels are much more recent (Willekens, 2005;
Courgeau, 2007; Zinn et al., 2009). Microsimulations, as
noted by Gilbert and Troitzsch (2005, p. 8), are predic-
tive simulation tools ”based on a large random sample of
a population of individuals, [which are] ’aged’ using a set

of transition probabilities [...], [so that] aggregate character-
istics can be calculated and used as estimates of the future
characteristics of the population”. Micro-level simulation
models, as well as their multi-level extensions, are usually
also multi-state, states being for example age groups, edu-
cational classes, or states of health. In such models, individ-
uals move between the states according to some transition
probabilities, usually estimated on the basis of large-scale
representative surveys, population registers or census data.

The main challenge with the multi-level approaches lies
with their potentially enormous data requirements owing to
the combinatorial explosion of the parameter space at differ-
ent levels. That is exactly where the beast lies: Burch (2003)
identified it to be the realm of logical empiricism, on which
demography was — and still is — over-reliant. This phi-
losophy focuses on observable phenomena and attempts to
create generalisations solely on an empirical basis. As a re-
sult, in contemporary research problems driven by real-life
questions concerning more complex phenomena, the beast
can quickly become insatiable.

The third epistemological dilemma of contemporary de-
mography stems directly from the previous two. At its core
there is a question, whether complex models are more use-
ful to aid prediction and decision making than their simpler
counterparts. In terms of predictive performance, there is
no evidence that complex models perform better (Ahlburg,
1995; Smith S.K., 1997). If that is the case, there might be
a temptation to follow the Occam’s razor principle (or the
KISS principle in complexity science), disregard the addi-
tional subtleties involved in the modelling process and opt
for simplicity instead (Bijak, 2010). However, such ap-
proaches may not increase our understanding of the under-
lying mechanisms, and are largely limited to shorter time
horizons of decision making. To move beyond that, a differ-
ent approach to modelling would be required.

From this perspective, the following section discusses the
applicability of agent-based models in demography, with fo-
cus on how they could address the three challenges men-
tioned above.

Agent-Based Demography: Avoiding the Beast
In their seminal book, Billari et al. (2003) present a com-
pelling argument for the use of agent-based models in de-
mography, or what they refer to as ‘agent-based computa-
tional demography’ (‘ABCD’). Their enthusiasm for this ap-
proach stems from the potential for agent-based models to
build theories regarding social processes that underlie demo-
graphic change. They describe a new ethos for simulation in
demography, in which “the simulation is used first of all to
develop and explore theories rather than to evaluate empiri-
cally the consequences of given rates/probabilities” (Billari
et al., 2003, p. 11).

The suitability of agent-based models for exploring theo-
ries is certainly attractive for social scientists, as such mod-
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els are well-positioned to examine the link between individ-
ual behaviour and higher-level organisation (Silverman and
Bryden, 2007). In demography, agent-based models provide
a potential platform in which the dynamic relationship be-
tween the micro- and macro-levels of a simulated popula-
tion can be more fully represented. While in recent years
multi-level microsimulation models, such as the ones men-
tioned above, have become increasingly popular, these mod-
elling platforms still fail to capture the influence of micro-
level behaviour and agent heterogeneity on macro-level en-
tities, and indeed the feedback of those entities on agent be-
haviour. Nor do they capture social interactions, formation
of social networks, or other elements which may contribute
to the social processes underlying demographic change —
here, agent-based models are more suitable (Gilbert and
Troitzsch, 2005).

Beyond these theoretical benefits, we propose that in the
specific context of demography, agent-based modelling of-
fers a possible means to escape some limitations to knowl-
edge imposed by the currently dominant data-based method-
ological paradigm. The first limitation — the one of
predictability — points us toward the potential for using
agent-based models for generating scenarios, which would
produce useful insights about demographic change over a
longer time horizon. A great advantage of agent-based mod-
els lies in their suitability for exploring a set of scenarios
based upon varied parameter settings. Modellers can de-
velop such scenarios based on variations within a parameter
space, which allow them to examine how these parameters
affect agent behaviour (and, in appropriately designed mod-
els, how those behaviours affect macro-level entities). In the
development process, boundaries to the scenarios are lim-
ited only by the modellers’ imagination rather than by data
availability alone.

The second challenge for demographers — the aggrega-
tion problem — again points toward agent-based models as
a possible way forward. After all, some ambitious social
simulations not only include individual agents, but may also
include macro-level components and thus allow for feed-
backs between individuals, as well as between micro- and
macro-level (Billari et al., 2003; Murphy, 2003; Silverman
and Bryden, 2007). This would allow the modeller to neatly
side-step the problem of focusing exclusively on either the
micro- or macro-level, providing an opportunity to evade ei-
ther ecological or atomistic fallacy. Such models can also
conceivably capture downward causation effects and other
manifestations of links between the micro- and macro-level,
which would be impossible in a model which focuses only
on one level or the other. Of course, this second challenge
also allows the beast to begin rearing its ugly head. As men-
tioned in the previous section, the prevalence of the logical
empiricist approach in demography places a certain primacy
on deriving sensible results only from empirical observation
(Burch, 2003). This naturally leads demographers to seek

out ever larger and more comprehensive data sets, each more
expensive and time-consuming to collect than the last.

We then find ourselves sat facing the third challenge —
that of simplicity. The beast gets hungrier for more data,
and the sets of numbers which need crunching continue to
grow in response. Agent-based models, however, necessi-
tate a different approach: data is given less primacy than
parameters. Rather than extrapolating from a given dataset
about a population, social simulations will attempt to gen-
erate a society using the given parameters. The latter can
certainly be informed by real-world data whenever they are
available.

Thus, a type of modelling used quite often to represent
complex systems might require less numerical data input
than traditional methods. In certain contexts, social scien-
tists may not find any data necessary at all — as in Schelling
(1978), which demonstrated a possible mechanism for res-
idential segregation based on individual behaviour without
requiring any data, and only using a single parameter. No-
tably, Schelling was able to achieve this by focusing exclu-
sively on a possible mechanism for residential segregation,
and did not seek any relationship to empirical data; models
for demography would need to have some connection to data
to remain connected with real-world data and retain some
potential predictive capacity. However, Schelling’s model is
a useful example in that it shows the potential for reducing
the need for a model to be entirely dependent on data.

As an additional benefit, agent-based models can more
sensibly be informed by qualitative data than traditional de-
mographic modelling methods. Such data often explicitly
attempts to “elicit agent models directly rather than infer-
ring them from behavior” (Chattoe, 2003, p. 52).

So, agent-based models can present demographers with
a way to avoid the beast and get away from ravenous tra-
ditional models which require regular feedings of painstak-
ingly collected data. However, using such models in demog-
raphy may require a certain shift in focus: agent-based mod-
els are better-suited for exploring theories and scenarios than
for making firm predictions (Epstein, 2008). Therefore, per-
haps we may take inspiration from John Hajnal — himself
one of the most prominent demographers of the 20th century
— and focus on building models which “involve less compu-
tation and more cognition than has generally been applied”
(1955, p. 321). In this context, we understand the terms
’computation’ and ’cognition’ in the spirit of Hajnal’s paper
– the former strictly related to data-based predictions, and
the latter to the explanation of the underlying demographic
phenomena.

As we shall see in the following section, attempts to bol-
ster the power of traditional data-driven models have not al-
ways been successful — and agent-based models have al-
ready been proven useful in some areas of demography.
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Analysis: Case Studies of Demographic
Models

In demography, there are notable examples of models that
fell short of their proclaimed aims due to the presence of
the data-hungry beast. With respect to approaches spanning
the micro and macro levels, an interesting attempt to ap-
ply methods from the system dynamics tradition to a demo-
graphic problem — migration — was the one by Weidlich
and Haag (1988). Their approach was rooted in theoreti-
cal physics, in particular thermodynamics, and involved the
estimation of individual-level transition rates between dif-
ferent regions (states of the system), based on the construed
utility function of individuals and a set of macro-level co-
variates describing the regions. These quantities were linked
through a set of master equations — first-order differential
equations, describing the probabilities of the whole system
moving from one state to another following the relocation of
individuals. However, solutions proposed by Weidlich and
Haag (1988), despite their mathematical sophistication and
elegance, did not become a part of demographers’ toolkit.
There were several reasons for this. Some reviews of Wei-
dlich’s and Haag’s book stressed that their method did not
take into account heterogeneity of migration with respect to
age, sex and past migration history1. Other points of criti-
cism were that the approach did not model agents at all, thus
not exploring the underlying social complexity in full, and
did not provide many examples of empirical applications,
mainly due to very large data requirements2. Finally, the
quasi-deterministic nature of the models made them overly
reliant on analytical solutions to the system of differential
equations describing the dynamics of the migration system
in question.

More recently, the MicMac project, as previously men-
tioned, aimed to develop a new methodology for dynamic
microsimulation in demography (Willekens, 2005; Zinn et
al., 2009). The final MicMac model consists of a macro-
level part, which examines demographic change at the pop-
ulation level with a top-level macrosimulation (known as
Mac), together with a dynamic microsimulation model that
examines demographic events at the individual level (known
as Mic). Both components of MicMac generate projec-
tions based on transitions between demographic states, but
Mac generates cohort biographies while Mic generates in-
dividual biographies. In this way the model aims to bridge
the micro-macro gap, providing a comprehensive modelling
package which can pinpoint the influences of micro-level de-
mographic events on macro-level demographic change (see
also Billari et al., 2006).

1Daniel Courgeau’s review of Weidlich and Haag (1988). Pop-
ulation 46(5), 1991: 1298–1299.

2J. Barkley Rosser’s review of W. Weidlich’s (2002) book “So-
ciodynamics: A Systematic Approach to Mathematical Modelling
in the Social Sciences.” Discrete Dynamics in Nature and Society,
3, 2005: 331–335.

In practice, however, the beast once again rears its head,
and data requirements in this case are substantial. The mi-
crosimulation portion of the model (Mic) requires a signifi-
cant amount of detailed micro-level data to implement, espe-
cially on transition rates between all possible demographic
states for individuals3. The macro-level model (Mac) also
requires extensive data about transition rates in order to run.
Given that Mic includes 12 variables for each individual,
very large amounts of input data are required to produce age-
and time-specific transition rates between all possible states.

In turn, from the opposite — agent-based — end of the
modelling spectrum, one example of an agent-based model
producing some historical demographic insight is the model
of the Kayenta Anasazi civilisation (Axtell et al., 2002). The
model attempts to explain the rapid decline of the Kayenta
Anasazi tribe in Long House Valley in northeastern Ari-
zona, United States. The Anasazi tradition began in the area
around 1800 B.C., when maize was introduced as a major
agricultural crop. Around 1300 A.D., the population de-
clined rapidly, and eventually there was a mass exodus from
the valley.

The model of Axtell et al. (2002) consists of a digital
reconstruction of the Long House Valley landscape, con-
structed using existing knowledge of the environmental con-
ditions at that period in history. The agents themselves rep-
resent households, individual people being more difficult to
identify with any reliability using the existing archaeological
data. Each household has certain rules of behaviour which
specify how it will select its dwelling and planting locations
during each calendar year based on how successful it has
been at satisfying its nutritional needs.

The model seemed to produce a simulated population
which closely followed the ebbs and flows of the real
Anasazi population in Long House Valley. Interestingly,
however, the model shows that some small sustainable popu-
lation could have remained in the northern part of the valley,
even as the environmental conditions started to degrade to-
ward 1300 A.D.; this contrasts with the real population, in
which the remaining people joined the mass exodus leaving
the valley.

This model thus demonstrates that the demographic
changes which affected the Anasazi population in this area
can be explained at least in part by an agent-based model
with simple behavioural rules. As the environment degrades
over time, and the agents must continue to look for fertile
ground in which to plant their fields, the simulated popula-
tion shifts northward, just as the real Anasazi had done. In
contrast, a demographic model which did not capture these
rules of individual behaviour may have been able to accu-
rately portray the changes occurring at an aggregate level,

3See Deliverable D9 of MicMac: “Report on Data Require-
ments of MIC” by F Willekens, J de Beer and N van der Gaag:
http://www.nidi.knaw.nl/Content/NIDI/output/micmac/micmac-
d9.pdf
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but would not be able to explain why those changes occurred.
Of course one might ask, how did this model keep the

beast from getting out of control? The model clearly incor-
porated many pieces of information from a variety of dis-
ciplines. However, it is interesting to note in this case how
the beast was fed. Interestingly from a demographic point
of view, along with already-available archaeological infor-
mation, the model was able to incorporate qualitative data in
the form of ethnographical research: the agents’ behavioural
rules were formulated by distilling ethnographic knowledge
about the Anasazi civilisation into simple rules driving their
migration and agricultural activities.

Another example of an agent-based model producing de-
mographic insight is a recent study of marriage offered by
Billari et al. (2007). Their model was constructed as an at-
tempt to bridge the gap between two different perspectives
which predominate in the study of the timing of marriage in
populations: macro-level statistical modelling used by de-
mographers, and micro-level studies performed by psychol-
ogists and economists examining the partner (mate) search
process. In this context, an agent-based model is seen as a
possible way to “account for macro-level marriage patterns
while starting from plausible micro-level assumptions” (Bil-
lari et al., 2007, p. 60).

The resulting model assumes that the formation of mar-
riage partnerships is the result of social interaction between
heterogeneous agents. The model attempts to demonstrate
the link between these interactions and marriage patterns by
simulating the impact of the availability of mates and the
desirability of marriage, which is affected by the influence
of relevant others in an agent’s social network. The results
show that the model can reproduce the hazard functions of
marriage observed at the population level in the real world.
The performed sensitivity analysis suggests that the results
are robust to changes in the relevant simulation parameters.

The findings of Billari et al. (2007) have important im-
plications for demographers wishing to avoid the beast. As
the authors note, the model uses substantial simplifying as-
sumptions: placing the agents in a one-dimensional, circu-
lar space; leaving out additional social complexities such as
courtship or divorce; and focusing only on age and location
as agent attributes, ignoring kinship, education, occupation,
socio-economic status, or other similar factors. In fact, the
simulation almost entirely ignores any empirical data, with
the exception of the initial population which is generated
with an age distribution reminiscent of 1950s America.

Despite the paucity of data, however, the simulation-
based demographic models seem to produce at least plau-
sible micro-level explanations of macro-level phenomena.
In the work of Billari et al. (2007) this concerns the influ-
ence of social pressure to get married within a social net-
work, and the variation of the size of that network by age is
a determinant of the desirability of marriage. In contrast, a
macro-level statistical model of marriage timing would not

be able to provide this sort of micro-level explanation — and
would require significantly larger investments into data col-
lection in order to function. In turn, the study of Axtell et al.
(2002) captured the main factors behind the expansion and
twilight of the Anasazi population. On the other hand, even
painstaking efforts to reconstruct birth, death and migration
rates based on fragmented pieces of historical information
would yield demographic predictions that would be too un-
certain to be meaningful, if only the levels of uncertainty
were honestly admitted in such a model. The beast might
be fed and sated — but our understanding of the underlying
processes would be no greater.

Conclusions
Our discussion and analysis have demonstrated that tra-
ditional demographic methods, while highly accomplished
in producing data-driven population projections, face some
major epistemological and pragmatic challenges. The over-
all focus on data over theoretical investigation has ham-
pered demography’s ability to provide explanations of de-
mographic change, while the hunger of the beast of logical
empiricism traps demographers in continuous cycles of ex-
pensive and time-consuming data-collection.

As we have seen, the application of agent-based methods
inspired by contemporary ALife work to demography pro-
vides a means to lessen some of these burdens on population
researchers. The resultant increased focus on explanation
over producing projections from empirical data could allow
demographers to develop more coherent micro-level expla-
nations of macro-level demographic change. More pragmat-
ically, the concomitant reduction in data dependence would
reduce the hunger of the beast, allowing demographers more
freedom to produce varied and ambitious models while also
removing the restrictive timetables imposed by lengthy and
expensive data-collection processes.

So far, all applications of agent-based models to popula-
tion change, such as the ones mentioned earlier in our anal-
ysis, have been performed separately, abstracting away from
the main mechanism and inertia of population dynamics.
In particular, existing studies deal with particular compo-
nents of population change – fertility and marriage (Murphy,
2003; Billari et al., 2007), or migration and residential pat-
terns (Heiland, 2003; Benenson et al., 2003) – separately,
without putting them together into a common modelling
framework describing the known features of population dy-
namics. In our view, developing an integrated, multi-level
and multi-state agent-based model could overcome some
of the philosophical difficulties discussed before, whilst re-
maining related to the real-world through the empirical data,
wherever they are already available. The challenge ahead
is thus to build models which would combine various fea-
tures of demographic processes and yield artificial popula-
tions equipped with real-world characteristics. In that re-
spect, agent-based demography is not only interesting as a
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research field, but also as a promising venue for answering
questions relevant to policy makers. Moreover, it provides
the users of the final research output with more possibili-
ties for interacting with the researchers, by engaging in the
experimentation with the artificial worlds created. For both
parties involved in the process — researchers, as well as the
end-users of research — this can bring about a better under-
standing of the underlying population processes, which it-
self can be a very important gain from the whole modelling
exercise.

From these points of view, agent-based demography
seems to be an innovative way of moving the whole re-
search field in a new direction, towards the middle ground
on the theory-data spectrum. For the ALife community, this
‘dialectic’ position would open up a whole new, fascinat-
ing field of research with direct applications to real-world
problems. However, building agent-based models to popu-
lation questions would require that demographers use more
imagination than in pure data-driven modelling, in line with
Hajnal’s credo. Agent-based modelling can offer a solu-
tion, which has to be based on cognition and thinking about
mechanisms (Burch, 2003; Chattoe, 2003), while taking into
account these pieces of information (data) that are already
available. In that respect, the rule of the thumb for agent-
based demographers who would like to strike the delicate
balance between empiricism and explanation is: we should
feed the beast where feasible — but not more.
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Abstract 
Autopoiesis, or one’s ability to renew oneself, is a meaningful 
concept for the study of life. Modeling of autopoiesis would 
enhance its study in relation with other biological properties 
such as feeding, breeding, being ill, healing, dying, etc. Here, 
we report the design of a “morphautomaton”, a new kind of 
discrete spatial automaton designed to represent within the 
same space an unlimited number of various complex, mobile, 
interacting forms. This automaton uses a simple, single 
effective formalism to identify and localise those forms and 
describe their movements, transports, and transformations. We 
make use here of these forms as symbols to schematically 
represent an autopoietic individual within its environment. This 
representation can be made consistent with the laws of 
thermodynamics and conservation. Using this representation, 
the study of the physiological properties of this individual could 
be undertaken. Using this platform, the modeling of other 
biological properties in relation with autopoiesis should also be 
possible. These models should allow future comparisons, 
definition, and classification of these biological properties. 
Representations using our formalism and similar parameters 
can be combined. Because it focuses on the physiological 
analysis of whole individuals, this schematic representation 
method can be used only when structural analysis has been 
completed.  

Introduction 
The word "autopoiesis" was created by Francisco Varela and 
Humberto Maturana in 1971 to designate the ability of 
something to "create oneself" (Maturana and Varela, 1973). 
The ability of an individual to renew itself while maintaining 
its shape and organization is remarkable. Indeed, no inanimate 
objects have such a property, yet living objects often heal and 
return naturally to their original forms. How do they 
accomplish this? Where does the difference arise? Could we 
acquire control of it? 

At one time, the idea that living matter differed from 
inanimate matter seemed obvious. Today, we have identified 
most parts that comprise living beings, and there is no doubt 
that these parts are made of the same material as inanimate 
objects (Goodsell, 2009). While anatomic knowledge is not 
sufficient to understand the differences between living and 
non-living, we can hypothesize that the set of physiological 
processes performed by these parts give the whole its 
properties (Schoenheimer, 1942; Schrödinger, 1944; Kleiber, 
1947). Thus, here we search within this paradigm for a 
mechanical explanation of autopoiesis.  

We remain far from understanding what roles each piece 
plays in creating the whole; neither can we perfectly analyze 
or reconstruct the simplest organisms. We know not what 
assumptions are necessary to guide such a reconstruction; 
what we need is not simply a technique but a method or 
theory providing the guidelines to direct the analysis and 
representation of our observations. Critical to this theory are 
the criteria that will enable a strict definition of the properties 
of the living: feeding, breeding, growing, being ill, healing, 
dying, evolving, behaving, etc. By removing or modifying 
some structures and observing changes in the whole, we can 
distinguish which structures are necessary and sufficient for 
the existence of these properties. By comparing several living 
entities, we can acquire an indication of their generality 
(applying to cell, organism, society) and of their relationships 
(dependence, anteriority, causality, equivalence, etc.). Indeed, 
we may go further and study the forms of these entities, to 
determine whether they can be classified and systematically 
enumerated, if they derive from each other, and how to most 
simply represent them.  

However, complex systems have unpredictable emergent 
properties. To gain control over any property of such a 
system, one must forego, at least initially, studying what 
might emerge from it, as a system is either controlled or has 
emergent properties (Liu et al., 2011). Our goal here is to 
avoid the apparition of any emergent property, while creating 
an autopoietic representation that may lead to its control. 
Meanwhile, we wish to retain the ability to later study 
autopoiesis’ associations with division and differentiation to 
produce systems endowed with the ability to evolve.  

To define and control a property, two approaches are 
possible: synthetic, or “bottom-up” (used here), identifies the 
property then searches for a mechanism to reproduce it. This 
kind of approach has been infrequently explored because of 
several inherent weaknesses, such as its generality, the 
arbitrary choice of entities to represent the property, or the 
lack of analysis of physical constraints (Morange, 2005; 
Atlan, 2011). The majority of modeling works are analytical, 
"top-down" approaches: beginning with available 
experimental data, one selects useful parts and tries to 
reassemble them to reproduce a property of interest. The two 
approaches, however, are complementary and are needed to 
validate one another; when these approaches validate the same 
mechanism, the property becomes correctly established; its 
full control (i.e., the ability to calculate, reproduce, modulate, 
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or combine it with others in any particular physical, chemical, 
or even robotic context) can be envisioned. 

To demonstrate autopoiesis, Varela and Maturana worked 
in a non-experimental, theoretical framework and built a 
dynamic representation in silico by programming a discrete 
spatial automaton to represent the minimal organization of a 
biological cell (McMullin and Varela, 1997). They intended to 
represent a membrane constantly and permanently destroyed 
and rebuilt through the actions of particles they called 
substrates, catalysts, and links. The destruction of this 
membrane was done at random and was offset by new 
syntheses. This first model was a great launching point for 
later works (Zeleny, 1977; McMullin and Gross, 2001; 
Ikegami and Suzuki, 2008; Bersini, 2010). However, Varela’s 
model contains some weaknesses: The definition of 
autopoiesis (Maturana and Varela, 1980) is not clear and 
simple and is not fully applied in his later models, as 
destruction of the membrane, renewal of the catalyst, 
transmembrane transports, and, therefore, control of the 
individual’s size are not performed by the individual itself. 
Varela did not used a well-formalized representation platform, 
but he worked in a time where it was difficult to separate the 
representation method from the represented object. Most of 
these works are restricted to chemical materials, and do not 
consider other potential implementations (e.g., robotic).  

To move the study of autopoiesis forward, we propose to 
reformulate the definition of the property as follows: first, 
because autopoiesis is dynamic, we may hypothesize that it is 
a property of a whole that cannot be a unique, static, 
inanimate block, but that consists necessarily of distinct, 
interacting parts. To interact, these parts must be mobile. If 
they are mobile and yet they continue to be part of the whole, 
then they are joined. What connects them is also an aspect of 
the whole. The interactions that they continually have renew 
them. This means each of them can be destroyed by one and 
re-built by another. Importantly, if all the necessary conditions 
are met, then the whole can keep its form longer than the parts 
composing it. Because of continuous movement of its parts 
and exchanges with its environment, this form and its 
composition can never be exactly the same; rather, they 
fluctuate around a mean shape. Indeed, the whole loses this 
property if it is split or isolated from its surrounding 
environment, with which it exchanges energy and matter to 
achieve its renewal. Additionally, if there is a "natural" 
process of degradation of some of its parts, the whole’s 
renewal speed should remain sufficient to oppose the effect of 
this process. Importantly, “autopoiesis” should also satisfy 
McMullin’s criterion, which states that two individuals, in 
direct contact with each other, can reliably maintain their 
separate identities (McMullin, 2004). 

The methods applied to the study of autopoiesis evolved in 
parallel of the concept itself. Early studies conducted by Tibor 
Ganti, Robert Rosen, Victor Kunin, Manfred Eigen, and 
others identified related concepts, but were generally 
performed using differential equations (Popa, 2004). 
However, differential equations, developed to describe 
quantitatively determined and continuous phenomena, assume 
ideally mixed reactants and are poorly adapted to molecular 
biology. Instead, discrete spatial automata can associate 

logical operations to possibly non-linear and probabilistic 
numerical calculations and can apply them to irregular and 
discontinuous distributions of matter (Rao et al., 2002; 
Broderick et al., 2005; Wishart et al., 2005; Morris et al., 
2010). Here we designed a particular new class of discrete 
spatial automata that can represent a set of complex, mobile, 
interacting forms whose evolution may schematically 
represent a phenomenon of interest; we use it to represent an 
autopoietic individual. 	  

 
Methods: Description of the morphautomaton 

 
Workspace, states, and transition rules  
The workspace in this automaton consists of a set of regularly 
arranged, adjacent tiles1. Each tile has a state, which is 
described as either empty or occupied. A tile is occupied, and 
thus called a particle, when it has at least one link. 
Conversely, an empty tile has no link. By definition, two 
particles cannot occupy a single tile.  

A link represents a directional association between 
particles. It belongs to one particle and indicates the position 
of a neighboring one2. The state description of the workspace 
is complete when each tile is known to be either occupied or 
empty, and, for each occupied tile, the orientation of each link 
is known. All information required to describe a workspace 
state can be acquired using only two distinct kinds of 
conditions: one refers to the number of links of a particle 
(isotropic conditions) and the other the orientation of a 
particle’s links (anisotropic conditions). An isotropic 
condition contains coordinates for a tile and a number, n. The 
number of links in the indicated tile is evaluated for 
equivalence to n. Further, this condition helps determine 
whether the tile is empty: empty space is defined by a number 
of links equal to zero. A positive anisotropic condition 
contains coordinates for a tile and an indicator of orientation, 
p. This condition assesses whether a link from the selected 
particle is oriented to p. Because of the possibility of 
superposition (i.e., a particle may have multiple links in any 
given orientation), a built-in mechanism considers whether 
there are superposed links. A negative anisotropic condition 
contains the tile coordinates and p, as above, and requires that 
no link is oriented toward p at the specified location. 

Each rule comprises a set of conditions that, when met, 
initiates operations producing a transition from one state to 
another (see Figure 1).  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 We avoid the word “cell” because of potential ambiguity 
with the biological meaning.	  
2 Typically, any tile indicated by a link is considered 
occupied; however, this restriction can be overcome: 
individual disconnected particles moving at random and 
containing an available link may then randomly attach to any 
aggregate. The connection will result in a change in shape 
and, potentially, identity of the aggregate. Thus, these 
disconnected particles could be used for representation of 
damage occurring to various materials, in some cases acting 
as a sort of “mutagen.”	  
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Figure 1. Example of a transition rule that describes simultaneous state change of two particles. A) The workspace above shows the 
neighborhood of the central cell (0,0). The space contains two dimensions, hexagonal tiling, and two non-orthogonal axes traveling west to 
east (x) and northeast to southwest (y). The central cell, a particle, contains a link (symbolized by the small triangle) facing east. East of 
(0,0) is another particle in (1,0), also containing a single link, this time oriented toward the west. The tile below, in (1,1), is empty. The 
states of other tiles are indifferent; these do not prevent or facilitate the application of a rule whose conditions permit identification of this 
situation. The following five conditions exist, whose order of evaluation is irrelevant: (a) number of links (0,0) = 1; (b) number of links 
(1,0) = 1; (c) number of links (1,1) = 0; (d) link (0,0) = East; (e) link (1, 0) = West.  In our example, all conditions are met, so the rule 
identifies the situation and thus can be applied. Several operations are then performed in a specific order: The tiles located in (1,0) and (1,1) 
are swapped using the operation [move]. The result of this translation is shown in B. Two [turn] operations then change the orientation of 
links of particles (0,0) and (1,1), which produces the result shown in C.  
 

A rule must contain at least one condition and one 
operation. Possible operations are either link rotations or 
particle translations. Link rotations re-orient one link of a tile 
from one direction to another. Particle translations exchange 
the contents of two tiles, adjacent or not. If one of the two tiles 
is empty and the other is occupied, a simple particle 
translation occurs. However, if both tiles are occupied, a 
double translation or permutation occurs. The numbers of 
links and particles are preserved. The number of links in a 
particle does not change. 

The conditions and operations of a rule do not apply to or 
affect the entire workspace, but only a particle and its local 
neighborhood comprising the tiles of interest. Rules must refer 
to the coordinates of the neighborhood to be evaluated and 
enacted. A selected particle represents the center of the 
neighborhood, and one of its randomly chosen links provides 
a reference orientation for this space. These selections define 
and orient the neighborhood. The choice of the central particle 
is made at random, and the automaton guarantees that all 
particles can be selected and none excluded. Each cycle of the 
automaton evaluates the same rule set in a different 
neighborhood. The cycle begins upon selection of a particle 
and one of its links, delimiting and orienting the 
neighborhood. Rules are then evaluated individually and 
sequentially3. If any one condition is not satisfied, that rule is 
rejected and the following one is evaluated. If all conditions 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  An important feature of this automaton is the addition of a 
random condition to decide between rules with identical local 
conditions. Sequential evaluation would normally cause the 
first of these rules to be applied and those following to be 
always ignored. The addition of a non-local random condition 
enables all concerned rules to be applied with equal 
probability. While rarely used, the random condition is 
essential for reproducing the randomness of some movements.	  

attached to a rule are met, then all operations of this rule are 
performed and the cycle ends. If all rules have been evaluated 
and none applies, then no state change occurs during this 
cycle. Once a cycle is completed a new cycle begins. During 
the evaluation of rules, each tile in the neighborhood can be 
evaluated for one or more conditions, and, when a rule has 
been satisfied, can be involved in one or more transitions. 
Importantly, tiles located outside the neighborhood remain 
unaffected by this process.  

In summary, the workspace contains particles of one-unit 
size that can be linked and all operations on these particles 
and their links are performed locally4. 

 
Aggregates 
Aggregates are groups of particles associated by connections 
(Figure 2). A particle is a full tile defined as having at least 
one link. Connections between particles are realized by the 
links between them. The simplest connection is achieved by 
one link between two particles; however, the number of links 
constituting a connection is unlimited. Links can also be 
superimposed (i.e., there may be multiple links in either 
direction between two adjacent particles). Additionally, the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  Multiple threads can work in parallel and asynchronously on 
the same workspace. This feature requires that each 
neighborhood is treated separately, thus no interference exists 
between them. Whether a single thread operates or multiple 
threads are simultaneously active, the system's history is 
constructed in random order. Thus, two successive 
experiments do not follow the same trajectory. Reproducible 
results therefore testify to the independence of the model in 
relation to the mechanics of the automaton. 	  
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Figure 2. Two aggregates in motion. One aggregate is a grouping of three particles (a "trimer") and the other is a "chain" that is not entirely 
visible in the neighborhood (dashed line added for visibility); the chain delimits two compartments. As the chain’s connections are 
asymmetrical, their orientation allows local identification of each of these compartments. Different movements apply to these two 
aggregates. The trimer, fully visible in the neighborhood, can be moved around by the action of a single rule; the long chain can only be 
distorted by any single rule. However, many successive distortions, performed at different locations, give the chain a full mobility in all 
directions. The transition from (A) to (B) does not alter the composition of the compartments, but the transition from (B) to (C), a transport, 
changes this composition because the trimer passes from one compartment into the other.  
 
connection is called “reciprocal” when each particle in a 
connection has at least one link pointing to its 
connectedneighbor. It is called “symmetrical” if the two 
particles run the same number of links to one another. 
Symmetrical connections are necessarily reciprocal.   

The smallest aggregate is a dimer, composed of two 
particles. Aggregate size is not limited by the tiling used or 
the automaton mechanism, but may be limited by the 
dimensionality and the extent of the available space. Further, 
aggregates can be of any regular or irregular shape: monomer, 
polymer, chain, ring, bifurcation, helix, knot, cavity, grain, 
rotor, stator, etc. A good choice of forms and rules can 
produce representations of many material properties: 
hardness, flexibility, elasticity, rigidity, fluidity, permeability, 
etc. These lists are not exhaustive. An aggregate’s size or the 
number and extent of its links are infinite. Further, basic 
forms can be disjointed or contiguous and combined in 
various ways. These features mean that this formalism 
provides open-ended possibilities of creating and combining 
elementary forms. 

The operations performed on aggregates are associations of 
the basic operations performed by the rules. They can produce 
movements (displacement or distortion), transformations, or 
transports (movements from one compartment to another). 

Movements can be translations, rotations, or combinations 
of both, and can be performed on the whole or a specifically 
identifiable part. They occur easily when the aggregate size is 
smaller than the neighborhood. When the aggregate size 
exceeds that of the neighborhood, however, it cannot be 
moved in its entirety by executing a single rule. However, 
such aggregates may be distorted. Carried out in multiple 
locations and repeated, distortions give large aggregates their 
mobility (Figure 2). The size of the neighborhood can be 
chosen according to the mechanical properties of the 
aggregates whose movements are to be represented. 
Each aggregate has an identity comprised of morphological 
local traits resulting from the unique pattern of its 
connections. The number of identifying properties is 
unrestricted and each identity can be evaluated by rule 
conditions.  For example, one chain may have a linear 
structure and asymmetric connections of just one link, while 

another chain may have symmetric connections, and another, 
asymmetric connections but with two or three links. As 
movements translate particles and reorient their links but 
never break connections, they always preserve the unique 
identity of each aggregate. By contrast, transformations 
always break at least one connection and reconnect some 
particles in another way, modifying aggregate identities. 
Transports preserve aggregate identities but move them from 
one compartment to another.  

In summary, 1) aggregates are groups of connected 
particles of various forms whose size is not limited; 2) each 
one has a specific connections pattern that enables its 
identification; 3) aggregates are localised (in a compartment 
or as a limit of a compartment); 4) they can be moved, 
transported, or transformed; 5) transformations and transports, 
but not movements, require aggregate identification; 6) 
movements conserve identity and localisation; 7) 
transformations break and re-establish links, modifying 
aggregate identity; and 8) transports respect their identity but 
modify their localisation. 

 
Summary 
The new type of discrete spatial automaton, which we call a 
"morph-automaton," (from ancient Greek morphè: form) is 
relevant because it allows the representation by means of a 
simple, single formalism of many forms moving and 
interacting in the same space. Indeed, while this formalism 
does not limit the diversity of these forms or the variety of 
operations that can be performed on them, the use of a unique 
rule structure enables automatic handling of the rules (editing, 
classification, presentation, optimization). 

A number of parameters can be adjusted without changing 
the principles that underlie morphautomata construction and 
design. These parameters primarily concern the general 
structure of the workspace: They define its number of 
dimensions and extent, the type of tiling used, the existence of 
edges and the representation of general strength fields (e.g., 
electromagnetic, gravitational). Some parameters concern the 
shape and size of the neighborhood. Others parameters 
include the number of links per particle and the scope of these 

A	   B	   C	  
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links—and, thus, the variety of possible connections. 
Adjustment of these parameters depends on the phenomena 
that the experimenter wishes to represent. Importantly, models 
with identical parameters can be combined. Such operations 
may be formalized. 

The variety of aggregates is unlimited, and, even 
constrained by the necessity of using discrete forms and 
limited neighborhood size, proper selection of these forms and 
of the operations that apply to them can produce schematic 
representations of a variety of complex heterogeneous 
materials. The experimenter chooses some of these forms and 
details when editing the initial state. He selects and describes 
their movements and interactions when writing rules. These 
choices depend solely on his assumption and the result he 
wants to achieve: it is his intention that gives logical 
consistency and value to the writing of the whole. Further, the 
experimenter is responsible for verifying the logical coherence 
of elementary conditions and operations composing each rule 
and their coherency with other rules and the state. 

If the rules associated with each aggregate allow movement 
in all directions, and the automaton uses a random selection of 
particles, then the motion of each aggregate, isolated or in 
relation with others, is permanent and random. 
Transformations, moreover, have some similarities with 
chemical reactions. Additionally, conservation and 

thermodynamic laws can be represented. Thus, this platform 
makes possible a schematic representation of certain physical 
and chemical properties of macromolecules in solution. 
 

Results: Autopoiesis 
 
Anatomy of the autopoietic individual 
Our automaton has been designed with the intent of 
representing an autopoietic individual moving at random 
within its environment. It makes use of five varieties of 
aggregates. First, we describe the initial state of our 
workspace for the positions of each instance of the five 
different types of aggregates used to build the autopoietic 
individual. This detailed and comprehensive description of the 
initial state is required by the automaton machinery for the 
representation to evolve, and it must be edited manually. 
Required characteristics are those that denote each aggregate’s 
identity, shape, and localisation.  

The individual is composed of a membrane enclosing an 
internal compartment (Figure 3). This membrane is a circular 
chain made of one-link particles each pointing at the next. 
Because of a unique sense of rotation, its inner and outer faces 
are locally identifiable, delimiting two compartments: internal 

  

 

 

 
Figure 3. (A) and (B) represent the same autopoietic individual and its environment in two successive snapshots. Each panel represents the 
same part of the workspace; the two-dimensional space is covered by a hexagonal matrix whose tiles are either empty or occupied. Full 
tiles, called particles, have a link, symbolized by a small triangle, which refers to another particle; they are thus associated to form 
aggregates. One of these aggregates is a circular chain, called a membrane, which delimits two compartments: internal and external. In 
these compartments are several small isolated aggregates consisting of two, three, or four particles. Aggregates of four particles can be 
found in the interior compartment only. Several small chains ranging in length from one to four particles are attached at the internal face of 
the membrane.  
The large hexagons, delimited by dots and located at the top right of each image, indicate the size of the neighborhood of a particle where 
evaluation of the rules occurs. (This part of the figure is superimposed with Figure 1A.) The particle at the center of this neighborhood was 
chosen randomly, and its link assigns the orientation during rules evaluation (black arrow, letter E see fig 1A). This particle is part of an 
aggregate consisting of two particles, called a dimer. (B) shows the new position of this aggregate after application of the rule.  
Comparison of  (A) and (B) shows the effect of many random movements of this type. The positions of most small aggregates have 
changed slightly. The membrane and small chains have been deformed and displaced, but their lengths are identical. The identity of each 
aggregate has been preserved, as no transformations occurred. The composition of each compartment was also preserved, as no transport 
occurred. Even if some traits of this abstract representation may evoke a living cell (which was the initial intention), it is definitely not one. 
This individual may only be an autopoietic representation: it has some very particular features that no real cell will ever have, and is not 
intended to represent other properties of real cells. 
 

A	  

E 

B	  
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Table 1: Summary of operations performed by the automaton.  
 

 
and external. Dimers, trimers, and tetramers are small 
aggregates, disconnected from others and made, respectively, 
of 2, 3, or 4 particles. As a particular characteristic of this 
model, tetramers are found only inside the 
internalcompartment; dimers and trimers are both inside and 
out. On the inner side of the membrane may be attached small 
chains comprising 1, 2, 3, 4 or more one-link particles.  

In summary, five varieties of aggregates are used in several 
instances in this representation: membrane, dimer, trimer, 
tetramer, and chain. Their relative localization and shapes are 
essential information.  

 
Physiology of the autopoietic individual 
We must now focus only on the transport and transformation 
of aggregates to understand how their concentration variations 
and interactions drive the dynamic self-maintenance of the 
autopoietic individual. Our example makes use of six 
transformations and two transports (Table 1). The small 
chains, on the inner side of the membrane, walk at random 
while remaining attached to the membrane. Because the 
membrane may wrinkle randomly, to the point where it is 
possible to remove one of its units while restoring its 
continuity, these chains gradually grow by taking a membrane 
unit whenever the membrane is folding next to them 
(transformation 1). Thus, this chain, initially one particle in 
length, elongates while remaining attached to the membrane. 
Once a sufficient size, the chain is transformed into a tetramer 
that is released into the internal environment (transformation 
2). The whole chain eventually disappears in this operation. 
When several tetramers are side by side, one of them is 
destroyed and transformed into two dimers (transformation 3). 
The membrane allows trimers to enter and dimers to exit 
(transports 1 and 2). In the external environment, a built-in 
mechanism transforms dimers into trimers. Further, when a 
trimer and a tetramer are simultaneously present near the 
membrane, the trimer is converted into a dimer and the 
membrane takes up the remaining particle; the tetramer is 
unchanged (transformation 4). When two trimers are 
simultaneously present near the internal side of the membrane, 
one of them is converted into a dimer, with the remaining  
 

 
 

 
particle producing a small chain (one-particle length) attached 
to the inner face of the membrane. The other trimer remains 
unchanged (transformation 5). When multiple small chain of 
one particle length are arranged side by side, two of them are 
moved aside and transformed into a dimer (transformation 6).  
 
Summary and further analysis 
The set of transports, transformations, and movements we 
have described allows each part of this “cell” (membrane, 
chains, dimers, trimers, tetramers) to be mobile, linked to 
others, and constantly destroyed and renewed by others. The 
whole moves randomly and keeps its size, shape, composition, 
despite changes in the external environment5. The observation 
that small aggregates move farther than large ones is an 
indication that this model approximates well Brownian 
motion. Two individuals simultaneously evolving in the same 
space maintain their separate identities. Consistent with our 
definition, this constitutes an autopoietic individual6.  

Why does this individual retain its size, shape, and 
composition? To answer this question, we must describe the 
scheme of regulations guiding our representation, which is, in 
fact, not specific to the representation above. Indeed, another 
manifestation hardware or virtual setup (e.g., a cubic matrix 
using other forms) could be regulated in exactly the same 
way.  

We established several controls for our model. First, 
synthesis of the membrane is regulated by the concentration of 
tetramers: the growth of the membrane depends on the 
presence of a tetramer, but tetramers are produced by the 
destruction of the membrane. Thus, membrane synthesis 
cannot occur without previous membrane destruction. The 
yield from the destruction of tetramers plays a key role in the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  As the individual state remains constant, we hypothesize that 
its global entropy (as a state function) remains unchanged, 
while that of the environment increases. The representation 
used here enables their precise calculation, but this has not yet 
been completed.	  
6	  A demonstration version and additional documents are 
available at https://sites.google.com/site/morphautomaton/.	  

  Action Conditions 
Transformation 1 membrane > chain  Membrane can wrinkle, its continuity can be 

ensured, a chain at least one-unit length is already 
there  

Transformation 2 chain > tetramer Chain length is almost four units long 
Transformation 3 tetramer > dimers Other tetramers are in proximity 
Transport 1 trimers entry  Enough space available, membrane flexible, no 

chains attached to the membrane locally 
Transport 2 dimers exit Enough space available, membrane flexible, no 

chains attached to the membrane locally 
Transformation 4 trimer > membrane (one unit) + 

dimer 
Only in the presence of a tetramer  

Transformation 5 Trimer > new chain (one unit) + 
dimer 

Only in the presence of another trimer 

Transformation 6 two chains one unit each > dimer Other one-unit chains in proximity 
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regulation of the size of the individual. If the efficiency of this 
reaction is increased slightly, the number of tetramers 
decreases. As the membrane synthesis reactions depend on the 
presence of a tetramer, they become more rare than the 
reactions of destruction. Accordingly, the size of the 
membrane decreases. Another effect appears then: as the 
destruction of the membrane is dependent on the quantity of 
available membrane, i.e., of its size, this reaction becomes less 
frequent. A new equilibrium is therefore established when the 
membrane has reached the size for which these two processes 
(construction and destruction) become balanced. 

Conversely, if we now decrease the efficiency of the 
reaction of destruction of tetramers, their concentration 
increases. Therefore, the membrane synthesis reactions that 
they facilitate become more frequent than the destruction 
reactions, and the membrane size increases. However, as this 
size is important, destruction reactions become more frequent. 
There again, a new equilibrium is established when the 
membrane has reached the size for which these two processes 
become balanced. 

Additionally, the four processes of synthesis, catabolism, 
inputs, and outputs are in competition with one another, since 
the membrane has a finite extent. Several parameters (e.g., the 
shape of the membrane, the available free space) may favor 
one process over the others. Finally, many other regulations, 
unexpected at first sight and unintentionally introduced, 
directly or indirectly modulate each transformation.  

The thermodynamic approach of Virgo and Harvey (2008) 
proposes a relationship between the amount of energy that can 
be extracted from the environment and the overall rate at 
which that energy is used. We searched within our model for 
such a relationship as a negative correlation between the 
“activity” of the cell (quantity of metabolic rules executed in a 
given amount of time) and the potential energy (trimers in the 
environment) available at the same time, but we did not 
observe this relationship. However, this first trial must be 
refined. 

This analysis is just beginning. Note, as in physiology, the 
existence of two kind of regulations whose evolution is either 
exponential or periodic; the latter probably limits the area 
where the former can grow.  

 
Discussion 

A schematic representation of autopoiesis was created using a 
new type of discrete spatial automaton, which is based on the 
principle of encoding functions through an extensive 
representation of abstract forms used here as symbols. The 
identities and localizations of these forms give a complete, 
static description of the system; the operations performed on 
them give a dynamic description of the system. While our 
intent was to represent autopoiesis, this platform is versatile 
and convenient for representing other biological or non-
biological phenomena, especially those observed in any 
complex population ranging from solutions of 
macromolecules to swarms or societies. 

Despite an as-yet incomplete analysis of this model, it 
conforms to our definition of an autopoietic individual: each 

of its parts is distinct, mobile, linked to the whole, and 
continuously renewed by one another. In contrast to previous 
models, the destruction of the membrane, renewal of the 
catalyst, transmembrane transports, and, therefore, the 
individual’s size are controlled by the individual itself. 
Additionally, in our model the continuity of the membrane is 
ensured; the membrane shape, length, and the internal density 
are effectors and subject to regulations. Indeed, this individual 
is “robust” since it can adapt to various environmental 
conditions. In accordance with McMullin’s criterion (2004), 
each individual remains distinct from another one. Thus, we 
have defined, demonstrated, and described a virtual 
autopoietic individual. This model represents an important 
advance in the field, as none of those properties existed in 
Varela’s initial model, where membrane destruction occurred 
spontaneously and the other parameters were not considered. 
Further, the original idea of boundary has been replaced by 
the less-restrictive idea of link. Finally, the concepts discussed 
here are not restricted solely to biochemistry but could apply 
to robotics or any other implementation. Presently, this work 
provides a reference point for the representation of other 
individuals, their comparisons, their comprehensive 
“physiological” analysis, the research of a rigorous definition 
and formalization of autopoiesis, and the potential to 
undertake the study of the relationship of autopoeisis to other 
biological properties. This work was developed with a 
bottom-up approach. The utility of our platform in 
representing essential interactions of real systems must now 
be evaluated via a top-down approach. 	  

The purpose of this work was to generate a system, devoid 
of any emergent property, which could be fully analyzed and 
controlled. This aim is significant, as clinicians or engineers 
cannot use devices that may produce some emergent 
properties beyond their control. Even with an incomplete 
analysis, we have, indeed, achieved some control in our 
model. Approaches that aim to produce, starting from scratch, 
real biological artificial systems potentially able to generate 
new emergent properties (Rasmussen et al., 2003) or to 
observe the apparition of emergent structures in virtual 
systems [i.e., Conway’s Game of Life (Beer, 2011) or Swarm 
Chemistry (Sayama, 2009)] have a different goal: Their aim is 
to reproduce properties of interest or to explore or generate 
new ones, but not, at first, to fully explain or control them. 
Therefore, an analytic phase is necessary before any 
application of these works can be envisioned. 

To consider more fully how this work may be developed 
and its usefulness as a tool for theoretical analysis, we must 
place it in context. At the present time, only partial 
representations of some biological properties are attainable. A 
complete representation of any living body⎯even the 
smallest⎯with enough definition that the movements of its 
molecules reproduces its biological properties is out of reach 
as molecular dynamic simulations require months of 
computing time to calculate the movements of a small protein 
during 1 millisecond (Broderick et al., 2005; Shaw et al., 
2010). As a consequence, any representations of known 
biological structures faces the granularity problem: one must 
decide what real object each bit or tile will represent, creating 
a potentially endless hesitation between atoms or macro-
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structures. Another problem, once this choice has been made, 
is the lack of compatibility between the representations of 
several different properties resulting from different analyses, 
which makes their re-combination impossible to study later 
(Hucka et al., 2003). The abstract representation proposed 
here is a consequence of these constraints: it aims to minimize 
the representation of the structures using a set of abstract 
forms⎯similar to symbols⎯to capture the essentials of the 
real network interactions. 	  

Notably, four distinct languages were successively 
constructed in this work (three used here, one remains to be 
attained). The first deals with the basic representation of space 
(tiles containing links and associated operations) and offers 
only the possibility of combining them to represent more 
elaborate forms. The second language deals with this 
potentially limitless set of complex forms (made of 
combinations of tiles and links) and the operations performed 
on them (identification, movement, transformation, transport). 
The third language deals with the schematic representation of 
the system. The only information the symbols in this language 
should carry is their identity and localisation. The operations 
describe their movements and possible transports and 
transformations. The fourth should describe, in their simplest 
forms, the laws common to any similar system (here, all 
autopoietic individuals sharing the same set of regulations). 
As there exists the possibility to combine several 
representations developed within the same parameters, our 
platform could be convenient to individually represent distinct 
properties of biological systems as well as combinations of 
them. 	  
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Abstract

One of the most important characteristics observed in
metabolic networks is that they produce themselves. This
intuition, already advanced by the theories of Autopoiesis
and (M,R)-systems, can be mathematically framed in a weird
looking equation, full of implications and potentialities:
f(f) = f . This equation (here referred as Ouroboros equa-
tion), arises in apparently dissimilar contexts, like Robert
Rosen’s synthetic view of metabolism, hyperset theory and,
importantly, untyped lambda calculus. In this paper we sur-
vey how Ouroboros equation appeared in those contexts, with
emphasis on Rosen’s (M,R)-systems and Dana Scott’s work
on reflexive domains, and explore different approaches to
construct solutions to it. We envision that the ideas behind
this equation, a unique kind of mathematical concept, initially
found in biology, would play an important role towards the
development of a true systemic theoretical biology.

Introduction
Ouroboros (also written Uroboros), the ancient symbol of
the snake eating its own tail, is often taken nowadays to
represent self-reference and circularity. In this vein we
call in this paper ”Ouroboros equation”, the ultimate self-
referential equation f(f) = f .

Notice that f (supposedly a function) applies to itself, as
an argument, the result being again f . So f plays simulta-
neously the roles of argument, function and value.

Recall that equation solving in mathematics has a long
history, beginning with equations like 2x = 1, x + 3 = 1,
up to x2 = 2 and x2 = −1.

Each of these equations was solved introducing new
species of numbers, some of them meeting strong resis-
tance, like negative and imaginary numbers. Indeed meth-
ods developed to construct the irrational

√
2 and the imag-

inary
√
−1 may serve as metaphors to tackle the bigger

and subtler challenge of constructing somehow solutions of
Ouroboros equation x(x) = x. Since this equation suggests
that x should be some sort of function, we will write it

f(f) = f.

in the sequel. However the main motivation to consider
Ouroboros equation did not arise from everyday mathe-
matics proper. It arose from various fields ranging from

Logic and Computer Science to Theoretical Biology. For
these reasons, we call ”Ouroboros avatars”, the various
manifestations or ways in which Ouroboros equation has
emerged in different domains (although ”avatar” means
in fact ”descent” in Sanskrit). We have then avatars of
Ouroboros in Logic (Löfgren, 1968; Scott, 1972, 1973), Hy-
perset Theory (Aczel, 1988), Cognitive Sciences (Kampis,
1995; Kauffman, 1987), Computer Science and Informatics
(Scott, 1972; Kampis, 1995; Milner, 2006), Systems The-
ory and Theoretical Biology (Rosen, 1991; Soto-Andrade
and Varela, 1984; Maturana and Varela, 1980; Letelier et al.,
2006, 2005), and others, that we review in the next sections.

A most remarkable fact, commented below, is the sim-
ilarity of methods of constructing solutions to Ouroboros,
developed in fields apparently as unrelated as logic (Scott,
1972, 1973) and metabolic systems theory (Letelier et al.,
2006, 2005), motivated by the construction of actual mathe-
matical models for untyped lambda calculus and virtual in-
finite regress in metabolic systems, respectively.

Ouroboros is not an oxymoron
To begin with, it can be proved that Ouroboros is not an
oxymoron, i.e. that the existence of an object f such that
f(f) = f , belonging to its own domain and range, is not
logically inconsistent (Löfgren, 1968; Kampis, 1995). It had
been argued nevertheless that this was impossible (Wittgen-
stein, 1961) or paradoxical (Rosen, 1959). Instead, it turns
out that an atomically self-reproducing entity can be ax-
iomatized, and in this sense it really does exist (Löfgren,
1968). In fact Löfgren (1968) has shown that the axiom of
complete self-reference is independent from usual set the-
ory and logic, and can therefore be added to it as a new
primitive axiom, that it is impossible to derive from the
other axioms. Solutions to Ouroboros, as Quine’s atoms
Q = {Q} (Quine, 1980), appear then as completely self-
referential, inapproachable, a perfectly closed class in itself
(Kampis, 1995). Varela takes a similar stance, when he in-
troduces self-referentiality from scratch as a third mark for
self-indication or autonomous value (Varela, 1975), extend-
ing the indicational calculus of Spencer Brown (1969), and
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later as a third logical value, besides true and false (Varela,
1979; Kampis, 1995).

Our viewpoint is however that Ouroboros lives indeed
outdoors, with respect of our usual logical - mathematical
realm, but just outside, in front of the door, say, so that it can
be approximated stepwise ” from within”. This intuition has
been captured to a great extent, in different guises, in Scott
(1972, 1973); Soto-Andrade and Varela (1984), in Varela’s
further work (Varela and Goguen, 1978) and in Letelier et al.
(2006), as we explain below.

Ouroboros in Self-referential formalisms
As already said, Ouroboros equation f(f) = f involves
self-reference, or more precisely, recursion (for a system-
atic overview of fields that deal with different forms of self-
reference see Kauffman (1987)).

An interesting notion of recursion arises when dealing
with its operative issues. This approach, linked with the the-
ory of computing, has a strong relationship with the notion
of application. It is not surprising that formalisms for ab-
stracting the notions of function and program, like lambda
calculus and the theory of recursion, are at the center of these
developments.

The paradigmatic theory of functional application is the
simple lambda calculus (i.e. with no distinction of types)
(Barendret, 1984), introduced by Church (1951). In the un-
typed lambda calculus the equation f(f) = f has a trivial
solution: λx.x, that is, the identity function. The crucial
point here is the absence of typing, something that cannot be
realized with the identity function in classical mathematical
structures (like vector spaces, groups, etc.), where argument
and function belong to different types.

The very essence of the power of this formalism resides
in that it overcomes the traditional mathematical notion of
function as a set of pairs (input, output), by focusing in-
stead on the composition and evaluation of functions. So for-
malisms like the lambda calculus are much better suited for
the formalization of fields where the process of evaluation is
most relevant or even the core of the the phenomenon itself.
Lambda calculus was disregarded by the logical and mathe-
matical communities until the seventies. What brought their
attention to lambda calculus was the work of Dana Scott pro-
viding mathematical models for this formalism. The idea is
simple (not so much its implementation however...): finding
spaces where these objects (lambda terms, that is, general-
ized functions) may live. To see the difficulties, let us exem-
plify the hierarchy of objects that can be created from a set
U : functions with zero parameters (these are the elements of
U ); functions with one parameter, that is, f : U → U ; func-
tions with two parameters, g : U × U → U and so on. All
of them can be expressed in lambda calculus, that is, they
should be elements of the wanted space D. In particular, in
this typeless environment it should be possible to apply a
function f : D → D to itself, as another element of D.

It is worth reviewing the basic construction in Scott (1972,
1973), where continuity and limits play a central role, by
restricting the universe of functions to be considered. The
central question is:

“Are there nontrivial spaces D that can be identified (as
topological spaces) with their function spaces [D → D],
consisting of all continuous functions from D to D?”

Scott showed that indeed there are many of them, and
called them “reflexive domains”. His idea was to start with a
spaceD0, with suitable properties (e.g. a continuous lattice),
and try to identify its function space D1 = [D0 → D0] with
D0. A difficult task indeed, but we may notice that D0 can
be embedded in D1, by identifying each element d0 ∈ D0

with the constant function in D1 with value d0, and also that
D1 can be projected onto D0 by sending each (continuous)
function d1 ∈ D1 to its minimum value d1(⊥) (where ⊥ is
the least element of the complete lattice D0). Call i0 and
p0 the embedding and the projection so defined. This al-
lows us to embed in a clever way D1 = [D0 → D0] into
D2 = [D1 → D1], by sending each d1 to i0 ◦ d1 ◦ p0 and -
dually - to project D2 onto D1 by sending d2 to p0 ◦ d2 ◦ i0
and so on, to obtain iteratively a double chain of embeddings
from Dn into Dn+1 = [Dn → Dn], and projections from
Dn+1 onto Dn, for all n. We obtain then the wanted reflex-
ive domain as the limiting spaceD∞ of this double sequence
of continuous maps between continuous lattices.

Regarding our interest here, the later result shows that
there is a space where Ourboros equation at least makes
sense, i.e it “types”. To the best of our knowledge, Scott
did not consider this equation explicitly, although several
notions of his come close to it.1

Scott’s construction inspired the limiting construction of
a self-referential extension of Spencer Brown (1969) calcu-
lus of indications by Varela and Goguen (1978), where they
endow the collection of all forms that can be constructed in
Brown’s setting with the same sort of structure that Scott
(1972) considered, i.e. chain complete partially ordered sets
(posets). In their setting fully self-referential equations like
Ouroboros’ would have solutions. That is a different way to
extend Brown’s setting that the one in Varela (1975).

Scott’s construction also inspired later the construction
of reflexive domains in the context of posets and monotone
mappings with suitable continuity properties, carried out in
Soto-Andrade and Varela (1984), where the relationship be-
tween the existence of fixed points and several instances of
self - reference is also discussed (notice that a reflexive do-
main D is a fixed point for the function D 7→ [D → D]).

Another formalism where Ouroboros equation arises nat-
urally is hyperset theory (also called non well founded set
theory). Hypersets constitute an extension of usual set
theory, that allow sets to be members of themselves, like
Quine’s atom Q = {Q} (Quine, 1980; Aczel, 1988). We

1See for example Proposition 3.14 in Scott (1972)
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meet among them baby Ouroboros like f = {(f, f)} =
{{f, {f}}}, that satisfy f(f) = f , if we identify the func-
tion f with its graph and choose the usual set theoretical
model {a, {b}} for ordered pairs (a, b).

As discussed in Löfgren (1968) and Kampis (1995), self-
reference is closely tied to language. Hence it is not surpris-
ing that formalisms that allow to break the classical hierar-
chies between language and metalanguage, or as in hyper-
sets, between container and containee, can provide solutions
to the Ouroboros equation. Up to now however, these for-
malisms do not seem to have been meaningfully exploited in
the context of biological self-reference and circularity (see
Cárdenas et al. (2010) more a more detailed survey).

Ouroboros in (M,R) systems: Infinite regress
face to face

We turn now to Rosen’s synthetic insights regarding
metabolic circularity, that he developed completely indepen-
dently of Scott (for a comprehensive survey of references
about Rosen’s work see Cárdenas et al. (2010)). In his for-
malism of (M,R) systems, the collective action of the thou-
sands of catalysts in a metabolic network M coalesces into a
single mapping f from A, the collection of all sets of reac-
tants, to B, the collection of all sets of products, that trans-
forms inputs a ∈ A into outputs b = f(a) ∈ B.

But in any metabolic system, catalysts are subject to
degradation, wear and tear, and therefore need to be regen-
erated or replaced by the system. To meet this requirement,
Rosen looked upon the replacement mechanism as a proce-
dure, denoted by Φ, that, from a suitable b = f(a) ∈ B
as input, reproduces f according to Φ(b) = f . Because
the net effect of Φ is to select from the relatively large set
H(A,B) ⊂Map(A,B), of all possible metabolisms, a spe-
cific f such that f(a) = b, using b ∈ B as an input, Rosen
calls it a selector. Thus, the procedure Φ representing re-
placement appears as a map from B to H(A,B).

Then an (M,R) system has the following algebraic de-
scription based on two mappings f,Φ acting in synergy:

A
f−→ B

Φ−→ H(A,B)

a 7−→ f(a) = b 7−→ Φ(b) = f

But now, it is possible to go further and demand the sys-
tem to be capable of replacing the replacer, or selector, Φ: a
replicative (M,R) system in Rosen’s terminology (this prop-
erty is also referred as organizational invariance (Cárdenas
et al., 2010)). More precisely, Φ should be generated with
the help of a procedure that, given a metabolism f , pro-
duces the corresponding Φ that selects metabolism f , that
is a mapping β : H(A,B) −→ H(B,H(A,B)) such that
β(f) = Φ, and so on. . . The big question is then, how can
this be, without implying infinite regress?

Rosen’s solution to avoid infinite regress, was to posit that
the equation Φ(b) = f is to have only one solution Φ (a

most demanding constraint indeed!) so that the mapping
β sends f to this unique selector Φ. In other words, β is
“just” the inverse of the “evaluation at b” operator (acting
on functions whose domain contains b) so that no further
procedure is needed to construct β itself. It is in this sense
that Rosen claims that his construction solves the problem of
infinite regress. Rosen was however unable to give concrete
examples where this hypothesis was fulfilled.

The operation of an organizationally invariant (M,R) sys-
tem can therefore be viewed as three mappings (f,Φ, β) act-
ing in synergy:

A
f−→ B

Φ−→ H(A,B)
β−→ H(B,H(A,B))

f(a) = b, Φ(b) = f, β(f) = Φ.
where β is the inverse of the “evaluation at b” operator.

Now, if instead of shunning infinite regress, as Rosen did,
we look at it ”face to face”, a recursive construction emerges,
whose first step is motivated by the question:

If you have a map f : A → B, can you find a new map
f1 : B → C such that for a suitable a ∈ A you have
f1(f(a)) = f or, equivalently f1(b) = f ; b = f(a)?

Of course, the answer to this question, taken at face value,
when A, B and C are plain (unstructured) sets and f and
f1 are set mappings, is ”Obviously, yes”, since you have
plenty of maps from one set to another which take a pre-
scribed value on a given point. Just take C to be the set
Map(A,B) of all mappings from A to B and f1 to be
any mapping from B to C such that f1(b) = f.

However this question becomes more intelligent when
stated in a categorical framework, typically when we con-
sider our sets endowed with some sort of structure and have
our maps preserve this structure.

Then, if we take our structured sets to be vector spaces,
our maps would be linear; if our sets are posets (i.e. par-
tially ordered sets), our maps ought to be monotone (or-
der preserving). If our sets were endowed with a metric,
or distance, then our allowed mappings might be continu-
ous, or even “isometric”, i. e. “distance - preserving” map-
pings. Structure preserving mappings are usually called “ho-
momorphisms”. For instance, the homomorphisms between
vector spaces are linear mappings.

Now we can state the categorical version of our question:
In a category (of structured sets and structure preserving
mappings, say), given a homomorphism f : A → B, can
you find a new homomorphism f1 : B → C such that for a
suitable a ∈ A you have f1(b) = f, where b = f(a)?

The subtlety now lies in the fact that to carry over our ob-
vious set theoretical solution to the categorical setting, we
need to find among all mappings f1 such that f1(b) = f,
one which is well behaved enough to be a homomorphism
from the structured set B to another structured set C. We
would be happy then to know that the set H(A,B), consist-
ing of all homomorphisms from A to B, may be endowed
with the same (type of) structure than A and B. If it is the
case, we would take C to be H(A,B), and we would be
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all set up to seek a homomorphism f1 from B to C =
H(A,B), which takes the value f at point b ∈ B.

Recall now that Rosen, to avoid infinite regress, posited
the uniqueness of such a function f1, called Φ in his setup
(Rosen, 1991; Letelier et al., 2006).

It is clear however that in the category of sets, where the
existence of such an f1 is obvious, uniqueness is impossible
(unless B is a singleton). Nevertheless, if you change the
underlying category (i.e. the stage for the problem) so as to
have a category whose sets of homomorphisms H(X,Y )
are much smaller than Map(X,Y ), i.e. become more and
more selective, existence may become less and less obvious
and uniqueness may become more and more possible.

We may hope then for the existence of a turning point in
the choice of our category, at which the sets of homomor-
phisms H(X,Y ) would have the right size so as to have
simultaneously existence and uniqueness of our homomor-
phism f1. Rosen’s dream was that such turning points (or
better, turning categories) exist, where his hypothesis would
be fulfilled! They might indeed be dubbed “metabolic cate-
gories.”

If we look however infinite regress face to face and we do
not care about uniqueness, we could continue our construc-
tion above forever, in the spirit of Soto-Andrade and Varela
(1984) under a mild hypothesis of existence of our homo-
morphisms f1, in the framework of a concrete category C, i.e
a category of structured sets and structure preserving maps
(the only ones that we will consider in this article).

Hypothesis 1. (Existence of “replacing homomorphisms”)
We assume that given any homomorphism f : A → B in

our concrete category C, we can choose a ∈ A such that
the following hold:
- there exists a homomorphism f1 : B → H(A,B), such
that f1(f(a)) = f (we say then that a ∈ A is an f−generic
element),
- there exists a homomorphism f2 : H(A,B) →
H(B,H(A,B)), such that f2(f1(f(a))) = f1 (i.e. f(a) is
f1 − generic), and so on...

Notice that this hypothesis requires implicitly that, A
and B being any objects in C, the set of homomorphisms
H(A,B) should also be an object in C , i.e. it can be en-
dowed with the same structure as A and B. Also, simple
examples (see below) show that it is not to be expected that
every a ∈ A be f−generic for a given f : A→ B.

Example 1. In the category of (finite dimensional) vector
spaces and linear mappings, our hypothesis is clearly ful-
filled. Indeed, if f is the null mapping 0, we just take a = 0
and f1, f2, ... to be 0 all the way. If f 6= 0, take a to be
any non zero vector in A, such that f(a) 6= 0 and then f1

to be any linear mapping from B to H(A,B) sending f(a)
to f, f2 to be any linear mapping sending f to f1, and so
on. These (non zero!) linear maps exist recursively by the
well known elementary “linear extension property” for finite

dimensional vector spaces, saying that you can always con-
struct linear mappings from one vector space V to another
that take a prescribed value at a given non zero vector in V .

Example 2. In the category of additive groups and addition
preserving maps, we take A = B = Z+

3 , the set of integers
0, 1, 2 mod 3 endowed with the operation + of addition
mod 3. Notice that 1 + 1 + 1 = 0 mod 3. Then H(A,A) =
{ha|a ∈ A} ' A, where ha is the “scaling map” with ratio
a, that sends b to ab (b ∈ A), which we identify with
a ∈ A, writing ha = a. So we identify the mapping ha
with its value a at 1. The set H(A,A) endowed with the
operation of addition of mappings is also an additive group,
isomorphic to A, and ha + hb = ha+b (a, b ∈ A).

If we take now f to be the null mapping h0 = 0, we see
that for any a ∈ A, every f1 : A → H(A,A), satisfies
f1(f(a)) = f, since f1(f(a)) = f1(0) = 0 = h0 = f.
Hence any a ∈ A is h0 - generic and we may take f1 to
be h0, h1 or h2 (i.e. such that f1(1) = h0, h1 or h2).
The choice of f1 becomes relevant when we go one step
further, asking now for a homomorphism f2 : H(A,A) →
H(A,H(A,A)) such that f2(f) = f1. In a diagram:

A
f→ A

f1→ H(A,A)
f2→ H(A,H(A,A))

a 7→ f(a) 7→ f 7→ f1

Indeed, since f = h0, we have that necessarily f2(f) =
f(0) = 0 = h0, so f is f1−generic only for f1 = h0,
but not for h1 or h2. On the other hand, if we begin with
f = h2 instead of h0, then for any non zero a ∈ A, we
find a unique f1 : A → H(A,A) such that f1(f(a)) = f,
since the equation amounts to f1(2a) = 2, i.e. x2a = 2, i.e.
x = a−1, if we write f1 = hx. So every non zero a ∈ A is
f−generic in this case but 0 is not, since f1(f(0)) = h0.

Applying now our hypothesis recursively, we can con-
struct the following infinite sequence of homomorphisms
(and objects) in our concrete category C, issued from any
homomorphism C0

Φ0→ C1 in C :

C0
Φ0→ C1

Φ1→ C2
Φ2→ C3

Φ3→ ...
Φn−1→ Cn

Φn→ Cn+1
Φn+1→ ...

c0 → c1 → c2 → c3 → ... → cn → cn+1 → ...
satisfying the following:

C2 = H(C0, C1), ..., Cn+1 = H(Cn−1, Cn)
so that Φn ∈ H(Cn, Cn+1) = Cn+2,

Φ1(Φ0(c0)) = Φ0 for a suitable c0 ∈ C0,
Φn(cn ) = cn+1 ∈ Cn+1 (n ≥ 0) and

Φn+1(Φn(cn)) = Φn for all n ≥ 1;
Notice that to have consistent notations, we have renamed
A to C0, B to C1, C to C2; f to Φ0, f1 to Φ1.
Moreover, since Φ0(c0) = c1 we have Φ0 = Φ1(c1)) =

c2, and inductively,
Φn = Φn+1(Φn(cn)) = Φn+1(cn+1) = cn+2 (n ≥ 0),

in other words, cn = Φn−2 for all n ≥ 2, so that
Φn+1(Φn(cn)) = Φn+1(cn+1) = Φn+1(Φn−1) = Φn,

showing how the homomorphisms Φn play here alterna-
tively the role of argument, function and value...
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We have then three different but equivalent ways to state
the recursive relationship between the Φn’s:

1. Φn+1(Φn(cn)) = Φn
2. Φn+1(Φn−1) = Φn
3. Φn+1(cn+1) = Φn
Remark now that the last one may be written

evcn+1(Φn+1) = Φn
in terms of the “evaluation at x” mappings evx : f 7→ f(x).
So the following “reverse” sequence of mappings and ele-
ments emerges, where each Cn “projects” onto Cn−1 :

C1

evc0←− C2

evc1←− C3

evc2←− ..
evcn−2←− Cn

evcn−1←− ...

c1
evc0←− Φ0

evc1←− Φ1

evc2←− ... evn−2←− Φn−2

evcn−1←− ...
This sequence of evaluation maps evcn forms what math-

ematicians call a projective (or inverse) system of mappings.
In the category of sets and mappings, every such system of
mappings, call it
C1

p1←− C2
p2←− C3

p3←− ... pn−1←− Cn
pn←− Cn+1

pn+1←− ...

has a (projective) “limit”, which is rigorously characterized
as the set C∞ consisting of all sequences (c1, c2, ..., cn, ...)
of “coherent” choices of elements cn ∈ Cn (“coherent”
meaning here that each cn “projects” onto cn−1, i.e.
pn−1(cn) = cn−1). This projective limit set C∞ “projects”
also in a natural way onto each Cn, sending each sequence
to its n−th term cn. Intuitively, this construction allows us
to get hold as elements in the limit set C∞, of “mythical” or
“ideal” objects” that cast a series of approximating down to
earth ”shadows” (the cn’s). In concrete categories we may
expect moreover that the structure we have on all Cn’s will
carry over to the limit set C∞, which will become then a
bona fide object in our category, projecting itself by homo-
morphisms onto each Cn.

Disgression: A baby projective limit. To convey a better
insight into projective limits, we recall here a baby example
from Soto-Andrade and Varela (1984), that highlights their
elementary set theoretical nature.

Consider the increasing nested sequence of finite sets
Cn = {1, 2, ..., n} (n = 1, 2, 3, ...),

whose union is the set N of all natural numbers. This se-
quence of sets becomes a projective system if we “project
downwards”, or “contract inwards” each Cn+1 onto the
smallerCn by sending everym ≤ n to itself and n+1 to n.
Call these projections (or contractions) pn. So on Cn+1 we
have pn(n) = n = pn(n+ 1). The projective limit C∞ can
be intuited now as the set of all numbers in N plus an extra
“mythical boundary point” +∞, situated at the far right of
all natural numbers.

Indeed, going back to the precise definition of C∞, we
see that the points m ∈ N appear as “limits” of the se-
quences of coherent choices (1, 2, ...,m − 1,m, ...,m, ...)
that after a while “stutter” indefinitely or become “constant”.
But we also have the coherent chain of choices given by
1 ∈ C1, 2 ∈ C2, 3 ∈ C3, and so on. Notice that each
m ∈ Cn is the “ancestor” of the preceding m− 1 ∈ Cm−1.

This sequence of choices represents then our “mythical far
right boundary point” +∞, whose n−th projection is n.
Analogously, we may obtain {−∞} ∪ Z ∪ {+∞} as a pro-
jective limit. This shows concretely how the projective limit
allows us to get hold of “mythical” or “ideal” objects that
cast a a series of approximating down to earth ”shadows”.

Recall that also fractals, a paradigmatic example of
”mythical shapes”, may be looked upon in this way, as pro-
jective limits of everyday shapes (loc. cit.).

Properties of the limit objects C∞ and Φ∞. The coher-
ent sequence Φn in the system of evaluation maps evcn is
an element of the projective limit C∞. We call it Φ∞ and
we write Φ∞ = lim

n→∞
Φn to convey the intuition that Φ∞ is

a kind of ”limit” of the Φn’s as n tends to ∞. Notice that
this quite analogous to the way in which a “rational” person
constructs

√
2 with the help of Cauchy sequences of ratio-

nal numbers. Now, intuitively, by passing to the limit as n
tends to∞ in the recursive relation Φn+1(Φn−1) = Φn we
obtain the stunning self referential equation

Φ∞(Φ∞) = Φ∞,
saying that Φ∞ is a solution to Ouroboros equation!

Analogously, making n tend to ∞ in the equation
Cn+1 = H(Cn−1, Cn), we get

C∞ = H(C∞, C∞),
so that C∞ is a reflexive domain, as in Soto-Andrade and
Varela (1984). We will not go here into the rigorous justifi-
cation of this passage to the limit, since it involves a more
precise description of Φ∞ as a mapping in H(C∞, C∞),
taking into account the double system of mappings Φn :
Cn → Cn+1 and evcn : Cn ← Cn+1, as in Scott (1972).

Apparently no mathematician imagined this recursive
procedure to construct solutions of Ouroboros equation be-

fore Rosen introduced his A
f→ B

Φ→ H(A,B) setup as
a formal description of metabolism (Rosen, 1958; Letelier
et al., 2005) . Notice that this construction is quite different
although formally analogous to Scott’s (Scott, 1972, 1973).

An arithmetical avatar of Ouroboros. Generalizing ex-
ample 2 above, we put C0 = C1 = A = Z+

m , the set of
integers 0, 1, 2, . . .m − 1 mod m, endowed with the oper-
ation + of addition mod m. Then C2 = H(A,A) =
{ha|a ∈ A} ' A, where ha : b 7→ ab for all b ∈ A and
we identify as before each ha with a. We endow H(A,A)
with the operation of addition of mappings.

Now, since recursively H(A,A) ' A,
H(A,H(A,A)) ' H(A,A) ' A,

H(H(A,A), H(A,H(A,A))) ' H(A,A) ' A
and so on, we have that all Cn are isomorphic to A.

To identify the mappings Φn we need then only to solve
multiplicative equations ax = b mod m in A. If m = 3, as
in example 2 we choose c0 = 1 mod 3 and Φ0 = h2 = 2.
Then c1 = 2 and Φ1 = h1 = 1, and our coherent sequence
begins 1

h2← 2
h1← 2. Next, we must look for Φ2 such that
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Φ2(2) = h1, i.e. for a ∈ A such that a · 2 = 1, so a = 2.
It follows recursively that our sequence will look like

1
h2← 2

h1← 2
h2← 1

h2← 2
h1← 2

h2← 1
h2← 2

h1← 2
h2← . . .

so, intuitively, Φ∞ is the “limit” of this “wave like” oscil-
lating sequence, although formally Φ∞ is this sequence.

Notice also that our sequence Φ∞ is a multiplicative ana-
logue mod 3 of the ubiquitous Fibonacci sequence: Instead
of cn+1 = cn+ cn−1 we have cn+1 = cn · cn−1 mod 3.

If we take now m = 10, for instance, and we put c0 = 3
and Φ0 = h9, so that c1 = 7, we find recursively that Φ∞ is
embodied in the projective sequence

3
h9← 7

h3← 9
h7← 7

h9← 3
h7← 9

h3← 3
h9← 7

h3← 9
h7← 7

h9← 3 . . .

Translating back into Rosen’s original terminology, we
have here a = 3, b = 7, f = 9, Φ = 7, but β = (evb)

−1 =
3, the inverse of b. So β may be reasonably identified with
b−1 but not with b, as pointed out in Cárdenas et al. (2010).

A linear avatar of Ouroboros. We sketch here a linear ex-
ample where sets of “metabolites” are vector spaces instead
of integers modulom, so that structure preserving mappings
are linear. We denote by Mm,n the set of all real matrices
with m rows and n columns, identified as usual with linear
mappings from Rn to Rm. We put

C0 = R2 = M2,1, c0 = ( 1
0 ) , C1 = R = M1,1

and Φ0 = ( 1 0 ) (the first projection of R2 onto R1). Then
we find recursively
c1 = 1;C2 = H(C0, C1) = M1,2 ' R2; c2 = Φ0 = ( 1 0 );
Φ1 = ( 1

0 ) , since Φ1(c1) = Φ0;

C3 = H(C1, C2) = M2,1 ' R2; c3 = ( 1
0 ) ; Φ2 = Id2 ∈

M2,2 or any matrix with first column ( 1
0 ) ;

C4 = H(C2, C3) = M2,2 ' R4; c4 = Φ2, Φ3 being any

matrix with first column
(

1
0
0
1

)
if Φ2 = Id2;

C5 = H(C3, C4) = M4,2 ' R8, and so on, where we iden-
tify matrices with row or column vectors reading their co-
efficients as usual text. Notice the recursive multiplicative
Fibonacci rule dn+1 = dn · dn−1 for dn = dim Cn.

Notice that Rosen’s demanding assumption on the invert-
ibility of the evaluation at b(= c1) is satisfied in the arith-
metical realization above, where in fact all evaluation maps
are invertible. In the linear example, the map evc1 is still
invertible, although the subsequent evaluation maps are not.
In particular, any 2 × 2 matrix with first column ( 1

0 ) would
do as Φ2.

Ouroboros in Autocatalytic Sets
Here we will approach Ouroboros equation in the spirit
of Jaramillo et al. (2010), where attempting to relate the
theories of (M,R) systems and Replicative Autocatalytic
Sets (Hordijk and Steel, 2004), a framework for treating
molecules as operators was proposed. We will use here the
term “metabolism” as synonym of “metabolic network”.

We look upon a metabolism as a directed graphM whose
set of nodes P (X) is the collection of all subsets of the setX
of all metabolites and catalysts involved in the metabolism
and whose set of arrows R is given by the reactions A →
B in the metabolism (A,B ⊂ X). Molecules x in X not
produced by the metabolism are coded as reactions of the
form ∅ → x, where the empty set symbol ∅ stands for the
environment seen as a virtual molecule. We assume further
that every metabolite x ∈ X appears in the target of some
arrow inM. Catalysts are defined by a mapC : R→ X that
assigns a molecular identity to the catalyst of each reaction
in R. Of course, we assign the empty catalyst ∅ to any arrow
(reaction) with source ∅.

A premetabolismM′ of the metabolismM is generated
by a subset X ′ ⊂ X , by taking P (X ′) as the set of nodes of
M′ and all arrows inM whose source lies in P (X ′), as its
set of arrows.

There is now a natural sense in which a premetabolism
M′ may be applied to itself, giving raise to a new
premetabolism noted M′yM′: look at M′ and just carry
out every possible reaction indicated byM′; then collect all
the resulting metabolites together to form the metabolite set
X ′′ of the premetabolismM′yM′.

Ouroboros avatar in this context reads then
M′yM′ =M′

To illustrate this formalism let us introduce a simple
molecular system which is an (M,R) system and a Replica-
tive Autocatalytic Set, taken from Letelier et al. (2006):

S + T
STU−−−→ ST

S + U
STU−−−→ SU

ST + U
SU−−→ STU

This defines a metabolism M based on X =
{S, T, U, ST, SU, STU}, with R and C given by the three

reactions above together with ∅ ∅−→ S, ∅ ∅−→ T, ∅ ∅−→ U.
Now, writing just X ′ for a premetabolism M′, we can
calculate for instance:
{S, T, SU, STU}y{S, T, SU, STU} = {S, T, ST},
{S, T, ST}y{S, T, ST} = {S, T},
{S, T}y{S, T} = {S, T},

so this premetabolism dies out to a trivial solution of
Ouroboros equation (i.e. one whose associated reactions

are all of the form ∅ ∅−→ x. On the contrary, we have
{S, T, U, SU, ST, STU}y{S, T, U, SU, ST, STU} =

= {S, T, U, SU, ST, STU},
i.e. {S, T, SU, ST, STU} defines a non trivial solution to
Ouroboros equation!

Ouroboros in Autopoietic systems
Before concluding we would like to bring in the theory
of Autopoiesis, as it has deep connections to the idea of
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Figure 1: Original cover of the book introducing autopoietic
systems (Maturana and Varela, 1973). Although the notion
of self-reference is not explicitly mentioned in the book, the
authors chose an Ouroboros to illustrate its cover.

self-reference. In fact one of its creators, Varela spent al-
most a decade looking for a suitable framework to formal-
ize the notions behind this connection (Varela, 1975; Varela
and Goguen, 1978; Varela, 1981; Soto-Andrade and Varela,
1984). We won’t attempt to reproduce his results, but instead
show why self-reference arises from the conceptualization
of Autopoiesis theory.

First, we should introduce the perspective of Maturana
and Varela for defining a system. A system (or machine)
is defined as a unity distinguishable from its surroundings,
characterized by two concepts: organization and structure.
The former relates to all processes (or relations) that de-
fine the system as a unit and that determine the dynamics
of transformations and interactions that the system may un-
dergo as such a unit. The latter are all actual relations that
hold between the components of the system in a given space
and time (Maturana and Varela (1980), pages 77-84). Now
we can define an Autopoietic system (loc. cit.) as a network
of processes of production, such that its components satisfy
the following:

i) through their interactions and transformations regener-
ate and realize the network of processes that produced
them;

ii) constitute the system as a concrete unity in the space in
which the components exist by specifying the topolog-
ical domain of its realization.

The first property of Autopoietic systems can be inter-
preted as a description of a closed network of production
or metabolic closure, where the elements needed for the oc-
currence of each step of the network (such as catalysts) are
produced by the network itself. From a dynamical perspec-
tive, can also be viewed as non trivial fixed-points of the
network dynamics. The notion of metabolic closure is com-

mon and comparable between several theories of living sys-
tems (see Cárdenas et al. (2010) for references). However,
Autopoiesis demands more than self-production. What is
maintained and reconstituted through the system’s dynam-
ics is its organization, i.e. what makes it distinguishable as
a unit. This is secured in time by the first property and in
space by the second. Therefore, if we were to define an au-
topoietic system we would be tempted to say something like
“a unit that regenerates what distinguishes itself as a unit...”.

As the last idea suggests, organizational invariance can
be understood as an ultimate case of recursion or self-
reference. In the previous sections we have discussed how
to find consistent and non trivial cases where self-reference
is possible; future challenges would involve bringing both
properties of autopoietic systems into our framework.

Conclusion and final remarks
As we have surveyed here, f(f) = f is an intriguing equa-
tion that abstracts phenomena from many fields. It must be
underlined that our interest in this topic arose from a very
basic (and unsolved) question in theoretical biology: “What
is a correct theoretical framework to formalize systems that
construct themselves?”. Metabolism is an outstanding ex-
ample, as the action of metabolism results in the reconstitu-
tion of the components that were responsible for its occur-
rence in the first place.

We are of the opinion that, in order to construct a formal-
ism that captures Metabolism from the perspective of Au-
topoiesis and (M,R)-systems, self-reference is an unavoid-
able point to consider - not to be confused with simulations
of Metabolism, which we regard as complementary efforts.
As presented in this paper, dealing with self-reference math-
ematically, even if it seems to challenge our classical con-
ceptions, is certainly feasible.

Nevertheless, we are aware that the methods exposed are
still halfway towards a definitive theory. In particular we
should be able to move beyond hypothetical examples into
a framework closer to concrete biological systems. Towards
this goal there are several avenues for improvement. For in-
stance, so far we have interpreted Metabolism as a network
of reactions and catalysis, leaving for later other dimensions
of Metabolism, such as time. Self-reference could be re-
garded as identity conservation under the Metabolic dynam-
ics (Varela, 1975; Varela and Goguen, 1978), and we expect
that adding the temporal dimension should allow us to ask
more complex questions, closer to molecular systems. Also,
we haven’t looked closely at the physicochemical properties
of Metabolism, which which may provide a grounding as
well as a guide for our mathematical models.

In another avenue, one of the main lessons is the van-
ishing dichotomy between operand and operator, implicit in
f(f). This suggest that the phenomena of interaction more
than application (in the old functional sense), or concurrency
more than sequentiality, may constitute a more appropriate
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metaphor. As it is well known, life phenomena are intrin-
sically concurrent, and as such, it appears natural that the
emerging formalisms for concurrency are beginning to be
applied to this field (Milner, 2009; Cardelli, 2005). We won-
der whether there may be avatars of Ouroboros lurking in the
concurrent world, an interesting question to explore in future
work.
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Abstract

All languages of the world have a way to talk about space
and spatial relations of objects. Cross-culturally, immense
variation in how people conceptualize space for language has
been attested. Different spatial conceptualization strategies
such as proximal, projective and absolute have been identi-
fied to underlie peoples conception of spatial reality. This
paper argues that spatial conceptualization strategies are ne-
gotiated in a cultural process of linguistic selection. Concep-
tualization strategies originate in the cognitive capabilities of
agents. The ecological conditions and the structure of the
environment influence the conceptualization strategy agents
invent and which corresponding system of lexicon and ontol-
ogy of spatial relations is selected for. The validity of these
claims is explored using populations of humanoid robots.

Introduction
Human language is a complex adaptive system (Beckner
et al., 2009), which is shaped by its users in a process of
cultural evolution in order to achieve communicative goals
such as drawing the attention to an object in the environment
using spatial language. Language evolves constrained by
factors such as communicative success, expressivity, learn-
ability and ecological significance. This paper argues that
these claims are also true for spatial language and that they
are at the heart of explanations for the diversity of spatial
language attested across different cultures.

Spatial language exhibits enormous amount of cross-
cultural variation on two levels.

Spatial language systems Spatial language is typically a
conglomerate of different systems. English for instance
has a proximal system consisting of the two spatial rela-
tions “near” and “far”, a projective system including rela-
tions such as “left” and “front”. Moreover, English fea-
tures an absolute system of spatial relations, e.g. “north”
and “east”. Languages differ with respect to the particular
organization of language systems. Spanish, for instance,
features three proximal relations (Kemmerer, 1999).

Spatial language strategies Languages differ qualitatively
in the kind of systems they support. For instance, some

languages such as the Mayan language Tenejapan do not
have projective terms but only absolute spatial relations
(Levinson, 2003). Speakers of this language convention-
ally refer to objects in the immediate vicinity as uphill or
downhill. Tenejapan speakers, therefore, habitually con-
ceptualize reality differently than speakers of English.

There are two questions immediately following from this
observation: (1) how do language systems form, (2) what are
the origins of strategies. If one wants to study the evolution
of spatial language, answers to the origins and development
of both layers of language change have to be identified. Pre-
vious work has shown how language strategies can form lan-
guage systems, e.g. for color and actions (see Steels, 2011
for an overview). In these experiments, agents are a priori
endowed with a particular language strategy which includes
a way of construing reality plus a battery of language change
operators. The experiments then show that given these pre-
requisites autonomous agents can negotiate a particular sys-
tem of categories (ontology) and words (lexicon).

Recently the origins of language strategies themselves
have come under investigation. Bleys (2010) proposes that
color strategies are under selective pressure driven by com-
municative success and cognitive effort (see also van Trijp,
2010 for a similar argument). This paper broadens this ap-
proach by extending it to spatial language and, most impor-
tantly, by proposing a concrete account of the origins of lan-
guage strategies. Three important concepts guide our dis-
cussion (Steels, 2011).

Recruitment Language strategies are grounded in general
cognitive capabilities and operations (Steels, 2007). For
instance, the absolute strategy in English requires that
agents are able to categorize objects using spatial cate-
gories that relate to particular geocentric features of the
environment. In English absolute system this is related
to compass readings and map use (Tenbrink, 2007). In
other languages such features can include geocentric land-
marks such as mountains which are always visible, or
other global features such as the aforementioned uphill-
downhill distinctions (Levinson, 2003). The categoriza-
tion of these objects themselves is a cognitive ability that
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needs to be present before a linguistic absolute spatial sys-
tem can form. Cognitive operations are recruited and as-
sembled to form spatial conceptualization strategies.

Selection Once a strategy has formed it is used to build a
concrete system of spatial categories and linguistic means
to express them. For instance, in the simplest case a strat-
egy is expressed lexically by naming the spatial relations.
The system and the strategy are both subject to selec-
tive pressures. Other strategies might compete in terms
of success, expressivity and ecological significance. To
organize competition and selection, the overall success of
a strategy and the associated ontology and lexicons are
tracked.

Alignment Language is a phenomenon that occurs in the
interactions of individuals of a group of language users.
Language strategies or any linguistic material are invented
in local interactions in which typically few members of a
population participate. Different parts of the population
might invent other strategies. This poses a problem as
for language to be usable it needs to be conventionally
used and known to the complete population. Alignment
is the process by which a strategy and the corresponding
language systems spread in the population. We organize
alignment of strategies using the scoring of strategies used
for orchestrating selection and competition.

This paper gives a mechanistic account of the origins and
evolution of spatial language strategies by identifying con-
crete cognitive operations, selection and alignment mecha-
nisms. We defend the main claim using artificial language
evolution experiments which have been a key technique to
identify, explore and validate ideas about cultural language
evolution (Steels, 1995; Kirby, 2002; Smith et al., 2003).

Adaptive Spatial Language Games
For researching the basic claims of this work, we setup ex-
periments in which robotic agents (Sony humanoid robots,
see Fujita et al., 2003) encounter objects in spatial scenes.
Such setups are called spatial language games and they
package a specific intention – talking about objects in the
environment – with a specific interaction script.

Figure 1 shows the environment in which two robots in-
teract. Both robots are equipped with a vision system that
singles out and tracks objects (Spranger, 2008). The envi-
ronment contains four types of objects: blocks, boxes, robots
and geocentric markers. The vision system extracts the ob-
jects from the environment and computes a number of raw,
continuous-valued features such as x, y, width, and height,
but also color values in the YCrCb color space.

Always two agents randomly drawn from a population in-
teract, one acts as the speaker, the other as the hearer. The
spatial language game uses the following game script assum-

obj-266

obj-265
box-1

robot-1

robot-2

obj-253

obj-249

box-1robot-2

robot-1

Figure 1: Spatial setup. To the left the world model extracted
by the left robot is shown. To the right the same for the other
robot is depicted.

ing a population P of agents, and a world consisting of a set
of individual objects.

1. The speaker selects an object out of the context, further
called the topic T .

2. The speaker tries to find a meaning comprised of a partic-
ular spatial relation and a particular way of conceptualiz-
ing reality for describing the topic.

3. The speaker looks up the word associated with the spatial
relation in his memory and produces the word.

4. The hearer looks up which relation is associated with this
word in his memory and examines the context to find a
unique object which satisfies the relation.

5. The hearer points to this object.

6. The speaker checks whether the hearer selected the same
object as the one he had originally chosen. If they are the
same, the game is a success and the speaker signals this
outcome to the hearer.

7. If the game is a failure, the speaker points to the topic T
he had originally chosen.

Such an interaction can fail for different reasons. For in-
stance, the speaker might be unable to discriminate the topic
object because he is missing a spatial relation or a concep-
tualization strategy. Both success and failure of communi-
cation provide opportunities agents to adapt their linguistic
knowledge, ontologies and repertoires of conceptualization
strategies.

Grounded Spatial Conceptualization
Strategies

We use a computational formalism called Incremental Re-
cruitment Language (IRL) that was specifically devel-
oped for representing adaptive conceptualization strategies
(Spranger et al., 2010) and spatial semantics. To make this
more concrete let us consider the semantics underlying a
specific spatial phrase. Figure 2 shows the representation of
the spatial semantics of a phrase like “near the box” which
consists of a spatial relation (near) plus additional informa-
tion about the landmark (the box).
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(identify-location-proximal ?target ?src ?cat)

(geometric-transform ?src ?ctx ?landmark)

(apply-selector ?landmark ?boxes ?selector)

(apply-class ?boxes ?ctx ?class)

(bind selector ?selector unique) (bind object-class ?class box)

(get-context ?ctx)

(bind proximal-category ?cat near)

Figure 2: IRL-program representing the semantic structure
of the phrase “near the box”.

The main idea behind IRL is that semantic struc-
ture is procedural (Johnson-Laird, 1977) and can be
represented using programs (IRL-programs). Conse-
quently, we represent the semantics of the phrase as
a set of cognitive operations such as applying a cate-
gorization (identify-location-proximal), and trans-
form the viewpoint on the scene to a specific ob-
ject (geometric-transform) that are linked in a cer-
tain way. For instance, the output of the operation
geometric-transform linked by the variable ?src (all
variables start with a ?) is connected to the input of the
categorization operation. In other words, once the set of
objects from the context (introduced by get-context) is
transformed to a particular viewpoint then the spatial cate-
gory is applied.

The following operations (excerpt) are used as building
blocks for spatial conceptualization strategies.

geometric-transform transforms the environment to a par-
ticular landmark object (in the example this is the box).

identify-location-proximal applies the spatial category
given as argument to the input source set. The operation
returns the single object which has the highest similarity
with the spatial category. This operation applies proximal
relations.

identify-location-projective works similar to the previous
operation but is special to projective relations. We use the
intrinsic notion of projective relations (Levinson, 2003).
Landmarks such as the box and the robots can have an
inherent orientation which highlights one of their sides as
being the front.

identify-object-absolute encodes an absolute strategy. Ab-
solute strategies compute rotation based on the direction
towards a geocentric wall marker available in some spatial
scenes.

Besides cognitive operations (algorithms), semantic
structure also contains data. So called bind-statements in-
troduce pointers to agent internal representations of con-
cepts, prototypes and spatial relations. For example, (bind
proximal-category ?cat near) introduces the spatial
category near. Spatial relations are implemented using in-
sights from cognitive semantics (Herskovits, 1986) and pro-
totype theory (Rosch, 1975). There are two types of cate-
gories, distance-based (proximal) and angle-based (projec-
tive and absolute).

Angular relations Angular categories (projective and ab-
solute relations) have a focal region around a specified
axis. Similarity of some location to an angular cate-
gory depends on the distance of angles. For instance, the
front category has a high degree of applicability along the
frontal axis. The following equations defines the degree
of applicability, i.e. similarity, sima ∈ [0, 1] given an ob-
ject o and an angular category c and a parameter σ which
steers the steepness of the function.

sima(o, c) := e−
1

2σc
da(o,c)

da(o, c) := |ao − ac|

ao denotes the angle of the position of o to the coordinate
center and ac is the prototypical angle of c.

Proximal relations Proximal relations are represented us-
ing prototypical distances.

simd(o, c) := e−
1

2σc
dd(o,c)

dd(o, c) := |do − dc|

do denotes the distance of the object o to the coordinate
center and dc is the prototypical distance of the proximal
category c.

Spatial conceptualization strategies The IRL-program
Figure 2 shows a specific semantic structure that is part of
a specific conceptualization strategy, namely the proximal
spatial strategy. If we remove the spatial relation from the
IRL-program in that figure, we are left with a conceptual-
ization strategy which involves a landmark (the box) and a
(unspecified) proximal spatial relations. We call such partial
structures chunks (Spranger et al., 2010). Chunks are reified
conceptualization strategies. They have a score which rep-
resents how much the agent prefers the strategy over others
(e.g., see Mainwaring et al., 2003 for preferences in perspec-
tive choice).

Spatial conceptualization strategies involve more than just
a choice of spatial relations. Landmarks, perspective, frames
of reference (Tenbrink, 2007) are all important aspects of the
construal of spatial relations and researchers are still map-
ping out the taxonomies and unifying theories for the vast

773ECAL 2011



amount of spatial conceptualization strategies found in nat-
ural language (Levinson, 2003). For instance, which land-
marks can be used with a particular spatial relation – just
people, animals or also inanimate objects – is part of the
choices manifest in a particular strategy. We can represent
all these different factors using distinct cognitive operations
and IRL-programs.

Production and interpretation When agents communi-
cate they face the problem which language strategy to
choose: proximal, projective or absolute. Within each strat-
egy there is are additional choices which spatial relation
the agent wants to use, and which landmark to emply. Fi-
nally, agents have to name the category and retrieve a name
for it in order to make themselves understood1. Produc-
tion – the process of finding an utterance for discriminat-
ing an object – and interpretation – the process of finding
the topic given an utterance – are heuristics guided, auto-
mated search processes that try to find good semantic struc-
ture (IRL-programs).

Production In production, agents choose the spatial con-
ceptualization strategy and the spatial relation which is
most discriminating the topic T with respect to all other
objects in the context. A strategy and the chosen category
are discriminating if they maximize the similarity of the
topic but minimize the similarity of all other objects (Her-
skovits, 1986). Once the category is chosen, agents will
verbalize the category by retrieving the term associated
with the category.

Interpretation In parsing, this process is reversed and
agents use their lexicon to find the category linked to the
spatial term in the utterance. The category is used to find
back the conceptualization strategy which is in turn ap-
plied together with the spatial relation to single out the
topic.

We use Fluid Construction Grammar (FCG) (Steels and
De Beule, 2006) for verbalization. FCG is a formalism de-
veloped for language evolution in which linguistic knowl-
edge is represented using form-meaning associations, so
called constructions. Constructions are scored and can be
freely and deleted from an agent’s memory which allows to
model the change of linguistic knowledge of that agent.

Constructions are not the only items that are scored. Pro-
duction and interpretation are heavily influenced by the
score of the different linguistic items. Spatial relations, con-
ceptualization strategies (chunks) and lexical items all have
individual scores associated with them which are used to
weight the results. The scores reflect individual preferences.

1In this paper, agents are confined to uttering single words in
spatial language games.

Co-Evolution of Spatial Relations
Conceptualization strategies are necessary prerequisites for
building ontologies and lexicons. This section shows that
given a chunk and a set of invention, adoption and alignment
operators concrete systems of spatial relations can be nego-
tiated in populations. Due to space constraints this section
only exercises this for the projective strategy. Similar propo-
sitions hold for absolute and proximal strategies (Spranger,
2011b). The following paragraphs detail the operators.

Invention: Speaker cannot find a discriminating spatial cat-
egory in production

• Diagnostic: When the speaker cannot conceptualize a
meaning (step 2 of the spatial language game fails).

• Repair: The speaker constructs a spatial relation R based
on the relevant strategy (projective) and the topic pointed
at. The new category is necessary based on the distance
or angle observed for the topic object (the initial sigma is
small 0.1). Additionally, the speaker invents a new con-
struction associating R with s.

Adoption: Hearer encounters unknown spatial term s

• Diagnostic: When the hearer does not know a term (step
3 fails).

• Repair: The hearer signals failure and the speaker points
to the topic T. The hearer then constructs a spatial relation
R based on the relevant strategy and the topic pointed at.
Additionally, the speaker invents a new construction asso-
ciating R with s.

Category alignment Projective categories are represented
by prototypical angles. After each interaction agents update
the prototypical angle to better reflect the new observation
by averaging the angles of objects in the sample set S. The
new prototypical angle ac of the category is computed using
the following formula for averaging angles.

ac = atan2

(
1

|S|
∑
s∈S

sin as,
1

|S|
∑
s∈S

cos as

)
(1)

The new σ value σ′ which describes the shape of the simi-
larity function of the category is adapted using the following
formula.

σ′c = σc + ασ ·

σc −√ 1

|S| − 1

∑
s∈S

(ac − as)2

 (2)

This formula describes how much the new σc of the category
c is pushed in the direction of the angle standard deviation
of the sample set by a factor2 of ασ ∈ [0,∞].

2α is given by the experimenter and in all experiments de-
scribed here α = 0.5
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Figure 3: Results for a formation experiment in which
agents develop a projective category system.

Lexicon alignment The invention and adoption repairs in-
troduce a particular problem – the problem of synonymy.
Synonymy occurs when an agent explicitly represents that a
spatial category can be named using different spatial terms.
Each of these different names is represented using a sepa-
rate construction each of which links the synonymously used
category to a different string. Allowing agents to track syn-
onymy in their lexicons can be beneficial for overall lexicon
size, but only if agents also have additional mechanisms for
managing synonymy. Such a mechanism, called lateral in-
hibition, was introduced in Steels (1995):

• In case the interaction was a success both speaker and
hearer reward the winning construction – the one used
in production and interpretation – by a score of δsuccess.
Competing constructions are punished by δinhibit. There
are two types of competing constructions. First, there are
those constructions which associate the same spatial rela-
tion but with a different word. Second, there are construc-
tions that link the same word to different spatial relations.

• After a failed game, both speaker and hearer decrease the
score of the used association with δfail.

Measures To be sure that our approach to formation works
reliably, we test it by running multiple trials of the same ex-
periment. In each trial agents start with an empty ontology
and lexicon. Success, performance and language develop-
ment of the population are tracked using the following mea-
sures.

Communicative Success Communicative success is the
most important measure as it reflects the overall perfor-
mance of the population. Every interaction is either a suc-
cess or a failure. Success is counted with 1.0 and failure
is counted as 0.0.

Number of Categories and number of constructions
This measure simply counts the average number of
categories and constructions known to the agent.

Interpretation Similarity This is a measure tracking how
similar the interpretation of each word known to each
agent is. For this the categories attached to the word in
each agent is compared. Since projective categories are
described by a direction and a similarity function width
parameter σ, two categories are most similar (1.0) when
both angle and σ are equal.

Results Figure 3 shows the dynamics of experiments in
which 10 agents start without any categories and construc-
tions and gradually have to solve their communicative prob-
lems by invention and adoption of linguistic and semantic
material (25 trials). In each trial 10000 spatial language
games are played, with two agents randomly drawn from the
population, interacting, and inventing, adopting and aligning
linguistic knowledge.

The graph shows that agents are able to form success-
ful language systems that gradually become more and more
similar in the population as the linguistic knowledge spreads
from agent to agent. After 10000 interactions agents are
communicating successfully in over 95% of the interactions.
In all trials, the population agrees on using a total of three
spatial relations and corresponding names.

Selection and Alignment of Spatial
Conceptualization Strategies

The previous section demonstrated that given a conceptu-
alization strategy and strategies for invention, adoption and
alignment agents can co-evolve successful systems for re-
ferring to objects in their environment. The important claim
in this section is that conceptualization strategies are nego-
tiated in a cultural process, similar to how the lexicon is ne-
gotiated, through local interactions by agents in a commu-
nity. The idea is that a particular strategy survives when it is
relevant to an agent because it is efficient and useful in dis-
criminating objects and it contributes to the communicative
success of an agent at least in a few spatial contexts.

Selection and Alignment Selection of a strategy is intri-
cately linked to the success of the ontology and lexicon, i.e.
spatial category system, it builds. For instance, if an agent
is building a language system with an absolute strategy this
entails that the absolute relations and the strategy itself are
subject to the same selective pressure. It is the success of
the overall system, i.e. the spatial relations together with the
performance of the strategy, that drives the organization of
the syntactic and semantic repository of the agent.

The previous section talked about the invention and align-
ment of words and categories. The same operators are used
for building different language systems. Additionally, the
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Figure 4: Dynamics of a category formation experiment in
which 10 agents align the conceptualization strategy used at
the same time.

success of a strategy, i.e. chunk, is tracked after every inter-
action by updating its score. If the conceptualization strat-
egy was used successfully its score is increased by a factor
δsuccess otherwise it is punished by δfailure. All other con-
ceptualization strategies not used are punished by the score
δcompetitor. The value of these deltas is typically by a magni-
tude lower than the deltas for updating categories and words.

Measures We test our approach by running experiments
in which agents are given different conceptualization strate-
gies. To monitor the alignment of conceptualization strate-
gies we use an additional measure.

Number of chunks This measure averages the number of
conceptualization strategies with a score bigger than 0
over every agent.

Conceptualization strategy similarity The css is defined
for a population P as the average acss for every two
agents. Since acss is symmetric, all combinations of two
agents are considered.

Agent conceptualization strategy similarity The acss is
computed by comparing the score of each strategy. Since
strategies are never removed but merely reduced to a score
of 0.0 we can compute a distance of scores between the

chunks in each agent and envelope the result using an ex-
ponential decay function which results in the following
formula.

acss(a1, a2, S) := e(−1·
∑
s∈S | score(s,a1)−score(s,a2)|)

In this formula a1, a2 are the agents whose similarity
score is computed, S is the set of strategies given to agents
and score(s, a1) is the score agent a1 gives to strategy s.

Experimental Setup and Results We test the power of
strategy alignment using contexts which can be manipulated
to feature absolute and intrinsic properties. More specifi-
cally, we manipulate the distribution of intrinsic and abso-
lute properties in the environment. Figure 4 shows the dy-
namics of an experiment where agents start equipped with
two strategies: an absolute and an intrinsic one. The envi-
ronment is such that it favors absolute systems. In 50% of
the scenes both intrinsic and absolute features are present.
In the remaining 50% of the contexts only absolute features
are present and no intrinsic ones.

The environmental conditions have a strong effect on the
development of the system. All 25 populations agree on
using an absolute strategy. What is important is that the
contexts where only absolute features are present reward the
absolute strategy and punish the intrinsic conceptualization
strategy. Consequently, even in a context where intrinsic and
absolute features are present, the absolute strategy is pre-
ferred. The development of such a preference has important
effects on the invention of categories. Because of the prefer-
ence for the absolute strategy, invention of categories shifts
to producing only absolute categories. The successful use
of these categories enforces the absolute strategy and leads
to further punishment of the intrinsic strategy. The effect is
that only the absolute strategy survives. Additionally, the
graph shows that roughly together with the category system,
agents align their conceptualization strategy.

Recruitment of Conceptualization Strategies
Conceptualization strategies are networks of cognitive oper-
ations encoding a particular way of construing reality. Con-
sequently, they originate in a process of recruitment which
assembles cognitive operations into strategies, i.e. chunks.
Recruitment is a necessary pre-requisite for the usage of
conceptualization strategies and their alignment in a popu-
lation. Once a chunk is invented it immediately extends the
conceptualization capabilities of the inventing agent.

Recruitment Strategy invention is deeply integrated into
the processing of agents. Agents unable to conceptualize or
unable to conceptualize with sufficient confidence diagnose
a problem which is fixed by a repair that starts the search for
new conceptualization strategies. The reason for this inte-
gration specifically with other invention mechanisms such as
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Figure 5: Results for strategy invention, alignment and cate-
gory development. A population of 10 agents develops both
conceptualization strategies as well as lexical systems for
spatial strategies corresponding to these strategies.

category invention is that agents when inventing new strate-
gies also immediately have to invent new categories with
these strategies because a strategy itself is not verbalized but
the name of the spatial relation. This sort of dual invention is
especially important in the beginning of experiments, when
agents have neither developed strategies nor categories.

But there is a second reason for deep integration of strat-
egy invention. When an agent already has developed a strat-
egy then he might also solve a particular communicative
problem by inventing new categories for established strate-
gies. Such decisions whether to use a new category with an
existing strategy or a new strategy with an existing category,
or even to use a newly invented strategy with a newly in-
vented category are made based on the discriminative power
of each these different possibilities in the particular context.
So for instance if an existing strategy has a low score the
probability of inventing a new strategy increases, whereas if
the current topic can be sufficiently discriminated using an
existing strategy no invention occurs.

We need two more operators besides the operators dis-
cussed in previous sections.

Invention: Speaker cannot find a meaning for referring to
the topic

• Diagnostic: When the speaker cannot conceptualize a
meaning (step 2 of the spatial language game fails).

• Repair: The speaker invents new conceptualization
strategies by assembling cognitive operations such as
identify-proximal, geometric-transform into
chunks which is immediately followed by the invention
of categories for each new chunk (see section on co-
evolution of categories and terms). At this point the
speaker might have a number of new solutions to his con-
ceptualization problem consisting of new strategies and
new corresponding spatial relations. Subsequently, the
speaker selects the strategy and category which is most
discriminating. Once selected, he invents a new word and
construction for expressing the new strategy.

Adoption: Hearer encounters unknown spatial term s

• Diagnostic: When the hearer does not know a term (step
3 fails).

• Repair: The hearer signals failure and the speaker points
to the topic T. The hearer then constructs new strategies,
i.e. chunks, and for each of them he invents a new spatial
relation Ri based on the the topic pointed at. The hearer
then decides on which of the strategies is most discrimi-
nating. This is the one selected for storing. Additionally,
the hearer invents a new construction linking Ri with s.

These two invention and alignment operators are specific
to the invention of chunks. Moreover, agents are equipped
with the selection and alignment operators for chunks, spa-
tial relations and words discussed earlier.

Results Figure 5 shows the dynamics of invention and
alignment of conceptualization strategies in a population of
10 agents (25 trials). Agents have a repository of 10 basic
cognitive operations from which they can draw new build-
ing blocks whenever there are problems in communication.
They can choose different landmarks: the robot, or the box,
and different category systems absolute and intrinsic projec-
tive, as well as proximal. The agents manage to agree on
one particular strategy while at the same time developing a
category system and a lexicon from scratch.

However, the process does not show the same overall suc-
cess as previously discussed experiments. The reason is that
conceptual alignment is a difficult process which is compli-
cated by the number of choices in strategies, population size
and the variety of different contexts and discriminative sit-
uations which might all favor different strategies. In some
contexts proximal is the best strategy, some allow absolute
and/or projective categories to be invented. Nevertheless,
agents do come to an agreement. Here, they agree on aver-
age on a single conceptualization strategy.

For space reasons, we can only discuss one particular ex-
periment with trials all equal in environmental condition.
But, of course once the system is setup one can study the
effect of varying conditions. The systems discussed here
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are very flexible and find solutions to different environmen-
tal conditions featuring additional landmarks, intrinsic and
absolute features. Additionally, agents react flexibly to dif-
ferent object distributions that favor distance-based or angle-
based strategies.

Discussion
This papers has argued for selection, recruitment and align-
ment as the basic mechanisms explaining the evolution of
language strategies together with corresponding language
systems. We have shown (1) how strategies can be be repre-
sented, (2) how strategies build language systems, (3) how
selection works on strategies and (4) how strategies are build
by recruiting cognitive operations. We provided mechanistic
explanations and validated them in robotic experiments.

The basic claim validated is that we can understand the
evolution of strategies as a process of cultural negotiation
fueled by the cognitive capabilities of agents, i.e. the cog-
nitive operations available. The process is constrained by
environmental factors such as the availability of geocentric
landmarks. While cognition and ecology influence the se-
lection process, the negotiation takes place within a single
static population via linguistic interactions. This is also the
main difference to other models of cultural evolution which
claim that intergenerational turnover is the main cause of
language change (Kirby, 2002; Smith et al., 2003).

We have only considered a simple lexical verbalization
strategy. Certainly, spatial language shows much more vari-
ation in the kinds of syntactic material that is employed to
convey distinct spatial semantics. A discussion can be found
in Levinson and Wilkins (2006) and Tenbrink (2007) and
evolutionary models in Spranger (2011a). Moreover, spa-
tial language can feature other conceptualization strategies
involving toponyms, directional categories or body-centered
spatial relations. Given a suitable implementation of cogni-
tive operations, we claim that the same approach can be used
to study the evolution of such strategies.
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Abstract 
The minimal cell (MC) project aims at understanding the 
emergence of cellular life by constructing experimental models 
of cells, according to a synthetic (constructive) biology 
approach. Our strategy – also known as the semi-synthetic one 
– is based on the encapsulation of the minimal number of 
biomolecular components inside lipid vesicles (liposomes). 
Being interested in studying the key step for constructing semi-
synthetic cells, namely the physical entrapment of the solutes, 
we have recently reported that the mechanism of vesicle 
formation can lead to a spontaneous local increase in 
concentration of proteins inside vesicles (Luisi et al., 
ChemBioChem 2010, 11, 1989-1992). In particular, it was 
shown that the protein ferritin can reach intravesicle 
concentration of at least one order of magnitude higher when 
compared to the bulk (external) concentration. This self-
organization phenomenon might give a rational account for the 
formation of functional cells from diluted solutions, and 
therefore help to understand the origin of metabolism. The 
effective encapsulation of solutes, however, is only one of the 
ways for achieving functional cells. The second route is fusion 
of vesicles or the exchange of solutes among vesicles (Caschera 
et al., J. Coll. Inter. Sci. 2010, 345, 561-565). Both processes 
allow the combination of different solutes to give 
compartments that can exhibit improved reactivity. Aiming at 
developing a realistic model for cooperative interactions among 
vesicles, we have recently developed a cell colony model. This 
is based on the formation of lipid vesicles clusters adherent to a 
solid substrate, representing a minimal model of cell 
communities. Here we summarize the most significant aspects 
of our recent activities. 

The physics of solute encapsulation 
Looking at the physico-chemical mechanisms that have lead 
to the origin of cellular life, a still open question is whether 
functional cells have been originated from the encapsulation 
of an already developed metabolism (metabolism- or 
replicator-first scenarios), or whether the cell metabolism was 
entirely (or almost entirely) developed inside compartments 
(compartment-first scenario). In both cases, there are some 
aspects that need clarification, as the low probability of co-
entrapping all required molecules in the same compartment in 
the first hypothesis, or the lack of permeability control in the 
second hypothesis (Luisi et al., 2010). 
In particular, although the encapsulation of solutes into 
liposomes is a well-established field, especially due to the 

large amount of work done in the field of drug delivery, we 
still miss a complete view of the physics underlying this 
important mechanism. In fact, with a few exceptions (Sun and 
Chiu, 2005; Dominak and Keating, 2007; Lohse et al., 2008), 
all experimental studies deal with the average entrapment 
yield, and no attention has been given to the entrapment 
behavior at the level of single vesicles, also due to technical 
difficulties.  
We have recently started a systematic study on the 
encapsulation of biopolymers into lipid vesicles. This study 
was inspired by our report on the protein expression inside 
200 nm (diameter) vesicles, that suggested the possible 
deviation from the expected intravesicle solute distribution 
(Souza et al., 2009). 
As a model system, we have used the protein ferritin, an iron-
storage protein, consisting of a nucleus of electron dense 
ferrihydrite-like iron salts surrounded by 24 protein subunits. 
Ferritin can be directly visualized as single molecule by 
electronmicroscopy, so that it becomes possible to directly 
count the number of ferritin molecules inside vesicles imaged 
via cryo-transmission electron microscopy. 
After analyzing about 7,700 submicrometric vesicles (Fig. 1a), 
prepared by varying the concentration of ferritin, the 
preparation method and the membrane lipid composition, we 
have concluded that the encapsulation of this solute inside 
lipid vesicles does not follow the expected behavior. In our 
experimental conditions, this is given by the Poisson 
distribution of N solutes inside vesicles that are expected to 
entrap, on average, µ solutes: 

!
)(

N
eNf

N−
−=

µµ  

where f(N) represents the fraction of vesicles containing N 
ferritins, and µ is the average expected number of ferritin 
molecules. The µ value can be calculated from the vesicle 
volume V, and the ferritin concentration C: 
 

VCN A ⋅=µ  
 

(NA being the Avogadro’s number). 
In particular, we have found that the distribution of ferritin-
containing vesicles follows a power-law-like shape, 
characterized by an abnormally high amount of empty vesicles 
(N = 0), a decreasing pattern at intermediate N, and – 
significantly – a non-zero long tail (Fig. 1b), which represents 
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the non negligible probability of co-entrapping a relatively 
high number of ferritins (up to hundreds), whereas the average 
expected value is of few units. 
 

 
Figure 1. Entrapment of ferritin inside lipid vesicles. (a) 
Cryo-TEM electronmicrograph of a ferritin containing vesicle 
(size bar 200 nm). (b) Comparison between calculated Poisson 
(C = 4 µM, diam. 100 nm) distribution and experimental data 
profile. Redrawn after Luisi et al. (2010). The “long tail” 
feature has been highlighted. Note the logarithmic axes and 
the abscissa values shift (N+1). 
 
According to these results it appears that the co-encapsulation 
of several molecules in the same compartments is a physically 
possible process, and we believe that these observations 
contribute significantly for understanding the emergence of 
complex primitive cells from separated components. In fact, 
our results demonstrate that it is possible to form a solute-rich 
compartment even starting from diluted solution. This also 
implies that sluggishly reacting (diluted) systems might 
become reactive thanks to the spontaneous concentration 
increase inside lipid vesicles. Further studies about the 
mechanism will clarify our work hypothesis, based on weak 
and cooperative solute/membrane interactions, which affect 
the mechanism of vesicle closure (i.e., a process under kinetic 
control). 

Experimental models of cell communities 
As we have anticipated, the co-entrapment of diverse solutes 
in the same compartment is not the unique process that can 
lead to solute-rich compartments starting from simpler ones. A 
complementary way is represented by all those mechanisms 
that have as a result the sharing of solutes among several 
compartments, in particular fusion and solute exchange. We 
have recently reported a study on the fusion between cationic 
and anionic vesicles as a way for reaching higher complexity, 
and loosely resembling the idea of symbiogenesis. In 

particular, it was shown that oppositely charged vesicles can 
react (up to ~ 20% yield) to neutralize their net charge and 
give rise to neutral species derived from the fusion of the 
vesicles (Caschera et al., 2010). As a consequence, the 
internal solutes, initially present in two vesicle populations, 
become co-encapsulated in the resulting new vesicles. We 
have reasoned that such fusion process, as well as the 
possibility of exchanging solutes among vesicles, could occur 
not only in suspended vesicles, but also in the case of vesicles 
forming small solid-supported communities. Here, the 
physical proximity of vesicles could not only favor such 
dynamical transformation, but simultaneously stabilize the 
community thanks to multiple physical interactions. Research 
is currently going on in our laboratory aimed at characterizing 
vesicle colonies with respect to their reproducible formation, 
physico-chemical stability, fusion, solute exchange as well as 
solute capture from the environment, and stability against 
flow (Carrara, 2010). 
Thanks to this new experimental model we aim at studying the 
new “dimension” of cell communities, which is generally 
missing in the discussion on the origin of cellular life. 
Moreover, the model will allow a more direct investigation of 
communication between synthetic cells through the synthesis, 
release, uptake, and processing of diffusible species. This 
represents a concrete example of chemical communication, 
with possible implication in chemically-based information and 
communication technologies (ICTs). 
A first attempt to use lipid vesicles for establishing a 
communication between synthetic and natural cells has been 
reported by Gardner et al. (2009). 
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Abstract

We describe a computationally reflective object-oriented ar-
chitecture suitable for incorporating open-ended innovation
and emergent entities into simulations. This allows emergent
properties to be reified into objects. This requires modify-
ing the model, and the metamodel, by incorporating novel
classes and metaclasses dynamically. The classes and meta-
classes are modified by including them in the model through
reflection. We argue that such computationally reflective in-
troduction of novelty is necessary for true open-ended simu-
lations.

Introduction
Open-ended dynamics, supporting constant novelty genera-
tion, is a goal of ALife simulation.

Open-ended evolution has been defined as “a process in
which there is the possibility for an indefinite increase in
complexity” ([20], which also contains a comprehensive re-
view of the concept in biology). Bedau [2] talks in terms
of systems that exhibit “supple adaptation”, which involves
them “responding appropriately in an indefinite variety of
ways to an unpredictable variety of contingencies”. Open-
ended novelty generation and evolution are features of bio-
logical life, but are proving hard to achieve in silico.

Classical evolutionary algorithms, with their fixed
genome representations, can produce new things only within
that limited representation. Evo-devo algorithms break out
of this limitation, by allowing a genome to develop into a
phenotype, but they are still confined to a single (albeit much
richer) representation.

The desired continual increase in complexity is not
merely a constant supply of new things (variations of a
theme), or even of new kinds of things (speciation), but of
new kinds of new kinds of things (major transitions, rad-
ical novelty, novel concepts). In computational terms, we
might say we need a constant supply of new objects (the
new things), new classes (new kinds of things, new represen-
tations), and new metaclasses (new kinds of kinds of things,
new kinds of representations).

Here we take a computational modelling view of the prob-
lem, and describe what we believe are minimal requirements

for true open-ended dynamics in simulations: simulations
that can modify their own model and metamodel as they ex-
ecute. This implies that they can modify how they modify
themselves. One key step on this route is the need to reify
(“make concrete, or real”) emergent properties, as these are
a rich source of novel concepts outside the language of the
pre-existing system.

The structure of the rest of the paper is as follows. First we
discuss the process of reifying emergent properties, both at
the class and metaclass levels. Then we describe how a com-
putational system can modify its own model and metamodel
at runtime. Finally we specify a bootstrap architecture for
such a self-modifying system.

Extension, Intension, and Emergence
Consider an agent-based flocking simulation, implemented
in some object-oriented (OO) programming language. A
collection of boid objects exhibits various behaviours, and
potentially forms flocks.

Assume the individual boid objects have names, eg
Tweety, Cheeky, Polly, and ages, eg juvenile, adult, old.
We can define particular sets of boids in two ways. An
extensional definition explicitly enumerates the members:
A = {Tweety, Polly}. An intensional definition is an im-
plicit definition of membership in terms of properties of the
members: B = { b : Boid | b is juvenile }.

In an atemporal world of pure logic, a property is eternally
either true or false, so extensionally defined set A and inten-
sionally defined set B are either equal or not equal (have
precisely the same members, or do not), and the difference
in definitional approach is logically unimportant1. How-
ever, when properties are a function of time (as with stateful
objects), an intensionally defined membership need not be
static (for example, the membership of B may change as
boids age). Hence A may equal B at one time, but not at an-
other. In such a case, we need to be clear about whether the

1Except for such paradoxical definitions as “the set of all sets
that are not members of themselves”, and other issues underpinning
the foundations of mathematics, but we are not addressing these
issues.
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extent or the intent is the relevant defining property of our
set of interest (for example, are we interested in Tweety and
Polly, and “juvenile” is just a convenient shorthand for de-
noting them at this moment; or are we interested in juveniles,
who just happen to be Tweety and Polly at this moment).

In general, we are interested in intensional property-based
definitions, in potentially-changing collections of things that
have certain properties in common (such as “all the blue
birds more than a year old”), rather than in explicit but ar-
bitrary collections (such as {Tweety, (∅, Rover), 42}). And
we are more interested in generic intensionally-defined con-
cepts (“flock”), than in specific one-off extensional collec-
tions (“those birds over there”).

In an OO program, nevertheless, collection objects (in-
stances of Dictionaries, Sets, Lists, etc) are almost always
extensional: they are static collections of the actual objects.
The intent of such sets is only implicit (not captured in the
code, except maybe through invariants or contracts), and
much coding effort goes into maintaining this intent (ex-
plicitly adding and removing objects from the otherwise-
static collection). This intent-implementing code, with its
property-checking component, can be encapsulated inside a
class. For example, consider the set of “all instances of class
X”. This is an intensional definition: the set will contain dif-
ferent elements at different times, as instances of class X
are created and destroyed. So in Smalltalk-80 [7] the (class)
method allInstances returns an extensional set of all the in-
stances of the class at the time of the message-send. The set
itself does not change as objects are created and destroyed:
a new message needs to be sent to the class to find the cur-
rent value. The implementation hides the details of how this
set is constructed each time; logically it is equivalent to con-
structing the set by examining every object and testing for
the defining property.

Emergence as implicit intension
Now consider the OO boid simulation. We point to an area
of the screen, and say, “the flock is those boids”. So at any
given moment, a flock appears to be an extensionally-def-
ined set of boids: flock = {Tweety, Cheeky, . . . , Polly}.
However, unlike a true extensional definition, the member-
ship of the flock set can and does change, as boids leave and
enter. This demonstrates that the flock is ‘really’ intension-
ally defined: flock = { b : Boid | b has property f }. We just
do not know what the intensional property f is, in advance2.
The flocking property is emergent.

In some sense a flock is a ‘thing’, but it is not an object
in our simulation, and there is no Flock class with which to
capture and hide the intent-preserving code that tracks this

2Additionally, the property is probably somewhat fuzzy. For
example, consider what might be the minimum size of the set flock.
One boid, even two boids, do not make a flock. It has no well-
defined answer; a flock is a fuzzy concept. (See, for example, the
description of the Sorites Paradox in [11].)

set as boids enter and leave the flock. (Of course, we could
have defined such a class, but that would require us to know
beforehand the emergent properties; we assume here that we
have not.)

We need some way to add this class and its intensional
definition to the model and simulation as and when the prop-
erty emerges. First we discuss different degrees of intension-
alisation, and then a method and architecture for modifying
the simulation with novel emergent properties.

Intensionalising Emergence
We reify a specific flock by capturing it as an ex-
tensional object in the simulation, for example, as an
instance of some generic Collection class (theFlock =
collectionInstance(b1, . . . , bn)). We can define the con-
cept of flock in a new class Flock that explicitly captures
the emergent intensional property, and so intensionalise the
flock: theFlock = flockInstance(b1, . . . , bn). We can inten-
sionalise an emergent property in a simulation in the follow-
ing three ways, yielding different dynamics in the resulting
system.

External Instrumentation

Ordinary agents might remain blind to the existence of the
emergent: it has no direct effect on them. For example,
boids in a simple flocking simulation react to other boids
independent of whether they are in a flock. (That is, their
behavioural rules are unchanged, although of course their
resulting behaviour is sensitive to the existence of the flock.)

In a simulation, we might add a FlockRecogniser subsys-
tem, including a class FlockTag whose instances tag the de-
tected flocks, and merely provide statistics on the simula-
tion’s behaviour. Such instances would have no effect on
the individual boids’ behaviour, whether within or outside a
flock.

Internal Detection

External instrumentation is the least interesting kind of reifi-
cation, as the emergent is explicitly visible only to external
observers. Crutchfield [5] talks about “intrinsic emergence”,
where there are internal observer processes that can “take
advantage of the emergent patterns”.

The next level of reification includes internal detection,
whereby ordinary agents notice the existence of the emer-
gent, and change their behaviour based on it. For example,
a more sophisticated flocking simulation could have boids
modified to be able to sense and interact directly with flock
objects, preferring to move closer to a flock than to boids not
in a flock, say. The flock object exists in the simulation, but
is merely a derived consequence of the boids’ behaviours: it
has no active behaviour of its own, it merely influences the
behaviour of other objects.

782 ECAL 2011



Reification

With full reification of the emergent, ordinary agents notice
the existence of the emergent, change their behaviour, and
are also directly affected by it. The emergent becomes an
intensional entity in its own right. Being a component of the
emergent then stops being defined merely as an extensional
property (happening to being in the correct location to be in
the extension, say), and becomes something that is granted
by the emergent entity (membership rules, say).

For example, a reified flock object in a simulation might
actively prevent boids from entering or leaving the flock: it
would then be acting as a kind of ‘membrane’ around the
flock. (We are not suggesting this happens in real-world
flocks. Here we are simply exploring the kinds of ways
that a simulation might react to the presence of an emer-
gent: we are interested in getting complex open-ended dy-
namics in the simulation, not in faithfully replicating how
such processes occur in the real world.) The reified emer-
gent becomes available in the simulation to be a first class
component in further (higher-level) emergent behaviours.

The effect of the reified emergent on its constituent mem-
bers could be considered to be a form of downward causa-
tion [3, 22]. Although such a concept is anathema to physi-
cists, it is an everyday notion to sociologists. Reification
of some societal constructs changes membership properties
(for example, citizenship) from extensional (happening to be
located in the country) to intensional (having the conferred
property of being a citizen) in exactly this way.

Intensionalising Emergence internally

We have discussed modifications to the simulation to
achieve several kinds of intensionalisation, to capture emer-
gent properties as explicit entities within the simulation. In
this section we propose how to achieve this dynamically
within the simulation, through the use of computational re-
flection [16].

Models

When writing a program, it is good software engineering
practice to write a model of the program. For an OO pro-
gram, that model is often written in an OO modelling lan-
guage such as UML, identifying the classes, associations,
interactions, behaviours, and so on. This model provides
the abstract language of the concepts to be implemented in
code. Even if no such model is written explicitly, it is im-
plicit in the structure and dynamics of the written and exe-
cuting code.

For example a (very simplified) class model of an agent-
based boid simulation might look like figure 1. This is a
model of the implemented code. Emergent (unimplemented)
properties do not appear in this kind of model.

Boid

avoid()
cohere()
align()
move()

position
velocity

*
influence

*

Figure 1: A (very simplified) UML class model of a boid
simulation. There is a single Boid class, listing the attributes
and operations of boids. Each boid has zero or more boids
that influence it. (It bases its behaviour on the attributes of
these boids, but that is not captured in this model.)

Flock Boid

model 
(class)

simulation 
(object)

instance

*
1 *

members

influence

*

Figure 2: Model of Boids and emergent Flocks

Emergent classes
Although the model of the simulation code does not include
emergent concepts, we can build a (different) model that
does. In this new model, the emergent is captured as an ex-
tensional object; it can then be intentionalised (its defining
property captured in a class definition).

So we augment our model with an emergent class (which
we draw as a dashed class box)3. This class captures the
emergent property, and its instances. Figure 2 shows two
levels: a model level with a normal class Boid and an emer-
gent class Flock. We also show an object level view (a snap-
shot of the objects present during execution). The boid ob-
jects are instances of the Boid class. Some boid objects are
members of flocks. We say that these emergent flock objects
are instances of the emergent class Flock.

The emergent class might be a subclass of an existing ‘or-
dinary’ class in the model. For example, in an evolution-
ary system, a new kind of mutation operator might emerge
([8] discusses an example of an emergent macromutation,
figure 3). In such a case we assume that the superclass is
abstract, with neither intensional nor extensional instances
of its own. On the other hand, the emergent class might be

3This is not part of UML, and so is an extension of the mod-
elling language.
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Mutation 
Operator

Molecule

Exchange InDel Macro

* *

modifiers

Figure 3: An example of an abstract superclass with ordi-
nary and emergent subclasses (derived from [8], which has
predefined Exchange and InDel mutation operators, and ex-
hibits an emergent macromutation)

Agent
Type

Aggregate
Type

Behaviour
Type

Figure 4: A (very simplified) metamodel of agent based
models. There is an Agent Type (an instance of which is
the Boid class), and a Behaviour Type (instances include
the boids’ avoid and align behaviours). This metamodel
has been augmented by an emergent Aggregate Type (an
instance is the emergent Flock class).

a genuinely new kind of concept in the model, with no pre-
existing superclass.

Once we have augmented our model with emergent ob-
jects and classes, we could build a new simulation with them
as coded classes. But for an open-ended simulation, we need
a system that can itself recognise such entities, and change
its own model, at run-time, to include such intensionalised
emergent classes dynamically.

Metamodels
Changing the model (to allow for new kinds of executing
objects), although necessary, is not sufficient for full open-
endedness. We also need to change the metamodel, to allow
new kinds of things in the model.

In an analogous way to how a model provides the lan-
guage for writing the code, a metamodel provides the lan-
guage for writing a model: it defines the kinds of things that
can occur in the model (it is the model of the model). UML’s
metamodel includes concepts such as class and association.
An agent-based modelling language metamodel would in-
clude concepts such as agent and behaviour. In the same way
that models need to be augmented to include emergents, so
do metamodels (figure 4).

Models and instances form a two-level modelling archi-
tecture. The Object Management Group (OMG) uses a four
level modelling architecture [12, ch.8]: M0 = base instance
(the objects in the simulation); M1 = model (defining the
kinds of things in the simulation, such as Boid, Ant; written

Flock
Boid

Model 
(Class)

Simulation 
(Object)instance

Meta Model 
(Metaclass)

Agent
Type

Aggregate
Type

Ant
Trail

Behaviour
Type

rules() rules()

Figure 5: Metamodel and Model of an agent-based simula-
tion

in, for example, UML); M2 = metamodel (defining an on-
tology, the kinds of thing in the model, eg Class and Associ-
ation for UML models, AgentType for agent-based models
(ABMs); also written in for example UML); and finally M3
= meta-metamodel (defining the kinds of thing in the meta-
model, written in, for example, OMG’s Meta Object Facil-
ity (MOF) language). Infinite regress is avoided by allowing
the meta-metamodel to be written in MOF. Here we consider
only the bottom three layers, M0-2.

Another example of this four level architecture is: M0
= executing program; M1 = a Python program; M2 = the
Python programming language; M3 = BNF and denotational
semantics. Changing the model is analogous to changing the
program; changing the metamodel is analogous to changing
the programming language.

Emergent Metamodels
The metamodel of an ABM (figure 5) describes the kinds
of things in an agent-based simulation: it has a metaclass
AgentType. The emergent class like Flock in the model also
needs a metaclass: it is an emergent AggregateType. So
there can be emergent metaclasses too (where an emergent
class is not an instance of some existing metaclass).

Speciation and major transitions
We have seen three main kinds of reification:

1. Reifying an emergent subclass (for example, the macro-
mutation class in figure 3). The concept already exists in
the model (the superclass); the reified subclass is a variant
of that concept.

784 ECAL 2011



xixixi

X

Model 
(Class level)

(Object level)

Meta Model 
(Metaclass level)

Y

xi
xixixiyj

xixixixi

xixixiyj

X

Y

X class

Y class

X class Y class

Figure 6: (left) the Smalltalk-80 Metaclass/Class/Object model as a three-layer model; (right) the implementation, all in the
Object layer

2. Reifying an emergent class (for example, the Trail class in
figure 5). The concept did not exist in the model (there is
no relevant superclass), but does in the metamodel (once
AggregateType is reified). The reified class is a new in-
stance of that concept: the trail is a new kind of aggregate
object, a new kind of thing with new kinds of behaviours,
roughly analogous to a new species or genus in biology.

3. Reifying an emergent metaclass (for example, the aggre-
gate type in figure 4). The concept did not exist in the
metamodel: the aggregate type is a new kind of meta-
object, a new concept in the language, roughly analogous
to a major transition in evolutionary biology [17] (for ex-
ample, the move from unicellular to multicellular organ-
isms).

Such reification provides the requisite novelty generating
power, when implemented in a computational system.

Dynamic Models and Metamodels

The process of changing the model and metamodel needs
to be dynamic, so that we can add reified emergent classes
and metaclasses as they emerge and are recognised at run-
time. Smalltalk-80 [7] provides an approach to this. Two
fundamental concepts in Smalltalk-80 are: everything is an
object; an object is an instance of some class. Since every-
thing is an object, a class is an object, and so is an instance
of some class, called its metaclass. So object x is an instance
of class X, and class X is the (singleton) instance of its meta-
class, referred to4 as X class. Since everything is an object,

4In Smalltalk-80, metaclasses are not explicitly named. A meta-
class can be referred to by sending the message class to the class’s
single instance. The value of this message expression is the meta-
class. So the metaclass of class X can be referred to as X class.
(Since there is also a class called Class, this terminology can lead
to awkward constructions, such as “the class Class class”.)

a metaclass is an object, and so is an instance of some class,
the class Metaclass5.

So Smalltalk-80 has the objects, the classes (model) and
metaclasses (metamodel) all available as objects at runtime
(figure 6). All can be instantiated, deleted, and modified
at runtime, via this computational reflection (“a reflective
system is a computational system which is about itself in
a causally connected way” [16]). Although Smalltalk-80 is
not a pure reflective language, it does have reflective capa-
bilities, and many others can be added programatically [6].

Other computationally reflective languages (ones that can
modify themselves at run-time, to a greater or lesser extent)
include Lisp, Prolog, Python, Ruby, and JavaScript.

Examples of self-modifying and reflective systems
Suber [23] discusses self-amendment in the context of law
making, and describes Nomic [10][23, appx.3], a (non-
computer-based) law-based game where changing the rules
(including the rule that players must obey the rules) is a
move. Suber asks if it is possible either to make some rules
unchangeable whilst preserving the power to amend others,
or to irrevocably repeal the power to amend the rules.

Reflection is key in the branch of Artificial Intelli-
gence concerned with “learning to learn”, metamemory and
metacognition [4, 14, 15, 18, 21, 24]. Learning changes the
model; learning how to learn, learning a better learning al-
gorithm, is changing the metamodel. Note that our concern
here is not in high-level cognition, however, but in the role
of reflection in open-ended evolution.

Biology is the ultimate self-modifying system. Hick-
innbotham et al [9] describe a self-modifying computational

5Of course, since Metaclass is a class, it is the singleton in-
stance of its metaclass, Metaclass class. And Metaclass class is
a metaclass, so like all metaclasses, it is an instance of Metaclass.
This circularity stops the potential infinite regress of needing meta-
metaclasses, etc. See [7, pp268-72] for details.
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architecture inspired by biological DNA, RNA and pro-
tein machines. Tomita et al [25] use graph-rewriting au-
tomata with five kinds of rewriting rules, to implement self-
replication. They discuss the possibility of embedding the
graph rewriting program as a graph itself within the system,
allowing for execution to modify which rules are applied.
This is analogous to modifying the model at run-time; an
analogy to modifying the metamodel would be to introduce
new kinds of rewriting rules.

Reflection is proposed as the route to self-adaptive soft-
ware systems [1, 16]. The architectural requirements spec-
ified in [1] differ from our own here, however, because the
application domain is very different. For example, [1] is
concerned with reflection on programming language con-
cepts, subject to real world domain constraints; we are con-
cerned with reflection on novelty generating mechanisms,
and need to impose constraints in terms of some energy
model (next). They are concerned with software engineering
structuring, clear separation of model and metamodel layers
and their respective concerns, and with performance; we are
concerned with open ended novelty generation, and embrace
the biologically-inspired ‘messiness’ of deliberately mixing
layers of abstraction. Consequently, they carefully separate
domain and reflective aspects, and keep the computation to
do with reflection in the metamodel level only; our archi-
tecture of computation is orthogonal to the model and meta-
model layers (next), to enable reflection at all levels, not only
the metamodel reflecting on the model.

An open-ended architecture
As discussed above, computational reflection provides a
route to open-ended novelty. As Maes [16] says: “A lan-
guage with reflective facilities is open-ended: reflection
makes it possible to make (local) specialised interpreters of
the language, from within the language itself.”

Reflection provides the computational mechanism, but
we also need an architecture within which to generate and
run the open-ended code. Here we describe an architecture
for such a system. We use OO terminology; this specific
paradigm, although well-suited, is not necessary for the ar-
chitecture, just some analogue of the underlying concepts in
a reflective programming language.

We define only a bootstrap architecture. The whole point
of computational open-ended novelty generation is for the
system to modify this architecture at run-time.

The key feature is that the three levels – instance, class,
and metaclass – all exist as executing and modifiable objects
in the system at run-time. For the bootstrap, we separate the
system into three subsystems: an initial seed application, the
observer-reifier-modifier (ORM) intentionaliser, and the vir-
tual machine (VM). The seed application, for example, some
agent-based simulation, acts as the raw material from which
the open ended novelty grows. The other two subsystems
are described below. See figure 7.

ORM Intentionaliser: modifying the models
Our framework for intensionalising emergent structures has
three components:

1. emergence observers, that observe novel emergent struc-
tures and behaviours

2. emergence reifiers, that intensionalise the recognised
types, and add the relevant classes or metaclasses into the
run-time, thereby changing the model or metamodel

3. model modifiers, that modify the simulation (instances,
classes, or metaclasses) to exploit the reified structures

In [1], a distinction is made between structural reflection
(reification of structural aspects such as data types) and be-
havioural reflection (reification of computations and their
behaviours). It is crucial that emergence recognisers capture
patterns both of structure and of behaviour: at different lev-
els of emergence features can appear to be either ‘particles’
or ‘processes’ [22].

The ORM subsystem therefore includes ObserverType,
ReifierType, and ModifierType metaclasses, and bootstrap
class instances of these, to provide the meta-functionality.
For example, we might have the class Eye as a bootstrap in-
stance of ObserverType, whose own instances observe the
simulation for particular spatial and temporal patterns that
indicate emergence. An Eye instance might detect a flock-
or trail-like emergent. It notifies a suitable Reifier instance,
which can appropriately intensionalise the emergent, for ex-
ample, as an internally detectable object. A suitable Mod-
ifier instance then modifies other classes in the simulation
so that their instances can detect the new objects. It might
also modify their behaviours to use the detected informa-
tion, or, in an evolutionary simulation, allow these modified
behaviours to evolve.

Key to the overall architecture is the fact that the simulator
is reflective, not just at the core agent level, but throughout.
Hence a bootstrap observer (for example) can observe not
only novel agent patterns, but also novel observation, reifi-
cation, and modification patterns, which can then be reified
and modified appropriately. We bootstrap with Hammer and
Eye classes; later Spanner and Ear classes can emerge and
be reified. Eventually new ModifierType metaclasses could
be reified. Hence the simulation can not only change itself,
it can change the way it changes itself (this does imply re-
quirements on the representation of modifier rules [14]).

Being able to modify the modifier, being able to produce
new kinds of ways of recognising, reifying and modifying
the simulation, closes the self-referential loop, and produces
a truly open-ended system.

Virtual machine: constraints
The virtual machine provides whatever run-time support is
needed for the ORM architecture, in the usual manner (at
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Figure 7: The architecture, showing metamodel, model (class boxes show an instance icon), and instance layers (horizontal
dashed lines), and VM, ORM, and ABM subsystems (vertical dashed lines). (left) Minimal self-modification: the layers and
subsystems are well-defined, the bootstrap ORM objects observe and reify the emergent trail class and modify the ABM objects,
the ORM model and metamodel are fixed. (right) Constrained self-modification: the ORM components observe and modify
the ABM and ORM objects, model, and metamodel (but not the VM), reifying emergent ORM components, and potentially
modifying the kind of modifiers.

a minimum, compilation, dynamic object communication,
and error handling). In addition, it provides some form of
constraint on the modification processes. The research chal-
lenge is to achieve framework behaviour that allows a sim-
ulation to exploit emergent novelty without dissolving into
chaos. A completely unconstrained framework could well
modify itself out of existence. Some form of constraint, for
example an analogue of conservation of energy, might be
needed to allow the system to develop in interesting direc-
tions without devolving into a mess of object soup.

However, a completely constrained system, that allows
no modification, no intensionalisation, is static and cannot
achieve open-ended dynamics. This is the state of most clas-
sic ABM simulations.

It seems plausible that some degree of constraint between
a totally static mode and meta model, and total freedom, is
required; this is possibly some “edge of chaos” [13] require-
ment. Hence the role of the constraint is to help the system
self-organise to maximally complex patterns of structure and
behaviour.

Modifying the VM
If the virtual machine is implemented in the same language
and at the same level as ORM, it could potentially also be
a target of the self-modification process. Here we assume
that the constraint part is to be unmodifiable, for the reasons
given above, but the interpreter or message handler part is a
valid target of modification.

Consider a Smalltalk-80 implementation. The simulation
and modifier objects are Smalltalk-80 objects, and are im-

plemented (given their execution semantics) in a Smalltalk-
80 VM. A suitably defined physics engine could be included
at the object level, and be subject to the same modification
processes as the objects themselves.

Discussion
Consideration of a metamodel of emergence has led to the
insight that emergent properties are emergent intensional
definitions. The difference exhibits itself in simulations,
where the emergent properties are observed via instrumen-
tation, rather than reified directly. If the emergent proper-
ties are reified and intensionalised, with their own defini-
tions and behaviours, they can become the kind of agents
that result in (further) emergent properties.

In order for these kinds of emergent innovation to be in-
cluded in a simulation, the simulation needs to be able to
modify its own model, and metamodel, dynamically (at run
time). We contend that for a simulation to exhibit open
ended dynamics, it must include a form of computational
reflection that allows it to modify its own model and meta-
model as the simulation is running.

We have specified the design of an open-ended archi-
tecture. (The next stage of work is to develop a proto-
type implementation.) This architecture has the instances,
model, and metamodel all available for modification at run-
time. It has three subsystems: a virtual machine providing
run-time support and modification constraints, an observer-
reifier-modifier intensionaliser, and a seed application. This
is a bootstrap architecture: successful self-modification will
modify this architecture.
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Rosen [19, §10a] argues that the difference between an
organism and a mechanism is that an organism “is closed
to efficient causation”, and that a mechanism cannot be so
closed. He uses Aristotle’s term “efficient cause” as the
cause that brings something about. He argues that life is
self-defining, self-causing, autopoietic; but that simulations
cannot be, that simulations require something outside the
system to define them. We claim that the reflective approach
and bootstrap architecture described above can allow sim-
ulations to be similarly self-defining, self-generating, self-
causal, and hence to exhibit some of the properties Rosen
requires for life.
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Abstract

In this paper, we study self-organized flocking in a swarm of
behaviorally heterogeneous mobile robots: aligning and non-
aligning robots. Aligning robots are capable of agreeing on
a common heading direction with other neighboring aligning
robots. Conversely, non-aligning robots lack this capability.
Studying this type of heterogeneity in self-organized flock-
ing is important as it can support the design of a swarm with
minimal hardware requirements. Through systematic simu-
lations, we show that a heterogeneous group of aligning and
non-aligning robots can achieve good performance in flock-
ing behavior. We further show that the performance is af-
fected not only by the proportion of aligning robots, but also
by the way they integrate information about their neighbors
as well as the motion control employed by the robots.

INTRODUCTION
Flocking is the cohesive and aligned motion of a group of in-
dividuals along a common direction. All studies about flock-
ing within computer science and robotics root back to the
seminal work of Reynolds (1987). He was the first to sim-
ulate flocking of birds based on three behaviors: separation
— individuals try to keep a minimum distance between their
neighbors, cohesion — individuals try to stay together with
their neighbors, and alignment — individuals try to match
their velocities to the average speed of their neighbors. The
vast majority of the studies about flocking assume that all
the robots in the swarm are behaviorally identical and ex-
ploit the three behaviors described above.

In this paper, we consider flocking in a behaviorally het-
erogeneous swarm of robots. All robots in the swarm use the
separation and the cohesion behavioral rule. However, only
a fraction of the robots, which we call the aligning robots,
uses the alignment behavior. The rest of the robots, which
we call the non-aligning robots, do not use the alignment
behavior.

We believe that studying heterogeneity in alignment in
self-organized flocking is very important from the practical
point of view. The alignment behavior is more demanding in
terms of robotics hardware requirements than the separation
and cohesion behaviors. In fact, it requires either an elab-
orate sensing device, through which robots can detect the

orientation of neighboring robots or, as explained in this pa-
per, a communication device. Therefore, understanding if a
swarm can achieve flocking with only a few aligning robots
can support the design of swarms with minimal hardware
requirements.

We conduct simulation-based experiments and we mea-
sure self-organized flocking performance in terms of the de-
gree of group order, group cohesiveness and average group
speed. With respect to these criteria, we found that the
swarm achieves good flocking performance when the pro-
portion of aligning robots is high. Conversely, this perfor-
mance decreases as the proportion gets lower. To tackle
this problem, we propose a new model of robot motion. In
the new model, non-aligning robots modulate their forward
speed, instead of moving at a fixed forward speed as the
other robots.

The rest of the paper is organized as follows. In the next
section, we present the related works in flocking, starting
from studies in biology and then in robotics. We then in-
troduce our heterogeneous flocking model, the robots and
we explain how we implement flocking on the robots. Sub-
sequently, we describe the experimental setup, the metrics
and the results. Finally, we conclude the paper and propose
future directions of research.

RELATED WORK
Flocking is a widely observed phenomenon in social ani-
mals (Camazine et al., 2001) such as locusts (Buhl et al.,
2006), birds (Ballerini et al., 2007) or human beings (Dyer
et al., 2008). Animal groups show a great diversity in
their population due to the differences in age, morphol-
ogy (Krause et al., 1998), nutritional state (Krause, 1993),
personality (Michelena et al., 2010), and leadership sta-
tus (Reebs, 2000) of the individuals. This diversity mainly
results in behavioral differences among the individuals.
Couzin et al. (2002) showed that behavioral differences be-
tween the individuals in a group change both the dynamics
and the organization of the group. Subsequently, Couzin
et al. (2005) conducted a seminal study about leadership in
animal groups. They modeled a heterogeneous group of in-
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dividuals of which only a few are aware of a target direction.
They showed that the few informed individuals are able to
move the whole group along the target direction. In Janson
et al. (2005), the authors propose a model to explain how
scouts bees are able to direct large swarms of uninformed
bees towards a new nesting site. Even when the propor-
tion of scout bees is low, they are able to lead the swarm
by flying through it at a slightly faster speed. Sayama
(2009) presented the preliminary results obtained in simu-
lation using the Swarm Chemistry framework. They stud-
ied the movement of a swarm consisting of two different
chemical species, and found that a chaser-escaper relation-
ship between the two different populations of agents is es-
tablished. More recently, Diwold et al. (2011) showed how
a swarm can still fly towards a common direction even when
the agents are not all aligned, and when the location of the
nesting site is not known with precision.

In robotics, most of the studies about flocking assume
a homogeneous set of behaviorally equivalent individu-
als. One of the earliest studies in robotics was performed
by Matarić (1994). She devised a set of “basis behaviors”
to implement flocking in a group of robots: safe-wandering,
aggregation, dispersion and homing. With the proposed set
of behaviors, robots are able to move cohesively towards
a homing direction. Kelly and Keating (1996), following a
behavior-based approach, designed a leader-following be-
havior to realize flocking. Hayes and Dormiani-Tabatabaei
(2002) proposed a flocking behavior having collision avoid-
ance and alignment behaviors based on local range and bear-
ing measurements. Spears et al. (2004) proposed a frame-
work based on artificial physics. The robots were able to
form a regular lattice structure using attraction/repulsion vir-
tual forces and move along a direction indicated by a light
source in the environment. Holland et al. (2005) proposed
a flocking behavior for unmanned ground vehicles based
on separation, cohesion and alignment behaviors. Turgut
et al. (2008) proposed a flocking behavior based on sep-
aration/cohesion and alignment behaviors. They imple-
mented this behavior in robots with limited sensing capabil-
ities and conducted a systematic study on the effect of sens-
ing noise in heading measurement on flocking. In a recent
study, Moslinger et al. (2009) proposed a flocking behavior
for robots with limited sensing capabilities. It is based on
only attraction and repulsion behaviors. By adjusting the
sizes of attraction and repulsion zones, they achieved flock-
ing for a small group in a constrained environment.

Other works in robotics considered a group of behav-
iorally heterogeneous robots. Momen et al. (2007) stud-
ied flocking with a heterogeneous robotic swarm inspired by
mixed-species foraging flocks of birds (Graves and Gotelli,
1993). Using simulations, they showed some aspects of
mixed-species flocking, such as behavioral differences in
their attraction and repulsion rules. Çelikkanat and Şahin
(2010), inspired by Couzin et al. (2005) extended the flock-

ing behavior proposed by Turgut et al. (2008) and created a
heterogeneous robot swarm by informing some of the robots
about a target direction. Recently, in another follow-up
study, Ferrante et al. (2010) introduced a new communica-
tion strategy to improve flocking performance in case of both
static and changing target directions.

To the best of our knowledge, most of the studies in
swarm robotics about self-organized flocking have not con-
sidered diversity in alignment capabilities.

METHOD
We follow a design method based on the artificial physics
framework introduced by Spears et al. (2004). According to
this method, robots exert virtual forces on each other. The
swarm consists of aligning and non-aligning robots. Align-
ing robots are subject to the following virtual forces

f = α1p + β1h,

whereas for the non-aligning robots the virtual force is
computed as

f = α2p.

We define p as the proximal control vector and h as the
alignment control vector. The proximal control vector p
accounts for attraction and repulsion rules for keeping the
robot together with its neighbors and to avoid collisions.

The alignment control vector h is used to make the align-
ing robots match the average heading direction of its neigh-
boring aligning robots. The parameters α1, β1 and α2 are
used to adjust the contribution of the corresponding vectors.

Proximal control
Let mp denote the number of neighbors of a robot within
a range Dp. Let also di and φi denote the relative range
and bearing of the ith neighbor, respectively. The proximal
control vector p is given by:

p =

mp∑
i=1

pi(di)e
jφi .

pi is calculated as a function of di using a force function de-
rived from the Lennard-Jones potential function, which re-
sults in the formation of regular structures as shown in Het-
tiarachchi and Spears (2009):

pi(di) = 12ε

[
ddes

12

d13i
− ddes

6

d7i

]
.

The parameter ε determines the strength of the attractive and
repulsive force, and ddes is the desired distance between the
robots.
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Alignment control
Let θ0 denote the orientation of a given robot. Furthermore,
letma denote the number of aligning robots within the range
Da of this robot, and θi, i ∈ {1, . . . ,ma} their orientation.
All orientations are expressed in the body-fixed reference
frame of the robot under consideration1. The robot calcu-
lates the alignment control vector, that is, the average orien-
tation of the ma robots, including its own:

h =

∑ma

i=0 e
jθi

‖
∑ma

i=0 e
jθi‖

,

where ‖ · ‖ denotes the norm of a vector.

Motion control
We present two motion control rules. The two rules differ
in the way the forward speed u and the angular speed ω are
determined. The first rule is denoted as constant forward
speed motion control (henceforth CMC). In CMC, robots
are always moving at a constant forward speed, but can
change their angular speed. According to the second rule,
denoted as variable forward speed motion control (hence-
forth VMC), robots move not only at a variable angular
speed but also at a variable forward speed.

CMC: The forward speed is kept constant at

u = U .

The angular speed is proportional to the angular compo-
nent of the total force f . Hence, it ignores the magnitude
‖f‖ of the force:

ω = K 6 f .

VMC: First, let fx = ‖f‖ cos( 6 f) and fy = ‖f‖ sin(6 f) de-
note the projection of the total force f on the x-axis and y-
axis of the robot body-fixed reference frame respectively.
Accordingly, the forward speed u is directly proportional
to the x component of the total force and the angular speed
ω is directly proportional to the y component of the force.
Hence:

u = K1fx

ω = K2fy .

K,K1,K2 are constants, whose values are given in Table 1.
In this work, we consider and study two different cases in

which we vary the motion control rule applied to the non-
aligning robots. In the first case, referred as the CMC-CMC

1In our study, we define two reference frames, both of which
use the right-hand convention. One is the reference frame common
to all of the robots, which is available due to the light source. The
other is the body-fixed reference frame specific to each robot. The
body-fixed reference frame is fixed to the center of a robot: its x-
axis points to the front of the robot and its y-axis is coincident with
the rotation axis of the wheels.

case, all robots share the same motion control rule, that is,
CMC. In the second case, referred as the CMC-VMC case,
aligning robots use CMC, whereas non-aligning robots use
VMC.

FLOCKING WITH ROBOTS
In this study, the swarm is composed of simulated versions
of the foot-bot robot developed by Bonani et al. (2010).
The foot-bot is a differentially-driven mobile robot with the
following sensors and actuators: i) A light sensor used to
measure the orientation of robot (θ0) with respect to a light
source present in the environment perceived by all robots.
ii) A range and bearing sensing and communication device
(henceforth called RAB), with which a robot can communi-
cate with its neighbors and perceive their range and bearing
measurements (Roberts et al., 2009). iii) Two wheels actua-
tors, that are used to control independently the left and right
wheels speed of the robot.

To achieve proximal control with the foot-bot the RAB is
used for measuring the relative range and bearing di and φi
of the ith neighbor. For achieving alignment control, we use
communication to simulate orientation sensing as in Turgut
et al. (2008). In particular, each aligning robot sends its ori-
entation, expressed in the global reference frame, using the
communication unit present in the RAB. At the same time,
it receives the orientation θi of its ith neighboring aligning
robot. It transforms this angle into its body-fixed reference
frame. In this way, we are able to simulate a robot sensing
the orientation of its neighboring aligning robots.

To achieve motion control, we first limit the forward
speed within [0, Umax ], and the angular speed within
[−Ωmax , Ωmax ]. We then use the differential drive model
used in Turgut et al. (2008) to convert the forward speed u
and the angular speed ω into the linear speeds of the left
(NL) and right (NR) wheel:

NL =
(
u+

ω

2
l
)

,

NR =
(
u− ω

2
l
)

,

where l is the distance between the wheels.
The values of the constants that we used in our experi-

ments are given in Table 1.

EXPERIMENTS
We execute simulation-based experiments with a swarm of
foot-bots using the ARGoS simulator (Pinciroli et al., 2011),
an open-source2, plug-in based, multi-physics engine simu-
lator.

2http://iridia.ulb.ac.be/argos/
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Variable Description Value(s) / Range
N Number of robots {25, 100}
ρ Prop. of aligning robots {0.4, 0.8}

β1/α1 Alig. robots parameters {1, 2, 4, 6, 8, 10}
α2 Non alig. robots parameter {1, 2, 4, 6, 8, 10}
U Maximum forward speed 1.5 cm/s
K CMC angular gain 0.5 1/s
K1 VMC linear gain 0.25 s/kg
K2 VMC angular gain 0.1 s/(kg · m)
l Inter-wheel distance 0.1 m

Umax VMC max forward speed 20 cm/s
Ωmax VMC max angular speed π/2 rad/s
ε Strength of pot. function 0.5

ddes Inter-robot distance 0.6 m
σ Amount of noise 0.1
T Experiment duration 600 secs

Table 1: Experimental values or range of values for all con-
stants and variables

Experimental setup
At the beginning of each experiment, N mobile robots are
randomly placed (position and orientation-wise) with a pro-
portion ρ ∈ [0, 1] of aligning robots. The density of robots is
kept fixed and equal to 6 robots per square meter on a square
shaped area. A light source is placed at a fixed position in
the environment, far away from the swarm, to provide the
common reference frame.

In the experiments, noise is added to the orientation
measurement and the angle of the proximal control vector.
Noise is modeled as a uniformly distributed random variable
within the range [−σπ, σπ].

We conduct experiments considering the two different
cases of motion control.

CMC-CMC In this case, all robots use CMC. Here, we
study the effect of the ratio β1

α1
, and we do not change

α1 and β1 independently, since CMC does not utilize the
magnitude of f , but only its angular component. As such,
multiplying both α1 and β1 with the same constant value
will produce no difference in the robot motion. For the
same reason, α2 does not effect the robot motion.

CMC-VMC In this case, aligning robots use CMC whereas
non-aligning robots are using VMC. For the non-aligning
robots, the magnitude of f plays a role in their motion.
Thus, additionally to the effect of changing β1

α1
of the

aligning robots, we study the effect of changing α2 of the
non-aligning robots.

We show the results in heterogeneous self-organized flock-
ing with medium (N = 25) and large (N = 100) swarm
sizes and with low (ρ = 0.4) and high (ρ = 0.8) proportions

of aligning robots. We study the effect of changing the ratio
β1

α1
∈ {1, 2, 4, 6, 8, 10} and, for the heterogeneous case, we

also study the effect of changing α2 ∈ {1, 2, 4, 6, 8, 10}, but
we report here only the results obtained with the best case,
that is, α2 = 10 (refer to Stranieri et al. (2011) for the com-
plete set of results ). In our supplementary page (Stranieri
et al., 2011), we also report the flocking performance as a
function of ρ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.

For each experimental setting, we execute R runs and re-
port median and interquartile range of the results. The dura-
tion of one run is T simulated seconds.

We study how the heterogeneous flocking performance
is influenced by: i) the way robots implement their motion
(CMC-CMC motion versus CMC-VMC motion), ii) the pa-
rameters that affect the strength of the proximal control vec-
tor and of the alignment control vector, that is, β1

α1
and α2,

and iii) the ratio of aligning robots ρ .
We also experiments in the VMC-VMC case, but we

didn’t obtain any positive results, even with ρ = 1.

Metrics
In this study, we are interested in having a swarm of robots
that move cohesively as a single group. Furthermore, the
swarm should be aligned towards the same direction and
move towards it as fast as possible. We use three metrics
to measure the degree of attainment of these objectives: or-
der, group cohesion and rescaled group speed.

Order: The order metric ψ measures the angular order of
the robots (Vicsek et al., 1995), ψ ≈ 1 when the group
shares a common heading and ψ � 1 when each robot is
pointing in a different direction. The order is defined as:

ψ =
1

N
‖
N∑
i=1

ejθi‖.

Group cohesion: To measure group cohesion ξ, we deter-
mine the number of groups g present at the end of each
experiment (Couzin et al., 2005). Group cohesion is com-
puted as:

ξ = 2−min(2, g).

and therefore takes values in {0, 1}.

Rescaled Group speed: We calculate the average group
speed as:

s = ‖cT − c0
T

‖,

where cT and c0 are the position of the center of mass
of the swarm at the end and at the beginning of the ex-
periment, respectively. We then rescale the average group
speed:

sr =
s

U
,

where U is the maximum forward speed of CMC.
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Figure 1: CMC-CMC case experiments for varying swarm size (N ∈ {25, 100}) and ratio of aligning robots (ρ ∈ {0.4, 0.8}).
Thick lines show the median values, whereas the gray areas show the 25% and the 75% interquartile range of the data. For
group cohesion, filled circles correspond to median values and empty circles to the 25% percentile score of the data.

Results in the CMC-CMC case

The experimental results for CMC-CMC case are depicted
in Figure 1. We first focus on the ρ = 0.8 case, for both
N = 25 (Figure 1a) and N = 100 (Figure 1b). Results
show that the swarm is cohesive in most runs. However, or-
der and speed are high only when β1

α1
≥ 2. Furthermore,

while order is high at different values of the ratio β1

α1
, speed

increases with increasing values of β1

α1
, until it saturates at

around β1

α1
= 6. This shows that, when the alignment con-

trol vector is higher, robots tend to move faster. This is ex-
plained by the fact that the alignment control vector is more
stable, over time, than the proximal control vector. Thus, the
higher the weight of the alignment control vector, the more
the robots tends to move forward rather than to turn. This
allows the swarm to move faster, until speed saturates at the

maximum forward speed U .

When the proportion of aligning robots is ρ = 0.4, perfor-
mance gets sensibly worse (Figures 1c and 1d). In both cases
(N = 25 andN = 100), we observe two possible outcomes:
for small values of the ratio β1

α1
, the swarm remains cohesive,

but does not move. This happens because the relative contri-
bution of the alignment control vector is not enough for the
aligning robots to pull the entire swarm towards the agreed
goal direction. For larger values of the ratio β1

α1
, group speed

and order get higher. However, in at least 25% of the runs,
the swarm splits. This happens because, in those runs, clus-
ters of non-aligning robots are present. Since the motion of
these robots is governed only by the proximal control vector,
they are not able to match the higher speed of the aligning
robots since they tend to turn more rather than to move for-
ward, thus they remain disconnected from the group.
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Figure 2: CMC-VMC case experiments for varying swarm size (N ∈ {25, 100}) and ratio of aligning robots (ρ ∈ {0.4, 0.8}).
Thick lines show the median values, whereas the gray areas show the 25% and the 75% interquartile range of the data. For
group cohesion, filled circles correspond to median values and empty circles to the 25% percentile score of the data.

In Stranieri et al. (2011), we also report the performance
as function of ρ. We consider the case β1

α1
= 10, as it gener-

ally provides the best overall results. As shown in Stranieri
et al. (2011), the flocking performence is acceptable in terms
of the metrics used for ρ ≥ 0.6 in both cases N = 25 and
N = 100.

Results in the CMC-VMC case
In the CMC-VMC case, results with ρ = 0.8 (Figures 2a
and 2b), are similar to the results obtained, with the same
ratio, in the CMC-CMC case. The results with ρ = 0.4 are
much better in the CMC-VMC case (Figures 2c and 2d) with
respect to the CMC-CMC case (Figures 1c and 1d). With
both swarm sizes we have that, when β1

α1
> 2, the swarm

is able to effectively flock together at the cost of a reduced
speed.

InStranieri et al. (2011), we also report the flocking per-
formance as a function of ρ for β1

α1
= 10 and α2 = 10. Dif-

ferently from the CMC-CMC case, in the CMC-VMC case
the performance of flocking degrades more gracefully as the
proportion of non-aligning robots decreases.

The improved capability of the swarm to stay together
is due to the advantage of using VMC in the non-aligning
robots. In fact, non-aligning robots are able to respond to
the high variations in the proximal control vector much more
when they can also change their forward speed. As such,
they are also able to stay together with the aligning robots,
both when they are alone and when they are in small or big
clusters. Finally, the reduced speed and the high variation
of speed among runs is due to the following fact. In pres-
ence of a low proportion of aligning robots, we observed
that the group heading direction is stable over short periods
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of time but changes over long periods of time due to the dis-
turbances caused by the non-aligning robots. This results in
a non-linear trajectory executed by the entire swarm, which
is different for each run. Since the rescaled group speed is
computed assuming a linear trajectory, this measurement has
large variation in the total displacement changes from run to
run.

CONCLUSIONS AND FUTURE WORKS
In this paper, we studied self-organized flocking in a swarm
composed of behaviorally heterogeneous mobile robots.
The swarm is composed of aligning robots, which are able
to agree on a common heading direction, and non-aligning
robots which lack this capability. We furthermore propose
a new model for achieving motion in self-organized flock-
ing. According to this model, aligning robots only change
their angular speed, whereas non-aligning robots change
both their forward and their angular speed.

We study the performance in terms of group alignment
order, cohesiveness and speed. Results show that self-
organized flocking is also possible when some individuals
in the swarm lack the capability to agree on a common di-
rection. More in particular, we showed that: i) a higher
proportion of aligning robots always corresponds a to bet-
ter performance; ii) performance is affected by the relative
contribution of alignment and proximal control, and iii) for
smaller proportions of aligning robots, flocking is possible
only when the non-aligning robots also change their forward
speeds .

Possible directions for future work are the following:
First, we plan to study energy efficiency within the same
framework of study. In particular, the use of a heterogeneous
group of aligning and non-aligning robots poses a trade-off
between efficiency of the motion and energy utilized. In fact,
we observed that, in order for the swarm to hold cohesive-
ness, the non-aligning robots spend a lot of energy to vary
their speed more reactively. Second, we would like to study
the correlation between spatial aspects of the swarm com-
position. In particular, we would like to study whether par-
ticular configurations (i.e., topology, connectivity, . . . ) have
different effects on the flocking performance. Third, we plan
to perform experiments involving two different types of real
robots.
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Bruxelles, Brussels, Belgium.

Reebs, S. G. (2000). Can a minority of informed leaders determine
the foraging movements of a fish shoal. Animal Behavior,
59:403–409.

Reynolds, C. (1987). Flocks, herds and schools: A distributed be-
havioral model. In Stone, M. C., editor, SIGGRAPH ’87:
Proc. of the 14th annual conference on computer graphics
and interactive techniques, pages 25–34, New York. ACM
Press.

Roberts, J., Stirling, T., Zufferey, J., and Floreano, D. (2009). 2.5d
infrared range and bearing system for collective robotics. In
Papanikolopoulos, N., Sugano, S., Chiaverini, S., and Meng,
M., editors, IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Piscataway, NJ. IEEE Press.

Sayama, H. (2009). Swarm chemistry. Artificial Life, 15(1):105–
114.

Spears, W. M., Spears, D. F., Hamann, J. C., and Heil, R. (2004).
Distributed, physiscs-based control of swarms of vehicles.
Autonomous Robots, 17:137–162.

Stranieri, A., Ferrante, E., Turgut, A. E., Trianni, V., Pin-
ciroli, C., Birattari, M., and Dorigo, M. (2011).
Oself-organized flocking with a heterogeneous mo-
bile robot swarm. Supplementary information page at
http://iridia.ulb.ac.be/supp/IridiaSupp-
2011-011/.

Turgut, A. E., Çelikkanat, H., Gökçe, F., and Şahin, E. (2008).
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Abstract

A number of authors have proposed that the analysis of
spatio-temporal information transfer may help to understand
cognitive behavior in biological and artificial agents. A spe-
cific case of interest is the study of synchronization of cen-
tral pattern generators (CPGs) in embodied systems. Pitti et
al. used simulated biped walkers to demonstrate a correlation
between task success and measured transfer entropy from the
body to the neural oscillator. This suggests it may be pos-
sible to use transfer entropy to help understand, control and
improve the behavior of limbed robots.

This paper presents a novel method of analyzing synchroniz-
ing oscillators with transfer entropy, which it is hoped will
lead to advances in controlling such systems. The neces-
sary discretization of continuous time oscillator observations
is performed via a stroboscopic analysis that preserves the
information of interest and allows a natural interpretation of
the results. Unlike some CPG studies, the current work ad-
dresses the tendency of naive transfer entropy calculations
to overestimate causal relationships in a significant and non-
trivial way. Transfer entropy may also underestimate causal
links when used on purely observational data, so it is impor-
tant to determine the limits of the method. It is found that in
weak (rather than rigid) synchronization transfer entropy can
be measured and interpreted as a causal information flow.

Introduction

Recent work has developed information theoretic under-

standings of embodied cognition (Lungarella and Sporns,

2006; Pfeifer et al., 2007). In learning and adaptation, in-

formation theoretic feedback mechanisms can guide sys-

tem development in the absence of explicit goal directed

feedback (Klyubin et al., 2005). By studying the informa-

tion flow in an evolved artificial agent’s neural network,

Williams and Beer (2010) are able to explain how the neu-

ral dynamics perform a computational role. In evolution-

ary robotics, the use of information theoretic goal functions

has been shown to generate interesting behaviors (Der et al.,

2008).

Central pattern generator (CPG) synchronization is

thought to underlie animal gaits (Collins and Stewart, 1993)

and potentially therefore has applications in robotics. How-

ever, in a complex synchronizing system it is often difficult

to determine the nature of the interactions between oscil-

lators. Ceguerra et al. (2011) approached this problem by

using a form of transfer entropy to analyze the synchroniza-

tion process in networks of coupled oscillators, which was

shown to be more effective than other methods.

The current work investigates information transfer be-

tween oscillators coupled by non-trivial physical mecha-

nisms. This is similar to the study by Pitti et al. (2009), in

which simulated biped walkers were coupled to oscillators.

It was shown that at optimal values of the coupling (where

the best walking behavior is achieved) there is an increase in

information transfer from the body to the oscillator. Thus the

information transfer is thought to correlate to the successful

entrainment of the body and controller dynamics.

Transfer entropy (Schreiber, 2000) is the information

gained from conditioning the entropy rate of a time de-

pendent variable on a secondary historical variable as well

as its own past. It is a directional measure, and is of-

ten interpreted as signifying causal links (Pitti et al., 2009;

Lungarella and Sporns, 2006), however when used to ana-

lyze finite experimental time series data there is a strong

risk of overestimating such causal influence, a problem that

is known from the literature (Marschinski and Kantz, 2002;

Lizier and Prokopenko, 2010). Furthermore, because trans-

fer entropy is applied here to purely observational data, this

method is only claimed to be a reasonable guide for de-

tecting causal influences, as outside intervention would be

needed to expose all causal links (Ay and Polani, 2008). A

complete scientific approach to building causal models is

well beyond the scope of this paper (see Pearl, 2009).

The method of calculating transfer entropy presented here

uses a novel time discretization approach, inspired by the

stroboscopic analysis of Schäfer et al. (1998). Other than

that, the method follows Marschinski and Kantz (2002) by

conditioning on the longest practicable history of the target

variable (a requirement that is sometimes neglected).

The effect of oscillator coupling on transfer entropy is in-

vestigated in a continuous time system composed of either

a single oscillator and passive body model, or a pair of two

such systems (see Figure 1). The following sections will first
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Figure 1: Simplified system under study. An electronic os-

cillator is attached to a mass-spring-damper system, provid-

ing force actuation and incorporating the resultant extension

of the spring into the feedback path of the oscillator circuit.

The model is extended by duplicating the system (dashed

box) and coupling via the mechanical component.

introduce the models studied, and later develop the transfer

entropy calculation based on time series data from simula-

tions of these models. The relationship between transfer en-

tropy and the dynamical process of synchronization is dis-

cussed. It is argued that a state of synchronization will not

always lead to increased transfer entropy, but during an on-

going process of weak synchronization transfer entropy will

be found, and in such cases will show causal relationships.

It appears that measured transfer entropy may be useful in

predicting the effects of making changes in a system, such

as varying coupling parameters, which implies that it may be

possible to develop control techniques based on information

transfer.

Model construction

The model developed here is intended to be a minimal first

approximation to a physically realizable modular active dy-

namic walker. That is, though it is intended that further work

will develop this system as a real robot, the current model

is not fully realistic, but contains the fundamental compo-

nents: a chaotic oscillator that can be implemented as an

electronic circuit, and a simple mass-spring-damper system

analogous to a passive compliant robot body. This structure

makes it comparable to the architecture of Pitti et al. (2009),

except that the neural controller here is a continuous time

analog circuit, rather than a discrete time map, and the phys-

ical component does not include a full environment.

Chaotic oscillator

The oscillator design developed by Sprott (2000) and im-

proved on in Kiers et al. (2004) was chosen. It is extremely

simple to implement using widely available electronic com-

ponents, and can easily be tuned to produce chaotic or peri-

odic behavior. The Sprott system has the further advantage

of having relatively stable dynamics, in that it tends to reach

its only periodic or chaotic attractor quickly after being bi-

ased at a sensible voltage and does not tend to drift or diverge

away from the desired dynamics.

(a)

(b) (c)

(d)

t

V(out)

t

V(out)

Figure 2: Chaotic oscillator based on Kiers et al. (2004). (a)

Positive feedback based circuit design. (b) Nonlinear sub-

circuit component D. (c) Typical steady state periodic out-

put simulated using LTSpice, with resistor Rv set to 50 kΩ
(periodic solution) and (d) 77 kΩ (chaotic solution).

The dynamics of the oscillator in isolation are well docu-

mented by Kiers et al. (2004), but it is useful to recap them

here. The circuit diagram is given in Figure 2. The cir-

cuit consists of three op-amp integrators producing anti-

derivative signals in a chain, with the output of the final in-

tegrator being fed back through a nonlinear amplifier and

a combined with the output of the other integrators with

a summing amplifier. The circuit effectively implements

the following third-order “jerk” function in which D(x) =
−6min(x, 0) and Q and α are constants.

...
x = −Qẍ− ẋ+D(x)− α (1)

The constant bias α is provided by the voltage source,

and for a range of small positive values (e.g. α = 0.1
works well) it will allow oscillatory behavior. Tuning Rv

in the circuit will vary the Q parameter, which will result in

chaotic and periodic solutions at different values, as shown

in Figures 2c and d, generated by simulating the circuit with

LTSpice1. The fundamental frequency of the oscillations

is related to the time constants of the integrators, that is
1
ω0

= τ0 = RC = 47 kΩ× 470 nF ≈ 0.022 s in the exam-

ple circuit of Figure 2. Equation 1 is a non-dimensionalized

description of the circuit attained by taking the derivatives

with respect to ω0t (so if t is in seconds, equation 1 will ef-

fectively have a natural frequency of ω0 = 1 rad s−1). Thus

control of the fundamental frequency in the numerical solu-

tion of equation 1 is achieved, when required, by rescaling

1http://www.linear.com/designtools/software/#LTspice
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Figure 3: Maxima of the oscillator variable x1 at different values of Q. The fixed parameters are α = 0.1, ζ = 0.3 and the

coupling is (a) γ = 0 (no coupling), (b) γ = 0.1, (c) γ = 0.3

the time variable by the desired value of ω0.

Figure 3a shows the effect of Q on the dynamics of the

system, by showing the maxima of x1 over time at differ-

ent values of Q. The diagram can be obtained by numeri-

cally integrating equation 1 with a computer library such as

LSODE (Hindmarsh, 1983), as was used here, or by using a

SPICE simulation of the circuit in Figure 2. The system fol-

lows a period doubling route to chaos as Q decreases, with

a notable periodic island around Q ≈ 0.58 and returns to

periodicity via a further bifurcation near Q ≈ 0.47.

Coupled mass-spring-damper

The dynamics of an ideal mass-spring-damper (MSD for

brevity) can be expressed in terms of the time dependent

extension of the spring x using the second order differential

equation 2 withm being the mass, k the spring constant and

c the damping coefficient.

ẍ+
c

m
ẋ+

k

m
x = 0 (2)

Alternatively define the angular velocity ω0 =
√

k
m

and

the damping ratio ζ = c

2
√

mk
, take derivatives with respect

to ω0t as in equation 1 (see above) and rearrange to get:

ẍ+ 2ζẋ+ x = 0 (3)

To couple the two systems together, the oscillator vari-

able is added to the acceleration of the spring system after

subtracting 0.5 (to make the influence of the oscillator ap-

proximately symmetric around zero, as it normally oscillates

between around 0 and 1), and the spring extension is added

to the feedback path of the oscillator after multiplying by a

coupling parameter γ. Thus the complete system is given

by equations 4 and 5, with x1 and x2 being the time varying

oscillator variable and spring extension respectively.

...
x1 = −Qẍ1 − ẋ1 +D(x1 + γx2)− α (4)

ẍ2 = −2ζẋ2 − x2 + (x1 − 0.5) (5)

Note that the derivatives in both equations are taken with

respect to the same time variable ω0t and thus the oscillator
and MSD systems always have identical natural angular ve-

locities. This implies RC =
√

m
k
, clearly in a real system

this would be unlikely, so the following assumes that small

discrepancies in the spring and oscillator natural frequencies

are of little consequence.

The coupling could be achieved electronically by adding

a voltage signal into the input of the nonlinear feedback am-

plifier in the circuit in Figure 2 via a series variable resistor

such that when the diodes are switched off the op-amp in the

nonlinear sub-circuitD acts as a summing amplifier and the

variable resistor allows control of the coupling strength.

With no coupling (γ = 0) clearly the oscillator drives the

MSD but will not be influenced by it, thus the bifurcations of

the oscillator dynamic will remain as in Figure 3a. With γ >
0 the bifurcation structure changes dramatically, as shown in

Figures 3b and 3c.

Synchronization vs. resonance

Is the change of the dynamics as coupling is increased shown

in Figure 3 a form of synchronization? When coupling

(here meaning the feedback coefficient γ) is zero an engi-

neer might call the MSD system a passive resonant filter –

remember that is it still driven by the electronic oscillator, so

the frequency spectrum of the spring extension will appear

to be a filtered version of the oscillator output. With feed-

back however, the oscillator changes its behavior noticeably

as we have seen, so perhaps there is something more than

simple resonance happening – a form of synchronization.

This appears to be the view taken by Pitti et al. (see Fig-

ure 3 in Pitti et al., 2009), who suggest that resonance is the

forward process (from oscillator to dissipative system) and

synchronization occurs along the feedback path. However

this seems to contradict the view of Pikovsky et al. (2001,

pp. 14–17) and Ceguerra et al. (2011), who require that syn-

chronization only applies to synchronous variation of sys-

tems that are capable of oscillating independently.

Pikovsky et al. give the example of an ecological sys-
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tem such as hare-lynx populations, where both variables (the

populations of the two species) oscillate in a phase locked

manner, but the system cannot be decomposed into isolated

subsystems. Assuming the lynxes eat only hares, then an

isolated lynx population with no access to hares would sim-

ply die out, not oscillate at some natural frequency. Likewise

an isolated mass-spring-damper not stimulated by an appro-

priate oscillator will die down as its energy dissipates.

Of course some mechanical systems can oscillate inde-

pendently – think of a passive dynamic walker (McGeer,

1990), a biped structure that walks down a hill, obtaining

its energy purely from gravitational potential. As long as the

slope is present, the passive dynamic walker could be con-

sidered to have its own natural oscillation. If this were the

system being coupled to a neural oscillator, then it would

seem that true synchronization could be discussed. How-

ever current scenario of an isolated mass-spring-damper is

unambiguous – there is decomposition that leaves two oscil-

lators and hence no synchronization as a “complex dynami-

cal process, not a state” (Pikovsky et al., 2001). In the later

experiments of Pitti et al. (2009) there are multiple neural

oscillators in a single system, so the notion of synchroniza-

tion becomes more applicable. This scenario will also be

investigated later in this paper.

Transfer entropy

This section will develop a measure of transfer entropy that

can be meaningfully applied to continuous time oscillators.

Initially, assume we have two discrete time series X and

Y of finite length. The value ofX at time n ∈ {1, 2, . . . , N}
isXn, discretized such thatXn ∈ X, a finite set of symbols.

Apply the same notation to Y .

The k-history of X at n, i.e. {Xn, Xn−1, . . . , Xn−k+1}

is written X
(k)
n , and likewise the l-history of Y is Y

(l)
n . The

transfer entropy from series Y to series X , written TY→X ,

is the information gained aboutXn+1 in moving from prior

knowledge of X
(k)
n alone to also having Y

(l)
n . This is given

by the Kullback-Leibler divergence, or equivalently the con-

ditional mutual information, calculated using the summation

in equation 6.

TY→X = I(Xn+1;Y
(l)
n |X

(k)
n )

= DKL(P (Xn+1|X
(k)
n , Y

(l)
n )||P (Xn+1|X

(k)
n ))

=
∑

X

P (Xn+1, X
(k)
n , Y (l)

n ) log
P (Xn+1|X

(k)
n , Y

(l)
n )

P (Xn+1|X
(k)
n )

(6)

The probabilities are estimated from observations of a

single instance over a long time series. This is similar to

the methods of Pitti et al. (2009) andMarschinski and Kantz

(2002). It is very important therefore that the time series is

statistically stationary over the period of interest, which can

be a practical problem with transfer entropy calculations.

It is also possible to calculate similar information transfer

statistics from ensembles of non-stationary systems by cal-

culating probabilities from the ensemble at each point in

time (e.g. Ceguerra et al., 2011; Williams and Beer, 2010).

The time average approach was chosen here because there is

at least potential applicability to complex real systems (e.g.

a real robot) where experiments cannot be repeated in such a

way that the entropy calculation would be possible and valid.

The following sections consider further practical issues

regarding the application of this measure to the simulated

time series in these experiments. Since these time series

are continuous, sensible discretizations must be established.

Further, appropriate values of k and l need to be chosen.

Stroboscopic discretization

The time series are first analyzed using a stroboscopic

method similar to that of Schäfer et al. (1998). Consider

again the continuous time series generated by the coupled

oscillator-MSD system in equations 4 and 5: x1(t) and

x2(t). The series of maxima of the oscillator voltage are x̂1

and the time of the nth maximum of x1 is t̂(n;x1). Figure 4
shows the phase of x2 plotted at each maximum of x1.

Figure 4: Stroboscopic visualization of the spring extension

at each maximum of the oscillator in the coupled oscillator-

MSD system. Top: The solid blue line is the oscillator volt-

age x1, and the dashed green line is the spring extension x2.

Bottom: The points represent the phase of x2 taken at each

maximum of x1. The oscillator is set to a chaotic mode with

Q = 0.67, the remaining system parameters are α = 0.1,
ω0 = 1 rad s−1, ζ = 0.3 and γ = 0.01.

The phase of the spring extension is calculated here on a

“peak-to-peak” basis. That is, the phase of the spring at the

nth maximum of the oscillator x1 is taken to be the (linear)

proportion of the time between the last and the next max-

imum of the spring extension x2 that has already elapsed,

written φ(n;x2, x1). Alternative methods of calculating the

phase were considered, such as using the Hilbert transform

as per Schäfer et al. (1998). This was found to be problem-

atic due to the chaotic nature of the signals here, hence the
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simpler peak-to-peak method was chosen, but in other ap-

plications the Hilbert transform might well provide useful

phase values to use with this transfer entropy method.

For each phase angle of x2, φ(n;x2, x1) with n > 1, the
time period of the most recent oscillation of x1 can also be

calculated by:

∆t̂(n;x1) = t̂(n;x1)− t̂(n− 1;x1) (7)

Thus the two continuous time series x1 and x2 can be

converted to “stroboscopic” discrete time representation:

∆t̂(n;x1) and φ(n;x2, x1), usually defined for all n ∈
{2, 3, . . . , N} (with the proviso that φ is only defined when

the nearest maxima of x2 are known).

It would of course have been possible to simply discretize

x1 and x2 by choosing arbitrary time intervals. The ad-

vantage of the stroboscopic method is that the time inter-

vals are determined naturally by the dynamics of the sys-

tem. Furthermore, the time series being compared here have

a natural interpretation in terms of synchronization, which

is well documented in the literature. In what follows the

“stroboscopic” transfer entropy is effectively the influence

of the phase difference on the future frequency of oscilla-

tion. This will be denoted STA→B as shorthand for transfer

entropy after the stroboscopic conversion has been applied,

i.e. Tφ(·;A,B)→∆t̂(·;B). so this measure is similar to that

of Ceguerra et al. (2011), except that here the timing of the

samples is based on the system’s oscillation rather than ar-

bitrary. In other words, the entropy is measured in bits per

oscillation rather than bits per second.

Simulation method

The “stroboscopic” time series defined above can easily be

obtained from numerical simulation of the oscillator-MSD

system. First LSODE was used to obtain a solution to the

initial value problem given by equations 4 and 5 via numer-

ical integration, with the starting values of x1, x2 and the

necessary derivatives (ẋ1 etc) at time t0 = 0 chosen ran-

domly from the range [0, 1). The first part of the time series

from t0 to a chosen cutoff point ttr was discarded to remove

the “transient” dynamic of the system. During the following

interval, between ttr and the end of the simulation at another

chose time t1, it is assumed that the dynamic reaches an at-

tractor (observation suggests that this is the case). Therefore

the observations used should be at least nearly statistically

stationary.

Inevitably the numerical solution of the equations will

give a discrete-time output series, with intervals chosen here

to be one twentieth of a (simulated) second between points.

Thus oscillations have a period of around 120 simulation in-

tervals (recall that the effective time constant of the system

was 2π). The maximum times (t̂) were estimated by finding

those values in the simulated time series that were preceded

and followed by lower values – a crude method but it is ef-

fective in this case.

To estimate the necessary probability distributions, the

frequencies of samples in p bins was used, with the bin sizes
adjusted such that each has a similar number of data points in

it, followingMarschinski and Kantz (2002). More advanced

methods could be applied but for the current purposes this

appeared to be adequate and should produce reliable results.

Causality and transfer entropy

Transfer entropy can sometimes be thought of as “causal in-

formation”, but care needs to be taken. Transfer entropy

is literally, from equation 6, an information gain in mov-

ing from conditioning the future of X on its own history

X(k) alone to conditioning on the joint history of X(k) and

Y (l). Suppose that k and l (the history lengths) are both 1,
as is sometimes the case in the literature (Pitti et al., 2009;

Lungarella and Sporns, 2006). The immediate history Y (1)

can contain information about the future states ofX without

having any real causal influence if it contains information

about past states of X that have not been conditioned for in

the mutual information calculation – i.e. X(k) is too short a

past.

This problem is clearly a possibility in the system under

study here. In a single oscillator-MSD system with the feed-

back coupling γ set to 0, we know from the design of the sys-

tem that the spring extension has no influence on the oscilla-

tor dynamic, but we also know that the MSD system stores

mechanical energy and hence contains information about its

own past and the past of the oscillator (which stimulated it).

Thus the current state of the spring may help to predict the

future state of the oscillator when added to just the current

state or recent past of the oscillator, but if we control for

the entire history of the oscillator, the spring state cannot be

useful, as it is itself determined entirely by the history of the

oscillator.

Marschinski and Kantz (2002) present a method designed

to minimize this overestimation: set l to 1, then increase

k from 1 until any causal influence of X
(k)
n on the future

Xn+1 is already accounted for before calculating the infor-

mation gained by including Y
(1)
n . However, increasing k

will rapidly expand X in equation 6, i.e. the support set

for which probabilities must be found. In a finite time se-

ries this will result in fewer examples of each combination

of states from which to calculate the conditional probabili-

ties, and ultimately to sometimes significant overestimation

of the transfer entropy. The solution proposed by Marschin-

ski and Kantz is to subtract the transfer entropy obtained

when the Y series is randomly permuted in time, so that any

true temporal correlations are lost and any calculated trans-

fer entropy must therefore be due to finite sample error. This

measure (which they called effective transfer entropy) will

be used in all calculations to follow.

Figure 5a shows how effective transfer entropy overes-

timates the causal influence of the spring on the oscillator

when k = 1 even when no feedback coupling is present so
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Figure 5: Stroboscopic effective transfer entropy for a single coupled oscillator-MSD system. Coupling was (a) γ = 0 (no

coupling) (b) γ = 0.1 (c) γ = 0.3. Top row: STx2→x1
(from spring phase to the oscillator periods), using four partition sizes

p ∈ {4, 5, 6, 7}. Bottom row: short sections of simulated time series. Other parameters: ω0 = 1 rad s−1, ζ = 0.3, Q = 0.67,
α = 0.1. Time series analysed between ttr = 400 s and t1 = 15000 s with measurement interval∆t = 1

20 s.

the spring cannot possibly have causal influence on the oscil-

lator. Furthermore, it appears that the overestimate at small

k is the only source of apparent transfer entropy even when

coupling is added: Figure 5b, γ = 0.1, STx2→x1
rapidly

declines when k ≥ 2. Though the spring does influence the

dynamics of the coupled system as we know, this cannot be

detected from the time series as the spring can only store

information previously generated by the oscillator. When

coupling is higher (γ = 0.3, Figure 5c) the system reaches

a limit cycle dynamic, and no transfer entropy is detected

at any point. The fact that the spring is not an indepen-

dent oscillator implies both that this is not a true process

of synchronization, and further than no transfer entropy can

be measured.

Transfer between two oscillators

The above results show that for transfer entropy to be present

with larger values of k (i.e. to genuinely signify causal de-

pendence), there must be at least two systems capable of

producing information. This can be achieved by duplicating

the oscillator-MSD system and coupling via the mechanical

component (the MSD). There are therefore two x1 and x2

variables (one for each system), the coupling is added by

updating equation 5 (the dynamics of the MSD) to add the

difference between the two springs multiplied by a coupling

coefficient γc to the acceleration of the local spring. Equa-

tion 8 therefore gives the acceleration of the local spring ẍ2

given the remote spring extension x′

2.

ẍ2 = −2ζẋ2 − x2 + (x1 − 0.5) + γc(x
′

2 − x2) (8)

This system is now a loose analog of a pair of mechani-

cally coupled neural-mechanical systems, call them system

A and system B. In what follows, system variables and pa-

rameters will be superscripted with an A or B to signify

(where it is ambiguous) which system they are a part of,

e.g. xA
1 and xB

1 are the oscillator values for system A and

system B respectively. Usually the parameters will be iden-

tical in both systems, in which case a superscript is not used.

The introduced coupling γc models the mechanical linkage

between the two systems, whereas the existing internal cou-

pling γ can be viewed as a kind of proprioceptive feedback

to an oscillator from the limb it directly controls. The fol-

lowing experimentswill study the effect of changing γ while

keeping γc constant, i.e. to ask the question: given a fixed

mechanical coupling (body morphology), how do changes

in internal coupling affect overall synchronization, informa-

tion transfer and causal influences.

Figure 6 shows how increasing values of internal coupling

γ (with the spring coupling fixed at γc = 10) affect the ra-
tio of the mean peak-to-peak frequencies of oscillatorB and

oscillator A, i.e. fB

fA where fS = 〈∆t̂(·;xS
1 )〉

−1. The nat-

ural frequency of system A is fixed at ωA
0 = 1 rad s−1 and

ωB
0 is varied as shown. Clearly for no coupling the frequen-

cies should vary independently, so the observed frequency

difference varies linearly with the natural frequency differ-

ence. As coupling is increased, the observed frequencies

appear to be pushed further from the natural frequency dif-

ference, until at coupling greater than γ ≈ 0.3, a synchro-

nization region appears around the central part of the plot

where the frequencies tend to lock to a 1:1 ratio (except just

around γ = 0.45 where there are two peaks representing ar-
eas where the frequency ratio, though still synchronized, is

3:2). As γ approaches 0.5 this region starts to shrink again,

suggesting an optimal value of γ (in terms of the likelihood

of frequency locking) exists in this region.

The effective transfer entropy when the coupling between

the oscillators is γ = 0.35 is shown in Figure 7. The history
length was k = 4 and p = 4 bins were used to discretize

each series, the maximum practical values that could be used

following the method of Marschinski and Kantz (see above).

Mutual information between the instantaneous velocities of
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Figure 6: Ratio of peak-to-peak oscillation frequency for xA
1

and xB
1 when the natural frequency of the first oscillator is

ωA
0 = 1 rad s−1 and the second oscillator is varied near to

that, for increasing internal coupling (γ) in both oscillators.

The system parameters were Q = 0.67, α = 0.1, ζ = 0.3,
γc = 10, ttr = 400 s and t1 = 15000 s with measurement

interval∆t = 1
20 s. Inset: mutual information between time

series over the same region in parameter space shows the

synchronization region more clearly.

the two oscillators (measured by the values of ẋ1 produced

by the simulation) is used to measure synchronization, with

high values of mutual information implying that the oscilla-

tors vary at related speeds and therefore are synchronized.

The same binning approach as for transfer entropy is used,

but with p = 5 bins. Themutual information is also rendered

in the inset plot in Figure 6, which shows that high mutual

information corresponds to the frequency locking region.

The relationship between transfer entropy and synchro-

nization is complex. There appears to be a main frequency

locking region near ωB
0 = 1 rad s−1 in Figure 7a (where the

natural frequencies are most similar) and smaller peaks at

larger frequency differences, which are hypothesized to be at

points where harmonic resonance along the body allows for

greater synchronization between the oscillators. Note that

at the mutual information (synchronization) peaks, there is

usually a trough in the transfer entropy rate, especially in the

approximate range 1 < ωB
0 < 1.05. Here the synchroniza-

tion is strongest, and the transfer entropy is not seen because

the two systems are coordinated in a highly synergistic man-

ner, such that the coupling appears to be rigid to an outside

observer. Because the systems are not generating entropy in-

dependently (i.e. the entropy rate H(Xt+1|X
(k)
t ) for either

system is 0), no transfer entropy can be measured.

To investigate the notion that the transfer entropy mea-

sures directed causal information, the internal coupling γ
was set to zero for one of the oscillators (A or B) at a time

(with the other retained at γ = 0.35). Recall that the in-

ternal coupling regulates the strength of the signal from the

spring extension that is incorporated in the feedback path of

the oscillator circuit. Therefore setting the internal coupling

to zero for oscillatorA will mean that systemB cannot have

a causal effect on system A, and STB→A (the transfer en-

tropy from B to A) should be zero, as shown in Figure 7b.

Likewise removing the internal coupling from system B re-

sults in STA→B = 0 (Figure 7c). In the coupled direction,

transfer entropy is generally present. The transfer entropy

does not drop to zero in the most synchronized areas of Fig-

ures 7b and 7c as it does in the mutually coupled scenario.

This suggests that the synchronization is weaker and inter-

mittent, allowing the influence of one oscillator on the other

to be measured.

Conclusions

Transfer entropy from source A to target B is (in a math-

ematical sense) a Bayesian information gain in moving to

posterior knowledge of A from some prior knowledge of B;

to infer causality (i.e. “A causes B”) we must be sure that

the prior includes all other causal influences on B that may

be correlated with A, particularly the complete history of

B (cf. Lizier and Prokopenko, 2010; Ay and Polani, 2008).

Properly measured, transfer entropy will be zero if A does

not generate information independently of B.

The above has shown that systems that are weakly syn-

chronizing are capable of this independent information gen-

eration, and thus observational transfer entropy can be mea-

sured. Furthermore, transfer entropy is only found in the

case of weak synchrony, and not for systems that are ei-

ther not truly synchronizing (such as a single mass spring

damper coupled to a single driving oscillator), or too rigidly

synchronized (as in the case of two very tightly coupled

oscillators). Importantly, this means that the observational

transfer entropy is not a direct measure of the “strength” of

synchrony or causal relationship, because the strongest rela-

tionships may show no transfer entropy.

There is a persistent asymmetry in the plots in Figure 7

– in the fully coupled scenario, the transfer entropy appears

to be generally higher in the direction leaving the oscillator

with higher ω0 (remember that ωA
0 is always 1, thus in the

left hand half of Figure 7a ωA
0 > ωB

0 and notice that gen-

erally STA→B > STB→A). When feedback coupling is re-

moved in one oscillator, synchronization appears to happen

over a larger region when that oscillator has a higher natural

frequency, as shown by the asymmetry in the mutual infor-

mation curves (Figures 7b and 7c). This relation suggests is

may be possible to use the transfer entropy to make useful

predictions about the consequences of further interventions,

with the important caveat noted above that it cannot be a
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Figure 7: Frequency mutual information (red solid line), STB→A (blue dotted line) and STA→B (green dashed line) for double

oscillator system, with oscillatorA at ωA
0 = 1 rad s−1 andB at nearby frequencies as shown. Coupling is: (a) mutual, γ = 0.35

in both systems; (b) no feedback in system A (γA = 0); (c) no feedback in system B (γB = 0). Other parameters as Figure 6.

perfect method of inferring causality.

Future work will aim to develop a walking robot using

analog oscillator controllers in a similar approach to that of

Still et al. (2006), but with electrically independent modu-

lar limbs that cannot control the mechanical coupling. It is

hoped that it may be possible to guide self-organizing syn-

chronization in the limbs via transfer entropy.
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Abstract

Most standard genetic and evolutionary algorithms (GAs) are
unable to evolve cooperative solutions to problems where
there is a division of labour among genetically different com-
ponent parts. This is because standard GAs evaluate and se-
lect all individuals on the same task which leads to genetic
convergence within the population. The goal of evolution-
ary niching methods is to enforce diversity in the population
so that this genetic convergence is avoided. One drawback
with some of these niching methods is that they require a pri-
ori knowledge or assumptions about the specific fitness land-
scape in order to work. Another issue is that many of these
niching methods are not set-up to work on cooperative tasks
where fitness is only relevant at the group level. In this paper
we present the Group GA which is a group based evolutionary
algorithm that can evolve cooperative solutions to problems
using emergent niching with minimal a priori assumptions.
We demonstrate this novel GA on an immune system match-
ing task and explain why we think this type of GA has the
potential to effectively solve a wide range of problems that
would benefit from being solved cooperatively.

Introduction
In biology, speciation and niching can be broadly described
as the evolutionary process by which a single type of bi-
ological organism differentiates into multiple “specialised”
organisms, that for instance, take advantage of different re-
sources available in a given environment. In some cases
niching produces competing species, but niching can also
occur within a single species to produce different special-
ists that work together to solve a given task. An example of
this are bacterial colonies, where within any single colony
there are groups of different bacteria doing different jobs,
all of which are contributing to the collective well being of
the colony. In this case the fitness of the colony depends on
the collective symbiotic functionality rather than the fitness
of any individual bacteria.

Most standard artificial evolutionary and genetic algo-
rithms (GAs) tend to take a very individual centric view of
evolution, where the fittest individuals are selected to pro-
duce the next generation of individuals. These types of GAs
work well on problems with a single global fitness peak,

where each individual can solve the task on its own; but they
are unable to find multiple solutions to multi-peaked prob-
lems or solve problems cooperatively, where there is a divi-
sion of labour between population members which requires
different genotypes. For a GA to be able to find cooperative
solutions to problems, it must have the following character-
istics: (1) It must be able to maintain diversity within the
population so that niches can form and (2) it must allow for
fitness to be evaluated at the group level.

Evolutionary niching methods solve problem (1) by en-
forcing diversity in standard GAs so that a single population
can be split up into n different niches. One of the issues with
some of the more common niching methods is that they re-
quire a priori knowledge about the specific fitness landscape
to work; in particular whether n is 2 or 5 or some different
number. Most of these evolutionary niching methods use
either direct or indirect methods to determine the appropri-
ate number of niches. Direct methods include cooperative
coevolution where the number of species is set before evo-
lution begins. Indirect methods include fitness sharing and
crowding which rely on a pre-set niching (similarity) radius
or some sort of similarity calculation in order to get the pop-
ulation to niche. The other problem with these niching meth-
ods is that they are tailored for tasks where each individual
in the population can solve the task on its own, not for tasks
that are best solved symbiotically where fitness can only be
calculated at a group level.

In this paper we present a novel genetic algorithm, the
Group GA, which niches based on the evaluation of groups
of individuals and therefore can be used to solve tasks that
require individuals working together doing different jobs.
The Group GA has the added benefit of accomplishing this
niching with minimal a priori knowledge of the fitness land-
scape and is able to niche without knowing the optimal num-
ber of niches or how the different jobs should be shared out.
So unlike the more common niching methods it does not re-
quire the number of niches to be set ahead of time nor does
it require setting any indirect niching parameter such as a
similarity or niching radius.

We demonstrate the emergent niching ability of the Group
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GA on an artificial immune system matching task. The goal
of this task is to evolve a population of antibodies (protecting
agents) to match a set of antigens (harmful invaders). There-
fore to solve this task the population of antibodies needs to
niche so that it contains different individuals that match dif-
ferent antigens. One reason this task was chosen is because
the number of peaks in the fitness landscape can be changed
by changing the number of antigens that the population of
antibodies needs to match. The other reason for choosing
this task is that it makes it very easy to determine when nich-
ing has occurred.

In the next section we will briefly review some of the
common niching methods as well as a few related evolution-
ary algorithms that can solve problems symbiotically, where
there is a division of labour required. Following our liter-
ature review we describe the artificial immune system task
and the Group GA in detail. We will then show how the
Group GA can be used to evolve a population of antibod-
ies to match a set of four antigens, as well as how it can be
used to evolve a population of antibodies that adapts to the
addition and removal of antigens during evolution. Finally,
we compare the Group GA to other evolutionary methods
and discuss the types of tasks we feel the Group GA is best
suited to solve.

Literature Review
We start by reviewing the most common niching methods in
artificial evolution. The purpose of these niching methods
is to stop the population from genetically converging dur-
ing evolution as happens when using a conventional GA. All
of these niching methods below can be classified as explicit
niching methods because they either require the number of
niches to be set a priori or require an indirect method of
enforcing diversity in the population.

We will also briefly discuss SANE and the Binomics GA
which are two GAs that are set-up to allow implicit niching
to evolve symbiotic solutions to problems. Unlike the ex-
plicit niching methods, these algorithms attempt to evolve
a diverse, niched population emergently using group evalu-
ation. They also differ from the genetically based niching
methods in that these GAs do not require that each individ-
ual in the population can solve the task on its own.

Genetically Based Niching Methods

In this section we briefly describe the common genetically
based niching methods. These niching methods function
based on the assumption that each individual in the popu-
lation has its own fitness. For a more in depth summary see
Dick (2005) and Mahfoud (1995).

Fitness Sharing and Clearing Fitness sharing (Goldberg
and Richardson, 1987) is a niching method that relies on
some distance metric or similarity measure (either genotypic

or phenotypic) between individuals. By using suitable meth-
ods to adjust the fitness of any individual according to how
many other similar individuals are within some predeter-
mined niche (similarity) radius, there is a tendency for the
population to spread out over multiple peaks or niches in
the fitness landscape; thus diversity is maintained. Clearing
(Petrowski, 1996) is very similar to fitness sharing but, in-
stead of degrading the fitness of individuals within the same
similarity radius or subpopulation, it removes the least-fit
individuals within the similarity radius from the population.
Horn et al. (1994) show that in Learning Classifier System
models where fitness is shared amongst cooperating individ-
uals implicit niching can occur.

Crowding Crowding was first introduced by De Jong
(1975) as a method of removing similar individuals from a
population, with the goal of trying to maintain diversity dur-
ing evolution. Deterministic Crowding (Mahfoud, 1995) is
a specific type of crowding that mates two in the population
and then replaces the parent that is most similar to the off-
spring if the offspring is fitter. It is similar to fitness sharing
because there needs to be some similarity calculation done
between individual, but unlike fitness sharing there is no re-
quirement to pre-specify a similarity radius.

Demes and Spatially Structured GAs
An alternative to genetically based niching methods are spa-
tially structured GAs; for a good review see Dick (2005).
In these types of GAs, the population is structured within
some local geographical distribution (demes) that constrains
which members of the population are allowed to be selected
or be recombined with one another. By structuring the pop-
ulation into demes more genetic diversity can be maintained
across sub-populations.

Cooperative Coevolution Cooperative coevolution was
first introduced by Potter and De Jong (1994) as a method
for function optimisation. In cooperative coevolution the
population is pre-divided into different subpopulations, so it
can be thought of as a type of spatially structured GA. Each
subpopulation represents a subcomponent required to solve
the overall task, which means that there needs to be some
a priori knowledge of the problem so that the appropriate
number of subpopulations is chosen. Each subpopulation is
evolved separately using a standard GA, but the fitness of
the individual members of each subpopulation is based on
the performance of the cooperative solutions. In cooperative
coevolution speciation is not emergent because the number
of subpopulations needs to be determined before evolution
begins. For this reason, this class of algorithms has been
shown to work well on problems where there is an obvious
way of dividing up the population, such as job shop planning
and scheduling tasks (Husbands and Mill, 1991; Husbands,
1993; McIlhagga et al., 1996).
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Symbiotic GAs
SANE (Moriarty and Miikkulainen, 1995, 1996), the Bi-
nomics GA (Harvey and Tomko, 2010) and simulated
ecosystem evolution (Williams and Lenton, 2007) are three
examples of GAs that cause implicit niching in the popula-
tion and attempt to evolve symbiotic solutions to problems.
In SANE and the Binomics GA, groups of individuals are
evaluated together and then the individuals that are part of
the fittest groups are selected to pass on their genes to the
next generation. This differs from most standard GAs where
individuals are evaluated and then the fittest individuals are
selected. These algorithms are relevant to our discussion
of speciation/niching because any time a problem is solved
symbiotically then implicit niching must be occurring dur-
ing evolution.

SANE and the Binomics GA have been successfully ap-
plied to the evolution of artificial neural networks (ANNs).
In both these algorithms the individuals in the population are
partial networks that are combined to form fully specified
ANNs which are then evaluated. The fitness score of each
individual partial network is based on the fitness of the full
ANNs that each individual partial network participated in.
This means that over time, the individual partial networks
that were part of the fittest ANNs will be selected for, while
the partial networks that were part of the least fit ANNs will
be modified using mutation and recombined with other par-
tial networks. The goal of this method of evolution is to
evolve a population of partial networks that symbiotically
work together to form high fitness fully specified ANNs.

The Artificial Immune System Task
We have chosen an artificial immune system matching task
to demonstrate the emergent niching abilities of the Group
GA. In this section we will describe the details of this task
and then in the next section we will describe the Group GA.
This task which has previously been used by Forrest et al.
(1993) and Potter and De Jong (2000) was chosen because
it can be solved cooperatively and clearly illustrates how the
Group GA can lead to emergent niching and how it can adapt
to a changing fitness landscape, neither of which is possible
with a conventional GA. Forrest et al. (1993) used the task
to study adaptation in the immune system and Potter and De
Jong (2000) solved different variations of this task using co-
operative coevolution. We will compare the results of these
two papers to the Group GA results later in the paper.

The goal of this task is to evolve a population of antibod-
ies to protect the body from a set of antigens. Very simply
speaking, antigens can be thought of as bacteria, viruses or
other pathogens and the antibodies can be thought of as the
body-guards who mark these antigens for removal. Anti-
bodies in natural immune systems need to be adaptive so
that they can combat new and different antigens that enter
the body. Therefore this task tries to mimic this challenge
of natural immune systems on a very basic level by attempt-

ing to evolve a population of artificial antibodies to match a
variable set of antigens.

In this task both the antibodies and antigens are modeled
as bit strings. How well an antibody combats a specific anti-
gen is calculated as the number of bit matches between anti-
body and antigen. For example a [1 0 1 1] antibody matches
a [0 0 1 0] antigen at location two and three and therefore the
antibody’s fitness is equal to two when matched to this anti-
gen. For our purposes the higher the match (fitness) score
the better.

Assuming that the length of the antibodies and antigens is
the same, when there is more than one antigen in the antigen
set the task can be thought of as symbiotic, because it is
impossible for a single antibody to match an entire set of
antigens on its own. In this case, the population of antibodies
needs to evolve in such a way so that it contains specialists to
combat each different antigen. Obviously the more antigens
there are, the more difficult the task becomes, because the
antibody population needs to evolve and maintain a larger
number of specialists.

The Group GA
The Group GA is a novel evolutionary algorithm presented
in this paper for the first time. It is based on the Micro-
bial GA (Harvey, 2011) which is a steady-state GA that uses
tournament based selection. The Microbial GA is similar to
the more familiar GAs, but is minimalist in the sense that it
strips away as much as possible, whilst still maintaining the
essential components of natural selection which are heredity,
variation and selection.

We will first describe the Group GA in general terms and
then describe it in terms of the artificial immune system task
we present in this paper. What differentiates the Group GA
from more conventional GAs is that groups of population
members, of some fixed size that is a parameter of the GA
(rather than individual population members as in conven-
tional GAs) are evaluated and then selected based on the
overall fitness of the group. In other words, the driver of fit-
ness based selection is the relative fitness of an entire group
of population members that work together as a unit to solve
some task. A single cycle (tournament) of the Group GA
can be broken-up into the five following steps:

1. Randomly choose two possibly intersecting groups of
population members from the population without regards
to fitness.

2. Calculate and assign a fitness score to each group of pop-
ulation members based on the groups’ performance on a
given task. Fitness is assigned on the group level only;
there need not be any way to define or calculate an indi-
vidual’s contribution to the group’s fitness score.

3. All members of the group with the lower fitness score are
removed from the population and replaced with mutated
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copies of the members of the fitter group.

4. The members of the fitter group are put back in the popu-
lation unchanged.

5. This process is repeated until some pre-defined stopping
condition is met.

When we apply the Group GA to the immune system task,
the fitness of a group of antibodies is calculated as the av-
erage of the best match scores achieved against all the anti-
gens in the set. In other words, to evaluate a group of anti-
bodies, all the antibodies in the group are matched against
every antigen in the set and the average of the highest match
scores against each antigen is the group fitness. This means
that to get a perfect fitness score there has to be at least one
antibody that matches each antigen perfectly in the group.

A single cycle (tournament) of the Group GA can be
broken-up into the five following steps when applied to the
immune system task described in the previous section (see
figure 1).

1. Randomly choose two groups of antibodies from the pop-
ulation without regard for fitness

2. Calculate the match scores between all the antigens in the
set and each of the antibodies in each group

3. Each group as a whole is assigned a fitness score which is
calculated as described above.

4. The group with the lower fitness score is replaced with
mutated copies of the antibodies of the more fit group

5. Both groups of antibodies are put back into the population
and this process is repeated

We have set up this simulation in such a way that groups
of antibodies are randomly chosen from the population and
then assigned a fitness based on the ability of this group to
match the different antigens in the antigen set. We under-
stand that because an individual antibody can always be as-
signed its own fitness, some of the genetically based niching
methods we reviewed earlier would be able to solve this task
without any type of group evaluation. The reason we have
used this task to demonstrate the Group GA is because as we
will see in the next section it clearly shows how the Group
GA causes emergent niching using group evaluation.

The Group GA can be applied more generally to tasks
where individual fitness is meaningless because the Group
GA randomly selects two groups of population members and
uses them to construct two higher level entities that are eval-
uated and assigned a fitness score. The less fit group of pop-
ulation members is killed off and replaced with a mutated
copy of the fitter group. These two groups are then put back
into the population and this cycle is repeated. It is important
to reiterate that in the Group GA it is the fitness of the group

replace losing 
group with 

mutated copy of 
winning group

put back in 
population

Group Fitness = 3

Group Fitness = 3.5

choose two groups of 
antibodies without any 

regard to fitness

calculate match score between 
every antibody and all antigens

population

Figure 1: The Group GA as applied to a immune system task
with 2, 4-bit antigens

of population members that drives evolution, which is dif-
ferent from most conventional GAs where it is the fitnesses
of the individual population members that matters. How fit-
ness is calculated depends on what type of problem is being
solved, but regardless it is only the group fitness that matters
when determining the tournament winner and loser.

Evolving Antibodies using the Group GA
In this section we will show how, using the Group GA, a
randomly initialised population of antibodies can be evolved
to match a set of antigens. In the first experiment we will
evolve a population of antibodies to match a fixed set of four
different antigens. This is equivalent to the Group GA solv-
ing a four-peaked fitness landscape. Then in the second ex-
periment we will evolve a population of antibodies to match
a variable set of antigens, where antigens are added and re-
moved during evolution. This second experiment simulates
a task where the number of fitness peaks changes during evo-
lution.

In these experiments the antigen and antibodies were 64-
bit binary strings. The antibody population size was 100 and
the number of antibodies per group was 10. The mutation
rate was set to 0.1/64, meaning that at each allele there was
a probability of 1/640 of flipping that bit.

Figure 2 shows the antibody population after being
evolved for 20,000 tournaments on a four antigen task. The
four antigens used in this experiment were: [...0 0 0 0...],
[...1 1 1 1...], [1 0 0 0...], and [...1 0 1 0 ...], where these 4-
bit patterns are repeated 16 times to make the four full 64-bit
antigens. These specific antigens were chosen to try to make
the task as difficult as possible. The lower part of figure 2
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Antigens
[...0 0 0 0 0 0 0 0...]

[...1 1 1 1 1 1 1 1...]

[...1 0 1 0 1 0 1 0...]

[1 0 0 0 0 0 0 0...]

An
tib

od
ie

s

Allele

Population After Evolution

Figure 2: The antibody population after evolution on a 4
antigen task.

(as with the similar plots in later figures) displays each bi-
nary genotype in the population horizontally above the next
genotype, with white and black representing 0 and 1 alleles
respectively. Figure 2 clearly shows how the antibody pop-
ulation has niched during evolution to contains antibodies
that perfectly match all four antigens in the set.

Figure 3 is a fitness versus time plot for a single typi-
cal run of the four antigen task. The black line shows the
group fitness of the tournament winning group of antibodies
at each tournament, calculated as described above and the
gray line shows the number of antigens covered perfectly
by at least one antibody at each tournament. The number
of perfect antigens matched perfectly by at least one anti-
body can range from zero to the total number of antigens
in the set. We believe that this is an important measure of
performance for this task because if you think of the goal
of the antibodies in terms of protecting a body from inva-
sion, then it is important that the population contains at least
one antibody to match each antigen. In this figure you can
see that throughout evolution the group fitness drops signifi-
cantly for a tournament or two without decreasing the fitness
of the population (number of perfect antibody types). This is
because antibody groups are randomly chosen from the pop-
ulation so there is always a chance that a very unfit group is
chosen.

Figure 4 shows how the antibody population adapts when
antigens are added and removed during evolution. In this
experiment, the antigen set initially contained only two anti-
gens [...0 0 0 0...] and [...1 1 1 1...]. At tournament 20K

Group 
Fitness

# Perfect 
Antibody 

Types

Tournaments

Figure 3: A plot of group fitness (black line) and number
of antigens covered perfectly by at least one antibody (gray
line) in the population over time for a single typical run of
the 4 antigen task.

a third antigen [...1 0 1 0...] was added and evolution was
resumed. At tournament 40K evolution was paused again
and the [...1 1 1 1...] antigen was removed from the set be-
fore evolution was restarted. This figure clearly shows that
when the antibody population is evolved using the Group
GA the population can adapt to changes in the antigen set,
adding and removing different types of antibodies as appro-
priate. Figure 5 shows the fitness versus time plot for this
a single typical run of this task, where antigens are added
and removed during evolution. As this figure shows, when
an antigen is added, the fitness of the population drops be-
fore quickly recovering as the population adapts to match
this new invader 1.

Comparison to Other Methods
To get a feel for how well the Group GA is able to solve
on this task we compared it to both the Microbial GA (Har-
vey, 2011) and the Binomics GA (Harvey and Tomko, 2010)
on the 4 antigen task described above. Using the Microbial
GA to solve this task is equivalent to solving it using any
standard GA where the fittest individual antibodies are se-
lected. As expected, when we ran the Microbial GA for 100
runs, each run the antibody population converged to match
a single antigen in the antigen set, failing to match the other
three.

A more interesting comparison is between the Group GA
and the Binomics GA. We chose to compare the Binomics
GA as opposed to a genetic based niching method such as
fitness sharing or crowding because like the Group GA, the

1There are potential similarities between the adaptive mecha-
nism of the Group GA and clonal selection that need to be investi-
gated further.
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antigen 
added

antigen 
removed

Group 
Fitness

Tournaments

# Perfect 
Antibody 

Types

Figure 5: A plot of group fitness (black line) and number
of antigens covered perfectly by at least one antibody (gray
line) in the population over time for a single typical run of
the task where antigens are added and removed during evo-
lution.

Binomics GA was developed to solve cooperative tasks us-
ing emergent niching where group fitness is the driver for
selection. As applied to this immune system task, the Bi-
nomics GA works as follows:

1. Randomly choose two antibodies from the population and
compare their stored fitnesses.

2. The antibody with the lower fitness is genetically changed
using mutation and recombination.

3. This modified antibody is combined with a group of ran-
domly chosen antibodies from the population.

4. All the antigens are matched against all the antibodies in
the group.

5. The fitness of this group of antibodies is equal to the mean
maximum match score in the group.

6. All antibodies in the group have their current fitness up-
dated using some sort of time smoothing that takes into
account both their historical and newly calculated fitness.

7. All individuals are put back in the population and this cy-
cle is repeated.

The difference between the Group GA and the Binomics
GA is that in the Group GA, groups of antibodies are be-
ing both evaluated and selected, while in the Binomics GA
groups of antibodies are being evaluated, but it is individual
antibodies that are being selected based on this group fitness.

Using the same parameters as in the previous experi-
ments, we compared the performance of the Group GA and

the Binomics GA on the 4 antigen task over 10 runs. We de-
cided to compare the performance of these two algorithms
based on the number of evaluations it took to evolve a pop-
ulation that contained antibodies that perfectly matched all
antigens in the set. Evolution was stopped at 1600 K evalua-
tions if by that point the population did not contain 4 perfect
antibodies. Over 10 runs the Group GA took a median num-
ber of 278 K evaluations, while the Binomics GA was unable
to solve the task within the maximum number of evaluations
allowed in any of the 10 runs. It should be mentioned that if
the Binomics GA was allowed to run for more evaluations,
it was able to niche to match the four different antigens, but
nowhere near as efficiently as the Group GA. In the next
section we will discuss why we think the Group GA outper-
forms the Binomics GA to this extent.

Discussion
In this paper we have presented a novel evolutionary algo-
rithm that can cooperatively solve problems using emergent
niching, where fitness is evaluated at the group level. We
demonstrated this by using the Group GA to solve a multi-
peaked artificial immune system matching task. Our results
show that by evolving a population of antibodies using the
Group GA, the population niches to match multiple anti-
gens. We have also shown that when antigens are added
and removed during evolution, the Group GA allows the an-
tibody population to adapt to this change matching new anti-
gens that are presented.

In the previous section we compared the performance of
the Group GA to the Microbial GA and the Binomics GA.
Unsurprisingly, the Microbial GA, where individual anti-
bodies are evaluated and selected was unable to solve the
multi-antigen task and ended up converging to match a sin-
gle antigen every run. The Binomics GA, where groups of
antibodies are evaluated and individual antibodies are se-
lected, fared much better and was able to niche to match
the different antigens, but took a lot longer as compared to
the Group GA. We believe that the reason why the Group
GA outperforms the Binomics GA methods on this task is
related to the difference between what is being evaluated
and what is being selected. Studying the subtle differences
between evaluation and selection and how varying what is
evaluated and selected affects artificial evolution is not part
of the scope of this paper, but will be one of the focuses of
our future research.

The two key characteristics of the Group GA that differen-
tiate it from the niching methods described in the literature
review are: (1) Niching is accomplished emergently without
having to know the appropriate number of niches ahead of
time or pre-setting any parameter such as a niche radius and
(2) fitness is evaluated at a group level which means that the
Group GA can be used to solve symbiotic task where fitness
is meaningless at the individual level.

For example, this same immune system task was solved
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T=0
2 Antigens

Population @ T=10 K
T=20 K

Add a 3rd Antigen

Population @ T=30 K
T=40 K

Remove an Antigen

Population @ T=50 K

Figure 4: This figure shows how the antibody population adapts during evolution when 64 bit antigens are added and removed
(T=10 K corresponds to tournament 10,000).

by Potter and De Jong (2000) using cooperative coevolu-
tion where the population was subdivided into n different
species before evolution wass started. This method was
successful at evolving a population of antibodies to match
different antigens as long as the number of different anti-
gens was known a priori and the number of antigens re-
mained constant throughout evolution. To overcome these
limitations of cooperative coevolution, Potter and De Jong
(2000) applied an evolutionary stagnation measure to deter-
mine when a new sub-population should be added. This al-
lows antibody species to be added and removed during evo-
lution in response to new antigens, but as Potter and De Jong
(2000) state, the level of stagnation at which species should
be added or destroyed is task dependent.

This task was also solved by Forrest et al. (1993) using a
GA with a best-match fitness scoring scheme. In their algo-
rithm, an antigen is chosen at random and matched against a
group of antibodies from the population. Only the antibody
in the group with the highest match score gets its fitness in-
creased by its match score, the fitness of all other antibodies
remains unchanged. This fitness evaluation step is repeated
many times and then the population is evolved using a stan-
dard GA. Like the Group GA, this method allows the anti-
body population to niche to match a set of antigens without
needing to know a priori how many antigens are present.
The major difference between this method and the Group
GA is that this best match method requires that the fitness

of individual population members can be evaluated on their
own. This is possible for this task because each individual
antigen can be evaluated on its own by matching it against a
single antigen, but tasks where fitness can only be evaluated
at the collective, group level will not be able to be solved
using this best-match method. In general, the genetically
based niching methods described earlier will struggle with
this type of symbiotic task where individual fitness is mean-
ingless. An example of this type of task is the evolution of
artificial neural networks (ANN) task where the population
is made up of partial sub-networks which have no fitness
except when they are combined with other sub-networks to
form a fully specified networks. Both SANE and the Bi-
nomics GA discussed earlier have been used to solve ANN
tasks in this way.

For the reasons given above we believe that the Group GA
has the potential to be a useful algorithm that can use emer-
gent niching to solve problems where the optimial division
of labour is unknown. Going forward, we plan on testing
the Group GA on a wide variety of tasks which may benefit
from being solved cooperatively in order to find out when
it performs well and under what circumstances it performs
poorly. We also plan on studying the effect of varying the
group size parameter on this immune system task as well as
other tasks. Testing the Group GA on an ANN task may be
a logical next step, as neural networks can be viewed as a
group of neurons symbiotically working together to solve a
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problem. We think that the Group GA could be the catalyst
for the development of a new class of GAs that specialise in
solving tasks cooperatively where there is limited a priori
knowledge of the fitness landscape.
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Abstract 
 A new interactive "wall game" is proposed in which two human 
players alternatively configure a pattern to communicate. A 
pattern consists of 3x3 sites, on which a player can place one of 
three symbols. The two major findings in this paper are i) the 
subjects mainly communicated in two modes. Either the 
subjects changed the pattern by watching the pattern as it is 
(dynamical mode) or by having narrative reflection (metaphorical 
mode). ii) Subjects switched between these two modes. Most of 
the experiments in evolutionary linguistics are based on “task-
oriented communication” and they observe the emergence of 
lexical items. In contrast, our experiment explores whether 
“communication without purpose” leads to the emergence of 
complex rules such as linguistic grammar. We argue that the 
switching between the two modes observed in our experiment can 
be seen as a grammatical process in the sense that it is a procedure 
to take an internal state outside using the media (i.e., patterns in 
the wall game). Under this hypothesis, the players’ exploration of 
the media becomes a crucial step in the emergence of language 
and grammar.   

1. Introduction 
Artificial life studies provide a test bed for exploring how 

symbols and grammars emerge in minimally interacting 
systems through computer simulation. For the last 10-15 
years, artificial life studies have contributed greatly to this 
direction, and the origin and evolution of language has 
become a target of many scientific studies (see e.g. Steels, 
1996, 2005;  Hashimoto and Ikegami, 1996; Rizzolatti 
and Arbib, 1998; Vogt, 1998; Cangelosi and Harnad, 2000; 
Sugita and Tani, 2005 etc.). For example, Steels and Kaplan 
(2001) have developed a platform for studying the interaction 
between two artificial agents acting as speaker or hearer. In 
this approach, a population of robots develops a shared 
vocabulary and a corresponding ontology while playing 
language games (i.e., ritualized social interactions that follow 
a specific script).  

 More recently, there are many researches based on 
experiments using human subjects (e.g., Steels, 2006; Selten 
and Warglein, 2007; Scott-Phillips and Kirby, 2010) as a new 
approach to the origin of language. Subjects communicate 
through a communication tool and some structured system 
emerges. Some of these studies testify to a hypothesis that is 

raised by computational simulation studies. For example, the 
“iterated learning model,” which is a model of vertical and 
horizontal cultural transmission, was proposed by Kirby 
(2002).  It was originally studied as a computational model 
and later the model has been adjusted to experiments using 
humans (Kirby, Cornish and Smith, 2008). .    

Among many studies of “language evolution in the 
laboratory,” Galantucci (2005) introduces one of the most 
influential experiments. In his experiment, two subjects who 
are staying in different rooms play a video game together over 
a monitor. They have to be cooperative to get a high score. 
They are allowed to communicate using a special 
communication tool. This tool allows the subjects to draw 
graphics but not letters. As the experiment proceeds, the 
difficulty of the video game increases. The pairs that ended 
the game with success shared many signs for rooms and 
enemy, which were drawn with the communication tool.    

 In most of the researches adopting an experimental 
approach, the final outcome often consists of lexical items. 
This comes from the fact that in most of the experiments, 
subjects are asked to perform a task together to make them 
communicate with each other.  

Not only the lexicon but grammar is an integral part of a 
linguistic system. To get more variations in results, the 
communication observed in the experiments should not be 
limited to those that are task oriented. For example, we 
assume that “communication without purpose” can be 
important to trigger proto-language with both grammar and 
lexicon in experiments. This idea is supported by the research 
in developmental psychology: infants are known to be 
engaged in two types of proto-linguistic communication. The 
first is communication with an aim, such those that are task 
oriented. The second is a communication without an aim, in 
other words communication whose aim is communication 
itself (Bates, 1976). Gómez, Sarria and Tamarit. (1993) argue 
the importance of the second type of communication. It is 
pointed out that the ability to communicate without purpose is 
an indicator for the ability called “theory of mind.” With 
“theory of mind,” one can infer other people’s minds, which 
are different from one’s own. And this ability is known to be 
integral to the use of language grammar properly (Tager-
Flusberg, 1993). Tomasello (2003) has also argued the 
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importance of shared attention in development and pointed 
out the role of communication just to share communication in 
acquiring language.  

Actually, Uno, Marocco, Nolfi and Ikegami (in press) made 
an attempt to use the A-life approach to explore the 
relationship between communication without purpose and the 
emergence of grammar. The agents were supposed to stay 
together in the target area using signals. However, when 
agents were given uncertain information regarding the target 
area, they start staying together outside the target area using 
newly created signals, which was argued to be a proto-
declarative sentence: a sentence used to share intentionality.     

 In this paper, we are going to take an experimental 
approach to see how communication gets structured when 
there is no purpose. We explore what are the characteristics of 
human communication (which might possibly be implemented 
in artificial systems) when individuals are just having fun. We 
asked subjects to communicate using our communication tool, 
which is called a “wall game.” The results show that there are 
two modes of communication. What emerged from the 
subjects’ communication is not a set of lexical items but the 
way an internal state of mind can be expressed as an external 
message. We argue that this can be seen as a proto-grammar.  

Section 2 explains the basic design of our experiment. 
Section 3 and 4 show the results of the experiments. Finally, 
section 5 analyzes and discusses the results of the experiment.  

 

2. Description of the Experiment 
Twenty-six subjects (13 pairs) were asked to communicate 
using an artificial communication system, where the 
expressions were the spatial pattern of the triplet in a 3-by-3 
bit square. They were allowed to rewrite the pattern 
alternatively. We call this pattern a “message.”  

For the first 9 pairs, each subject sent 8 messages in turn, 
which is 16 messages in sum. For the next 4 pairs, each 
subject sent 15 messages and 30 in all. After all messages 
were exchanged, we asked them to report their intentions 
behind the sent messages, and their interpretations of the 
received messages in natural language. (Henceforth we call 
this data the “intention report.”)  

We conducted the experiment mainly in Japanese. The 
reports shown in this paper are translated into English by the 
authors.  

The two subjects stayed in different rooms. The 
messages were sent to each other over the Internet. Figure 1A 
shows a screen where one can compose messages. All the 
messages that are sent and received are shown to the subjects 
so that they can compose their messages based on their 
communication history. Figure 1B shows how the history of 
exchanged messages is displayed to the subjects.   

 
 
 
 
 

Here are some examples of exchanged messages from 
our data. Player A sent (1) and Player B answered to it with 
(2). Then Player A replied to it with (3). Finally, (4) is an 
answer to (3) by Player B.   

 
 
 
 
 
 
 
 

Table1: Exchanged messages between Player A and Player B 
 

We made a linguistic analysis of the intention report and 
mathematical analysis to the patterns. The results are given in 
the following sections, 3 and 4. 

We performed the experiment under three conditions: 
 
Condition 1 

Messages are exchanged between two subjects.  Subjects 
write intention reports after exchanging all the messages 
(Appears in Experiment 1, 2, and 3). 

Condition 2  
Messages are exchanged between two subjects.  Subjects 
write intention reports in every round and players exchange 
messages (Appears mainly in Experiment 2).  

Condition 3  
Each subject plays with the game on his/her own. Subjects 
write intention reports after writing all the messages  
(Appears in Experiment 3). 

  

(1) 
From A to 
B 

(2) 
From B to 
A 

(3) 
From A to 
B 

(4) 
From B to 
A 

＠＠＠ 
＠＊＠ 
＠＠＠ 

＠＠＠ 
＠＊＃ 
＠＠＠ 

＃＃＃ 
＃＃＃ 
＃＃＃ 

＃＃＃ 
＃＃＠ 
＃＠＠ 

Figure 1: Two screen shots. A is a message composer.  B
is the timeline of exchanged messages.  

 

A 

B 
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The basic game is condition 1. In condition 2, the timing of 
writing the report differs from that in condition 1.  In 
condition 3, the game is played by a single player.   
 

3. Experiment 1: Two modes of 
communication 

3.1 Linguistic analysis 
To begin with, we analyzed the intention report from a 
linguistic point of view. We categorized the reports as three 
types: dynamical report, metaphorical report, and others.  

What we call a “dynamical report” is a literal description 
of the patterns in the messages. For example:  

 
(D1) All kinds of symbols are used. 
(D2) The pattern is scrolled from left to right.  
 

In these reports, patterns are described just as they are. The 
messages that these reports are made for are shown in Table 2 
below.   
  On the other hand, in what we call a “metaphorical 
report,” the subjects create a story based on the symbols inside 
the pattern. They are not describing the pattern as it is. 
Instead, they are using metaphors (in the sense of Lakoff 
[1987]). They describe symbols or a string of symbols as 
something else. Here are some examples: 
 

(M1) A rabbit is in a cage.  
(M2) The rabbit made a hole in a cage to escape.  

 
Here the player sees the symbol “*” as a rabbit and a sequence 
of“@” as a cage, and “#” is a hole.   

In this system, there is no way for one player to transmit her 
story to the other player. For example, while Player A 
intended to express a rabbit using the message shown as (M1) 
in Table 2, Player B made the following intention report for 
the same pattern: 

 
  (D3) * is surrounded by @. 

 
In the category called “others,” the reports are not strongly 

connected to the patterns. For example, we have emphatic 
expressions such as (O1) or feelings of the players, which are 
irrelevant with the patterns such as (O2): 
 
    (O1) Hello. Nice to meet you.  
    (O2) This experiment is difficult.   
 

 
 
 
 
 

Table 2: Examples of messages three types of 
reports are made for 
 
 

  The ratio of reports in each category used by each pair is 
given in Figure 2. It is shown that most of the reports are 
either dynamical or metaphorical.     
 

 
 
 
 
 

 
 
 
 
 
 
 
 

3.2 Mathematical analysis 1    
In order to see the characteristics of the wall patterns in the 
two different report categories, we calculated the correlation 
between the Hamming distance of adjacent patterns and the 
frequency of each type of the reports. Hamming distance is 
defined as the number of changes required to match one 
character string with another string. Therefore, we regarded 
the wall patterns as linear character strings (e.g., (D1) in Table 
2 is regarded as “*#@*#@*#@”) to calculate it. The larger 
the Hamming distance of a couple of patterns, the less they 
are similar. In order to treat the report under mathematical 
analysis, the two categories of the report are indexed by 
counting the number of them in each turn (i.e., the 
metaphorical index is scored 2 for when both subjects 
interpret metaphorically, 1 for when one subject does, and 0 
for when neither do). We calculated the correlation coefficient 
between Hamming distances and both the metaphorical 
indexes, and the dynamical indexes in each turn. 

The results are shown in Figure 3. We found that when the 
Hamming distance between successive patterns gets smaller, 
the human subjects tend to use metaphorical reports. On the 
other hand, the Hamming distance between successive 
patterns gets larger when subjects use dynamical reports.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (D1) (D2) (M1) (M2) (O1) (O2) 
＊＃＠ 
＊＃＠ 
＊＃＠ 

＠＃＊ 
＠＃＊ 
＠＃＊ 

＠＠＠ 
＠＊＠ 
＠＠＠ 

＠＠＠ 
＠＊＃ 
＠＠＠ 

＠＊＠ 
＊＠＊ 
＃＃＃ 

＠＃＃ 
＃＊＃ 
＊＊＊ 

Figure 2: Ratio of report types in Experiment 1. It is calculated 
from the accumulated reports of two players who exchanged 
messages. The ratio between metaphorical and dynamical
reports varies over pairs. 
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3.3 Mathematical analysis 2 
We also drew a state transition graph between successive 
patterns. To analyze the transition state of the patterns, 16 
messages were not enough to have statistically valid results. 
We therefore focused on pairs 10 to 13 who exchanged 30 
messages (15 each) in one trial. They performed two trials 
under two different conditions (i.e., conditions 1 and 2. See 
Section 2 for an explanation). We are going to discuss the 
contrast between conditions 1 and 2 in detail in Section 4. The 
point is that under condition 2, more metaphoric reports were 
tended to be used compared to condition 1.  

In order to create the transition graph, we grouped the 
patterns used in a game by the numbers of symbols the pair 
used. We first separated the patterns into three rows, and 
grouped each row using only the constituent ratio of the 
symbols (e.g., “*@*” is grouped into “210”, “###” is grouped 
into “003”, etc.). Thus, each line represents 1 of 10 groups (0 
for “012” ... 9 for “210”). We then assigned the groups a 
triple-digit number (e.g., 091 for “#@#/*@*/@#@”). Finally, 
we grouped all the patterns used in the game from the number, 
and calculated the transition between them. 

Figure 4A shows the state transition graph calculated for 
the pair 11.  The linearity of the transition graphs is defined 
as follows: “the number of nodes divided by the number of 
edges of a graph.” A linearity of the pair 11 under condition 1, 
whose main communication mode is dynamic, is calculated as 
0.89. And the linearity of Pair 11 under condition 2, whose 
main communication mode is metaphoric, is as 0.97. The 
analysis of this pair suggests that the metaphoric mode has a 
tendency of having a lower linearity than the dynamic mode.  

Figure 4B shows the correlation coefficient between the 
linearity and the number of the two report modes in all the 
trials by 4 pairs. The result shows that same types of transition 
are used repetitively in the dynamic mode but not in the 
metaphoric mode.   

 

 
 

 

 

 

 

 
Here we point out that there are two major modes in 

communicating with the system introduced in Section 2.,    
metaphorical mode and dynamical mode. During the game, 
the subjects enjoyed processing patterns and trying to assign 
meanings to them. In a report, the former shows up as a literal 
description of dynamic patterns and the latter story is told 
using metaphors. This difference is correlated with the 
difference in changing the patterns, which can be partly 
calculated with the Hamming distance and linearity of the 
transition states.   
 

4. Experiments 2 and 3 
To know further about the two modes of communication 

pointed out in the last section, we made two additional 
experiments. Below we briefly review each experiment.  

Figure 3: A: Correlation coefficient between Hamming 
distance and the number of two categories in reports for each 
pair. B: The same evaluation across all the pairs. Hamming 
distance has significant (p < 0.01) positive correlation with 
the dynamical report, and significant (p<0.01) negative 
correlation with the metaphorical report. 
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Figure 4:   
A: Examples of state transition graphs obtained from results of 
the pair 11. Here, the linearity is defined as the ratio between the 
number of nodes and the number of edges. A higher Linearity is 
observed in condition 2, compared with condition 1. 
B: The correlation coefficient between the linearity and the 
number of the two report modes in the 8 games. A positive 
correlation can be seen between the linearity and the metaphoric 
mode, and a negative correlation between the linearity  and the 
dynamic mode. 
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4.1 Experiment 2: Message-by-message report 
We asked 4 pairs who exchanged 30 messages in Experiment 
1 (which we call condition 1) to exchange an additional 30 
messages in the new trial (which we call condition 2). This 
experiment is to make the intentions behind the messages 
clear and to see the effects on subjects’ behavior.  In the new 
experiment, in every round players exchanged the messages 
they had in order to to compile reports of their intentions.  

Compare the ratios of the metaphoric and dynamic reports 
of conditions 1 and 2 shown in Figure 5. This result suggests 
that when subjects are more conscious of the intention of the 
message, they tend to be engaged in the metaphoric mode 
rather than the dynamic mode.  

  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

4.2 Experiment 3: Solitary play 
In the third experiment, we asked each subject to play with the 
game by him/herself (we call this condition 3).  We asked 
one of the subjects who experienced Experiment 1 to make 30 
messages by him/herself without having another player 
“behind the wall” asking him/her to report his/her intentions. 
Compare condition 1 in Fig. 5 and condition 3 in Figure 6. 
The result reveals that subjects tend to use either one of the 
modes, not both of them, when they have no one to 
communicate with.  
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
At least the players get more varieties in behavior when 

they are together. Let’s see an example that is congruent with 
the results in Experiment 2. Table 3 shows an exchange 
between two players.  

 

 
Table 3: Exchanged messages between Player A and Player B  
 
 
Player A interprets the whole exchange in metaphorical mode. 
Below are the intention reports by player A for (1) to (4).  
 

(A1) @ is me and * is a cherry blossom. Shall I go out 
by myself? 
(A2) I am also alone. 
(A3) It is more fun if we stay together.  
(A4) Different scene. Here * and # are people. @ and 
@ joined them.  

 
On the other hand, player B is communicating with dynamical 
mode form (1) to (3). At (4) he starts to use the metaphorical 
mode. Here are the intention reports by player B for (1) to 
(4) .   
 

(B1) More #s. 
(B2) I added more #s.  
(B3) @ was added. * appeared again. 
(B4) @ looks like an cute animal. # and * are 
environments. So I moved @.  

 
Player B started to change the mode of communication after 
communicating with player A. As shown in this sample, an 
interaction between two players facilitates switching between 
two modes. 
 
 

All of the experiments that show the characteristics of two 
modes of communication using our wall game are 

(1) 
From A to B 

(2) 
From B to A 

(3) 
From A to B 

(4) 
From B to A 

＃＊＊ 
＃＠＊ 
＃＃＃ 

＃＃＃ 
＃＠＃ 
＃＃＃ 

＊＊＊ 
＊＠＠ 
＃＃＃ 

＊＊＠ 
＊＊＠ 
＃＃＃ 

Figure 5:  

A: Ratio of reports in each category in condition 1 and 2. In 
condition 1, the players did not have to make “intention 
reports” during the game. In condition 2 the players had to 
make “intention reports” every time they sent or received 
messages.  It is calculated in the same manner as in Figure 
1.  

B: The ratios of the metaphoric reports and dynamic reports 
are averaged across all the pairs. There seems to be a 
tendency for dynamic reports to be more ascendant than
metaphoric reports in condition 1, while the opposite 
tendency can be seen in condition 2.  

Figure 6:  Ratio of reports in each category in condition 3. 
In this condition, subjects play the wall game alone. The 
reports are extremely biased into either metaphorical or 
dynamical. 
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summarized in the following table. We interpret the results in 
the next section.   
 
 Experiment 1 2 3 

 Intention 

Report 

Hamming 

Distance 

Transition 

state 

On-spot 

report 

Alone  

Metaphorical 

mode 

Metaphorical Smaller More linear increase N/A 

Dynamical 

mode 

Dynamical 

(literal) 

Larger Less linear decrease N/A 

Table 4: Summary of the experimental results 

5. Analysis and discussio 

5.1 Interpretation of two modes  
Different from previous evolutionary linguistic experiments, 
players of the wall game were asked to communicate without 
a purpose. The only motivation is to enjoy communicating 
with each other.  

In this game, the easiest way to compose a message is to 
mimic what the other player did. However, this strategy has to 
be avoided because the communication becomes monotonous 
and predictable so that the players can easily get bored.   

Accordingly, we assume that the behavior of the players is 
the one that tries to avoid mimicking each other and instead 
they need a strategy to make messages that has novelty for the 
other player. Two modes of communication can be understood 
from this point of view.   

First of all, the dynamical mode is a mode in which the 
player pays attention to the patterns in the messages as they 
are. Therefore, the reports are literal descriptions of the 
patterns (dynamical report). To make an interesting change in 
messages only with patterns, there must be a distinct change. 
This explains why the Hamming distance calculated in 
Experiment 1 was relatively large. The frequently used 
patterns that can make interesting transitions are limited. For 
example, patterns with three lines are often used, as is shown 
in the transition from (D1) to (D2). This explains the result of 
Experiment 2, which shows that the transition state of the 
dynamical mode was less linear, which means that the same 
pattern was frequently used.   

Turning to metaphorical mode, the players make their own 
stories based on the transition of the patterns. The story itself 
cannot be transmitted to the other player in this game. So for 
the Player B who does not share the story, the message by 
Player A in metaphorical mode is unpredictable and novel. It 
has been pointed out that metaphor helps people extend their 
understanding (Lakoff, 1987) and make inferences 
(Thibodeau and Boroditsky, 2011). In addition, we want to 
point out that metaphor helps people behave in a creative 
manner based on the observation in our experiment.   

In metaphorical mode, as shown in Experiment 1, the 
Hamming distance is small. This is understandable when we 
realize that even small changes can be meaningful in a story. 
Compare (M1) and (M2). As shown in Experiment 2, the 
linearity of the transition pattern is big, that is, the same 
patterns are rarely used. This can be explained by the fact that 
in metaphorical mode what is meaningful is the difference 
between the current diagram and the last one. This means that 

there is no particular pattern that has to be used in 
metaphorical mode.   

In Experiment 2, we tried to capture the relationship 
between two modes and “attention”.  

 The subjects enjoyed processing patterns and trying to 
assign meanings to them. In a metaphorical mode, subjects 
conveyed a message more consciously, by paying more 
attention to the messages. In contrast, in the former process, 
that is, in dynamical mode, the subjects explored the texture 
of the 3x3 bits until they became so familiar with the game 
itself that it became consciously transparent 

Let’s move to the result of Experiment 3. It shows that 
when the players are alone, they tend to use either one of the 
modes. When two players are together, both modes occur in 
communication. This suggests that coexistence of the two 
modes is enhanced by communication. 

5.2 Proto-linguistic grammar  
The outcome of the wall game experiment is two modes and 
the player’s switching behavior between the two modes. 
These two modes together form a procedure of taking our 
inner thoughts and our feelings and then expressing them 
outside through the media, i.e., in this case, the wall game. 
What we got is apparently not lexical items but a process: a 
process that can be seen as a process of producing linguistic 
expression. It corresponds to grammatical rules, which are 
used to compose sentences in natural language. The 
interesting observation here is that the “grammatical process” 
observed includes the exploration of the media. In dynamical 
mode, players try to find out the possibility of the pattern, and 
what kind of patterns can be used to make a distinctive 
message.  

Our hypothesis is that the exploration of the nature of the 
media is an integral part of the emergence of grammar. Just by 
looking at natural language, whose media is already 
transparent to the users, it is difficult to see whether this is 
true or not. From this perspective, evolutionary linguistic 
approach seems to be promising.  Since the results presented 
in this paper are still far from proving this hypothesis, 
currently, as shown in figure 7, we are making wall games 
with various textures so that how the player explores the 
media can be observed. This attempt might give us a way to 
look into all kinds of languages that would be theoretically 
possible.  

Figure 7: We are now making various types of wall games to 
analyze the exploratory behavior of players in playing with the 
wall. (Designed by Seara Ishiyama)  
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Abstract

The Chemical Organization Theory (COT) is an abstract reac-
tion network model that has a deep connection to autopoiesis
as they share the same central topic: Organization. The main
characteristic of autopoietic systems is that they preserve their
own organization; this constitutes their identity. In terms of
COT, organizations are special reaction networks which are
closed and self-maintaining. Organizations compose the ma-
jority of stable behaviours of a reaction network (Peter and
Dittrich, 2011), in particular every fixed point can be mapped
to an organization (Dittrich and Di Fenizio, 2007). Obtain-
ing the set of organizations of a network is a central objective
in COT, but it is usually a complex computational task. This
work intends to reveal the underlying mathematical structure
of organizations. We state a theorem of decomposition for or-
ganizations to understand the difficulties of verifying if a set
of molecular species is an organization. This suggests a step
towards the development of more efficient algorithms and the
classification of reaction networks in terms of how complex it
is to obtain its set of organizations. We also discuss the con-
sequences of this theorem in relation to autopoietic systems.

Introduction
During a 30-years period, from the 1950’s to the 1980’s,
the field of biological systems and their generalized prop-
erties saw the birth of multiple theories (Eigen and Schuster,
1977; Kauffman, 1969; Maturana and Varela, 1973; Wiener,
1948; von Bertalanffy, 1968; Rosen, 1958). A wealth of for-
malisms were laid out, which focused on different perspec-
tives on the fundamental properties of living systems, but
as it was to be expected, there have been deep similarities
between most of these theories (Hordijk and Steel, 2004;
Jaramillo et al., 2010; Letelier et al., 2003).

Since their conception, most of these theories have been
consigned to the theoretical domain having little incidence
in applied sciences, with the possible exception of what is
currently known as systems biology.

This situation may be because the process of translation
between the language employed in these theories and the
language commonly used in biology is not trivial (Cornish-
Bowden et al., 2007). The chemical organization theory,
inspired by Fontana and Buss (1994), provides an interest-
ing departure from this tendency as it provides a language

which is not only clear and well-defined but also corre-
lates directly to the biomolecular domain. Due to its math-
emathical foundations theorems can be formally proven and
developed (Benkö et al., 2009; Peter and Dittrich, 2011;
Peter et al., 2010). Also, COT is a powerful tool to an-
alyze the asymptotic behaviour of reaction networks that
other analytic or simulation methods cannot cope with. In
particular, the chemical organization theory has been ap-
plied to biochemical domains (Centler et al., 2008b; Kaleta
et al., 2006; Matsumaru et al., 2006), atmospheric photo-
chemistries (Centler and Dittrich, 2007), and as a tool for the
study of P-systems (Peter et al., 2010). It also has been pro-
posed as a theoretical framework to design chemical com-
puters (Matsumaru et al., 2007), and recently, for the study
of social systems (Dittrich and Winter, 2008).

Thus, COT is very well suited to study autopoietic
systems as both theories focus on the problem of self-
maintaining organizations. At first it may seem inappropi-
ate that a theory developed around artificial chemistries may
be used to study autopoietic systems, but it should be noted
that autopoietic systems are not obliged to a molecular struc-
ture or realization, that just happens to be the case of liv-
ing organisms. Furthermore, the “protobio” (Varela et al.,
1974) was both an early attempt to simulate autopoietic sys-
tems and an artificial chemistry. Therefore, any advance in
COT might be transported directly to the theory of autopoi-
etic systems, independent of the domain in which they are
actually realized.

In this paper, we first introduce COT and its relation to
autopoietic systems. Then, we present a decomposition the-
orem from COT and finally analyze its consequences for the
long-term time behavior of biological systems.

Autopoiesis and Chemical Organization
Theory

Autopoiesis was developed as a theory for living systems
by Maturana and Varela (1973). The central idea is that
a living organism is a machine, constituted as a unit in
space, which maintains its organization through its opera-
tion. Moreover, a living organism performs a set of pro-
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cesses which generate the components necessary to realize
these processes. Thus, the notion of organization as a net-
work of interacting components which stabily maintains it-
self in time is of most importance in this theory. Hence, a
theory which concerns itself with such a concept may relate
closely to autopoiesis.

The COT, which was introduced in Dittrich and
Di Fenizio (2007) in the context of algebraic chemistries, is
a mathemathical theory, that by using the structures of sets
and matrices, is able to formalize chemical reaction systems
at a topological and dynamical level. In this theory, an or-
ganization is a reaction network which has the potential of
being self-maintaining and thus matches very closely to the
definition given by Maturana and Varela. Moreover, as “an
autopoietic system is an homeostatic machine which has its
organization as the variable it maintains constant”, organiza-
tions must be stable in time. The COT explores these consid-
erations and has already had important results in this regard.
In particular, in this work we present a decomposition the-
orem for organizations. In order to present our main result,
we must first introduce the basics of COT.

Chemical Organization Theory
Basic Definitions
At the most basic level of this theory, we deal with two
types of objects: molecular species (from now on species)
and reactions. The species are the elements of a species set
M = {m1, . . .,mn}, and each reaction R is modeled by
a pair R = (A,B) ∈ PM (M) × PM (M), where PM (M)
denotes the set of all the multisets formed by elements inM.
A multiset is defined by a pair (X, ηX), whereX is a set and
the function ηX : X → N0 states the number of ocurrences
ηX(x) (multiplicity) of x in the multiset. In order to be con-
sistent with the usual notation of chemical reactions, we will
write the multiset (X, ηX) by

∑
x∈X

ηX(x)x. Moreover, we

will refer to the reaction R = (A,B) by R = A → B,
where A = (M, ηA) and B = (M, ηB).

From now on, let R = {R1, ..., Rk}, where Ri = Ai →
Bi, with Ai = ai1m1 + · · · ainmn and Bi = bi1m1 +
· · · binmn, for i = 1, ..., k and j = 1, ..., n. aij corresponds
to the stoichiometric coefficient of mj in reaction Ri, that
is, the multiplicity ηAi(mj) of molecule mj in Ai; bij is
defined in a similar way. Now we can define an Algebraic
Chemistry, which captures the notion of system, as follows:
Definition 1 An Algebraic Chemistry is a pair 〈M,R〉.

A species m ∈ M is said to be present in a multiset
(X, ηX) ∈ PM (M) if and only if its multiplicity ηX(m),
is greater than zero. The reactants and products of a reac-
tion R = A → B are the species present in A and in B
respectively. The reaction R can be fired by a set X ⊆M if
and only if all species present in A are in X .

From now on let X ⊆ M. Note that there exists a maxi-
mal set of reactionsRX ⊆ R which can be fired by X . RX

is composed by the reactions Ri = Ai → Bi such that, if
m is present in Ai, then m ∈ X . We call RX the possible
reactions set of X .

In order to deal with the dynamical aspects of any system,
it is desirable that the system maintains its identity. This
leads to the question of whether the system, left to react
for an arbitrary amount of time, will generate species which
where originally absent. Note that in a general chemical set-
ting, in which no species will be used up completely, all
the reactions that can be fired will fire at some positive rate;
therefore, it suffices to check if the set of possible reactions
for the system produces any novel species. If it does not, we
say that the set of species is closed. The following definition
states this formally:

Definition 2 We say X is closed if and only if for all R =
A → B ∈ RX , m is present in B implies m ∈ X . Let
GCL(X) be the closure of X , then it is the smallest closed
set containing X .

Remark The closure of a set has been proven to be
unique (Dittrich and Di Fenizio, 2007).

Thus, any given set of species will react growing in qual-
itative novelty until it reaches its closure, but it is unclear
whether the set will be stable in time, considering that dur-
ing reactions species are consumed and their concentration
could drop to zero. This motivates the study of dynamical
properties of sets of species.

Dynamical Aspects
The stoichiometric matrix S = (sij) associated with
〈M,R〉 is a n × k matrix, where sij is the stoichiomet-
ric coefficient of species mi in the reaction Rj (sij is neg-
ative if species mi is consumed by reaction Rj). Indeed,
sij = bji − aji. The stoichiometric matrix is at the core of
current systems biology (Schuster et al., 1999; Schilling and
Palsson, 1998) and its properties have been extensively stud-
ied (Kacser and Burns, 1973; Heinrich and Rapoport, 1974).
Let the flux vector v = (v1, ..., vk) be a non negative vector
such that the application of v on the stoichiometric matrix S
represents a reaction process, i.e. for i = 1, ..., k, the rate of
the reaction Ri in the system is given by vi. We define the
production rate vector by f = Sv. Thus, for i = 1, ..., n, we
have that fi is the rate of production of the species mi in the
reaction process determined by v.

We can describe the dynamics of the species concentra-
tions x = (x1, ...,xn) by the system of ODEs

ẋ = Sv(x,k), (1)

where according to mass-action kinetics

vi = ki

n∏
j=1

x
aij
j
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for i = 1, . . . , k, is the flux, and k = (k1, ...,kk) is a strictly
positive vector denoting reaction rate constants. We call
ODE (1) a chemical reaction system.

In order to relate the statical domain with the dynamical
domain, we introduce the idea of abstractions and instances:

Definition 3 The abstraction of state x is the set φ (x) with

φ :Rn≥0 7→ P (M)

x 7→ φ (x) ≡ {mi ∈M : xi > ε} , (2)

where Rn≥0 denotes the set of non-negative real numbers,
and ε is a concentration threshold. Moreover, given a set of
species X ⊆M, a state x is an instance of X if and only if
its abstraction equals X .

Chemical Organizations
The following definition is at the core of chemical organiza-
tion theory:

Definition 4 A subset of speciesX ⊆M is an organization
if and only if

1. X is closed and

2. X is self-maintaining, i.e. there is a strictly positive flux
vector v so that

SXv ≥ 0

where SX is the stoichiometric matrix associated to the Al-
gebraic Chemistry 〈X,RX〉.
Organizations are sets of species which cannot produce new
species by their possible reaction set. Also, it is possible
that during the operation of an organization, the concentra-
tion of none of the species decreases; thus, an organization
either maintains itself in time or grows in terms of the con-
centration of its species. This definition shares fundamental
properties with that of autopoietic systems to the extent that
all autopoietic systems are organizations. Note that not all
organizations are autopoietic systems as an organization that
keeps growing is not homeostatic and will eventually rupture
its container. This motivates the study of the fixed points and
other attractors of the chemical reaction systems.

The following theorem relates fixed points and organiza-
tions1.

Theorem 1 If x is a fixed-point of the ODE (1), i.e.
Sv(x,k) = 0, then the abstraction φ(x) is an organization.

Fixed points are related to the dynamic stability of chemi-
cal systems. Moreover, since fixed points determine most
of the characteristics of the dynamic systems they belong
to (Strogatz, 2000), Theorem 1 provides a link between the

1Proof can be found in (Dittrich and Di Fenizio, 2007).

long-term behavior of a chemical reaction system and its un-
derlying reaction network. This allows the study of the sys-
tem’s dynamics by the chemical organization theory. Fur-
thermore in (Peter and Dittrich, 2011), Theorem 1 is ex-
tended to other stable asymptotic behaviours such as peri-
odic orbits and limit cycles. In addition, the necessary condi-
tions for the existence of adequate flux vectors are explored
in (Peter et al., 2010). Note that a fixed point in this con-
text does not refer to thermodynamic equilibrium but to the
maintenance of the size of the system in terms of the number
of its components. The question about stability refers to the
conservation of the structure or organization of the processes
in a given timescale as the system is also subject to an evolu-
tionary dynamic which can lead to change or desintegration.
Now that we have introduced the idea of organization and
shown some relevant aspects, we will focus on our main re-
sult; the decomposition theorem.

Species Role in a Network
The idea behind the role of a species is that it can be classi-
fied in relation to a set of species by how it behaves in the
set of possible reactions.

Reactivity and Catalysts
Definition 5 Let m ∈ X , then

• m is non-reactive w.r.t X if and only if for all reactions
R = A→ B ∈ RX , m is not present in A nor in B.

• m is a catalyst w.r.t X if and only if for some reaction
R′ = A′ → B′ ∈ RX , m is present in A and for all
reactions R = A→ B ∈ RX , A(A,m) = A(B,m).

• m is reactive w.r.tX if and only if for some reactionR′ =
A′ → B′ ∈ RX , m is present either in A′ or in B′ and
for some reaction R = A → B ∈ RX , A(A,m) 6=
A(B,m).

We say that Y ⊆ X is a non-reactive, catalytic or reactive
set of X , if for all m ∈ Y , m is non-reactive, a catalyst or
reactive w.r.t X respectively.

The following lemma is straightforward

Lemma 1 There is a unique maximal non-reactive, cat-
alytic and reactive set of X .

Definition 6 The maximal non-reactive, catalytic and reac-
tive sets of X are called the non-reactive, catalytic and re-
active sets of X respectively.

Overproduction
Definition 7 Consider the Algebraic Chemistry
〈M,R〉 and a non-negative flux vector v such that
(Sv)i = fi ≥ 0 for i = 1, ..., n. If fj > 0 for some
j = 1, ..., n, we say that mj is an overproduced species
in 〈M,R〉.
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Overproduced species have a positive production rate for
certain flux vectors which do not lead to the consumption
of any other species. We remark that on the one hand, the
definition of overproduced species does not demand that the
system is self-maintaining because the flux vector is only
required to be non-negative, but on the other hand, overpro-
duced species definition not only requires the non-negative
production of all the species, but also the positive production
of at least one species. Thus, overproduced species are the
species that can be indefinitely produced by some reaction
pathway. Note that although this seems to violate the law
of mass conservation, real systems require a constant input
of mass or energy, and thus, it is usual when simulating or
analyzing chemical networks to include an outer source of
mass which does not decrease when consumed by a reac-
tion. The relevance of these species is that they can actually
be overproduced without consuming any of the inner species
of the system; hence, they embody the notion of input. The
following lemma is straightforward.

Lemma 2 Let an overproduced species m ∈ X in
〈X,RX〉. If X ⊂ Y , then m is overproduced in 〈Y,RY 〉.

Corollary 1 If X is a set of overproduced species in
〈M,R〉, then its closure GCL(X) is also overproduced.

Lemma 3 There exists a unique maximal set F of overpro-
duced species in 〈X,RX〉.

Proof If there are no overproduced species in X then the
maximal overproduced set is the empty set. Otherwise
the set containing all the overproduced species in 〈X,RX〉
leads to a maximal overproduced set. Now we are going to
prove that the maximal overproduced set is unique. Suppose
that there are two maximal overproduced sets F1, F2 ∈ X
and F1 6= F2, let v1,v2 the flux vectors required to ver-
ify the overproduced property of F1 and F2 w.r.t 〈X,RX〉
respectively. Trivially, v1 + v2 verifies the overproduced
property of F1 ∪ F2 w.r.t 〈X,RX〉, and Fi ⊂ F1 ∪ F2 for
i = 1, 2. As the inclusion is strict we have a contradiction.

Definition 8 The maximal set of overproduced species F
with respect to X is called the overproduced set of X .

Remark Consider the situation of adding a species m to an
organization O. The fact that m is overproduced in O′ =
O ∪ {m} does not guarantee that O′ is an organization. For
example, consider the set of species O′ = {a, b, c} and the
set of reactions

R1 = a→ b, R2 = b→ a,

R3 = a+ c→ a+ 2c, R4 = b+ c→ ∅.
(3)

We have that O = {a, b} is an organization, c is overpro-
duced in O′, but O′ is not an organization.

Then, at first sight the overproduced species could be seen
as a useless definition concerning the self-maintainance of a
reaction network because the overproduced species (c in the

example) can catalyze the consumption of species that can-
not be recovered in the network (b through reactionR4 in the
example). However, the identification of the overproduced
molecules of a set X simplifies the verification of the self-
maintaining condition of any set that contains X . Indeed in
the example above, we have that c is overproduced in {a, c},
thus we can avoid the calculation of the production of the
species c when verifying the self-maintainance of O′.

Roles and Organizations
From now on letN,E, F the non-reactive, catalyst and over-
produced set of X respectively.

Definition 9 X − (F ∪E ∪N) is the potential active cycle
(PAC) of X w.r.t F .

Remark For any given flux vector which verifies the self-
maintainance of X , the PAC has a production rate equal
to zero. But PAC should not be confused with the set of
species with a production rate equal to zero. Indeed, the non-
reactive and catalytic species have a production rate zero, but
they do not belong to the PAC. The following lemma states
that no species can be only produced or only consumed in
the PAC of an organization:

Lemma 4 Let C be the PAC of X . If X is an organization,
then for every m ∈ C we have that m is consumed by some
reactionR ∈ RX and produced by other reactionR′ ∈ RX .

Proof Let m ∈ C, then m cannot be non-reactive either cat-
alyst. Asm has production zero, thenm is a reactive species
w.r.t X . Then, there must exist a reaction R = A → B ∈
RX s.t A(A,m) 6= A(B,m). If A(A,m) > A(B,m),
as X is an organization, there has to exist some reaction
R′ = A′ → B′ s.t A(A′,m) < A(B′,m). On the
other hand, if A(A,m) < A(B,m), as m is not overpro-
duced (because m ∈ C), there has to exist some reaction
R′ = A′ → B′ s.t A(A′,m) > A(B′,m).

PAC and Dependent Connectivity
We are going to define a special notion of connectivity
which will allow us to separate the PAC of a set X in a
number of partially non-overlapping sub-PACs, such that
the self-maintainance of X can be studied from the self-
maintainance of the sub-PACs. From now on, let X be a
closed set2.
The following definition of connectivity appears in (Centler
et al., 2008a):

Definition 10 Two species mi and mj in X are directly
connected in 〈X,RX〉 if and only if there exist a reaction
R = A→ B ∈ RX such that {mi,mj} ⊆ A ∪B.

2Verifying the closed property, and obtain the closure of
a set of species is trivial compared with verifying its self-
maintainance (Centler et al., 2008a)
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Definition 11 Two species mi and mj in X are connected
in 〈X,RX〉 if and only if there exist a sequence of species
m0, ...,mp ∈ X such that mi = m0, mk and mk+1 are
directly connected in 〈X,RX〉 for all k = 0, ..., p − 1 and
mp = mj .

We present a more restricted notion of connectivity than def-
inition 11. This restriction only connects species that are
non-independent when verifying self-maintainance.

Definition 12 Two speciesmi andmj inX are dependently
connected in 〈X,RX〉 if and only if there exists a sequence
of species m0, ...,mp ∈ X − (E ∪ F ) such that mi = m0,
mk andmk+1 are directly connected in 〈X,RX〉 for all k =
0, ..., p− 1 and mp = mj .

Figure 1: Following definition 11, both networks A and B
are fully connected. Note that in A, the self-maintainance
of C1 = {x, y, c} and C2 = {z, w, c} are independent. The
same situation occurs in B with sets C ′1 = {x, y, o} and
C ′2 = {z, w, o}. Dependent connection allows to connect
all the species in C1 without connecting them to species in
C2 and viceversa because C1 and C2 are connected through
a catalyst. Analogously C ′1 and C ′2 are not dependently con-
nected because they are connected through an overproduced
species.

Lemma 5 Let m, m̄ ∈ X . m is dependently connected in
〈X,RX〉 to m̄ if and only if m̄ is dependently connected in
〈X,RX〉 to m.

To continue, we need to mention that a computer science
formalism called Petri Nets (Murata, 1989), has been con-
sidered as an interesting source of insights for the biochemi-
cal pathways research (Reddy et al., 1993, 1996). Petri Nets
arose from the necessity to formalize concurrent processes.
We will incorporate some fundamental topological parame-
ters of Petri Nets to our analysis: the set of input transitions
of a place and the set of input places of a transition.

Definition 13 Let m ∈M. We define

Act(m,R) = {R = A→ B ∈ R |m is present in A}.

We say Act(m,R) is the activable set of reactions of m in
R.

Definition 14 Let R = A→ B ∈ R. We define

Req(R) = {m|m is present in A}.

We say Req(R) is the required set of species of R. Further-
more, for a set of reactions S ⊆ R we define

Req(S) =
⋃
R∈S

Req(R).

The set of input places in Petri Nets corresponds to the
set Req(·), and the set of input transitions corresponds to
Act(·,R).

Definition 15 We define Causal∗(m,RX) as the set of
dependently connected species in 〈X,RX〉 to m, and
Causal(m,RX) = Req(Act(Causal∗(m,RX))).

The following lemmas are derived straightforward from
lemma 5 and definition 15:

Lemma 6 Let m, m̄ ∈ M. m̄ ∈ Causal∗(m,RX) if and
only if

Causal∗(m,RX) = Causal∗(m̄,RX).

Lemma 7 Let R ∈ RX , m, m̄ ∈ X − (E ∪ F ) s.t
m /∈ Causal(m̄,RX). If R ∈ Act(Causal(m,RX) ∩
Causal(m̄,RX),RX) then R ∈ RE∪F .

Causal∗(·, ·) provides a way to split a set X of species in
dependent connected subsets. It is necessary to identify a
the catalytic set E and the overproduced set F to generate
such separation. The more elements are in E ∪ F , the more
chance of recognize the independent causal connected sets
we have.

Lemma 8 Let D be the PAC of X . Then

D =
⋃
m∈D

Causal∗(m,RX)

Proof Note that D ⊆
⋃

m∈D
Causal∗(m,RX). Let m ∈⋃

m′∈D
Causal∗(m′,RX), then for some species m′ ∈ D we

have m is dependently connected to m′, then m′ is also de-
pendently connected to m. This means m is a reactive, non
overproduced, and non-catalytic species. Then m ∈ D.

From now on we let D ⊆ X be the potential active cycle
of X .

Definition 16 Any set D′ ⊆ D s.t D =⋃
m∈D′

Causal∗(m,RX) is called a base of D. Any

minimal cardinality base of D is called a minimal base of
D.

Lemma 9 Let D′, D′′ be two minimal bases of D. Then
every species inD′ is dependently connected to one and only
one species of D′′.
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Proof Let m ∈ D′ and suppose that there is no
species in D′′ dependently connected to m. By corol-
lary 6 we have Causal∗(m,RX) is not contained in⋃
m′∈D′′

Causal∗(m,RX). Then there has to be at least one

species dependently connected to m in D′′. Now sup-
pose there is more than one species dependently connected
to m in D′′. Let m1,m2 ∈ D′′ such species. As m1

and m2 are dependently connected to m, then m1 and
m2 are dependently connected. By corollary 6 we have
Causal∗(m1,RX) = Causal∗(m2,RX). Then D′′ is not
a minimal base of D.

A minimal base of D is a set which generates all the non
dependent sub-PACs of theD. We are going to prove that the
self-maintainance of a potential active cycle can be obtained
from the self-maintainance of its non dependent sub-PACs.

Lemma 10 Let D′ a minimal base of D. Then

Act(D,RX) =
⋃

m∈D′

Act(Causal∗(m,RX),RX).

Proof Note that⋃
m∈D′

Act(Causal∗(m,RX),RX) ⊆ Act(D,RX).

Let R ∈ Act(D,RX) then for some m ∈ D we have R ∈
(m,RX). From definition 16 we have that there is m′ ∈ D′
s.t m ∈ Causal∗(m′,RX). Then by corollary 6 we have

R ∈ Act(Causal∗(m′,RX),RX)

⊆
⋃
m∈D′ Act(Causal∗(m,RX),RX).

Decomposition Theorem for Organizations
Theorem 2 Let D′ = {m̄1, ..., m̄d} a minimal base of D.
For i = 1, ..., d let

Di = Causal(m̄i,RX),

Fi = Causal(m̄i,RX) ∩ F.

Let ∅ → Y = {∅ → y / y ∈ Y }. X is self-maintaining
if and only if for all i = 1, ..., d we have that Di is self-
maintaining in the subnetwork 〈Di,RDi ∪ ∅ → Fi〉.

Proof⇒: Let F̄ =
d⋃
i=1

Fi. Note that X is self-maintaining

in 〈X,RX〉 if and only if X is self-maintaining in 〈X,RX ∪
∅ → F̄ 〉. Let v be a vector which verifies the self-
maintainance of X in 〈X,RX〉. Let Act(Di,RX) =
{Rα1

, ..., Rαi
l
}, then v̄ lead to a non-negative production on

all the species of Causal∗(m̄i,RX) where

v̄i =

{
vi if i = αj for some j,
0 else

As the rest of species belong to F̄ , to reach their non-
negative production we use the reactions in ∅ → F̄ .

⇐: Let v1, ...,vd the flux vectors which verifies the self-
maintainance of 〈Di,RDi

∪ ∅ → Fi〉, i = 1, ..., d and vF

the flux vector which verifies the potential overproduction
of F w.r.t X . Then there exist a non-negative number β s.t

βvF +
d∑
i=1

v̄i verifies the self-maintainance of X , where v̄i

is the flux vi represented as a flux vector for RX , i.e. com-
pleted with zeros in the coordinates representing reactions
that are not inRDi .

Corollary 2 Let D′ a minimal base of D. Then X can be
non-overlapping decomposed (partitioned) as

X = N ∪ E ∪ F ∪D∗1 ∪ · · · ∪D∗d. (4)

With D∗i = Causal∗(mi, RX), and mi the i−th element of
D′. MoreoverX is self-maintaining if and only ifE∪F∪D∗i
is self-maintaining for i = 1, ..., d.

Stability, COT and Autopoiesis
Living organisms are systems far from thermodynamic equi-
librium, therefore the question about stability refers to the
conservation of the organization of the organism’s pro-
cesses. This issue requires some attention, as the processes
an autopoietic system are homeostatic in essence, but they
are always potentially subject to dramatic changes. A clear
example of this is the cell cycle, which is driven by cyclic,
i.e. non stationary, processes like the cyclins proteins family
expression patterns. In relation to this, the autopoiesis the-
ory describes living organisms as processes that produce the
components that give rise to those processes, where some at-
tributes are preserved and others may change (Varela et al.,
1974) allowing a structural drift (Maturana and Mpodozis,
2000). Therefore, in a way, autopoietic systems are not
obliged to exhibit stability in the long run.

The basis of structural drift in biochemical networks is
metabolic regulation. This is managed by the modulation of
enzymes expression and also by means of a co-catalysis phe-
nomenon in which coenzymes and regulators interact with
the enzyme structure-function relation. This metabolic regu-
lation determines the cell’s developmental direction between
a wide range of possible organizations. In order to illustrate
this idea, imagine a system following an attractor when sud-
denly the concentration of a given regulator reaches a level
that triggers a deep change in the structure of the network.
Now, the attractor mentioned above is absent and the system
takes a different pathway in which another phase space shift
can occur. If this process becomes cyclic, the entire loop can
be described as a limit cycle, but a decomposition of phase
space in a set of contextual mini phase spaces that emerge
in different regulatory scenarios could contribute both to
the understanding of biological operations as to the algo-
rithms research in biology inspired AC simulations. There-
fore, in the COT, the changes in structure can be represented
as changes in the phase space, leading to a dependence of
phase space with the state of enzymes and regulators.
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Some future goals in biologically inspired AC are the
study of cyclic behaviour and autopoiesis theory’s structural
coupling. Preliminar studies concerning artificial autopoi-
etic systems have been done in (Peter et al., 2010), by mak-
ing use of the P-systems formalism. A P-system is formed
by a set reaction networks, each one enclosed by a mem-
brane. The reaction networks can interact diffusing particles
through membranes. In particular, it is shown how a bistable
cyclic process can be reached among two different unstable
reaction networks, by exchanging in low rates their subprod-
ucts, i.e. forming together an organization.

Conclusions
In this paper we have shown how the chemical organiza-
tion theory connects deeply to notions of autopoietic sys-
tems. Moreover, every autopoietic system is an organiza-
tion, and thus, theorems derived for organizations are valid
for autopoietic systems.

We introduce the notion of the role played by a species in
a subnetwork of an reaction network. The different possible
roles that a species can play in a subnetwork (non-reactive,
catalyst, overproduced, active cyclic) give information about
the structure of the subnetwork (lemmas 1, 3 and 4). We also
introduce the notion of dependent connectivity in a reaction
network (definition 12), which is useful to split a reaction
network into the minimal parts required to verify the self-
maintainance (Theorem 2). This theorem helps to simplify
the organization verification not only by decomposing the
set, but also when we keep track of the decomposition of the
set to verify the self-maintainance of sets that contain it.

The fact that an organization can be subdivided into self-
maintaining subnetworks which are mostly independent one
from another (and not necessarily closed), is both striking
and noteworthy. The decomposition theorem stated in this
work shows that the long-term behaviour of an organization
can depend on sets of species whose states are weakly cou-
pled. This result opens new paths of analysis for a broad set
of fields, from metabolic dynamics to ecological networks.
This result also relates directly to a debated subject which is
the composition of autopoietic systems by other autopoietic
systems.

At this point a comment on the domain of applicability
of this theorem is convenient. On some cases, like reac-
tive flow systems where there is a spontaneuous decay of
every species, the decomposition is trivial, i.e., the system
cannot be further subdivided. This is because each species
of an organization would be overproducible (to counteract
the decay). So, this paper addresses those systems where
some species take part in reactions but do not decay spon-
taneously. In the case of living systems, every molecule de-
cays spontaneously or, equivalently, dilutes when the sys-
tem grows. This seems to make an argument towards the
unapplicability of the decomposition theorem to living sys-
tems. However, the fact that every molecule decays in a

living system is only revelant at the right timescale. For
a smaller timescale some molecules do not decay. There-
fore, it is important to examine living systems at different
timescales. Choosing a very long time scale, basically no
system would continue to exist so that autopoiesis would not
become visible. While with a smaller timescale more and
more elements (molecules) would become stable and would
not decay spontaneously. Here is where the decomposition
can potentially be applied.

This decomposition theorem is suggested as a starting
point for the complexity analysis of the organization ver-
ification problem as well as for the classification of reac-
tion networks in terms of how complicated it is to compute
their organizational structure. Although this is a relevant
result for current systems biology as it simplifies analysis
and simulations, and for artificial life, at it may guide the
construction of artificial self-sustaining systems, it also de-
mands revisiting questions on biological systems concern-
ing their modularity, autonomy, and even the notion of their
identity.

References
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Abstract
An insufficiently appreciated  paradox in the origin of life is  that 
the replication of information-carrying molecules requires the 
molecules to be very specifically shaped; but  such specific 
molecules are hard  to produce without natural  selection. We 
demonstrate and  investigate this problem by  building a physical 
model of self-replication  out of specifically shaped  plastic 
pieces with embedded magnets, which  float around on an air-
hockey type table. We use a mechanism known  as  template 
replication, which works by the joining of complimentary 
strands, roughly  analogous to the biological  replication  of 
DNA, except without the involvement of enzymes. Building a 
physical rather than a computational model forces us to 
confront several issues that  have analogues in the microscopic, 
chemical world. In  particular, in  order to  achieve a low 
mutation rate we must reduce as much as possible the 
formation of incorrect sequences, which can happen both 
spontaneously and as  a result of strands joining  in  a misaligned 
way. The latter results in ever-lengthening  sequences in a 
process known as the “elongation  catastrophe”. We present  an 
overview  of our design process, illustrating  the many 
interdependent adaptations that  had to be made to  the pucks’ 
shapes in  order to  solve these problems while maintaining a 
high rate of template replication.  The chicken  and egg  question 
is how, in the pre-biotic world, could  template replication be 
achieved without the presence of enzymes  that  require template 
replication in the first place?  By building  a real physical model 
a new answer to this question  is suggested. We propose that 
early  pre-biotic monomers required structural specializations 
that reduced  the rate of formation  of incorrect sequences, 
without the need of an encoded enzyme.

Introduction
In the highly evolved biology of today a complex array of 
encoded enzymes is necessary for the replication of DNA and 
RNA polymers. These enzymes were not available at the 
origin of life,  and so nucleotide template replication had to be 
non-enzymatic (Szathmáry, 2000; 2006). The best example of 
non-enzymatic template replication we have so far is still the 
work of Guenter von Kiedrowski (1986) who made the first 
non-enzymatic template replicator consisting of the 
hexanucleotide sequence GGCGCC that catalyses the 
templated ligation of CGG and CCG trimers.
 In such experiments,  replication must be carefully 
distinguished from spontaneous self-assembly which is 
typically easier to achieve than replication in stochastic 
systems. In the von Kiedrowski experiment there is a low rate 
of self-assembly (specifically elongation/dimerisation) by 
non-templated ligation of CCG and CGG. To prove 
replication one must compare the rate of formation of 

GGCGCC in the absence and the presence of an initial seed of 
GGCGCC.  The difference is the extent of true templated self-
replication. Whereas self-assembly of random novel 
oligomers is fine for random search in sequence space,  self-
replication is crucial for evolution by natural selection,  i.e.  the 
production of offspring whose fitness correlates with parental 
fitness (Price, 1970). If most of the DNA in a proto-organism 
was self-assembled de-novo into random sequences and not 
replicated from the parent, the genome would be real garbage, 
as opposed to inherited junk.
 This raises a paradox that is of no lesser importance than 
Eigen’s paradox regarding the error catastrophe (Eigen 1971). 
Our logically anterior paradox deals with the fact that 
specificity of self-replication over self-assembly is a critical 
pre-requisite for an evolvable physical template self-
replicating system. Without specific ligation, random de novo 
synthesized sequences invade a population of replicating 
evolved sequences. These random sequences compete with 
evolved sequences for monomer resources thus diluting out 
evolved information (i.e.  sequences that had arisen from a 

(a) (b)

(c)
Figure 1: A generic illustration of template replication and 
two side reactions that must be avoided.  (a) Homologous 
template directed ligation (self-replication) results in the  
correct duplicaton of a sequence.  (b) A new (incorrect) 
sequence is formed by non-templated spontaneous ligation. 
(c) Elongation of the original sequence by partially 
homologous template ligation at  staggered ends.   See 
(Fernando, Von Kiedrowski et al. 2007) for a full analysis of 
the elongation catastrophe.
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lineage of template replication events).  In addition evolved 
sequences become trapped inside elongating strands (that 
cannot easily unzip or denature) such that they cannot easily 
experience another round of replication,  see Figure 1. We call 
this the elongation catastrophe and it  raises what we will call 
the elongation paradox (Fernando, von Kiedrowski et al. 
2007). How can specific ligation be achieved without complex 
enzymes that require template replication with specific 
ligation in the first place? 
 The minimal unit of template replication is a dimer (i.e. a 
polymer of length two) that can replicate three possible 
sequences,  AB,  BA, or AA(BB), as in Figure 1.  The minimal 
unit of template replication has the capacity to replicate the 
specific configuration that it is in. It is this fact that allows 
template replication to potentially convey an unlimited 
amount of information (Szathmáry and Maynard Smith 1997) 
because of the compositionality of the genome (Fodor and 
Pylyshyn 1988) and to be evolvable due to the capacity for 
micro-mutation, i.e.  small changes in the composition can 
generate correlated fitness variants (Price 1970).  But there is a 
real danger with such a system that if ligation is not tightly 
controlled then novel random sequences can arise and evolved 
sequences can elongate (but not replicate) without limit,  as in 
Figure 1(c).
 Mutations must be able to occur in an evolvable system, 
but they must occur at a low rate in order to avoid Eigen’s 
(1971) error threshold.  A minimal evolvable system must 
therefore exhibit the replication of dimers with low rate of 
assembly of incorrect or elongated sequences.   For this project 
we set ourselves the goal of producing a system where the 
average rate of replication of a seed dimer is greater than the 
rate of formation of all other sequences put together.
 Interestingly, this elongation catastrophe was the fate of a 
2D macroscopic system designed by Jarle Breivik for 
template replication that was faithful to some aspects of 
chemistry such as stochasticity and binding properties 
(Breivik 2001). He used 2D plastic shapes with embedded 
magnets and an oscillating temperature water bath. 
Unfortunately,  despite the obvious ingenuity of the design,  the 
original templates formed in an unseeded manner by 
spontaneous aggregation of “hydrogen bonded” pairs to form 
a double strand and no kinetic comparison between self-
assembly and self-replication was made. From Figure 3 in 
Breivik’s paper it  appears that free ligation was responsible 
for the production of all the oligomers in that model by de 
novo synthesis of monomers in weakly bonded pairs. 
Strangely, the h-bonded pairs catalyze double p-bond 
formation, see Figure 3 in (Breivik 2001).  It seems,  no 
template replication was demonstrated,  and if it  did exist,  it 
seems to occur much more slowly than the spontaneous 
formation of novel sequences. This is a problem for evolution 
by natural selection, not a feature. Breivik’s system suffers 
severely from the elongation catastrophe and therefore could 
not be extended to undergo natural selection of sequences. 
 In fact, until now, to our knowledge it  is still only the 
geneticist Lional Penrose and his son Roger Penrose (Penrose 
and Penrose 1957) who have shown a relatively specific type 
of ligation reaction in a physical system without resorting to 
electronic switches and other features that make specificity of 
ligation trivial and thus reduce their utility in abduction to 
chemistry or the potential for later miniaturization (Groß, 

Küchler et al. 2009). Penrose’s devices use only gravity, 
collision,  friction, and (passive and active) hooking.  In the 
simplest model, two kinds of solid object A and B are agitated 
horizontally on a straight track. If seeded with either a AB or a 
BA dimer (AA and BB dimers cannot form in the Penroses' 
system) other monomers join together by being appropriately 
tilted,  to form the identical dimer type, without novel AB or 
BA forms appearing spontaneously by un-catalysed ligation. 
E.F.  Moore wrote of Penrose’s design “If the reader attempts 
the problem of how to design the shapes of the units A and B 
so as to have the specified properties, the difficulties he will 
encounter in his attempt will cause him to more readily 
appreciate the ingenuity of Penrose’s very simple solution to 
this problem.” (Moore 1962). 
 However, 1D systems are severely limited in terms of 
extendibility to longer sequences to achieve unlimited 
heredity (Szathmáry and Maynard Smith 1997) because i. they 
may be constrained by the initial sequence of monomers along 
the chain (which is a problem if the identity of monomers 
cannot flip between A and B,  which in some of Penrose’s 
designs they can), and ii.  information about the identity of 
units on the inside of a sequence must pass through all other 
bordering units before they can influence external monomers . 
Again,  Lionel Penrose already carefully considered 
information transmission through units agitated in 1D, for 
example he invented in a length-dependent end-blocking 
device that prevents anything larger than 4-mers from 
forming,  so avoiding the elongation catastrophe in one 
dimension.  A more complete 1D self-replicator (still 1D 
because it is only agitated in the horizontal axis) was later 
invented by Penrose to allow the replication of dimers with 
more possible states/configurations defined by the 
arrangement of hooks stacked in the 2D axis orthogonal to the 
axis of agitation rather than perpendicular to that axis 
(Penrose 1959). So, in short, Penrose took the elongation 
catastrophe rather seriously.
 Here for the first time we present a mechanical 2D 
stochastic self-replicator that has limited rates of non-
catalysed spontaneous self-assembly (ligation) of monomers, 
and limited partial homologous templated ligation. Reducing 
the rates of these two side-reactions serves to some extent to 
curtail the elongation catastrophe. However, we note that our 
solution is hand-designed and partial. The elongation paradox 
is still  not solved for the origin of life, i.e.  we do not know 
how such infra-biological monomers could have arisen with 
these very specific capabilities; speculation on this based on 
this work is given in the conclusions. 
 We built plastic monomers containing magnets and passive 
hooks and sails, that floated on an air-hockey table,  and were 
blown by fans on the perimeter of the table, see Figure 2. 
Spontaneous elongation (untemplated ligation) was reduced 
by careful design of the physical equivalent of the 
phosphodiester bond. In addition, partial homologous ligation 
was reduced by careful design of the template complex. 
 Indeed, our system is a macroscopic close relative of von 
Kiedrowski’s hexanucleotide replicators,  because we have 
faced similar design challenges as in real chemistry, such as 
cyclisation and product inhibition. Guenter von Kiedrowski 
had to block the ends of his hexamers to prevent partial 
homologous ligation from catastrophically extending strands 
and depleting matter from the replicator cycle (Von 
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Kiedrowski 1986). However,  in our system we have not 
explicitly blocked the ends, but have designed all the 
monomers so that end-blocking is ‘emergent’.  
 The primary advantage of a physical system over a 
computer simulation is it forces us to confront the problems of 
template replication by changing the design of the monomers, 
rather than by changing the simulation to reduce the problems. 
Similarly, while real chemical monomers can have 
mechanica‹lly-implemented internal states, our self-imposed 
restriction of no electronic components prevents us from 
being able to implement any arbitrary mechanism, regardless 
of how easily it could be implemented mechanically in 
chemical systems. 
 Next we describe the design of the pucks (monomers) and 
then we conduct a classical seeding experiment to distinguish 
self-replication from self-assembly. This is the first 
demonstration of a 2D template replication system that is 
capable of low rates of spontaneous elongation yet high rates 
of self-replication (without the use of monomers containing 
electronically implemented finite state machines).  

Figure 2: The design of the air-hockey style table containing 
the monomers. Sails on each monomer are blown by a 
perimiter of small  fans.  Another fan below the table passes 
air through small holes to suspend monomers over the table 
like small hovercraft.

Figure 3: The design of the monomers.  The top photograph 
shows the names used in the text for important parts of the 
design.  In photographs the two monomers are distinguished 
by the colour of their polystyrene sails (white for A,  black for 
B),  whereas in diagrams, type B  is shown in a darker shade of 
grey.  The lower-left diagram shows the mechanism by which 
templated ligation takes place (but see also Figure 4).  The 
lower right diagram shows how the design prevents the weak 
bond magnets from bonding to the strong bond magnets.

Figure 4: The autocatalytic cycle for replication of an AB 
dimer.  (a) A type ‘B’  monomer joins to the dimer. (b) A type 
‘A’ monomer joins to the other h-bond and swivels into place 
via the mechanism shown in Figure 1.  Catalysis can also take 
place if the monomers join in the opposite order; in this case 
both monomers must swivel on their weak bonds, which often 
occurs when the configuration collides with another object. 
(c) A p-bond is formed by template directed ligation and, 
simultaneously, one of the h-bonds is broken. A collision with 
another molecule or the table edge is required in order for this 
step to occur. (d) Another collision breaks the remaining weak 
bond, and the two strands separate, completing the cycle.
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Methods
A frictionless table,  similar to those used for air-hockey, was 
purpose built and consisted of a flat plastic surface perforated 
with an array of 1.5mm diameter holes, spaced at intervals of 
10mm. An enclosure underneath this surface was pressurized 
with a powerful fan to produce a steady jet of air from each 
hole, allowing suitably shaped objects to float above the table 
surface.  Surrounding the table was a set of approximately 20 
small fans that could be arranged to cause a stochastic motion 
of the pucks,  albeit with a significant rotational element, see 
Video A in Supplementary Material. There was no 
“temperature” oscillation as in Breivik’s experiment, i.e.  the 
fans always rotated at the same speed. The walls of the table 

allowed approximately elastic collisions. The puck design is 
shown in Figure 3. 
 Pucks are 1.5mm thick and made of plastic. The bases of 
the pucks are flat allowing a hovercraft type low friction 
floating of the puck above the table.  The pucks were 
fabricated using a Versalaser cutter.  Rapid fabrication of new 
designs was possible for prototyping.  Pucks contain 
molybdenum disc magnets that can be oriented with the north 
or south pole facing upwards,  allowing specification of 
attractive or repulsive interaction pairs. 
 The final design has the following features. The strong 
‘phosphodiester bonds’ must not form spontaneously.  This is 
achieved by embedding the magnets deep within the puck and 
producing a lock and key type join which can only form if the 
pucks collide at a very specific orientation. This orientation 
tends to occur only when the two monomers are ‘hydrogen 
bonded’ to a dimer template, and not when two pucks collide 
against each other as untemplated monomers. Once the pucks 
make the p-bond the magnets are very close together so the 
bond is strong. Thus the p-bond is difficult to form due to 
steric constraints but once formed is strong due to close 
magnets and mechanical rigidity.  The h-bonds consist of an 
interaction between magnets that are further apart when the 
bond is formed,  i.e. the bond is weaker. Also,  there is a curve 
on the surface of the bond to allow pucks to rotate when h-
bonded. This rotation brings the two h-bonded monomers into 
the appropriate configuration for the p-bond to form.  
 To reduce product inhibition, the pucks are shaped in such a 
way that two p-bonded dimers cannot be joined at both h-
bonds.   Thus,  as the p-bond forms it breaks one of the two 
hydrogen bonds.  The remaining h-bond is sufficiently weak 
that the two dimers can separate and undergo another round of 
replication. 
 There are two types of monomer, labelled ‘A’ and ‘B’, 
which differ only in the orientation of the magnets that form 
their h-bonds.  ‘A’  type monomers can only form weak        
(h-)bonds with ‘B’ type monomers,  and vice versa.  Strong    
(p-)bonds can be formed between any pair of monomers, 
giving rise to four types of strong-bonded dimer,  ‘AA’, ‘AB’, 
‘BA’ and ‘BB’.   Template replication produces a new dimer 
that is both the compliment and the reverse of the original.  
This results in three separate autocatalytic cycles: {AB}, with 
the reaction AB +  A +  B → 2AB; {BA}, with the reaction  
BA +  A + B → 2BA; and {AA,  BB} with the reactions       
AA + 2B → AA + BB and BB + 2A → AA + BB.
 Misalignment with the generation of a staggered or 
dangling end as they are often called,  can cause ‘AA’  dimers 
to be extended via catalysis to ‘AAA’ dimers, and similarly for 
the ‘BB’  type, by partial homologous ligation (see Figure 5). 
However, in all the experiments conducted we did not observe 
the production of 4-mers by partial homologous ligation. 
Importantly misalignment did not tend to occur for ‘AB’ and 
‘BA’ dimers,  which cannot catalyse partial homologous 
ligation dependent elongations unless another species of dimer 
is also present in the system. The explanation is given in 
Figure 5. 
 In summary there are the three principles that we used to 
limit the elongation catastrophe in this simple system.  

1.  Impossibility of formation of non-complementary h-bonded 
pairs. 
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Figure 5: (a) The formation of a BBB trimer due to partial 
homologous ligation. The production of AAA and BBB 
trimers in this way is relatively common in our system (see 
Figure 9).  (b) Staggered bonding is not possible between two 
AB dimers (or two BA dimers) because it would require the 
formation of an h-bond between magnets of the same polarity. 
(c) It is in theory possible for a further partial homologous 
ligation to extend a BBB trimer into a BBBB 4-mer. 
However, we did not observe this in any of our trials. We 
suspect this is because the two polymers have a high moment 
of inertia about the weak bond's pivot point, destabilising the 
bond and making it likely to break. (d) Polymers of length 
greater than two cannot replicate in the same way as dimers, 
because the "foot" mechanism does not allow the strong bond 
constraints to align with the weak bond pivot.
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2. A high moment of inertia at the pivot point of a staggered 
end. 
3.  Improper alignment of p-bond passive hooks during an 
attempted templated ligation for N-mers where N > 2. 

In combination these three factors significantly reduced the 
elongation catastrophe by limiting partial homologous 
ligation. The curved passive hooks previously described also 
helped by reducing the extent of non-catalysed ligation. 

A Phylogeny of Designs
A number of issues had to be solved simultaneously in order 
to produce a successful design. It took approximately 30 
iterations to produce the final design, some of which can be 
seen in Figure 6.  We have listed the issues that needed to be 
solved below.

 i.   The strong (p-)bonds must be unlikely to form 
spontaneously,  i.e. the problem of reducing spontaneous 
generation.  
 ii.  There must not be any reactions that catalyse p-bond 
formation, other than the intended template mechanism.  For 
example, if two pairs of monomers joined by h-bonds come 
together,  they must not line up at the right angle to form p-
bonds.
 iii. Once formed, the strong bonds must be strong enough 
that they rarely break. (In the final design they were strong 
enough not to break at all.)
 iv.  The strong bonds must form easily when catalysed by 
the weak bonds.
 v.  The weak (h-)bonds must form easily.
 vi.  The weak bonds must also break easily.  This 
facilitates strand separation, as well as freeing up monomers 
that have become weak-bonded to other monomers, which 
would otherwise not be able to participate in catalysis.
 vii. Once a dimer has catalysed the creation of another,  the 
two ‘strands’  must be able to separate, i.e. the problem of 
product inhibition. 
 viii.  The magnet in the weak bond must not be able to 
attach strongly to the magnet in the head or tail of another 
puck.  Such unwanted bonds inhibit catalysis by occupying 
the bond points,  and can also give rise to configurations that 
can catalyse the wrong type of dimer.
 ix.  The puck must be able to float effectively on the table.  
Designs with long thin protruding parts, or uneven weight 
distributions, can drag on the table’s surface.
 x.  The pucks must not tend to jump off the table’s 
surface and become stacked on top of one another.  This tends 
to happen if two magnets with the same polarity are forced 
close to one another, or if the design features spikes that are 
too sharp.

 Of these, issues i and ii were by far the hardest to solve.   In 
most of our designs, including the final one,  the strong bond 
works by requiring the two pucks to collide at a very precise 
angle.   In many of the designs, if the collision occurred at a 
slightly different angle, a strong bond would often form 
anyway.  This is because the head and tail magnets would tend 
to make the pucks slide into place to form a strong bond,  or 
else the two pucks would sit together in a configuration where 
they could easily be nudged into the right position to form a 
strong bond.  This was solved in the final design by adding 
long spikes to the strong bond constraints,  in such a way that 
the magnets tend to pull  the pucks away from, rather than 
towards, the strong bond configuration if the pucks are not 
correctly lined up.  However, the pucks do still occasionally 
collide at the right angle to form a strong bond.  
 Since we could not substantially reduce the rate at which 
this occurs,  we instead focused on increasing the rate of 
catalysis.   We addressed issue iv by designing the weak bond 
to act as a pivot that guides the strong bonds into place. 

(a) (b)

(c) (d)

(e) (f )

(g) (h) (i)

Figure 6: A selection of unsuccessful iterations of the design, 
illustrating the ways in which various issues were solved. The 
designs are shown in chronological order.  See text for details. 
Magnets are shown in red or blue depending on whether the 
north or south pole is oriented upwards.  The weak bond 
magnets,  whose orientation depends on the polymer type, are 
shown in white.
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 Issue v was solved by making the weak bond protrude as 
much as possible from the body of the puck.   This increases 
the range of relative angles at which two pucks can be 
oriented while still being able to form a weak bond.  Issue vi 
was addressed by making the weak bond into a pivot that can 
swing fairly freely.   As the joint hinges the two magnets are 
pushed further apart,  so that the bond can break if it swings far 
enough.  This could be fine-tuned by making very small 
changes to the magnets’ positions.   The “foot” mechanism was 
introduced to solve issue vii.
 Issue viii was solved in the final design by the “spikes” in 
the head and tail sections (see Figure 3).  These also help with 
issue i.  The remaining issues were solved primarily by trial 
and error.
 Figure 6 shows a selection of previous iterations of the 
design, illustrating some of these problems and how they were 
solved. Design (a) was ineffective because weak bonds 
formed only rarely.  This is because the pucks have to be 
fairly specifically oriented with respect to one another in order 
for the weak bond magnets to come in range of each other.  
Additionally, the weak bond magnet of an ‘A’  type monomer 
can bond strongly to the tail magnet of another monomer, 
blocking catalysis.  These two problems are solved in design 
(b) by making the weak bond protrude from the body of the 
puck, and by re-designing the strong bond so that the magnets 
are recessed away from the puck’s edge.   However,  it is 
relatively easy for strong bonds to form spontaneously in this 
design, and they can also be catalysed by the edge of the table.  
The spikes added to the strong bonds in design (c) help to 
prevent spontaneous strong-bond formation, but they also 
interfere with the catalysis mechanism.   This design also 
features a ‘hump’ on the opposite side to the weak bond; this 
is to prevent the edge of the table from catalysing bonds.  
Design (d) is the first to feature a weak bond that is designed 
to pivot around a particular point, with a correspondingly 
curved set of strong bond constraints.   However, strong bonds 
can still form spontaneously quite easily, and weak bond 
formation is relatively rare. 
 Design (e) has a strong bond that is held together using 
repulsion rather than attraction (hence the head and tail 
magnets are of the same polarity).  Unfortunately this tends to 
result in the magnets jumping off the table to stack on top of 
one another, since this is energetically preferable to being near 
one another in a repulsive configuration.  The weak bonds 
have also been re-designed to be easier to form.  Design (f) is 
similar but uses attracting magnets again; its main problems 
are that strand separation is very slow, and spontaneous strong 
bond formation is still an issue.  Design (g) is the first to 
feature a mechanism to break one of the weak bonds when a 
strong bond is catalysed (two dimers cannot fit together in 
such a way that they are joined at both weak bonds).  
However, the spontaneous formation of strong bonds is still an 
issue, as is the formation of unwanted bonds between the 
weak and strong bond magnets.   Design (h) uses Velcro rather 
than magnets for the strong bonds in an attempt to solve these 
issues.   This idea was discarded because Velcro produces a 
loose joint, which means the strong bonds do not align 
accurately enough for catalysis to take place.  However, we 
realised in testing this design that making the lock-and-key 
structures on the strong bonds wider helps to prevent 
spontaneous strong bond formation. 

 Design (i) is close to the final design and works fairly 
effectively.  Its two remaining problems are that unwanted 
weak-strong bonds can form (although they are quite weak), 
and monomers can be attracted together by the strong bond 
magnets in such a way that a strong bond can form if they are 
nudged in the right way.  These problems is solved in the final 
design by the addition of the central head and tail spikes (see 
figure 1), and by making the other spikes a lot larger.
 We produced a total of 14 monomers, seven of type ‘A’  and 
seven of type ‘B’.  A total of 48 experiments were performed 
with the final design, each lasting 25 minutes.  36 of these 
were seeded trials, meaning that one dimer was added to a 
system containing the remaining 12 monomers.   The system is 
allowed to run for a few minutes before adding the dimer, to 
ensure that the initial conditions do not affect the outcome.  
After the dimer was added we counted the number of each 
type of polymer every 2.5 minutes. 
 Of the 36 seeded trials,  12 were seeded with an ‘AB’ type 
dimer,  12 with type ‘BA’,  6 with type ‘AA’ and 6 with type 
‘BB’.  Since ‘AA’ and ‘BB’  are two phases of the same 

Figure 7: Photographs showing one round of the self- 
replication cycle. (a) An ‘AB’ dimer (circled) is placed into a 
system containing 6 ‘A’  monomers (with white-topped sails) 
and 6 ‘B’ monomers (black-topped sails). (b) A ‘B’ monomer 
joins to the ‘A’ part  of the dimer via a weak bond. (c) An ‘A’ 
monomer joins via a weak bond to the ‘B’ part of the dimer, 
and its head constraints interlock slightly with the other 
monomer’s tail  constraints. (d) A collision with the table’s 
edge or another molecule pushes the two monomers together, 
so that they form a strong bond. This breaks one of the two 
weak bonds. Note that both dimers are of type ‘AB’. (e) 
Further collisions break the remaining weak bond, and the two 
strands separate. This completes the autocatalytic cycle.
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replicator, the latter two are plotted below as a single set of 12 
trials.
 The control experiment involves initializing the system 
with seven ‘A’  type monomers and seven ‘B’ type ones,  and is 
again run for 25 minutes. 12 such experiments were 
conducted.

Results
The results are summarised below and in Figures 8 and 9. We 
count as a side reaction the production of any oligomer other 
than the seed type.  In the AA/BB case we count AAA and 
BBB as copies of the original rather than as side-products, 
because there is no mechanism to prevent the formation of 
these 3-mers, and because they can still catalyse the 
production of new BB or AA dimers. 
 In 19 out of the 36 seeded trials, no side reactions took 
place during the 25 minutes of the trial.   In these successful 
trials, an average of 4.3 duplicates (or, in the AA/BB case, 
elongations) of the seed were created in addition to the seed 
itself.  The maximum possible number of copies is 6 in the AB 
or BA case, or 5 in the AA/BB case, with a miss-matched pair 
of monomers left over.   This best-case performance was 
achieved in four of the trials.  
 In the remaining 17 seeded trials a side reaction produced 
an oligomer of a different species from the seed.  In some 
trials this did not substantially disrupt the replication of the 
seed, but in others, particularly if the side reaction happened 
early in the trial, the side product produced more replicates 
than the seed dimer, effectively out-competing it  by using up 

the monomer supply.  Under some circumstances it is also 
possible for the side product to join to a dimer of the seed type 
in a staggered fashion (as in Figure 5), catalysing its 
elongation into a different species.   For these reasons the 
mean number of duplicates of the seed after 25 minutes was 
only 1.7 in the 17 trials where side reactions occurred, or 3.1 
over all 36 seeded trials.   In four out of the 12 unseeded trials 
there were no side reactions, meaning that only monomers 
were present after 25 minutes.  Over all 12 unseeded trials, an 
average of 2.7 oligomers were produced, of various species.
 Time series data are shown in Figures 8 and 9, averaged 
over each of the four sets of 12 trials.  In figure 8 all the side 
reaction products are lumped into a single category.  The error 
bars show that the domination of duplicates of the seed over 
all other species is statistically significant to within a 95% 
confidence interval at every time step.

Conclusions
The hexanucleotide replicator of von Kiedrowski was not 
evolvable because no mutant of the original sequence was 
capable of self-replication. Furthermore the ends of the 
molecules were blocked so that elongation was impossible. 
Breivik’s model was not evolvable for the opposite reason; 
there was too much spontaneous generation and an elongation 
catastrophe. Here we have shown a way to achieve something 
in between, that at least has the potential for evolvability. 
 There is no doubt that the elongation catastrophe will be 
faced in all nanoscale self-replicating systems as well. Of-
course, technology may allow such problems to be solved 

Figure 8: Time series plots showing the results of letting the 
system run for 25 minutes, seeded with one dimer of a 
particular type, or with no dimer. In this plot, all polymers 
apart from those of the seed type are lumped into a single 
category. In the case of the trials seeded with AA or BB, we 
count AA, BB, AAA and BBB as a single category, since these 
can all be produced by the catalysis process from the seed 
type. Each plot shows the average over 12 trials. The error bars 
show a 95% confidence interval.

Figure 9: Time series data from the same trials as Figure 8, 
with the reaction products split up by length. Note in particular 
the drop in concentration of AA and BB dimers towards the 
end of the trial as they are converted into AAA and BBB via 
elongation at staggered ends. (Error bars are omitted because 
they would be overlapping)
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somewhat trivially if monomers are allowed to contain 
switchable electromagnetic bonds (Groß, Küchler et al.  2009) 
and can implement a finite state machine (Griffith, Goldwater 
et al. 2005) thus avoiding issues of product inhibition and 
mismatching by simply allowing bonds to be arbitrarily made 
or formed based on perfect local information. However,  this 
arbitrary programmability limits their utility in providing 
insight into possible molecular mechanisms of non-enzymatic 
template replication that depend on carefully evolved steric 
and force constraints, which is one of our main motivations 
here. 
 Of course, real molecular systems happen on vastly 
different spatial and temporal scales: our system has 14 
monomers whereas a small chemical system might have 1020. 
In chemical systems interactions might occur only in a tiny 
majority of collisions, which we had to avoid in our 
experiments as it would have made the time scale too long.  
Nevertheless we believe the insights we have gained are 
useful.
 The implication for the origin of life is that it is possible to 
produce monomers that self-limit to some extent the lengths 
of strands that can be self-assembled according to the 
mechanisms shown in Figure 5. It may be the case that such 
primitive methods may have been among the first evolved to 
combat the elongation catastrophe. The production of this 
physical model has (at least for us) been helpful as E.F. Moore 
said it would be. 
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Abstract

This note reviews a bio-inspired scheme for aggregating au-
tonomous agents in the absence of global communication
or coordination, a problem that is known asDecentralized
Gathering. We present results on the clustering behavior of
the agents, as we vary the main parameter that controls the
agents’ aggregation. Our observations show that there exist
two phenomenologically different behaviors, characterized
by two different evolutions of the number of clusters with
time. We relate these different behaviors to the coupling of
two factors: a change in the scale of the interaction range of
the agents and a change in the significance of the local fluc-
tuations in the model.

Introduction
Assume that a large number of autonomous andidentical
agents are scattered on a plane, and that there is no global
authority to coordinate their actions nor any means of global
communication. The problem of gathering these agents in
a small area is known as the Decentralized Gathering. This
problem is known to be difficult in general and is even be
impossible to solve exactly in some continuous space frame-
works (Prencipe (2007)).

One approach to solving the decentralized gathering prob-
lem consists of imitating the behavior of the amoebae
speciesDictyostelium discoideum(Fat̀es (2010)). The main
characteristic of this approach is the existence of anac-
tive environment that conveys simple messages among the
agents, which are calledvirtual amoebae. The agents inter-
act with the environment by either initiating the transmission
of a message or by detecting the existence of messages in
their local environment. These two types of interaction are
the building components for a stigmergic behavior.

The virtual amoebae aggregation scheme has been shown
to exhibit a rich dynamical behavior (Fatès (2010); Vlas-
sopoulos and Fatès (2010)) and to be robust. In this note,
we focus on a Cellular Automaton-based (CA) instance of
the aggregation scheme, as it has been described in (Fatès,
2010), and present a qualitative description of the two con-
trasting, clustering behaviors that can be observed in the
model. As we will describe, these behaviors result from a

change of scale on the interactions among the agents, from
short-ranged to long-ranged. Interestingly, the aggregation
behavior persists despite this change of scale.

Virtual Amoebae Aggregation Scheme
Active Environment

The existence of an active environment simplifies the agent
behavior, by delegating parts of its complexity to the en-
vironment and allows for “self-sustained” messages, that
can travel arbitrary large distances. The active environment
is modeled with a two-dimensional Greenberg Hastings
reaction-diffusion cellular automaton (GHCA, see Green-
berg et al. (1978)). The CA consists of an array of cells
of dimensionsL × L, a set of cell states,Σ, a set of transi-
tion rules for the states and, for each cell, a set of cells that
constitute its neighborhoodNc.

In the GHCA,Σ = {M, . . . , 0}, whereM is called the
excitedstate,M − 1, . . . , 1 are called therefractory states
and0 is theneutralstate. A cell becomes excited only if it is
neutral and if at least one of its neighboring cells is excited.
An excited cell will become refractory in the next time step
and then decrease its state until it reaches the neutral state.
The dynamics of the GHCA involve “waves” composed of
wavefronts of excited cells followed by refractory cells that
extend outwards from an excitation. Most importantly, when
two reaction-diffusion wavefronts meet, they annihilate.

Agents

For simplicity, we consider agents as particles that can read
the states of the cell on which they reside as well as the state
of the neighboring cells. The virtual amoebae behavior is
then summarized as follows: If the state of the cell where an
agent resides is0 (neutral), then, at each time step, the agent
initiates (“fires”) a reaction-diffusion process with probabil-
ity λ, by setting the state of the cell toM . If the cell is neu-
tral and an excited neighbor is detected, the agent moves to-
wards the excited neighbor, choosing randomly if more than
one are excited. Otherwise, if the cell is in a refractory state,
do nothing. Here,λ, the firing rate , is the most important
parameter of the aggregation model. In our study, each cell
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can hold at most two agents. Increasing the cell capacity af-
fects mainly the spatial dimensions of the clusters and, for
high values ofλ, the aggregation time. Figure 1 shows the
aggregation process for two different values ofλ.

One may thus wonder what is causing the agents to ag-
gregate in both cases, where we see a completely different
quantitative behavior. A partial answer to this question is:
the presence of fluctuations, both in terms of the density and
in terms of emission of reaction diffusion waves.

Clustering Behavior
In a previous work (Vlassopoulos and Fatès (2010)) we have
shown that there exists an optimal value ofλ such that the
aggregation time is minimized. The two different clustering
behaviors became apparent while studying the aggregation
properties of the model (Fig. 1). In both cases, the agents,
given a sufficient amount of time, will aggregate to a single
cluster, but as we can observe, this is accomplished by ex-
hibiting two completely different sequences of intermediate
macroscopic configurations. In the second (bottom) figure,
whereλ is large enough, we observe that the agents form
small clusters that progressively merge into bigger ones.
This process continues until there are a few large clusters
that persist for a relatively large amount of time before merg-
ing into a single one. However, in the first (top) figure we
can observe that the agents “collapse” into a single cluster,
without going through the formation of intermediate, per-
sisting, clusters.

From our experiments so far, we have observed that this
transition, i.e. from (A) the formation of competing clusters
and progressive merging into a single one to (B) the “col-
lapse” of the agents into a single cluster, and inversely, ap-
pears to be continuous. One important remark is that high
values ofλ favor small-range interactions among the agents,
in the sense that the distance a wave will manage to travel,
and consequently, the number of agents it will manage to in-
teract with, before it is annihilated by the presence of other
waves in the environment decreases asλ increases. Accord-
ingly, small values ofλ will allow a wave to travel larger
distances and interact with more agents before it is annihi-
lated, and therefore can be considered as larger-range inter-
actions. To sum up, the aggregation process persists, in spite
of the scale changes and the different macroscopic behavior
that results from these changes.

Fluctuations as a Source of Order?
What is the “driving force” of aggregation in the differ-
ent scales we described? The common denominators that
“destabilize” persisting clusters and cause agents to collapse
in both behaviors are the fluctuations, in terms of density and
in terms of emissions. The density fluctuations exist even
for very small values ofλ, but in this case, where the inter-
action wavelengths are greater than the grid size, they are
not significant and the agents aggregate into one cluster. For

Figure 1: Aggregation instances for different values ofλ.
Top: λ = 1 · 10−5 Bottom: λ = 8 · 10−2. Agents are
shown with green and the reaction diffusion wavefronts with
orange. The initial number of agents is 400.

high values ofλ they become important and are the main
reason for the generation of the initial small local clusters
that will subsequently merge, until only one cluster remains,
but also one of the reasons that cause cluster to merge, since
that out of two clusters with (sufficiently) different number
of amoebae, we expect that the larger one will emit more
waves, in average. The fluctuations in the emission times
are the driving force that causes the clusters to merge, for
both small and large values ofλ. However, it is interesting
that we observe the same effective behavior of the system
in different scales. More precisely, the same “forces” that
cause two amoebae to merge into a cluster, will cause two
clusters to merge into a larger one and so on, until only one
cluster exists. The merging behavior seems to be similar at
different scales, which leaves us with the question: are there
quantities that are invariant with respect to rescaling?

To conclude, we described a bio-inspired model that
shows how it is possible to exploit the presence of fluctu-
ations in a constructive way, in order to drive a system to a
desired final state. The existence of an active environment
simplifies the overall model design, but also increases the
significance of fluctuations, that constitute a major factor to
the operation and robustness of the model.
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Abstract

Spatial aggregation of animal groups give individuals many
benefits that they would not be able to obtain otherwise. One
of the key questions in the study of these animal groups, or
“swarms”, concerns the way in which information is prop-
agated through the group. In this paper, we examine this
propagation using an information-theoretic framework of dis-
tributed computation. Swarm dynamics is interpreted as a
type of distributed computation. Two localized information-
theoretic measures (active information storage and transfer
entropy) are adapted to the task of tracing the information dy-
namics in a kinematic context. The observed types of swarm
dynamics, as well as transitions among these types, are shown
to coincide with well-marked local and global optima of the
proposed measures. Specifically, active information storage
tends to maximize as the swarm is becoming less fragmented
and the kinematic history begins to strongly inform an ob-
server about the next state. The peak of transfer entropy is
observed to appear at the final stages of merging of swarm
fragments, near the “edge of chaos” where the system ac-
tively computes its next stable configuration. Both measures
tend to minimize for either unstable or static swarm configu-
rations. The results here show these measures can be applied
to non-trivial models, most importantly, they can tell us about
the dynamics within these model where we can not rely on vi-
sual intuitions.

Introduction
There are many examples of spatial aggregation in animal
groups in nature including schools of fish, swarms of lo-
custs, herds of wildebeest, and flocks of birds (Lissaman and
Shollenberger, 1970; Parrish and Edelstein-Keshet, 1999;
Sinclair and Norton-Griffiths, 1979; Uvarov, 1928). Such
aggregations give group members the benefit of protection,
mate choice, and information that an individual might not
be aware of on its own such as the location of a food
source, predator, or migratory route (Camazine et al., 2003;
Partridge, 1982). There is considerable evidence in many
species that individuals can only perceive their neighbors
rather than the entire group (Camazine et al., 2003). Typ-
ically, these groups are referred to as self-organized since
they form without any centralized control.

In self-organized groups, complex large-scale patterns
and structures emerge through individual decisions based on

perception of local conditions. For example, in response
to a predator, many schools of fish display complex col-
lective patterns of motion, including compression, vacuole,
flash expansion, milling, or form highly parallel translating
groups (Parrish et al., 2002).

The key questions in the study of swarms and “swarm
intelligence” concern how the local interactions map to the
large-scale behavior. Finding answers to some of these ques-
tions has broad implications in ecological and artificial sys-
tems. The way in which information is propagated in animal
groups is poorly understood (Couzin et al., 2006). Recently,
there has been some effort to understand this transfer of in-
formation. Couzin et al. (2006) depict schooling of fish as a
type of distributed information processing. The authors re-
fer to the collective memory of the school, and describe a
wave of turning (triggered by a small number of fish react-
ing to some sensory information) as “information cascades”
spreading across the school. The authors comment that such
mechanisms can transmit information at a speed faster than
that of an incoming predator, with such computational capa-
bility providing an evolutionary advantage.

Conjectures also relate known phase transitions in flock-
ing or schooling behavior to the underlying information dy-
namics of the computations they are carrying out. Mira-
montes (1995) describes phase transitions in the maximiza-
tion of activation levels in ant foraging behavior with respect
to ant density, and suggests that this is reflected in maximiza-
tion of information transfer between the ants. In a similar
vein, Couzin (2007) describes the phase transition of effec-
tive flocking behavior occurring only at intermediate sensory
ranges between individual agents in terms of the capacity for
information transfer that the sensory range allows: too short
a sensory range does not allow enough information transfer
to form cohesive groups; too large a range permits rampant
spreading of irrelevant information which erodes group co-
hesion. These notions are very similar to the generic de-
scriptions of the information dynamics of order-chaos phase
transitions under the “edge of chaos” hypothesis (e.g. see
Langton (1990)).

In this paper, we examine the propagation of information

838 ECAL 2011



in swarms using a recent framework that characterizes the
information dynamics of distributed computation in terms of
the elements of Turing universal computation (Lizier et al.,
2008b, 2010, 2011, 2007). In particular we seek to mea-
sure how much information is stored, and how much in-
formation is transferred to and by each agent in the swarm
at each time step. The information dynamics of distributed
computation have recently emerged as an important tool for
studying complex systems, such as cellular automata (CAs)
(Lizier et al., 2007, 2008b) and random Boolean networks
(RBNs) (Lizier et al., 2008a). This approach has quantita-
tively identified the coherent structures known as “gliders”
as the dominant information transfer agents in CAs.

We note that the dynamics of animal groups can be seen as
a type of distributed computation. As we will show, at each
time step, each agent “computes” its new state as a func-
tion of its previous state and the relative states of each of its
neighbors. In this way, information relevant to that computa-
tion can be stored in regular patterns of behavior, transferred
from the relative state of each neighbor, and processed when
an agent combines the effects of multiple sources together.

We begin this paper with an overview of the swarm model
and the information dynamics framework. This is followed
by discussion on how we applied the information dynam-
ics framework to swarms, introducing specific techniques to
handle theamorphouscomputational structure and measure
state transitions using relative variables. Finally, the results
are shown and discussed.

Three Zone Model for Swarms
There are two methodologies for modeling and simulating
aggregations of discrete individuals. Individual-based or
agent-based models are discrete-time models that update in-
dividual positions and velocities based on positions and ve-
locities at the previous discrete time-step. Particle models
capture swarm dynamics as a coupled system of ordinary
differential equations. Individual-based and particle mod-
els can be nearly equivalent if they are designed consistently
and if the step size of the individual-based model is taken
to be small. Regardless of the methodology, the interac-
tions between individuals drive the dynamics of the model.
A common behavioral model for swarms is to have each
individual respond to neighbors in three concentric zones
that are used to define the behavioral rules of motion (Aoki,
1982; Couzin et al., 2002; Huth and Wissel, 1992; Lukeman
et al., 2010; Vicsek et al., 1995). The individual responds
differently to neighbors in each of the three zones through
repulsion, orientation, or attraction, respectively. An indi-
vidual moves away from neighbors in the zone of repulsion,
aligns its velocity with that of neighbors in the zone of orien-
tation, and moves toward neighbors in the zone of attraction.

In the models featured in this study, we use continuous
kernels to define the zones which describe individual be-
havior with smooth transitions from one type of movement
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Figure 1: Normalized amplitudes of the social interaction
kernels.

to another (see (Miller et al., 2011)). One of the advan-
tages of this model is that it can be scaled up to a contin-
uum limit where there are infinitely many individuals ex-
pressed through a density function and a velocity field. The
dynamics of the system is governed by a system of par-
tial differential equations which we can analyze using tools
that are not available to discrete models. While our kernels
do not have compact support, exponential decay guarantees
that individual behavior is dominated by nearby neighbors;
similarly, interactions with distant members is exponentially
small. The three responses are combined to determine the
desired velocity~vd. For a reference individuali, we de-
fine the displacement vector~sij = ~sj − ~si, where~s is the
individual’s position. The behavioral input vector is then
~vd = ~vr,i + ~vo,i + ca~va,i:

~vr,i =
N∑

j=1

−
1

8πσ4

1

~sij exp(−|~sij |
2/4σ2

1
), (1)

~vo,i =

∑N

j=1

1

4πσ2

2

exp(−|~sij |
2/4σ2

2
)~vj

∑N

j=1

1

4πσ2

2

exp(−|~sij |2/4σ2

2
)
, (2)

~va,i =
N∑

j=1

1

64πσ6

3

~sij |~sij |
2 exp(−|~sij |

2/4σ2

3
), (3)

whereca specifies the relative importance of attraction to
orientation and repulsion andσk, k = {1, 2, 3}, are con-
stants that control the sizes of the zones. A cross section of
the amplitude of these kernels is shown in Figure 1. The be-
havioral input vector is used in different ways to control the
change in velocity. Once the velocity has been determined,
the positions are updated accordingly.

We examined the information transfer in two different
second order models. Our variable speed model updates the
velocity by setting

~vn+1

i = ~vni + δτ · κ
(
~vnd,i − ~vni

)
(4)

whereδτ is the time step length andκ is the turning rate.
The constant (unit) speed model updates the directionθi by

θn+1

i = θni + δτ · κ (~vni )
⊥

· ~vnd,i, (5)
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Figure 2: Information dynamics in a distributed network.
For nodeQ, this figure displays the local active information
aQ(n + 1, k) and the local transfer entropiestZ1→Q(n +
1) andtZ2→Q(n + 1) from each of the causal information
sourcesZQ ∈ {Z1, Z2} at timen+ 1.

where

(~vni ) = [ cos θni , sin θ
n
i ]T , (6)

(~vni )
⊥

= [ − sin θni , cos θ
n
i ]

T
. (7)

It has been shown that forca > 1, uniform infinite swarms
are linearly unstable (Miller et al., 2011). Finite groups that
are initialized on a square lattice reorganize into an attractor
whenca > 1. For the variable-speed model, this attractor is
circular with a variable density. In the constant-speed model,
the attractor is anisotropic as well as variable density.

Information Dynamics
Information theory (MacKay, 2003) has been well used
in complex systems (Langton, 1990; Miramontes, 1995;
Schreiber, 2000), and is the natural domain to look for
a framework to describe the information dynamics here.
Lizier et al. (2007, 2008b, 2010, 2011) have proposed such
a framework for local information dynamics, describing dis-
tributed computation in terms of information storage, trans-
fer and modification at each spatiotemporal point in a com-
plex system. In this paper, we focus on the first two terms.

The information storage of an agent in the system is the
amount of information in its past that is relevant to predict-
ing its future. We will compute theactive information stor-
age(AIS) component, which is the stored information that
is currently in use in computing the next state of the agent
(Lizier et al., 2011, 2007). We focus on the active infor-
mation since it yields an immediate contrast in the relative
contributions of storage and transfer to each computation.
As shown in Fig. 2, thelocal active information storagefor
agentQ is defined as the local (or unaveraged) mutual infor-
mation between its semi-infinite pastq

(k)
n (ask → ∞) and

its next stateqn+1 at time stepn+ 1:

aQ(n+ 1) = lim
k→∞

log
2

p(q
(k)
n , qn+1)

p(q
(k)
n )p(qn+1)

, (8)

with aQ(n, k) representing an approximation with finite
history lengthk. The active informationis the average
over time (or equivalently weighted by the distribution of
(q

(k)
n , qn+1)): AQ(k) = 〈aQ(n, k)〉. From our computa-

tional perspective, an agent can store information regardless
of whether it is causally connected with itself. This is be-
cause information storage can be facilitated in a distributed
fashion via one’s neighbors (Lizier et al., 2011).

The information transfer between a source and a desti-
nation agent is defined as the information provided by the
source about the destination’s next state that was not con-
tained in the past of the destination. The information trans-
fer is formulated in thetransfer entropy(TE), introduced by
Schreiber (2000) to address concerns that the mutual infor-
mation (as a de facto measure of information transfer) was
a symmetric measure of statically shared information. The
local transfer entropy(Lizier et al., 2008b) from a source
agentZ to a destination agentQ is the local mutual infor-
mation between the previous state of the sourcezn and the
next state of the destinationqn+1, conditionedon the semi-
infinite past of the destinationq(k)n (ask → ∞):

tZ→Q(n+ 1) = lim
k→∞

log
2

p(qn+1|q
(k)
n , zn)

p(qn+1|q
(k)
n )

. (9)

Again, tZ→Q(n, k) represents finite-k approximation, and
the transfer entropyis the (time or distribution) average:
TZ→Q(k) = 〈tZ→Q(n, k)〉. A schema representation of
the process to compute the local transfer entropy is shown in
Fig. 2. Importantly, the transfer entropy properly measures a
directed, dynamic flow of information, unlike mutual infor-
mation measures which measure correlations only. Note that
one can also condition the TE on another information con-
tributorW to form theconditional transfer entropy(Lizier
et al., 2010):

tZ→Q|W (n+ 1) = lim
k→∞

log
2

p(qn+1|q
(k)
n , wn, zn)

p(qn+1|q
(k)
n , wn)

. (10)

Information Dynamics in Swarms
To apply the information dynamics framework to swarm
models, we will need to make two important modifications
to the use of Eq. (8) and Eq. (9).

Accumulation of observations across agents: In CAs,
the probability distribution functions in Eq. (9) for the trans-
fer entropy from agentZi toQi+1 are estimated over obser-
vations from all agent pairs for the corresponding transfer
channel (e.g. across one cell to the right per unit time step):
the agents there were completelyhomogeneousin connec-
tivity pattern and function. In RBNs, the probability distri-
bution functions of Eq. (9) were estimated at single causal
pairsQ andZ only, since the agents wereheterogeneousin
connectivity pattern and function.
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In contrast to both of these applications, swarm compu-
tation is amorphous, with neither homogeneous computa-
tional structure across agents, nor with fixed computational
relationships between heterogeneous causal pairs. That is,
the causal relationships between agents change too rapidly
to reliably estimate the probability distribution functions on
any transient single causal pair. A pair of particles,p1 and
p2, could be close enough for a causal interaction at one time
step, but move outside the interaction zones at next step.
Therefore, calculating information transfer between single
causal pairs over all time would not give us a good represen-
tation of the actual information within the system.

Helpfully, swarm models exhibit homogeneouslyfunc-
tional agents, and so we can accumulate observations for the
probability distribution functions in Eq. (9) fromeverytran-
sient causal interaction. That is, one adds individual causal
interactions between many different agent pairs to the set
of observations, without requiring any one of those agent
pairs to maintain a causal relationship over all time steps.
When one particlepi is within proximity to have a causal ef-
fect over another particlepj , their interaction is counted for
the information-theoretic probability distribution functions,
but whenpi is outside causal range ofpj , no observation is
recorded. These probability distribution functions can then
be applied to compute the local apparent transfer entropy
between two different particlespk andpl which are causally
connected at a different time step, because of thehomoge-
neousnature of thefunctionalityof each agent.

Measuring state transitions with relative variables:
Continuing the idea of accumulating observations over com-
parable interactions, we note that if two pairs of particles
have the exact samerelative positions and velocities, but
have differentabsolutepositions and headings, then the in-
formation dynamics of the two pairs should be the same. As
such, we will focus our measurements on the computation of
thechangein velocity of the destination agent at each time
step. Not only does this remain in the spirit of the origi-
nal formulation of the transfer entropy by Schreiber (2000)
(considering how much information a source adds about the
statetransition of the destination), but focuses directly on
the causal relationship between particles (since a velocity
change is computed rather than an absolute velocity).

Letp′ be a particle that is within another particlep’s zones
of interaction, sop andp′ form a causal pair. Our aim is to
find what influence doesp′ have onp. To reiterate,~sn is
the position and~vn is the velocity at timen. The relevant
variables for the conditional transfer entropy in Eq. (10) are:

zn ={~sn
p − ~sn

p′ , ~vn
p − ~vn

p′}, (11)

wn =|v|n, (12)

q(k)n =~vn
p − ~vn−1

p , (13)

qn+1 =~vn+1

p − ~vn
p . (14)

In other words:

• the source variable is the relative positions and velocities
between the particles at time stepn;

• we condition the transfer on the speed ofp, |v|n atn;
• the past state of the destination is the change in velocity

of p at time stepn; this means we usek = 1 due to the
finite number of observations;

• and the destination variable next state is the change in ve-
locity of p atn+ 1.
Note that the destination past, next state and conditioned

variables contain all of the relevant information about the
state updateqn+1|q

(k)
n , wn of the destination variable, from

the perspective (or relative frame of reference) ofp itself.
The relative positional information at any time step (includ-
ing the next stepn+1) is then obtainable using the change in
velocity terms. Given these destination variables, note that
the source variable captures all relevant information fromp′

about the state transition of the destination.
Importantly,|v|n is included here since the absolute ve-

locity of the particle may have some indirect influence on the
change in state (e.g. by influencing how often the source and
destination have recently interacted). We could additionally
include |v|n+1 in the next stateqn+1 (then absorbing|v|n

into q
(k)
n also to make a calculation of an ordinary transfer

entropy here); however this ties the tuple(zn, q
(k)
n , qn+1) to

the absolute heading ofp, removing the advantage of accu-
mulating observations over comparable interactions that we
had gained from the use of relative variables.

In this manner, the local conditional transfer entropy can
be estimated for each transient causal relationship. Simi-
larly, the local active information can be estimated from the
destination and history of destination variables of each parti-
cle interaction. Agents in a swarm can be seen to usestored
information when their behaviour is predictable from their
own past (in isolation from other agents), and totransfer
information in the way that their relative positions and ve-
locities influence changes in velocity in other agents.

Results
We applied the framework to swarm simulation with the par-
ticles initially in 3 squares in a checker configuration. Each
initial square has28× 28 particles, and thus we have a total
of 2352 particles in the system. Fig. 8(a) shows a configura-
tion close to the swarm’s initial positions.

As discussed in earlier section, two different second or-
der swarm models were used: variable speed and constant
speed. As discussed earlier, forca > 1, swarms evolve
into coherent attractors, here we setca = 5 (Miller et al.,
2011). We run the models until the swarms reach a steady
state, that is, the shapes of the swarms do not change much.
At this point, information transfer approaches zero and the
computation can be seen as complete. Measuring the in-
formation dynamics during this transient period means that
we are studying the computation of the swarm’s steady state.
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Figure 3: Total active information storage and information
transfer over time for variable speed model. The values are
averaged over 1000 repeated experiments, where each ex-
periment randomly picked around 0.005% of the total inter-
actions.
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Figure 4: Average active information storage per particle
and average information transfer per particle pair interaction
over time for variable speed model.

The swarms reach a steady state at the timeτ < 100 for vari-
able speed model andτ < 150 for constant speed model.
We used a step size ofδτ = 0.1 (sufficient for resolving
the dynamics of the swarms) and hence gather data for 1000
steps for variable speed model, and 1500 steps for constant
speed model. At every step, each particle has on average
several hundred neighbors within its zones of interaction,
this means the total number of interactions is in the order of
1 × 109, which is much too large for the kernel estimation
of p. Therefore, we randomly picked a fraction of the in-
teractions at each time step for the calculation. We used a
frequency of 20000, randomly picking 0.005% of the total
interactions at each time step. This gives us approximately
1 × 105 data points, thus we used a kernel width of 0.23
for kernel estimation with a normalized kernel. This is re-
peated 1000 times and the results averaged to give a better
representation of the total interactions.

Second order, variable speed model
Fig. 3 shows the total information storage and transfer at
each time step over all time, e.g.

∑
Q aQ(n, k). Note that

this is the average total over 1000 repeated experiments,
where each experiment randomly picks 1 in 20000 interac-
tions for the calculation. Therefore, the actual value should
be 4 orders of magnitude larger than the values shown in this
figure. Further, while the transfer values are summed over

all interactions, the storage values are summed over allp’s
in the interactions with eachp counted once.

Fig. 4 shows the average storage per particle and average
transfer per interaction at each time step over time. Compar-
ing this with the total information per time step, we can see
that the second half of Fig. 4 has smaller magnitude relative
to the first half. This shows that forτ > 60 the number of
interactions in the swarm increased. However, theshapesof
the plots do not differ from those in Fig. 3, which means the
change in information dynamics values were not simply due
to the change in the number of interactions.

In Fig. 3 we can notice three distinct epochs in the in-
formation dynamics of the swarm: (1) betweenτ = 0 and
∼ 20 where there is a small local maxima in the information
dynamics; (2) betweenτ ∼ 20 and∼ 60 where the values
remain low and constant; and finally (3) betweenτ ∼ 60
and100 where there were large changes in the values.

Fig. 5 shows some snapshots of key steps during the
swarm simulation as identified by Fig. 3. Comparing
the two, we can see that the first epoch corresponds to
when the three initial squares ‘collapse’ to form three discs
(Fig. 5(a)&(b)); epoch 2 corresponds to the three discs mov-
ing but not interacting with each other (Fig. 5(c)); and the
final epoch is when the three discs come into contact with
each other to form a single swarm (Fig. 5(d)-(j)).

Epoch 3 is the most interesting for the swarm simulation
in terms of the resulting information dynamics within the
system. Both information values start increasing at around
τ = 59.5 (Fig. 5(d)) when the three separate groups become
close enough for the outer particles of each to affect and be
affected by those in the other groups.

As the groups merge, the two outer groups move towards
the middle group, squeezing the middle one and triggering
increases in both storage and transfer. This behavior contin-
ued untilτ = 75.1 when the middle group was squeezed to
the smallest size it can stand as seen Fig. 5(e), when transfer
reaches a local maximum. High local transfer shows that the
source is informative about the next state of the destination.

Betweenτ = 75.1 and76.6 (Fig. 5(e)&(f)), the swarm
tried to reorganize itself to a more stable configuration. This
can be seen from the drop in transfer but rapid increase in
storage values until atτ = 76.6 when the values reach local
minimum or global maximum, respectively. High local stor-
age shows the history strongly informs an observer about
the next state. Thus, the increase in average storage value
per particle as shown in Fig. 4 shows that the particles’ ve-
locities are increasingly predictable from their history.

Betweenτ = 76.7 and78.9 (Fig. 5(f)&(g)), the swarm
finally merged into one group. Fig. 3 and 4 shows that dur-
ing this time information storage decreased while transfer
increased, indicating a transition to another (more stable)
swarm configuration. Atτ = 78.9, the storage value reaches
a local minimum and the transfer value reaches the global
maximum. The maximum transfer entropy value shows that
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Figure 5: Swarm behavior for variable speed model at 10 different time steps,τ : (a) 9.5, (b) 14.4, (c) 30.0, (d) 59.5, (e) 75.1,
(f) 76.6, (g) 78.9, (h) 82.0, (i) 83.3, (j) 95.0.

at this point in time, the source agent (the relative position
and velocities between particles) are most informative about
the next state ofp. Thus, as the swarm is merging into one
group, the individual particles are under the most influence
from their neighbors.

For τ > 79.0, the swarm reorganized itself to find the
most stable configuration, which was achieved aroundτ =
95.0 (Fig. 5(j)). As the swarm organized itself, both val-
ues fluctuate between local optima, while the overall values
decrease. Fig. 5(h)&(i) (τ = 82.0 & 83.3) show local mini-
mum and maximum in transfer that followed the global max-
imum. In these plots that the shape of the swarm fluctuates
as it tries to find the most stable configuration.

It is also interesting to note that for85.8 < τ < 86.2,
88.3 < τ < 89 and89.9 < τ < 90.5 the overall transfer
entropy value dipped below 0. Negative local transfer en-
tropy indicates that the source misleads an observer about
the next state of the destination given the destination’s his-
tory (Lizier et al., 2008b, 2010). This can occur when large
numbers of interactions (e.g. in chaotic systems) can make
the effect of any single source misleading when considered
on its own. The negative transfer entropies here show that
for a few time steps, most of the particles in the swarm had
changes in velocity that were relatively unlikely given their
relative position and velocity of their neighbors.

Second order, constant speed model

Fig. 6 shows the total active information storage and infor-
mation transfer at each time step for constant speed model.
We can roughly see the three epochs of swarm dynamics in
this plot: 0 < τ < 22.0, 22.0 < τ < 48.0, andτ > 48.0;
though the epochs are not as distinctive as those in Fig. 3.

Fig. 7 shows the average storage per particle and average
transfer per causal pair at each time step for constant speed
model. We can see from the storage plot in this figure that
the number of interactions increases in epoch 3, since the
average storage in epoch 3 is not much larger than those in
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Figure 6: Total active information storage and informa-
tion transfer at each time step over time for constant speed
model.
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Figure 7: Average active information storage and informa-
tion transfer per particle pair interaction for constant speed
model.

epoch 1, but the total is much larger. For transfer, we can see
that average value in epoch 1 is larger than those in epoch 3,
which means for this model, there are more interactions with
high local transfer entropy when each group of particles is
“collapsing” into itself than when the groups are merging.
Further, while Fig. 6 shows a definite global maximum in
transfer in epoch 3, the average shows very little difference
in the per interaction values. This means there are a lot more
interactions atτ = 93.2 (global maximum) than atτ = 58.0
(the first local maximum in epoch 3).

Fig. 8 shows 10 snapshots of the swarm behavior at key
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Figure 8: Swarm behavior for constant speed model at 10 different time steps,τ : (a) 3.2, (b) 7.4, (c) 12.3, (d) 22.0, (e) 58.0, (f)
71.3, (g) 83.0, (h) 89.0, (i) 93.2, (j) 118.0.

steps as identified by Fig. 6. Fig. 8(a)-(d) shows the swarm
during epoch 1, Fig. 8(e)-(i) shows the behavior during
epoch 3, and Fig. 8(j) shows the final configuration when
the swarm reaches steady state. These snapshots show that
when particles have constant speed, the swarm organizes it-
self into anisotropic attractors as discussed in earlier section.
Moreover, the three groups did not ultimately merge into one
as in the variable speed model, but stayed as two groups.

Betweenτ = 0 andτ = 22.0, both values went through
a couple of oscillations before finding a steady state for the
three groups. This is similar to the behavior of the swarm
in variable speed model, as shown in Fig. 3. Fig. 8(a) corre-
sponds to the first transfer local maximum, Fig. 8(b) shows
the configuration when both information attain local mini-
mum, and Fig. 8(c) corresponds to the local maximum for
the storage value. While the swarm configuration does not
differ much, Fig. 6 shows us that the information storage
and transfer by the particles were constantly changing as the
swarm organized itself.

For τ > 22.0, as two of the groups start to merge, the
transfer entropy attains the first (in epoch 3) local maximum
at τ = 58.0 (Fig. 8(e)). The local minimum for transfer at
τ = 71.3 is shown in Fig. 8(f), and the next local maxi-
mum atτ = 83.0 is shown in Fig. 8(g). We can see from
these two snapshots that during this time the group on the
left rotated90◦ clockwise. Furthermore, we can still distin-
guish the two groups. The local storage increases steadily
from τ > 22.0 until at τ = 89.0 (Fig. 8(h)) it reached the
global maximum. Atτ = 93.2 (Fig. 8(i)) the transfer en-
tropy reached the global maximum when the group on the
left finally merged into one where we cannot distinguish the
boundary between the original two groups. This is similar
to the plots in Fig. 3 where the global maximum for storage
occurs before the global maximum for transfer.

For τ > 93.2, both values of information dynamics de-
creased steadily until the swarm reaches a steady state at
τ = 118.0 (Fig. 8(j)) where both values are constant.

Discussion and Conclusions

This study examined information dynamics in swarms,
applying a recently developed information-theoretic
framework of distributed computation to an established
individual-based swarm model. The approach verified our
conjecture that swarming dynamics can be interpreted as a
type of distributed computation. In particular, we adapted
two localized information-theoretic measures (active infor-
mation storage and transfer entropy) to the task of tracing
over time how much information is stored, and how much
information is transferred to and by each agent in the
swarm. The state variables used in tracing the information
content (stored and transferred) were chosen to be velocity
and acceleration (i.e., change in velocity) — this means
that the information dynamics were traced in a kinematic
context. The experiments were carried out with two swarm
models (variable speed and constant speed), while gathering
and randomly sampling data over long transients.

The swarming dynamics were shown to be capable of ex-
hibiting distinct configurations, including isolated groups of
particles with low levels of interactions, groups that were
actively merging together, and single merged groups that
were retaining stable configurations, with varying degrees of
inter-particle interactions. Importantly, these types, as well
as transitions among these types, were shown to coincide
with well-marked local and global optima of the proposed
localized information-theoretic measures. Specifically, ac-
tive information storage (obtained in terms of kinematics,
that is, via velocity-based states) was observed to maximize
during re-organization from a more fragmented to a less
fragmented non-static configuration. One may argue that
such a transition corresponds to an increase of kinematic or-
der as the kinematic history begins to strongly inform an
observer about the next state. Active information storage
tended to minimize for either disordered/unstable configura-
tions (with chaotic inter-particle interactions) or static con-
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figurations (with low degrees of interactions): in either of
these cases the kinematic history does not help the observer
to predict velocity and acceleration at the next time point.

Transfer entropy, on the other hand, was observed to
maximize at final stages of re-organization from more frag-
mented to a less fragmented non-static configuration. It may
be argued that these stages correspond to the “edge of chaos”
when the system actively computes its stable configuration,
and the inter-particle interactions intensify as well. Transfer
entropy was found to be minimal for either static or very un-
stable configurations (too far into the chaotic regime). More-
over, chaotic dynamics often exhibited negative local trans-
fer entropy indicating that the source misleads the observer
about the next state of the destination given the destination’s
history — a sign of information modification. A detailed
analysis of this aspect is left for future research.

Overall, these observations allowed us to interpret distinct
phases of self-organizing swarm dynamics via the elements
of distributed computation: storage, transfer, and (eventu-
ally) modification of specific kinematic information. This
exemplifies once more that the process of self-organization
can be described in terms of information dynamics, and
makes another step towards a general theory of (guided) self-
organization.
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Abstract

Wildlife corridors mitigate against habitat fragmentation
by connecting otherwise isolated regions, bringing well-
established benefits to conservation both in principle and
practice. Populations of large mammals in particular may
depend on habitat connectivity, yet conservation managers
struggle to optimise corridor designs with the rudimentary in-
formation generally available on movement behaviours. We
present an agent-based model of jaguars (Panthera onca),
scaled for fragmented habitat in Belize where proposals al-
ready exist for creating a jaguar corridor. We use a least-
cost approach to simulate movement paths through alternative
possible landscapes. Six different types of corridor and three
control conditions differ substantially in their effectiveness at
mixing agents across the environment despite relatively little
difference in individual welfare. Our best estimates of jaguar
movement behaviours suggest that a set of five narrow corri-
dors may out-perform one wide corridor of the same overall
area. We discuss the utility of ALife modelling for conserva-
tion management.

Introduction
One of the most obvious effects of our own species on the
planet has been the clearing of forests to make way for agri-
culture. In many parts of the world this means that the nat-
ural vegetation that remains tends to be divided into iso-
lated patches (see figure 2 for an illustration) with disrup-
tive consequences for the local wildlife. The establishment
and maintenance of “corridors” connecting otherwise iso-
lated areas of habitat have therefore been put forward as im-
portant tools in conservation biology (Bennett, 2000; Hilty
et al., 2006). The idea of a corridor is to connect local
sub-populations into a single meta-population and thereby
reduce the risk of local extinctions due to human activity
(hunting, land development, etc.) and, more importantly, to
improve the species’ long-term survival chances by increas-
ing the size of the gene pool.

Bennett (2000) shows that evidence for the effectiveness
of habitat corridors is mixed: they have been more help-
ful for some species than others. Indeed, habitat fragmen-
tation is itself a concept that depends on the details of the
behavioural ecology of the species concerned (consider, for

Figure 1: A jaguar photographed using a stealth camera. Im-
age courtesy of the Jaguar Corridor Initiative, Belize.

example, the difference between a bird and a snail in their
ability to move between habitat patches). The current paper
puts forward a simulation model to help assess the effective-
ness of different corridor policies for the jaguar, Panthera
onca.

The jaguar (figure 1) is an apex predator that stalks and
ambushes its prey. It is the third-largest of the big cats and
the largest big cat species in the Western hemisphere. Its
range extends from the southern United States to northern
Argentina. Jaguars are stealthy and elusive, and thus there is
still much we do not know about their behaviour. However,
one of the better-studied jaguar populations is in Belize,
on the Carribean coast of Central America. In particular,
the Cockscomb Basin Wildlife Sanctuary (CBWS), a 425
square-km reserve in southern Belize, has been a produc-
tive jaguar fieldwork site for several decades (Rabinowitz
and Nottingham, 1986a; Harmsen et al., 2010b). Biolo-
gists working there have been instrumental in setting up the
Jaguar Corridor Initiative (Rabinowitz and Zeller, 2010), a
cooperative effort between scientists, conservation groups,
and regional governments to establish corridors connecting
known jaguar populations.

Assessing the usefulness of a corridor initiative is diffi-
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cult when we do not fully understand the behaviour of the
species involved. Two of us (AW and CPD) are conducting
ongoing fieldwork at the CBWS in Belize, but we recog-
nize that data on jaguar numbers and movement, collected
through means such as stealth cameras and radio-tracking,
will not be sufficient on its own. Such data collection efforts
need to be combined with modelling in order to improve our
understanding of jaguar behaviour. There has been some
recent progress on statistical, data-driven modelling in this
regard (see for example the Bayesian approach of Colchero
et al., 2011) but we believe there is also utility in the agent-
based modelling approach characteristic of work in artificial
life.

Agent-based models explicitly represent the behaviours of
individual organisms, allowing us to simulate both the inter-
actions between individuals, and those between the individ-
ual and the environment (Grimm, 1999). For our purposes,
the advantages of these types of models are the ability to
integrate individual behaviours with landscape dynamics, to
model individual-level adaptive processes such as learning
and memory, and to study collective responses to changes
in landscape composition. The potential to explore many
alternative scenarios also provides distinct advantages over
classical ecological models.

Agent-based modelling approaches have been widely
used already, of course, under the banners of both artifi-
cial life and of ecology, to study the movement of animals
through their environments. Examples include Nonaka and
Holme’s (2007) model of optimal foraging in clumpy envi-
ronments, Wheeler and de Bourcier’s (2010) work on the
evolution of territorial signalling, and Hemelrjik’s (1998)
model of the spatial aspects of dominance hierarchies in
chimpanzees.

In constructing a model of jaguars moving around in their
habitat and using (or not using) corridors, we will need a
way to model their decision-making about where to go next.
This is an opportunity to integrate the “least-cost modelling”
paradigm from landscape ecology (Adriaensen et al., 2003)
with the agent-based approach. The idea behind least-cost
modelling is simple: it is a species-specfic calculation based
on the assumption that dispersing organisms are more likely
to use a route of least resistance when traversing a landscape.
In other words, whenever they are faced with a choice while
moving around their spatial network, they will choose the
lowest-cost option. Cost estimates are themselves derived
from data on how frequently the animals are observed in
particular landscape types, and their preference for one type
over another in choice tests.

Least-cost modelling techniques are standard in many
GIS (Geographical Information System) packages which of-
fer built-in cost and distance functions that allow for rapid
model construction (Rayfield et al., 2010). A raster-based
grid of the landscape is generated with a cost assigned to
each cell that represents the lowest cumulative cost from

that cell to the source cell. This cost is the inverse of the
degree of functional connectivity of the landscape accord-
ing to the species in question (Driezen et al., 2007) and thus
the end product of the calculation can be seen as a proba-
bility distribution across the landscape describing the likeli-
hood of the animal settling at any given position. Rabinowitz
and Zeller (2010) developed an ambitious least-cost model
of jaguar dispersal across their entire range in Central and
South America.

Validating least-cost models is not easy, however. Driezen
et al. (2007) produced one of the only studies to successfully
compare the output of least-cost models with empirical data
on animal movement. They used statistics on landscape-
wide cost values and compared these to real hedgehog paths,
constructing and presenting a novel approach to matching
empirical movement trajectories with generated least-cost
maps. Watkins (2010) demonstrated that this approach could
be taken further through integration with agent-based mod-
elling.

The aim of the current project is to build a simple agent-
based model of jaguar behaviour, employing a least-cost
view of movement, in order to look at how the spatial struc-
ture of corridors intended to connect disjoint forest habitats
could affect conservation goals. In short, we ask the reader
to imagine two separated expanses of forest (as occurs in
many locations in Belize) and enough resources to protect a
few tens of square kilometres of remnant forest from further
disturbance and human development. What would be the
best corridor design policy? One wide corridor? Multiple
thin corridors? A series of small “islands” between the two
forests? How much could we expect of such a corridor once
constructed, i.e., what effects would it have on individual
welfare and on genetic mixing at the population level? We
contend that the answers to these questions will be an emer-
gent function of jaguars’ preferences for different landscape
types and their territorial interactions with each other.

This work is intended to be the first in a series of increas-
ingly detailed models of jaguar ecology. The integration of
real GIS data into the model is beyond the scope of the cur-
rent study — we think there are basic questions to ask of
an abstract model first — but is the logical next step for fu-
ture models. Basing simulated models in real landscapes can
only improve our ability to draw conclusions about system-
level behaviours in realistic environments.

The model
The first step in constructing our model is devising a map
layout that reflects the essentials of the problem. Figure 2
shows a typical Belizean landscape and illustrates the frag-
mentation of forest habitat that occurs due to road construc-
tion, tree-clearing for farming, urban development, etc. The
key feature of our simulation will thus be two separated
blocks of forest, surrounded by cleared farmland. Each for-
est section will hold an initial population of jaguars; the
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Figure 2: An aerial view of a typical landscape in Belize.
Note that regions of ideal jaguar habitat (i.e., forest) are sep-
arated by roads and cleared farmland. Image: Google Earth.

question is how easy or difficult it will be for them to travel
from one forest zone to another.

Figure 3 shows the potential corridor designs that we will
investigate. We begin with the basic two-forest layout in the
top left corner. Note the blue edges where the forest meets
farmland; we assume that these transitional zones are of in-
termediate appeal to the jaguars. The next design (top cen-
tre) features a corridor connecting the two forest sections.
We also consider (top right) a layout with additional area
added to the forest sections: this is equivalent to a control
condition in which we spend the conservation budget on ex-
tending each forest rather than connecting them. Next we
consider whether corridor width is more or less important
than the number of corridors by looking at three- and five-
corridor designs. In each case the same total area is devoted
to the connecting corridors. These are followed by one- and
three-island designs — alternatives to a direct corridor —
and a design made up of many randomly placed islands.
Again, the total area devoted to corridor is a constant. Fi-
nally we also look at a “contiguous forest” layout where the
entire map is forested: this is another control condition in
that it allows us to compare jaguar ecology in a modern frag-
mented habitat with what it might have been before human
colonization.

The map is not meant to be a precise rendition of any par-
ticular location, but we do need to establish a scale in order
to incorporate what is known about jaguar population den-
sity, movement rates, and territory size (our primary refer-
ences in this were Schaller and Crawshaw, 1980; Harmsen
et al., 2010c). The map is represented as a 100 × 100 grid of
squares, with each square being 500 metres on a side. This
means that the entire map covers 50 × 50 km, with each of

Figure 3: Map layouts investigated in the simulation. Core
forest is in green, forest edges are blue, and farmland is
khaki. First row: no corridor, one corridor, no corridor but
equivalent area added to the forest. Second row: three cor-
ridors, five corridors, one island. Third row: three islands,
random islands, contiguous forest.

the basic forest sections measuring 15 × 40 km and with a
10 km expanse of farmland between them. For comparison,
the 2500 square km area of the map represents about 10% of
the land area of Belize.

In most layouts the map includes 1275 square km of forest
(the exceptions are the no corridor layout with 1200 square
km and the contiguous forest condition with 2500 square
km). Each run of the simulation begins by placing 100
jaguars into randomly chosen forest squares, which corre-
sponds to a density of 7.84 jaguars per 100 square km. This
is consistent with Rabinowitz and Nottingham (1986b) who
found a minimum home range size of 10 square km per an-
imal, and also with Harmsen et al. (2010c) who estimated
densities of 3.5 to 11.0 individuals per 100 square km in the
CBWS, which is itself thought to be a “hot spot” for jaguar
numbers. Our simulated population of 100 jaguars thus rep-
resents a medium to high population density.

Edge effects are known to be important in landscape ecol-
ogy, and so we added an edge-detecting routine to the initial-
ization of our map. Any forest square that borders a farm-
land square (in any of 8 neighbouring positions) is labelled
as an edge square. These are shown in blue in figure 3.

What about temporal scale? Schaller and Crawshaw
(1980) recorded daily travel of between 1 km and 3 km
straight-line distance for jaguars, with males travelling fur-
ther than females. In our model male jaguars move one grid
square every timestep; if all eight surrounding squares have
equal cost, the movement will be in a random direction.
In order to get plausible straight-line daily travel distances
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we therefore set one timestep to be 4 hours. This gives 6
timesteps per day, and 2190 timesteps in a year — the stan-
dard length of one of our simulation runs.

The least-cost movement algorithm for the jaguars is as
follows: they look around their neighbourhood — 8 sur-
rounding grid squares plus their current location — and as-
sess the cost of moving into each square. Lower cost num-
bers mean a more attractive destination. The jaguar chooses
the lowest-cost option 95% of the time, with ties being set-
tled at random to avoid systematic movement bias in any
one direction. The other 5% of the time they choose a ran-
dom square; this modest level of randomness was introduced
in order to disrupt any implausibly symmetrical movement
patterns that might arise. The difference between male and
female movement rates is reflected by females only actu-
ally moving to their chosen square 70% of the time, whereas
males always move.

At this point we need to start fleshing out the least-cost
model with specific numbers describing the preference of
the jaguar for the map’s three habitat types: forest, forest
edge, and farmland. We set the preferred forest habitat’s
cost value at 1.0 as a reference. Previous least-cost mod-
els (Driezen et al., 2007; Watkins, 2010) suggest that non-
preferred habitat such as farmland will have values many
times higher. The correct cost value for farmland for the
jaguar is not yet known; we have chosen a value of 25.0.
The forest edge is intermediate but still relatively low-cost
at 5.0. At this stage these numbers are arbitrary as their rank
order is more important than their specific values: the ef-
fect is that jaguars in the model will prefer forest to edge to
farmland.

Jaguars are known to be largely solitary except when mat-
ing. Our model does not explicitly include mating and so we
added a cost of 100.0 for entering a square currently occu-
pied by another jaguar, making this a very unlikely event.

Jaguars are territorial and their behaviour varies markedly
by sex. Males range across bigger territories than females,
and males and females seem to be territorial towards others
of the same sex but not the opposite sex, e.g., male terri-
tories can overlap with female territories but not with each
other. Simply having our simulated jaguars avoid direct con-
tact with each other is not enough to reflect this complexity.

We model sex-specific territoriality using a pheromone
system, as used by many artificial life models looking at so-
cial insects (e.g., Nakamura and Kurumatani, 2008). Each
jaguar is assumed to mark its territory by leaving 100.0
pheromone units behind in every grid square that it tra-
verses. The pheromone level then decays at a rate of 2%
per timestep. A pheromone trace deposited by a jaguar of
the opposite sex has no effect. Pheromone deposition is ad-
ditive, so if a second jaguar comes along before the first
deposit has decayed, the pheromone level can rise to even
higher levels. This will not happen unless the jaguars are
extremely over-crowded though, as the pheromones of other

Figure 4: A representative screenshot of the simulation after
500 timesteps. Jaguar locations are represented as circles,
with females in white and males in a random colour. Male
and female pheromone trails (i.e., territories) overlap so, for
clarity, only male territories are shown. Pheromone trails
are in the same colour as the male that produced them. Note
the variation in territory size, and the fact that a few animals
have been “pushed out” into the less desirable farmland.

same-sex individuals are repellent: a pheromone deposited
by another jaguar of the same sex adds to the cost value of
the grid square in a 1:1 ratio, i.e., a freshly deposited same-
sex pheromone trail in the forest will massively raise the cost
of that square from the baseline 1.0 to 101.0.

All pheromone deposits decay over time at 2% per
timestep. For computational simplicity, pheromone levels
lower than 5.0 are reduced to zero. This decay rate means
that a jaguar’s pheromone trail has less and less effect un-
til finally becoming undetectable around 150 timesteps (25
days) after it passed through a grid square. Thus we can
imagine each jaguar trailing out behind it a “scent cloud”
that dissipates over several weeks. Figure 4 is an example
screenshot of the simulation in action and shows what this
looks like in practice.

There is a finely tuned balancing act involved in deciding
just how strong the repellent effect of other jaguar’s territo-
ries should be. If we take the landscape cost value of 25.0 for
pasture as a reference point, our parameters for pheromone
cost and decay rate mean that a jaguar will be ambivalent
between entering a farmland grid square and entering a for-
est grid square that had seen another same-sex jaguar pass
by around 12 days earlier. Clearly there is some guesswork
going on here: jaguars are not well-studied enough for us to
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know the exact values that should be plugged in. The point
is not to make a precise predictive model but to see whether
it is possible to explain the basics of jaguar movement with
some simple rules. In this regard, we do have circumstantial
evidence: jaguars have occasionally been observed in pas-
tures both in Belize and Brazil, and we know that jaguars
are somewhat territorial. If we chose much higher values
for the landscape cost of farmland, the jaguars would not
leave the forest at all, even under extremely crowded local
conditions. Conversely, if we make the cost of encountering
another jaguar’s pheromone too high, the animals will spill
out into the farmland in great numbers in an effort not to
encroach on each other’s territory.

Our simple pheromone mechanism is actually a reason-
able model of how jaguars maintain their territorial bound-
aries in the real world. Jaguars are not as likely to mark their
passage with urine or scat as other felids are (Schaller and
Crawshaw, 1980; Harmsen et al., 2010c) but they are known
to scent-mark by scraping trees in their territory (Harmsen
et al., 2010a).

There is one more cost to be considered: we also made the
jaguars sensitive not just to pheromones deposited by others
but also to their own pheromone trails. The cost of entering
a grid square where you were the last occupant is equal to
15% of the pheromone level (i.e., the effect is about 7 times
weaker than for the pheromones of others). This reflects
the fact that a section of forest where the animal has not
hunted recently is a better prospect for prey than the same
grid-square they occupied the day before. The effect is to
stop the jaguars back-tracking on their own path. A solitary
jaguar in a large expanse of forest will therefore perform
a random walk strongly biased towards yet-unvisited grid
squares, in effect carving out a territory of maximal size for
itself.

Unlike much ALife work, there is no genetic algorithm
in our model: our central question is not evolutionary but
ecological. In the same vein as Hemelrjik (1998) we are
not asking about the evolution of the animals’ strategies, but
about the implications of how a hypothesized behavioural
program would play out when followed by multiple animals
in a simulated spatial world.

The goal is to use our model of jaguar movement be-
haviour to evaluate the effectiveness of different corridor
layouts — but what can we measure in order to do that? The
jaguars’ behavioural strategies are not evolving, so we can-
not measure “fitness” per se. Instead we look at the average
cost level for the grid squares each jaguar chooses to enter
over the course of the run. This is effectively a measure of
“jaguar welfare”. Low cost grid squares (i.e., what jaguars
want) are places in the forest that have not recently been vis-
ited by other jaguars. The low cost ultimately reflects the
fitness benefits of being in such places: these are areas with
high prey availability, low risk of being killed by farmers,
low risk of costly fights with other jaguars, etc. Higher val-

ues on the average-cost measure will therefore be associated
with stress or over-crowding. If one corridor layout can re-
duce this value compared to another, this is evidence for its
jaguar-conservation effectiveness.

We are not simulating enough detail of the jaguar’s
lifestyle to look at mating behaviour directly, but we can
look indirectly at whether different corridor layouts would
encourage a larger breeding population as opposed to iso-
lated sub-populations. We have done this simply by record-
ing the proportion of jaguars that finish the year on the
opposite side (east-west) of the map compared to where
they started. A value of 0% indicates two isolated sub-
populations, whereas 50% would indicate random mixing.

Results
Figure 4 shows a typical screenshot from the simulation. We
can see that the model has been successful in reproducing
male territories of a plausible size of 10 to 20 square km, and
that a minority of jaguars have resorted to hunting in farm-
land. When watching the animation over time it is very easy
to interpret the jaguar movements as “patrolling” a territory
and avoiding conflicts with each other; the forest edges are
used as “pathways” around territories; established core ter-
ritories shift only gradually; and the jaguars that are forced
out into farmland eventually get back into the forest when
they are lucky enough to find an undefended edge section.
Figure 4 shows the “one corridor” layout, and we can see
that the corridor is certainly occupied by jaguars and thus
might be leading to genetic mixing between the two sub-
populations.

However, we can also see a threat to this exchange: note
that the brown and the yellow territories in the centre of the
corridor act as barriers to the transit of any other (male)
jaguars. Our qualitative impressions when watching the
simulation run with different corridor layouts were that the
geography of the corridor could certainly make a differ-
ence as some layouts, notably the five-corridor map, led
to “channeled” movement back and forth across the corri-
dor, whereas other layouts such as the one in figure 4 led to
blockages.

Figure 5 shows the comparison of the average-cost values
across all 9 conditions. The obvious pattern here was that
the layout did not seem to make a great deal of difference to
the average cost experienced by each animal, except in the
“contiguous forest” case. It is obvious that the contiguous
layout will lead to lower average costs, however, as the same
number of jaguars are distributed across about twice as much
forest, giving larger territory sizes and fewer encounters with
the pheromones of others.

The “no corridor” and “random islands” conditions lead
to slightly higher costs than in other conditions. In the for-
mer case this is simply because there is less forest territory
available; in the “equal area” control condition this differ-
ence disappears. The “random islands” condition leads to
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Figure 5: Mean cost figures per jaguar per timestep compared across the nine different map layouts. Standard errors are
calculated across 25 replications of each condition with different random seed values.

most of the corridor squares being edge squares, and there is
a concomitant increase in average cost. On this evidence it
would seem that corridor design does not make much differ-
ence to jaguar welfare, and that the critical thing is simply
to have as much favourable habitat available as possible.

What of the genetic mixing results? If we look at fig-
ure 6 we see the mean level of movement across the centre-
line of the map, over the different conditions. The differ-
ences here are much more dramatic. The “contiguous for-
est” condition is again the most favourable for the jaguars,
with 34% mixing (approaching the 50% level that would
you would get if the jaguar locations were shuffled at ran-
dom). This contrasts with the “no corridor” conditions that
support only 7 or 8% mixing. The island-based corridor de-
signs perform very badly as well, although things are not
quite so bad with the “random island” design. The striking
finding from figure 6 is that corridor-based designs perform
best, and that the more corridors and/or the thinner the cor-
ridor, the better. Observation of these runs suggests that the
strong performance of the five-corridor design (26% swap-
ping) is because the thin pathways promote rapid movement,
often through the edge squares if another animal has recently

passed through the forest squares, and the very thin strip of
core forest (just 500 metres wide) is not big enough to sup-
port a territory. Wider corridors (the three-corridor and the
one-corridor cases) were better than island-based designs,
and certainly better than no corridor at all, but did not match
the mixing levels of the five-corridor case due to the ten-
dency for the corridor to become blocked by an established
territory.

Conclusions
We were pleased with the qualitative results of the model in
that we managed to replicate plausible territorial behaviour
in jaguars using the least-cost paradigm and only a few as-
sumptions. The model has brought novel aspects of the cor-
ridor design problem to light, notably the possibility that
some corridor layouts could be counter-productive due to
being large enough to support internal territories that then
acted as obstacles to travel by other animals. We feel that
the agent-based modelling approach we have begun here has
the potential to be extremely useful in drawing out the im-
plications for different theories about jaguar behaviour and
thereby helping to determine which of those theories is a
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Figure 6: Proportion of jaguars that move from one side of the map’s centre-line to the other by the end of the simulated year,
compared across the nine different map layouts. Standard errors are calculated across 25 replications of each condition with
different random seed values.

better match for the multi-faceted and incomplete observa-
tional data we have on the real animals (see Di Paolo et al.,
2000, for an account of how this process can work). There
are many parameters in the model for which we have had
to guess at an appropriate value, but the idea is to take these
values as a starting point and use them in an iterative process
of model refinement in future comparisons with empirical
data from Belize.

We began our modelling with a hypothetical question
about the best corridor design to choose if you had the re-
sources to reforest a few tens of square km of Belizean farm-
land separating two forests. We can answer that question
unequivocally: of the corridor layouts we explored, the five-
corridor layout was the most effective. We had expected that
we might see significant differences in the average landscape
cost value experienced by the jaguars across the different
corridor designs, but this turned out not to be the case. Av-
erage landscape cost, given a constant population of jaguars,
seems to be explained almost entirely by the availability of
core forest grid squares. This suggests, for example, that
constructing a new conservation corridor in Belize would

not lead to a big boost in the landscape’s carrying capacity
for jaguars. Instead, the key difference observed between
our corridor designs was their capacity to promote migra-
tion from one side of the map to the other, and thus to pro-
mote genetic mixing at the whole-population level. The five-
corridor case achieved levels of cross-map migration that
were almost comparable to the “contiguous forest” condi-
tion, which is a great outcome from a conservation perspec-
tive.

Having established that this agent-based least-cost mod-
elling approach is viable, there are several ways in which
we could improve the model. Incorporating real maps of the
Belizean landscape using GIS packages is an obvious way
of increasing the model’s fidelity, although we believe it is
important not to rush this process: we need to understand the
dynamics of how our simulated jaguars behave in simplified
environments first. Still, using GIS data would also allow
us to build a richer least-cost model, incorporating data on
jaguar preferences for entering or avoiding terrain such as
hills, differing densities of forest, roads, and urban areas.

In terms of the corridor design problem, a weakness of
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the current model is that we only compared six specific cor-
ridor layouts with three control conditions. If we settled on
a way to represent the spatial layout of a corridor, e.g., as a
bitmap, we could use a genetic algorithm or other optimiza-
tion technique to search for the best possible layout for the
connecting corridors. This is perhaps slightly premature at
this stage as the model is in an exploratory mode; we do not
yet know enough about jaguar movement behaviour to be
sure that such an optimized layout would be accurate enough
to serve as a reliable conservation policy recommendation.
Nevertheless we would at least be in a position to say why
we believed a certain corridor design was optimal.

In conclusion: jaguars are rare, elusive, and hard to study.
In coming years, we expect that improvements in radio- and
GPS-tracking technology should see an increase in the data
we have available on how they move around their environ-
ment. However, as that data comes in, it will be important to
be able to evaluate it in the light of competing theories about
how jaguars make decisions about hunting, mating, territory
defence, etc. The agent-based simulations of artificial life
can clearly help in doing this.
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The natural energy minimisation behaviour of a dynamical system 

can be interpreted as a simple optimisation process, finding a locally 

optimal resolution of constraints between system variables. In human 

problem solving, high-dimensional problems are often made much 

easier by inferring a low-dimensional model of the system in which 

search is more effective. But this is an approach that seems to require 

top-down domain knowledge; not one amenable to the spontaneous 

energy minimisation behaviour of a natural dynamical system. 

However, in recent work we investigated the ability of distributed 

dynamical systems to improve their constraint resolution ability over 

time by self-organisation. Using a ‘self-modelling’ Hopfield network 

with a particular type of associative connection we illustrated how 

slowly changing relationships between system components results in 

a transformation into a new system, a low-dimensional caricature of 

the original system, in which the energy minimisation behaviour is 

significantly more effective at globally resolving system constraints. 

This uses only very simple and fully-distributed positive feedback 

mechanisms that are relevant to other ‘active linking’ and adaptive 

networks. Here we overview the implications of this neural network 

model for understanding transformations and emergent collective 

behaviour in various non-neural adaptive networks such as social, 

genetic and in particular, ecological networks. 

Optimisation in Dynamical Systems. Physical dynamical 
systems with a large number of simple equivalent components 
have been shown to exhibit ‘emergent collective 
computational abilities’ [8] such as implementing content-
addressable memory or solving constraint satisfaction 
problems [9,10]. In the latter, Hopfield and Tank equate the 
energy minimisation behaviour of a dynamical system with an 
optimisation process – i.e., the system moves to 
configurations that better-resolve the conflicting constraints 
between system variables. But actually, energy minimisation 
in a simple dynamical system is equivalent to the simplest 
possible optimisation algorithm, namely gradient descent (or 
incremental improvement), which in anything but the simplest 
of problems tends to find only locally optimal solutions. In 
human design-engineering and optimisation, high-
dimensional problems are often made much easier by 
inferring a low-dimensional model of the system (e.g., a high-
level representation that exploits modularity/problem 
decomposition), such that local search in this new space is 
better able to find a globally optimal resolution of constraints. 
This is an approach that seems to require top-down domain 
knowledge and design intelligence, but sophisticated model-
building algorithms can exploit such an approach bottom-up 
by learning and exploiting problem structure from observed 

correlations, probing epistatic interactions, or simply ‘memo-
ising’ hard-won partial solutions [18,16,15,14,19,2]. 
Nonetheless, such approaches do not appear to be amenable to 
the spontaneous energy minimisation behaviour of a simple 
dynamical system. But can other types of dynamical systems, 
specifically self-organising systems, perform more 
sophisticated forms of optimisation? And conversely, can an 
optimisation framework help us to better understand the 
behaviour of natural self-organising systems?  
 Our questions are motivated by consideration of self-
organising multi-agent systems, such as species in an 
ecosystem or agents in a socio-economic network, and their 
potential to exhibit emergent collective behaviours. In 
particular, we are interested in the possibility that such 
systems can spontaneously transform into a new system, 
operating at a higher level of organisation [21,13], and that 
such a dynamical transformation may facilitate (or may even 
be equivalent to) a transition in the ability to resolve 
constraints between the system components. Abstractly, these 
systems can be characterised as ‘adaptive networks’ [5] 
sharing the property that the structure of connections between 
agents affects changes to the agent behaviours and, vice versa, 
that the agent behaviours affect changes to the structure of 
connections between agents. The Hopfield network [8] easily 
accommodates such state/topology coadaptation and, at a very 
abstract level, provides a suitable system to explore how self-
organisation in adaptive networks alters their ability to resolve 
conflicting constraints between system components.   

Transformations in meta-dynamical systems/adaptive 

networks.  In formalising the behaviour of a system that 
transforms its dynamics over time we cannot treat the 
parameters of the system as fixed – instead we need to pull 
them into the model such that they become variables 
controlled from within the model. But we characterise a 
transforming system as a ‘meta-dynamical system’ [3]. That 
is, the network topology defines the parameters of the state 
dynamics, but the connections of this topology are in actuality 
(slow changing) variables. In the sub-space of state dynamics 
defined for any given topology, or in the larger joint space of 
state variables and topology together, we simply observe a 
dynamical system doing what it does naturally, minimizing 
energy – there is no sense in which the system is ‘improving’ 
its ability to minimise energy. But when we regard the 
connections as ‘changing parameters’ of the state dynamics, 
then we can characterise these changes in terms of how they 
transform the dynamics of the state variables. In particular, we 
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can assess whether this transformation improves the ability of 
the state dynamics to minimise energy. 
 Using a ‘self-modelling’ [23] Hopfield network with 
Hebbian learning [1,6] as a model adaptive network, we 
recently showed that it is possible for simple distributed 
mechanisms, gradually changing the connections of the 
network, to cause it to effectively rescale its dynamics and 
hence move from local to global energy minimization by 
encapsulating implicit dynamical sub-structure [26] (Fig.1). 
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Fig.1: The distribution of attractor-state energies found over time in a 

restart Hopfield network without learning (rHN-0), with ordinary 

Hebbian learning (rHN-S), and with ‘generative associations’ (rHN-

G). The latter transforms the system into one which easily and 

reliably minimises total energy. See [26]. 

 
Transformations in Biological Adaptive Networks. 
Although this recent work utilised a Hopfield network with 
Hebbian learning, a separate recent result shows that the same 
type of behaviour is expected spontaneously in other (non-
neural) adaptive networks [25]. Specifically, when individual 
self-interested agents on a network can alter network 
connections (e.g. alter their fitness dependencies with others 
by changing their resource-utilisation profile, or alter the 
proportion of time/resources they invest in a relationship, or 
alter the probability of interaction or co-dispersal with others) 
and they do so to maximise their individual utility then the 
alterations they choose are necessarily Hebbian. Intuitively, 
this occurs because short-sighted selfish agents reinforce the 
status-quo [4], or increase the robustness/stability of the 
current state configuration [24], and this has the same 
dynamical consequences on the subsequent dynamics of the 
system as Hebbian learning does when it stores a training 
pattern in a neural network. Accordingly, related work 
develops the implications of this model for genetic networks 
[24] (with relation to evolvability and robustness [11,17]), 
social networks [4] (games on networks with active linking 
[20]) and ecological networks [12] and finds that the same 
dynamics occur spontaneously in all these systems. In this 
presentation we focus particular attention on ecosystems and 
the ‘generative’ type of associations (Fig.1) that have the 
effect of forming coalitions [20,28] or new selective units 
[27,22]. We suggest that this provides a formal framework for 
characterising the selective pressures/adaptive consequences 
involved in the formation of evolutionary transitions [13]. 
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Nutrient cycling is a ubiquitous feature of ecosystems at
all scales, allowing productivity to rise beyond the limits
set by external nutrient inputs. Nutrient cycling occurs as
a side-effect of the metabolism of a diverse set of species
that each performs a step in the recycling loop. Recycling
loops can be large and involve many steps. At each step the
possibility exists for ‘side-reactions’ in the form of species
with metabolisms that consume an intermediate metabolite
but do not create the product needed to complete the recy-
cling loop. Also, at least some of the biochemical reactions
in any closed recycling loop must be endergonic (energy-
consuming) and thus recycling loops may be vulnerable to
invasion or parasitism by species that consume intermedi-
ates but do not produce costly products needed to close the
loop. The possibility of such destabilising side-reactions ap-
pears to conflict with the apparent stability and ubiquity of
nutrient recycling in nature.

Here we propose that the ecosystem-level autocatalysis
provided by nutrient recycling offers a productivity benefit
that can be selected at the level of the biological community,
provided that certain conditions are met: (1) the benefits of
recycling must be localised so that they preferentially ac-
crue to participants, (2) metacommunity structure must be
such that multi-species communities can propagate intact.
We use an idealised model of a simple microbial ecosystem
(Boyle et al, submitted) to show that spatial structure can be
sufficient to provide these conditions and allow community-
level selection (Williams and Lenton, 2007a, 2008) to sta-
bilise and promote nutrient recycling.

The model is an individual-based evolutionary simula-
tion of a microbial community composed of three species
which interact via their metabolic products. The commu-
nity is distributed across multiple patches arranged in a ring
topology to give an approximation to a 1D spatial environ-
ment. Each patch is internally well-mixed and connected to
its neighbours on either side by a slow rate of diffusive mix-
ing. Three chemical substrates are consumed/produced in
the metabolism of the three microbial species. All species
are assumed to be identical apart from their pattern of re-
source utilisation, i.e., no species has any competitive advan-

Figure 1: Patches are internally well-mixed and connected (in
a ring topology) by a slow rate of diffusive mixing. Each patch
is supplied with nutrient substrate X at a uniform rate. The
“source” species consumes X and produces a secondary substrate
Y. The “mutualist” species consumes Y and regenerates X (incur-
ring growth rate cost κ). The “parasite” species consumes Y and
produces substrate Z, which is not consumed by any species.

tage other than from the relative availability of their respec-
tive metabolic substrate. The “source” species consumes
substrate X and produces substrate Y as a waste product.
The “mutualist” species consumes substrate Y and regener-
ates substrate X as a product. The “parasite” species con-
sumes substrate X and produces substrate Z. Since we as-
sume that the reactions X → Y and Y → Z are exergonic
(energy-releasing), the reaction Y → X must therefore be
endergonic. Thus the mutualist species incurs an energetic
cost which we implement as a growth rate penalty κ. The
level of κ at which both mutualists and parasites coexist (i.e.
are equal competitors) quantifies the strength of community-
level selection for recycling, since coexistence implies bal-
anced selection pressures at the individual level (for para-
sites) and the community level (for mutualists).

Each patch is supplied with substrate X at a steady rate,
while all material substrates are removed from each patch by
a slow rate of dilution. Thus in the absence of any microbial
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Figure 2: Example of model results showing spatial patterns in a system of 100 patches. Over time (horizontal axes) a heterogeneous
distribution of species and resources over space (vertical axes) emerges from the initially homogeneous distribution. Nutrient cycling ratios
are positively correlated with high density of mutualists (since this species regenerates resource X) and patch-level productivity, and negatively
correlated with parasite density. Global coexistence of mutualists and parasites is stabilised by patch-level fecundity selection for recycling
based on between-patch gradients in community productivity, which counteracts the within-patch advantage of the parasite.

populations the system would equilibriate with a fixed con-
centration of X and zero concentrations of Y and Z. The
microbial community is initialised with a uniform distribu-
tion of individuals from each species. Microbes can dif-
fuse to neighbouring patches with low probability at each
timestep. There is no material mixing. Microbes grow de-
pendent on the availability of their required substrate and
reproduce by fission when their biomass reaches a fixed
threshold. Microbes can die from starvation when their
biomass drops below a critical threshold or stochastically
with low probability (serving to represent all other causes
of mortality). The system is numerically integrated using
Euler’s forward method.

Analytic and numerical results show that for any non-zero
cost of recycling (i.e. any κ > 0) parasites always exclude
mutualists within a single isolated patch. Yet spatial simula-
tions show sustained coexistence of mutualists and parasites.
Mutualist frequencies in local patches are positively corre-
lated with nutrient recycling and patch productivity. The
mechanism for global coexistence of mutualists and para-
sites is patch-level fecundity selection; patches with higher
frequencies of mutualists have higher total productivity and
hence export more individuals (of all kinds) to neighbouring
patches, counteracting the within-patch advantage of para-
sites. This is confirmed by mutualist extinction and loss of
recycling when patch productivity is normalised to remove
between-patch productivity gradients. Varying the spatial
heterogeneity of the system by varying the between-patch
mixing rate shows that recycling rates (and hence global pro-
ductivity) are positively related to the ‘patchiness’ of the sys-

tem; low positive mixing rates that maximise spatial hetero-
geneity also maximise recycling. Removing spatial structure
by implementing perfect between-patch mixing recovers the
single-patch result of mutualist exclusion and no recycling.

The community-level selection mechanism we propose
is not necessary for the formation of nutrient recycling
loops in nature, which can be easily formed by aggrega-
tion of metabolically diverse species that each gain a self-
ish benefit from the biochemical transformations they con-
duct (Williams and Lenton, 2007b). However, the synergis-
tic benefits of recycling permit community-level selection
to stabilise and promote recycling, even in cases where par-
ticipation incurs an individual-level cost. This finding sug-
gests a number of testable predictions: (1) nutrient recycling
should be favoured in spatially structured environments such
as soils and microbial biofilms, (2) community-level produc-
tivity benefits can stabilise costly trophic mutualisms in spa-
tially structured environments, and (3) species with comple-
mentary metabolisms should evolve traits that promote their
spatial association.
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Abstract

Cellular automata were initially conceived as a formal model
to study self-replicating systems. Although reproduction by
biological cells is characterized by exponential population in-
crease, no population of self-replicating machines modeled
as a cellular automaton has ever exhibited such rapid growth.
We believe this is due to the inability of cellular automata
to model bonded complexes of reified actors undergoing ran-
dom independent motion.

To address this limitation, we introduce a model of parallel
distributed spatial computation which is highly expressive,
indefinitely scalable, and asynchronous. We then use this
model to define two examples of self-replicating kinematic
automata. These machines assemble copies of themselves
from components supplied by diffusion and increase in num-
ber exponentially until the supply of components is depleted.
Because they are both programmable constructors and self-
descriptions, we call them reified quines.

Introduction
Much as Turing had done twenty years earlier when motivat-
ing his computing machine by first describing a notional hu-
man computer which computed with paper and pencil (Tur-
ing, 1936), von Neumann motivated his self-replicating ma-
chine by means of a thought experiment (Burks, 1970). von
Neumann’s machine assembled copies of itself from a set
of components undergoing random independent motion on
the surface of a lake. The components consisted of girders,
hands, muscles, sensors, switches (and, or and not gates),
and delays, together with tools for welding and cutting. von
Neumann ultimately concluded that the physics of his ma-
chine was too removed from reality to be interesting, while
unnecessarily complicating the study of the information pro-
cessing problems inherent in self-replication. Accordingly,
the bulk of his subsequent efforts were concerned with ab-
stract machines not physical machines, and the class of ab-
stract machine he adopted, cellular automata, has domi-
nated the field for the past fifty years.

Although self-replication by biological cells is character-
ized by exponential population increase, no population of
self-replicating machines modeled as a cellular automaton
has ever displayed such rapid growth. Indeed, populations

of the most fecund (Langton, 1984) grow only as a quadratic
function of time. We believe this is due to the inability of
cellular automata to model bonded complexes of reified ac-
tors undergoing random independent motion.

Random independent motion, or diffusion, plays a cru-
cial role in our work. First, as in von Neumann’s kinematic
model, components required for self-replication are supplied
by diffusion. Second, diffusion changes the length of bonds,
and vital operations must wait until bonds are of sufficient
length. Third, the products of self-replication are dispersed
by diffusion, which is essential for exponential population
growth because it prevents overcrowding.

Quines

Self-replicating machines can be divided into two types.
The Darwinian type contain a self-description (genotype)
and replicate by both copying it (yielding a copy of the
genotype) and decoding it (yielding a copy of the pheno-
type). In contrast, the Lamarckian type replicate by copy-
ing the phenotype directly. Computer worms are Lamarck-
ian, while quines (programs written in high-level languages
which print themselves) are Darwinian. Worms don’t need
a self-description because of the nearly unique capacity for
reflection possessed by machine language programs running
on digital computers with von Neumann architectures. Pro-
grams and data reside in the same memory; programs are
data. In contrast, most high-level programming languages
lack the capacity for reflection. It follows that quines, like
biological cells, must replicate by copying and decoding
self-descriptions.

Prior Work

The prior work with goals and approach most similar to our
own is that of Hutton (2007), who has developed an artificial
cell with a membrane in a 2D artificial chemistry. Hutton’s
cell consists of a membrane formed from a ring of 14 atoms
internally bisected by a string of 5 atoms which serves as a
partial genome. The membrane is permeable to unbonded
atoms but impermeable to bonded atoms. The entire struc-
ture is copied atom-by-atom, through the action of 39 reac-
tion rules which define a universal chemistry. Atoms are of
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6 different types and can possess up to 62 states each. The
reaction rules have a very restricted form; both left and right
hand sides consist of a single pair of atoms (either bonded
or unbonded), and each in a specified state.

The most impressive aspect of Hutton’s work is the par-
tial genome. This is an arbitrary string of atoms which can
be used to encode any reaction rule. It is translated into a
bonded pair of atoms which functions as an enzyme. Be-
cause it is contained inside a membrane impermeable to
bonded atoms, it is hoarded by the cell for its exclusive use.
Although enzymes can (in principle) be used to replace any
of the reaction rules in the artificial chemistry (the single ex-
ception presumably being the rule governing the use of en-
zymes), this has only been demonstrated for a single reaction
rule and Hutton (2005) states that a genome 700 atoms long
(and a correspondingly larger membrane), would be needed
to replace the full set.

Actor Model

Biological cells are membranes made of lipids which con-
tain water, enzymes, and DNA. The DNA encodes the en-
zymes and the enzymes (in water) form metabolic pathways
which collectively: 1) copy the DNA; 2) translate the DNA
into enzymes; and 3) make the membrane grow and divide.
In our view, biochemistry is parallel distributed computa-
tion and enzymes are actors. Membranes don’t just con-
centrate and isolate enzymes, they define private absolute
address spaces. In effect, they permit the construction of
idiosyncratic biochemistries, defined by specific sets of en-
zymes, the descriptions of which are encoded by the cells’
own DNA.

The actor model is a model of parallel distributed com-
putation (Hewitt et al., 1973). An actor is a process which
possesses a unique absolute address. Using these addresses,
actors send and receive messages to and from other actors.
In response to receiving a message, actors can change state,
create new actors, and send new messages. Significantly,
and unlike cellular automata, computation in the actor model
is event-driven and asynchronous.

With respect to the goal of constructing reified quines, the
actor model has a number of shortcomings. First, because
of its use of absolute addresses, it is not indefinitely scal-
able; in an actual implementation, the average time required
to deliver a message increases as the number of actors in-
creases. Second, there is no satisfactory method to generate
guaranteed unique addresses in a parallel distributed man-
ner. Third, and most significantly, the actor model is not
reified–actors exist in an abstract space, not in a space which
is isomorphic to physical space.

Reified Actor Model

Although as originally conceived, actor models are not rei-
fied, it is possible to create a reified actor model or movable
feast (Ackley and Cannon, 2011). In a movable feast, all

actors have unique positions on a 2D grid. Actors possess
a finite number of states and can sense and change the posi-
tions and states of actors in their n×n neighborhoods. Sig-
nificantly, actors can create bonds with other actors in their
n×n neighborhoods. Bonds are relative addresses which are
short, symmetric, and automatically updated as actors un-
dergo random independent motion (restricted by the lengths
of bonds).

The set of actors reachable through a sequence of bonds of
length less than or equal to k comprise an actor’s bond graph
k-neighborhood. Actors can sense and change the positions
and states of actors in their bond graph k-neighborhoods.

Like conventional actor models, computations in a mov-
able feast are event-driven and asynchronous. Unlike con-
ventional actor models, movable feast computations are
based on the application of graph rewrite rules possessed by
individual actors to the actors’ bond graph k-neighborhoods.
Sets of related graph rewrite rules are grouped into behav-
iors, which are indivisible and conferred as units. Actors
can possess multiple behaviors but can denote at most one
behavior. Significantly, an actor can confer the behavior
it denotes on other actors through bonds. The distinction
between possessing and denoting mirrors the phenotype-
genotype distinction in biological cells and the program-data
dichotomy in quines.

The update scheme in the movable feast consists of pick-
ing an actor at random, picking a behavior possessed by
that actor at random, and applying the first graph rewrite
rule with a pattern matching the actor’s bond graph k-
neighborhood.

Kinematic Automata
The vertices of a bond graph are actors and the edges are
bonds; both actors and bonds can be of one or more types.
Because they are reified, actors have unique positions on a
2D grid. In homage to von Neumann, we define a kinematic
automaton (KA) to be a set of reified actors possessing type
specific behaviors assembled in a bond graph.

A description of a KA consists of a bond graph and a
behavior graph. The behavior graph represents the relation
between the set of types and the set of behaviors, i.e., the be-
havior relation. Actors are finite state machines with transi-
tion functions defined by the behaviors they possess (Fig. 1).
It follows that a KA is an asynchronous network of commu-
nicating finite state machines (Brand and Zafiropulo, 1983);
the set of behaviors possessed by its actors define a graph
rewriting system (Klavins et al., 2004) which transforms the
embedding and topology of the network over time.

A programmable constructor for a class of KA’s is a KA
which takes a description of a KA in the class and builds it.
Example classes are reified-strings and reified-sets. A pro-
grammable constructor may (or may not) be in the class it
builds. A self-description is a KA where the bond graph rep-
resents the behavior graph using an encoding scheme; it is

859ECAL 2011



  

leaving

inserting

un
lo

ck
ed

default

H

P

P

P P

H
L

D

D D

L

D

D

gone

splicing

ready

going

R

R, CU

Z

K

K

K

K

U

C

K

K

Figure 1: State transition diagrams for actors in reified-
string (left) and reified-set (right) quines. Letters denote be-
haviors mediating state transitions. Green sticks mark states
where the actor possesses a hand bond.

this use of dual meaning which resolves the seeming para-
dox of self-description–how can a thing contain a descrip-
tion of itself?

Reified-String Quine
A reified-string is a KA consisting of a chain of reified ac-
tors linked by bonds. Apart from the head (tail) each ac-
tor in the reified-string has a unique predecessor (succes-
sor) to which it is bonded by a prev bond (next bond).
A behavior graph can be represented using an adjacency
list representation which in turn can be represented as a
string. For example, let H, D, P, and L be types denot-
ing behaviors and let # be a punctuation type, then Q =
#HDP#DDP#PDP##HDP#LDPLL is a reified-string self-
description where actors of all types possess behaviors D
and P while actors of type # also possess behavior H and ac-
tors of type L also possess behavior L (the repeated L marks
the end of the string). A reified-string self-description which
is also a programmable constructor for the class of reified-
strings is a reified-string quine.

Behaviors

To build a reified-string quine we must define a set of graph
rewrite rules which when grouped into behaviors H, D, P,
and L yield a Q which is a programmable constructor for
reified-strings:

H – initiates decoding phase using tip
D – copies string using grab, insert and transport
P – confers type specific behaviors by decoding string us-
ing key, lock, unlock and confer
L – initiates copying phase, assembles daughter, and ef-
fects fission using cleave.

The reified-string quine copies itself in two phases. During
the copying phase, the bond graph is copied actor-by-actor.
During the decoding phase, the adjacency list representation

  

X

hand

XXX

{ D }

Figure 2: Grab graph rewrite rule. An actor in the grabbing
state possessing behavior D and denoting behavior X forms
a hand bond with an unbonded actor denoting the same be-
havior in its n×n neighborhood. It then enters the inserting
state.

of the behavior graph is decoded, conferring the behaviors
specific to each type on the copies.

Copying

Copying begins at the tail of the reified-string and advances
towards the head. Grab and insert rewrite rules from behav-
ior D cause each actor to

• form a hand bond to an unbonded actor of matching type
in its n×n neighborhood (Fig. 2)

• set that actor’s state to leaving
• insert it into the reified-string nearer the head (Fig. 3).

In effect, the hand advances towards the head as each actor
in the mother cycles through the default, grabbing and in-
serting states. Meanwhile, the transport graph rewrite rule
from behavior D swaps actors in the default state with actors
nearer the tail in the leaving state, an action which quickly
moves them to the head. At the completion of the copying
phase, the copied actors (which will eventually comprise the
daughter) form a reversed chain in the leaving state attached
to the mother’s head.

Decoding

The tip graph rewrite rule from behavior H (possessed only
by actors of type #) recognizes when the head actor has
been copied and begins the decoding phase, implemented
by graph rewrite rules from behavior P. In the decoding
phase, the reified-string is interpreted as an adjacency list
representation of the behavior graph. This is accomplished
as the copied actors traverse the mother a second time (in
the reverse direction). During this traversal, each actor has
its type specific behaviors conferred on it. The key rewrite
rule causes actors denoting behaviors adjacent to actors of
type # to enter the key state. Actors in the key state unlock
adjacent actors of matching type in the locked state while
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{ D }

head

X

X

Y

Figure 3: Insert graph rewrite rule. An actor in the inserting
state possessing behavior D waits until its prev bond is of
maximum length. It then inserts the actor at the end of its
hand into the reified-string by bisecting the prev bond and
enters the default state. The inserted actor’s state is changed
to leaving and the state of the actor previously at the end of
the prev bond (and nearer the head) is changed to grabbing.

  

Ytail

X

X

Y

{ P }

{ Y }

{  }

Figure 4: Confer graph rewrite rule. An actor in the default
state possessing behavior P and denoting behavior Y con-
fers behavior Y on the actor nearer the head when that actor
is in the unlocked state. It then exchanges position with it,
moving it towards the tail.

actors in the default state confer the behaviors they denote
on adjacent unlocked actors (Fig. 4). Finally, actors in both
locked and unlocked states are moved towards the tail.

The daughter’s actors, now possessing their full comple-
ment of behaviors, are assembled into a complete reified-
string at the end of a hand bond at the mother’s tail by graph
rewrite rules from the L behavior. When an actor in the last
state sees two others denoting the same behavior as itself
at the end of its hand, it sets both its own state and that of
the nearer of the two to grabbing and deletes its hand (Fig.
5). This separates mother and daughter reified-strings and
initiates the process of self-replication in each.

Reified-Set Quine

In the reified-string quine, the behavior graph was encoded
using an adjacency list representation, which is capable of
representing arbitrary graphs. However, the reified-string
quine’s behavior graph was far from general–two behaviors

  

L

L

L

L

L

{ L }
mother
   tail

L

L

daughter
    tail

L

Figure 5: Cleave graph rewrite rule. When an actor in the
last state sees two others denoting the same behavior as itself
at the end of its hand, it sets both its own state and that of
the nearer of the two to grabbing and deletes its hand.

Figure 6: Reified-string quine with hand bond (drawn green)
in the middle of the copy phase. Letters indicate actor type
and colors indicate actor state.

(D and P) were possessed by all actors while the remaining
behaviors (H and L) were possessed by only a single ac-
tor each. If we restrict ourselves to behavior relations com-
prised solely of generic behaviors and specialized behaviors,
a more compact encoding scheme can be used.

A reified-set is a KA consisting of a ring of reified actors
linked by prev and next bonds. A reified-set self-description
which is also a programmable constructor for the class of
reified-sets is a reified-set quine.

Reified-set quines have one great advantage when com-
pared to reified-string quines, namely, the order of the actors
in the ring is unimportant. More precisely, there is an equiv-
alence class of bond graphs which encode a given behavior
relation. Because actors can swap positions without chang-
ing the encoded behavior relation, they can possess a behav-
ior which continually mixes their positions in the ring, en-
suring that any two actors will eventually be adjacent. This
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{ A , B }{ A }
{ K }

B A

Figure 7: Shape graph rewrite rule. An actor in the shaping
state possessing behavior K, when adjacent to its continua-
tion, confers the behavior denoted by its continuation on the
actor at the end of its hand. It then exchanges position with
its continuation and leaves it in the shaping state.

permits a much more expressive form of parallel distributed
computation than was possible with the reified-string. In-
deed, if each actor in the reified-set possesses a unique ad-
dress and a unique continuation then the reified-set can ex-
ecute sequential programs which perform one operation for
every actor. In our work, an actor’s address is just the name
of the behavior it denotes and its continuation is the name
of another behavior. In effect, the reified-set, implemented
within a reified actor model using relative addressing, can
simulate a conventional non-reified actor model with a small
absolute address space.

Behaviors

Let X denote a generic behavior and X denote a special-
ized behavior then Z = {C,K,U,S,N,R,M,Z} is a reified-
set quine with the following behaviors:

C – create daughter pinch
K – find matching actor, confer type specific behaviors
using shape, then splice it into the reified-set
U – seek continuation
S – swap positions with adjacent actor
N – nothing
R – ratchet actors past pinch bonds
M – minimize bending energy (Williams and Shah, 1992)
Z – fission.

While the reified-string quine copied itself in two consecu-
tive phases, the reified-set quine copies itself using processes
called copy-decode, export, and verify running concurrently
in mother and daughter subrings.

Copy-decode

Copy-decode is implemented by graph rewrite rules from
behaviors K and U . It is a sequential program of sixty four

  

C C

{ C }

daughter pinch

Figure 8: Create graph rewrite rule. An actor possessing
and denoting behavior C, in the going state, when adjacent
to another actor in the same state, forms a pinch bond with
the adjacent actor and enters the checking state (initiating
the verify program in the daughter subring). The state of the
adjacent actor is set to ready.

  

B

B

A mother pinch A

{ R }

next

Figure 9: Ratchet graph rewrite rule. When at the front end
of the mother’s pinch bond, and adjacent to an actor in the
going state, an actor with behavior R waits until its next bond
is of maximum length. It then moves the adjacent actor past
the pinch bond by bisecting the next bond, leaving the ex-
ported actor in the gone state.

steps which runs in the mother subring and is comprised of
two nested loops–the outer loop copies the bond graph and
the inner loop decodes the set representation of the behavior
graph. Both loops iterate over the eight actors in the reified-
set. The outer loop begins when an actor in the finding state:

• forms a hand bond to an unbonded actor of matching type
in its n×n neighborhood

• gives the daughter actor the name of its continuation (it
will be the name of the daughter actor’s also)

• enters the shaping state.

An actor in the shaping state waits for its continuation to be
adjacent. When this happens, the actor:

• confers the behavior denoted by its continuation on the
daughter actor at the end of its hand (Fig. 7)

• swaps positions with its continuation (leaving it in the
shaping state)

• enters the pending state.
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{ Z }
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Figure 10: Fission graph rewrite rule. An actor possessing
and denoting the behavior Z, when in the fission state and
located at either end of a pinch bond, looks for a second
actor in the fission state in its bond graph k neighborhood
in the other subring. If one exists, the prev and next bonds
joining mother and daughter are rerouted so they coincide
with the mother and daughter pinch bonds; the actors in the
fission state enter the seeking state.

This begins the next iteration of the inner loop. The inner
loop continues until an actor in the shaping state finds itself
adjacent to its pending continuation. When this happens,
the inner loop exits and the actor enters the splicing state.
An actor in the splicing state waits until its next bond is of
maximum length. When this happens, the actor:

• inserts the actor at the end of its hand into the reified-set
by bisecting the next bond (leaving it in the going state)

• enters the seeking state.

This begins the next iteration of the outer loop. When an
actor in the seeking state possessing and denoting behavior
Z finds itself adjacent to its pending continuation the copy
program has finished, and the actor enters the fission state.
It remains in the fission state until the verify process (running
in the daughter subring) also completes.

Export

Export is implemented by a set of graph rewrite rules from
behaviors S, R and C which run concurrently with copy-
decode and verify in both mother and daughter subrings. The
swap graph rewrite rule swaps actors in the ready state with
actors in posterior positions; a second rule portages actors
around actors with hand bonds. These rules serve two pur-
poses. First, they continually mix the positions of the actors
in both the mother and daughter subrings, ensuring that any
two actors in the same subring will eventually be adjacent.
This is necessary for the copy-decode and verify programs to
make progress. Second, they cause actors in the going state
in the mother subring to move towards the gate formed by
the mother and daughter pinch bonds–bonds created by the
single rewrite rule in behavior C (Fig. 8).

Graph rewrite rules from behavior R control a gate formed
by a pair of parallel pinch bonds which separate the mother
and daughter subrings. Another graph rewrite rule swaps

pairs of actors joined by pinch bonds. This routes actors in
the subrings across the pinches, effectively short-circuiting
the mother and daughter subrings and ensuring that the
mother’s and daughter’s actors cannot mix. Indeed, the only
actors which can get past the mother’s pinch bond are actors
in the going state and they can only pass in one direction.
The actor at the front end of the mother’s pinch bond, when
adjacent to an actor in the going state, waits until its next
bond is of maximum length. It then moves the adjacent ac-
tor past the pinch bond by bisecting the next bond, leaving
the exported actor in the gone state (Fig 9). Another graph
rewrite rule performs a similar operation at the back end of
the daughter’s pinch bond, leaving the imported actor in the
ready state.

Verify

Verify ensures that the daughter has received the full com-
plement of actors before fission occurs. It is implemented
by graph rewrite rules grouped in behaviors U and Z. One
might think that fission could occur as soon as the actor
which is copied last is imported into the daughter subring.
However, because of the asynchronous nature of the export
process, there is no guarantee that the last actor copied will
be the last one imported. In fact, import order inversions are
common. For this reason, a simple eight step program (one
for each actor in the reified-set) is run in the daughter sub-
ring to verify that the full complement has been imported.

An actor in the checking state in the daughter subring
waits until it finds itself adjacent to its continuation. When
this happens, it enters the ready state and sets the state of
its continuation to checking. The one exception is the actor
representing the behavior Z–this actor is copied last and does
not seek its continuation but enters the fission state instead.

An actor possessing the behavior Z, when in the fission
state and located at either end of a pinch bond, looks for a
second actor in the fission state in its bond graph k neigh-
borhood in the other subring. If one exists, the prev and next
bonds joining mother and daughter are rerouted so that they
overlap the pinch bonds; the actors in the fission state en-
ter the seeking state, initiating the copy-decode program in
mother and daughter, now separate (Fig. 10).

Discussion

In the introduction, an analogy was made between enzymes
and actors, and it was suggested that the primary computa-
tional function of a cell’s membrane is to create an address
space within which actors can send and receive messages
without interference from the actors of other cells. The anal-
ogy is compelling. However, we have deliberately avoided
calling the movable feast an artificial chemistry. One reason
for not doing so is that we are trying to achieve with dozens
of actors what is accomplished in a biological cell by bil-
lions of enzymes. If we are to succeed then we cannot be
too literal in our imitation of the biological cell; our goal
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should be to build an airplane not a bird.

Communication

Hutton (2007) states that the primary obstacle to construct-
ing an artificial cell with a complete set of enzymes of the
sort he has described is the unwieldiness of the vastly larger
genome and membrane such a cell would require. However,
a more fundamental obstacle may be the difficulty of ensur-
ing communication between enzymes and locations where
reactions need to be catalyzed.

Do the enzymes of an artificial cell need to be confined
within a 2D space bounded by a 1D membrane? Or can they
comprise the membrane itself? Both approaches isolate a
cell’s enzymes from those of other cells. The second has the
advantage that a simple mixing behavior guarantees com-
munication between enzymes and locations where reactions
need to be catalyzed.

Modularity

All quines are grounded in terms defined externally in the
host programming language. A programming language can
have terms which are elementary and general (like Lego
bricks) or complex and highly specialized (like stereo com-
ponents). The terms can have uniform interfaces (like USB
devices) or interfaces which limit reuse (like the pieces of a
jigsaw puzzle).

The terms comprising the genome of the reified-set quine
are behaviors defined outside the quine itself. A crude upper
bound on the number of reifed-set quine genomes would be
2B where B is the number of behaviors. Of course B can be
made arbitarily large initially, but wholly new behaviors can-
not evolve; evolution is limited to discovering viable combi-
nations of pre-existing behaviors.

Do these exist? Are there viable and interestingly differ-
ent reified-set quines near Z in genome space? In partial an-
swer to this question, we have constructed two additional ex-
amples of reified-set quines which use very different strate-
gies to ensure that the daughter cell has received its full com-
plement of actors. The first, X , accomplishes this by running
a second instance of copy-decode inside the daughter sub-
ring instead of verify. In effect, the daughter demonstrates
its viability by constructing the granddaughter. The second,
Y , uses a modified copy-decode program which waits until it
sees the most recently copied actor in the daughter subring
(through the pinches) before it continues.

All three reified-set quines share behaviors K, S, R and
M while two (X and Z) also share U . This demonstrates
that behaviors can possess a degree of modularity and po-
tential for reuse and can be mixed and matched meaning-
fully. While the three reified-set quines were designed and
did not evolve, the fact that they exist suggests that a future
system more like Hutton (2007), with a genome containing
reified descriptions of graph rewrite rules subject to muta-
tion, would explore a genome landscape populated by viable

Figure 11: Six reified-set quines. Letters indicate actor type
and colors indicate actor state. In the mother subring of
the topmost quine, the copy-decode program has completed,
while the verify program is still running in the daughter sub-
ring. Hand and pinch bonds are drawn green and red.

Figure 12: Exponential growth of non-competing popula-
tions of reified-string quines, Q, and reified-set quines, Z.

and interestingly different artificial cells.

Experimental Results

In each of the three experiments, approximately 11000 un-
bonded actors were randomly placed on a grid of size
512× 512 to achieve a 4% area density. Except for pairs
joined by prev or next bonds, actors were excluded from
5× 5 neighborhoods surrounding other actors. The maxi-
mum bond length equaled 4, the diffusion constant equaled
0.5, and search neighborhoods were of size 11×11.

In the first experiment, the unbonded actors were of types
comprising the genomes of the Q reified-string quine and
the Z reified-set quine. The proportion of each type matched
that of the two genomes. A single reified-string quine and
a single reified-set quine were then placed in the grid, after
which, populations of both increased exponentially, in the
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Figure 13: Exponential growth of three non-competing pop-
ulations of reified-set quines. Z is the quine described at
length in this paper while X and Y use alternative strategies
to verify that the daughter has received its full complement
of actors.

Figure 14: Three populations of reified-set quines compete
for a shared resource, the K behavior. The Z quine outcom-
petes the X and Y quines.

process converting essentially all unbonded actors into ap-
proximately 300 copies of each quine (Fig. 12).

In the second experiment, the unbonded actors were of
types comprising the genomes of the X , Y , and Z reified-
set quines. As before, the proportions of each type matched
those of the genomes; types common to all three, e.g., K,
were three times as numerous as unique types, e.g., U . Sin-
gle X , Y , Z reified-set quines were then placed in the grid.
Populations of all three increased exponentially, yielding
424 copies of the Z quine, 345 copies of the Y quine, and
233 copies of the X quine (Fig. 13). The differences in
these numbers can be attributed to the fact that (after all
unbonded actors have been consumed) the final population
consists of a mixture of individuals at various points in the
self-replication process and which therefore exhibit a range
of sizes. The Z quine is the most efficient at converting un-
bonded actors into copies of itself while the X quine is the
least. This is presumably due to the fact that the X quine

requires its daughters to demonstrate their viability by con-
structing grandaughters. Consequently, the average size of
X quine intances is significantly larger than the average size
of Y or Z quine instances.

The conditions of the third experiment were nearly iden-
tical to those of the second except that the number of un-
bonded actors of type K (common to all three genomes),
was reduced by a factor of three. Consequently, populations
of X , Y , and Z quines were forced to compete for the under-
represented shared resource. The winner of the competition
was the Z quine, which succeeded in constructing nearly 400
complete individuals, while the X and Y quines succeeeded
in constructing less than 50 each (Fig. 14).

Conclusion
A highly expressive, indefinitely scalable, and asynchronous
model of parallel distributed spatial computation has been
introduced and used to define a series of self-replicating
kinematic automata. These machines assemble copies of
themselves from components supplied by diffusion and in-
crease in number exponentially until the supply of compo-
nents is depleted. Because they are both programmable con-
structors and self-descriptions, we call them reified quines.
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Abstract†
The production of autonomously functioning, integrated, 
complex networks  of physico-chemical processes requires the 
creation of some mode of informational representation  in 
molecular form (genes), not  only  as a matter of fact but also as 
the only  plausible way of designing such  systems to achieve 
control  with  a level  of specificity typical  of molecular 
biological  processes.  Likewise, only through their natural 
selection as parts of systems which express  the information in 
them could DNA sequences of kilo-, mega- or giga-base length 
attain specific representational  meanings of biological 
significance.  Nothing worthy  of the designation  “Artificial 
Life” will exist until an information-interpreter/constructor 
coupling of the sort that emerged  at  life’s origin  on our planet  is 
recapitulated  in  the laboratory.  Attempts  to  achieve such  a goal 
require very  careful  scrutiny and the ethics of such endeavours 
should be discussed within the context of a radical  critique of 
how  human agency is  constituted  and how it  is linked to 
fundamental biological processes.

Introduction
The central thesis of Schrödinger (1944) concerning the 
question “What is Life?” was that the processes of biological 
inheritance require that information be stored in some stable, 
replicable, microscopic array which he chose to describe as a 
“quasi-periodic crystal”,  using a term first coined by Delbrück 
(Timoféeff-Ressovsky et al.,  1935).  Schrödinger reasoned 
that finely differentiated characteristics of large organisms, 
such as the Habsburger Lippe,  that could be genetically 
transmitted across generations spanning centuries,  must be 
encoded in some structural feature of the chromosomal 
material of an individual cell.  Although his speculations 
concerning the atomic form of the genetic representation of 
heritable information were quite wide of the mark, the 
elucidation of the quasi-periodic linear polymeric structure of 
base-paired double-stranded DNA (Watson and Crick, 1953) 
is reasonably interpreted as a confirmation of Schrödinger’s 
hypothesis.
 In the ensuing decades molecular biologists have uncovered 
in exquisite detail,  and continue to do so,  the ways in which 
the autonomous operation and maintenance of individual cells 
and multi-cellular organisms depends on the expression of 
genetic information.  The paradigm of genetic expression is 
the biochemical control of basic metabolism that is achieved 
through protein synthesis.  The genetic code defines a one-to-
one mapping from specific base sequences of nucleic acids to 
corresponding amino acid sequences of proteins, which then 

serve as catalysts for the multitude of elementary chemical 
transformations that must be effected for a cell to survive.
 In spite of the success of molecular biology, very little 
attention has been paid to understanding, within the 
definitively empirical context of the discipline, some of the 
deeper theoretical  problems presented by the idea of natural 
systems coming to contain an abstract self-representation in 
physical form.   To say that the pairing of DNA sequences with 
the systems in which they occur is achieved through 
Darwinian natural selection is to beg the question “Why do 
some DNA-system pairings allow the generation of living 
organisms and others not?”  Physically pairing the E. coli 
genome with a DNA-free human (stem) cell,  or vice versa, 
does not produce a viable result; however,  replacing the 
genome of M. capricolum with that of M. mycoides does 
(Gibson et al., 2010).  Thus, in spite of the many similarities 
in the molecular biological processes operating in different 
organisms, such as the near universality of the informatic rules 
of protein synthesis, cells cannot be construed as containing a 
universal constructor of the sort considered by von Neumann 
(1949) in his theory of self-reproducing automata.   The quasi-
Platonic mathematical space of genetic sequences in which all 
possible organisms are defined, as envisioned by neo-
Darwinists (Dawkins, 1986), is an illusion.  Selection of a 
phenotype may be a result of some arbitrary,  autonomous 
change in the behaviour of the interpreter/constructor, rather 
than the result of a genetic change.   A full account of 
biological evolution requires a description of the structural 
constraints that define which DNA sequences are amenable to 
interpretation by corresponnding molecular biological 
systems, not just  an analysis of the phylogenies of genetic 
sequence elements and their incidentally associated 
phenotypes (Wills, 2009).
 This line of argument exposes the very point at  which 
current theories of the autonomy of living systems reach their 
limit.  The apparently general biological constructors 
employed by proponents of synthetic biology (Gibson et al., 
2010) are, in fact,  virtually intact (denucleated) cells from a 
taxon closely related to the species of origin of the novel 
DNA with which the interpreter/constructor is presented.   The 
constructor itself is a very complex system comprised of an 
enormous number of macromolecules, many of them specific 
proteins,  which have only ever appeared in the cosmos as a 
result of their coexistence with their genetic representation.  
Clearly, modern biological constructors have evolved from 
more primitive ones.  Although this process has been one of 
coevolution with genetic sequences, it cannot be reduced to 
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the evolution, through natural  selection, of those sequences,  as 
Dawkins (1986) would have it.   Some means of interpreting 
genetic information, by way of a biological constructor, must 
have existed before nucleic acids of any biological value 
could be said to have survived as a result of natural selection.  
 Now that language from the theory of automata and 
informatics is used ubiquitously in molecular biology to 
describe the fundamental relationship between genetic 
information and the results of its expression, the chicken-egg, 
protein-DNA dilemma should be recast as the problem “What 
came first, the biological constructor or its genetic 
representation?”  And of course the dilemma is only resolved 
by saying that neither precedes the other in biology, the 
history of which is the product of their conjoint evolution.
 In this paper I will investigate the implications of this view 
of the origin of life as an information-constructor coupling 
event in relation to projects which aim to create living systems 
de novo.  I conclude that our understanding of this natural 
coupling is so primitive that there is currently no prospect of 
creating true Artificial  Life.  I will  also present a pessimistic 
view of the possible consequences of pursuing high-impact 
transformative technologies which piggy-back on the 
intricately elaborated intact versions of the information-
constructor coupling that can be mined from extant organisms 
and adapted by human to the pursuit of power and ill-
conceived goals.

Biological specificity
Schrödinger (1944) enunciated the modern view of molecular 
biological information as a solution to the problem of 
explaining the stability of biological inheritance in the face of 
the perpetual disordering effects of microscopic thermal 
processes.  Two decades later physico-chemical details of 
ribosomal protein synthesis had been elucidated and explained 
in terms of the existence of a genetic “code”, establishing a 
paradigm for the way in which genetic information is 
expressed in cellular systems.  Although the idea of a 
symbolic code, a translation table between alphabets, had no 
precedent in the description of the physics and chemistry of 
natural systems,  it  quickly became the context of virtually all 
discourse about molecular biological processes.   The principal 
theoretical expression of the new mode of description of 
biochemical processes was framed by two principles put 
forward by Crick (1958),  the Sequence Hypothesis and the 
Central Dogma.  The Sequence Hypothesis addressed a 
problem which was implicit in Schrödinger’s view of 
inheritance – the source of biological specificity,  that is,  what 
differentiates one organism from another, or one biochemical 
process from another, down to the level of taxon-specific 
molecular structures.
 According to the Sequence Hypothesis (Crick, 1958)  “the 
specificity of a piece of nucleic acid is expressed solely by the 
sequence of its bases and … this sequence is a (simple) code 
for the amino acid sequence of a particular protein”.  Then, in 
what we would now take as a very rough first-order 
approximation, the functional specificity of proteins, folded 
chains of amino acids, was reduced to sequence information 
under the assumption that “the folding is simply a function of 
the order of the amino acids” in the protein.  Crick had 
obviously made simplifications that were not entirely justified 

but none that caused the broad-brush picture to be abandoned 
as discoveries of more elaborate molecular biological 
processes accumulated.  The Sequence Hypothesis provided 
the first explanation of how stably stored molecular 
information “got out” and had some effect in cells.  
Furthermore,  it gave some insight into how genetic 
information afforded control to be maintained over internal 
cellular processes of metabolism and, as was discovered 
shortly afterwards, gene expression (Jacob and Monod, 1961).  
The large effects that small differences in the amino acid 
sequence of a protein could have on its catalytic properties 
clearly demonstrated the biological specificity of genetic 
information.
 There have been many attempts, without an appeal to the 
existence of genetic information, to describe the appearance in 
the world of biochemical-like order in molecular systems. The 
emergent autocatalytic sets proposed by Kauffman (1986) 
represent perhaps the best-known systems that, in the abstract 
at least,  meet the fundamental criterion of displaying a 
thermodynamically driven disorder-to-order transition in a 
complex network of interacting molecules.   However, none of 
these systems has “rules” of any sort that are comparable with 
the quasi-cybernetic Turing-machine-like operations typical of 
the processes of protein synthesis and the genetic code.   It is 
as if every new feature of these non-genetic systems emerges 
de novo from functional disorder, whereas in genetically 
controlled catalytic systems functional novelty can be 
achieved by modularizing intact subsystems whose operation 
is restricted to a range of variation determined by the invariant 
mode of their informational encoding.  In fact it is difficult  to 
envisage how the precise specificity of differentiated 
processes needed to define diverse individual taxa could be 
maintained without recourse to some kind of information 
whose storage system was protected from the vagaries of 
thermal disturbance.  
 The same argument can be applied to systems which store 
information in a combinatorial rather than a sequential 
fashion.  As a direct consequence of their very nature, 
“compositional genomes” (Segré et al., 2000) have very 
limited information storage capacity and a recent study 
indicates that systems employing this mode of genetic 
information storage do not have the capability to evolve 
through natural selection (Vavas et al., 2010).   Even if they 
could, their limited information storage capacity would set a 
low upper bound on the functional specificity that could be 
achieved through genetic expression.  The specific nano-level 
control of molecular biological processes requires a very high 
density of information storage, such as can be achieved in the 
sequences of nucleic acids.  That is not to say that 
combinatorial information is not of functional significance in 
biological systems, the signal transduction code described by 
Barbieri (2003) being a pertinent example.  Rocha and 
Hordijk (2005) have considered these problems from a quite 
general perspective and concluded that any system capable of 
evolution requires functionally useful information to be stored 
in some inert form so that it can serve as a stable 
representation from which alternative dynamic configurations 
of the system can be constructed.
 The argument of Schrödinger (1944) concerning the need 
for some system of atomic or molecular information storage is 
as relevant to explaining the stability of the processes that 
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determine and maintain biological specificity as it is to 
explaining the stability of biological inheritance.  It seems 
implausible that the level of structural and functional 
specificity typical of molecular biological systems could be 
stably maintained through relationships among the available 
dynamic states of an autocatalytic network, dispersed as these 
inevitably are across spatial domains much larger than any 
structural features of individual molecules.   The conclusion 
that the level of functional specificity displayed by dynamic 
molecular biological systems requires informational 
specification in a form that can be contained in a region of 
space even much smaller than a single cell seems inescapable.  
On the other hand, this does not mean that Crick (1958) gave 
an adequate account of the character of the processes that 
determine biological specificity,  for he neglected altogether 
the thermodynamic aspect of molecular biological information 
processing (as opposed to information storage) that 
Schrödinger referred to as the “negentropy” principle and 
which Kauffman (1993) and others have addressed in their 
analyses of disorder-to-order transitions,  especially in far-
from-equilibrium systems (Prigogine and Nicolis, 1971).

“What is Life?” again
Even if the Sequence Hypothesis of Crick (1958) is taken to 
be a heuristic device rather than being empirically testable, its 
simplicity and elegance obscure a deeper flaw in the picture of 
how cells are able to maintain themselves and reproduce.  
That flaw has not been corrected during the decades in which 
it has been discovered that the biochemical control of intra-
cellular processes is much more complicated and elaborate 
than it first  appeared to be.   No matter how refined a 
description of a cell’s molecular biology may be, if it 
implicitly assumes that the specificity of molecular biological 
processes originates solely in genetic sequence information 
then it fails as a scientific explanation because it gives no 
account of the origin of the means of interpretation of the 
information.  Following Crick, one is forced to assume that 
the ribosomal machinery and all of the other components of 
the protein synthetic apparatus, or some earlier, simpler 
version of it,  were provided by evolution as a molecular 
biological “free lunch”.
 The genetic meaning of any nucleic acid sequence cannot 
be determined except within the context of a physico-
chemical system that acts as an interpreter or constructor of 
some sort.  And the hallmark of the molecular components of 
cellular interpreter/constructors is their extremely refined 
specificity of action.  Furthermore,  the integrated action of a 
large number of components with very specific structures and 
interactions is needed to maintain the specificity of any one of 
them.  This could not be achieved in the absence of genetic 
information, as we have just observed, but it is equally true 
that nucleic acid sequences would be devoid of biological 
meaning in the absence of integrated, functional specificity. 
Thus, it could be said that biological specificity originates as 
much in itself as in the genetic information it uses to maintain 
itself.
 On this basis a limited definition of elementary life may be 
given down the following lines: a complex, microscopic, 
dynamic, physico-chemical system may be said to be living if 
recurrent synthesis of its structurally specific molecular 

components occurs as a result of  their mutual co-existence 
with a store of molecular information whose interpretation is 
defined by the processes occurring in the system.  This 
suggested definition expresses the maxim given as the title to 
this paper, that “life requires genetic representation and vice 
versa”, but compared to the enduring view of Crick (1958) it 
emphasizes a quite different aspect of genetic information in 
biological systems.  
 Crick (1958; 1970) described the role of genetic 
information in molecular biological systems in his Central 
Dogma, which is most easily stated in the form “once 
information has got into protein it can’t get out again”.  
Although application of the Central Dogma was limited to the 
determination of the polymeric sequences of nucleic acids and 
proteins,  its combined effect with the Sequence Hypothesis, 
identifying specificity with sequence information, was to 
create a view, still widely held among molecular biologists, of 
genes as the ultimate determinants of all biological specificity.  
And this view has been elaborated even more widely in the 
neo-Darwinian interpretation of evolution, according to which 
genetic mutation is the ultimate source of all biological 
novelty (Dawkins, 1989).
 Contrary to this picture of living systems portrayed by the 
Central Dogma and neo-Darwinism, the tentative definition of 
elementary life provided above gives prime place to the 
maintenance of self-representation in genetic information as 
the cardinal feature of living systems, not the determinative 
existence of genetic information per se.  The Central Dogma 
is often stated as the epithet “DNA makes RNA makes 
protein” under the implicit assumption that the means of 
information transfer are a given.  Biological information 
transfer is taken unproblematically to have arisen as a result of 
molecular selection.  It is conceded that the elementary 
molecular biological interpreter (the apparatus of protein 
synthesis and the code) was somehow bootstrapped into 
existence through a series of molecular events which remain a 
fascinating physico-chemical puzzle,  but the possibility that 
information theoretic aspects of the origin of coding were the 
dominant constraining features of the process is seldom 
contemplated.  However, the current enquiry leads us to 
redirect attention into the origin of life to focus on the 
emergence of an interpreter of genetic information (Wills, 
2009), not its accumulation through natural selection (Eigen, 
1971). 

Origin of life
According to the definition espoused in this paper,  the most 
important feature of life’s origin is the emergence of an 
autocatalytic system of molecular components whose 
synthesis has an obligatory dependence on extant information 
stored in some molecular/atomic form.  At first the catalytic 
specificity represented in such a system is likely to have been 
very restricted and the amount of information stored very 
small.   One could envisage a system in which the autocatalytic 
set comprised no more than early representatives of the Class 
I and II amino-acyl tRNA synthetase (AARS) proteins whose 
polymeric sequences were differentiated by the specific 
placement of amino acids from two distinguishable classes, 
perhaps {glycine, alanine} and {valine,  aspartic acid}. 
Through their combined operation, these proteins would 
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mutually produce themselves as a result of their individual 
capabilities of roughly differentiating between two classes of 
primitive codons,  perhaps {GGC, GCC} and {GUC, GAC} 
(Eigen and Winkler-Oswatisch, 1981), in two special genetic 
sequences,  which may even have been complementary nucleic 
acid strands (Rodin and Rodin, 2006).  A precursor system 
may have employed a one-letter code for these four amino 
acids (Francis, 2011).   Although this is all speculation it  serves 
to illustrate in elementary form what the proposed definition 
of life takes to be the prime feature of molecular biological 
systems – the necessity of information-processing dependent 
constructive autocatalysis.
 It has been demonstrated that some physico-chemical 
systems afford, even from initial conditions comprising 
completely random synthetic events,  the stepwise 
autocatalytic emergence of increasingly specific coded 
information processing (Wills,  2009; Füchslin and McCaskill, 
2001; Markowitz et al., 2006).  And what is most interesting 
is that the obligatory facilitating feature of the emergence of 
coding in such systems is the satisfaction of what may be 
described as informatic boundary conditions (Wills, 1993; 
Neiselt-Struwe and Wills, 1997).   These conditions amount to 
constraints on the complex relationship between the 
distribution of catalytic activities among molecular structures 
and the specific genetic sequences needed by an autocatalytic 
set of information-dependent synthetases.  When the 
appropriate informatic boundary conditions are satisfied 
coding can be sustained in the presence of a genetic sequence 
that serves as a self-representation of a particular autocatalytic 
set of information-dependent synthetases.  Generalizing this 
feature of molecular biological information-processing leads 
to the conclusion that any definition of life must include some 
description of purely formal features of correspondences 
between symbolic sequences, of which particular polymers 
and their physico-chemical properties are no more than 
particular instantiations. 
 As a simple calculation demonstrates (Wills,  1993), a 
genetic sequence potentially interpretable as a source of 
information for coding autocatalysis has virtually zero 
probability of coming into existence as a result of undirected 
competition between replicating polymers.  This leaves open 
only one plausible path to life: an autocatalytic system 
directing the selection of nucleic acids whose sequences are 
“reflexive” (Wills, 2001) vis-à-vis  their translation into 
functional form, “interpretation as self-representation”.   The 
coupling between autocatalytic processes and the replication 
of information polymers necessary to effect the directed 
selection of meaningful genes cannot occur in a homogeneous 
system (Wills,  1994; Füchslin and McCaskill,  2001) and 
therefore some sort of spatial localization of associated 
molecular processes is entailed in the very notion of emergent 
information-processing at the origin of life.  Autonomous 
control of such localization is germane to the definition of life 
given by Gánti (2003) as well as the idea of a cellular 
autopoietic network (Maturana and Valera, 1980).
 On these grounds it seems highly implausible that nucleic 
acids could attain any representational meaning of biological 
significance except through their natural selection as 
components of systems, which express the information in 
them.  If life is defined, as proposed,  in terms of the 
information-interpreter/constructor coupling observed in 

extant molecular biological systems, then this amounts to 
saying that genetic representation is impossible except in 
spatially localized living systems.  Our understanding of the 
emergence of an information-interpreter/constructor coupling 
at the origin of life is still primitive, the question having been 
addressed only in studies by Füchslin and McCaskill (2001) 
and Markowitz et al.  (2006).  At least the need for a non-
equilibrium phase-transition in the dynamics of systems that 
synthesize polymers randomly has been established; as has the 
way in which the complexity of the alphabet for genetic 
representation can increase in a stepwise manner (Wills, 2009) 
leading to a rapid expansion in not only the amount of 
information that can be stored but also the specificity of 
function of individual molecular components that can be 
maintained in such systems.
 Beyond the genetic code that determines the specificity of 
ribosomal protein synthesis there are many other modular 
processes in biological systems that are amenable to the direct 
transfer of symbolic information.  Barbieri (2003) associates 
the emergence of higher level codes with major transitions in 
the trajectory of biological evolution.

Synthetic biology
It is widely accepted that the life of every organism, however 
life is to be defined, is derived from the life of its parent(s) 
such that all terrestrial life can be traced back to a single 
origin some three to four billion years ago.  If we assume that 
organisms always contain genetic information and we allow 
an abbreviated definition of the life of an organism as 
recurrent synthesis of its structurally specific molecular 
components then we see that there is inter-generational 
continuity in the specificity of the controlled,  microscopic, 
irreversible processes occurring in cells as well as inter-
generational continuity (with variation) in the genetic 
complement of cells.  Life has continued as an unbroken chain 
since its origin because cells acquire their complex dynamic 
state, as well as their genes, through the processes of 
biological inheritance.  
 According to our proposed definition of life we can take 
genes to be sequences of symbols rather than the physical 
entities, the nucleic acids, in which they are instantiated.  This 
is not in any way at odds with the manner in which molecular 
biologists have thought about and manipulated genes ever 
since the language of a genetic “code” was first developed.  In 
fact the process of genetic engineering consists increasingly of 
procedures of calculation using symbolic sequences.  The 
process of instantiating designed genes as DNA molecules and 
inserting them into cells is just the very last step in the typical 
production of a modified organism.  Physical causation is of 
little consequence in the whole process. 
 In describing their latest enterprise with Mycoplasma,  a 
team at the J.  Craig Venter Institute claims to have created a 
new taxon,  also referred to as a “synthetic cell”,  by starting 
from digitized genome sequence information (Gibson et al., 
2010).  In making the claim that the cell is synthetic these 
scientists are suggesting that mental processes have been in 
some way causative in bringing the cell into existence.   The 
alternative is to accept a restriction to explanations in terms of 
physical causation,  on which basis there is no distinction 
between what is natural and what is artificial or synthetic.  
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Adopting that point of view we would say that the modified 
organism came into existence as a result of the firing of 
particular neurons in particular human brains and particular 
changes in particular electronic circuits.  However, the same 
result would have been arrived at through a quasi-infinite set 
of similar world-lines with nothing particular in common 
except their completely arbitrary specification as involving the 
same symbolic representations of genetic sequences.   So, let 
us first accept the team’s claim to some kind of causative 
agency.  What is the extent of their agency in the cell’s 
coming into existence?  
 The team started with an intact cell of M. capricolum, 
removed its DNA and replaced it with synthetic DNA, whose 
sequence had been copied from M. mycoides and then slightly 
altered.  If,  unbeknown to them,  there had been a single error 
in the sequence they synthesized, corresponding to a fatal 
mutation, then they would have had no grounds to claim the 
creation of a synthetic cell.   That being the case, it seems 
illegitimate to ascribe agency to symbolic information-
processing associated with matter configured in human 
neurological form and no agency whatsoever to matter 
configured in the form of M. capricolum.   This problem is not 
resolved by the statement of Gibson et al. (2010) that “the 
DNA software builds its own hardware”.  In fact, ascribing 
constructive agency to an entity comprised of symbols 
(software) violates the scientifically conventional continuity 
of physical causation.   By any normal delineation between 
physical and symbolic entities one would have to say that it is 
the hardware which builds itself by reading the information in 
the genetic software made available to it.  A cell envisaged as 
computer hardware that can remain operational and transform 
itself to new specifications when the program it  is executing 
to maintain itself is suddenly swapped for a different one 
seems more worthy of the descriptions “creative” and 
“innovative” than members of H. sapiens,  conceived as 
assemblages of molecules which effect minor changes in 
DNA sequences in vitro.   However, the idea espoused in the 
definition of life proposed in this paper is that agency in living 
systems arises from neither software nor hardware but from 
the coupling between them that corresponds to symbolic self-
representation.  [It is quite usual for biologists to ascribe some 
sort of active agency to natural selection, offering 
explanations such as “selection made a change to the system 
that improved function” (Johnson and Lam, 2010).]
 Scientific discourse is ill-equipped to start defining the 
nature and extent of agency entailed in the autonomous 
operation of living systems, because there is no agreed formal 
description agency that can serve as a basis for either 
theoretical analysis or empirical enquiry.  But then, without 
admitting that ethics are essentially about the status and rights 
that are appropriate to diverse agents,  scientists have little 
hesitation in taking their own assessments of the significance 
of what they have done as a context for framing discussion of 
ethical aspects and implications of their field of research.  As 
Gibson et al.  (2010) state “We have been driving the ethical 
discussion concerning synthetic life from the earliest stages of 
this work”.  It would be foolish to denigrate such efforts or the 
deliberations behind them.  However, it  is difficult to see how 
such a discussion could acquire any worthwhile depth in the 
absence of a penetrating critical analysis of global institutional 
structures that give inordinate weight to scientific perspectives 

in which agency is treated as if its existence were purely 
metaphorical,  except when associated with humans.   More 
concerning this shortly.

ALife and Living Technology
In terms of the definition of living systems proposed in this 
paper,  creating an artificial form of life will entail the 
construction of a never-before-seen coupling between a self-
maintaining, complex, physico-chemical system and its self-
representation in a store of molecular information.  It  would 
be difficult to convince this author that a system whose 
primary mode of information transfer resembled ribosomal 
protein synthesis in any significant detail could qualify as 
being truly artificial.   This assessment is made on the grounds 
that the self-representational information-interpreter coupling 
found in terrestrial biological systems constitutes a “design”. 
[It is noteworthy that use of the term “design” is not being 
restricted to symbolic representations associated with brain 
states of members of H. sapiens and their artefacts; or those 
belonging to other supposed intelligences, whether they be 
material, purely mental, aetherial,  or spiritual, however such 
categories might be conceived of.]  The design for specifying 
the construction of a supposedly artificial system employing 
nucleic acid to protein information transfer and mimicking 
details of ribosomal protein synthesis, in essence the life of 
the constructed system, could reasonably be called “(a) 
property” that had been appropriated, almost entirely, from an 
extant living system. A cell created from homogeneous 
preparations of individual components to operate as an 
encapsulated nucleic acid-protein-ribosome system would 
indeed qualify as an example of the “synthetic cell” that 
Gibson et al. (2010) actually have failed to achieve, but it 
would not be Artificial Life because its design would have 
been copied from the version of life found naturally occurring 
on this planet.
 At this point it seems relevant to ask what might motivate 
construction of a form of Artificial Life that truly met the 
criteria that have now been outlined.  It is nearly two centuries 
since Shelley (1818) identified the motivation to cobble 
together organisms from dead parts as a quest to take in hand 
the intrinsic power of what is conceived to be the principle of 
life; in mythological terms,  the fire of the gods stolen from 
Zeus by Prometheus and given to mortals.  For Bedau et al. 
(2010) the harnessing of such power is implicit in the creation 
of technology that incorporates the most basic features of 
living systems.  Although they do not focus exclusively on 
Artificial Life, they deem technology to be living “if it is 
powerful and useful precisely because it has the core 
properties of living systems, including such properties as the 
ability to maintain and repair itself,  to autonomously act in its 
own interests, to reproduce,  and to evolve adaptively on its 
own” and predict that during our lifetimes we will see 
“technology that is robust,  autonomous, self-repairing, self-
reproducing, evolving, adapting, and learning —a powerful 
combination of life’s core properties that no current 
technology yet embodies” with the final assessment that “this 
transition will be a truly singular event in human history”.
 Although they acknowledge potential dangers,  Bedau et al. 
(2010) see ripe opportunities for living technology in 
medicine, environmental sustainability, energy cycles, 
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advanced materials, individually adapted manufacture, self-
organising software, etc.  They also consider it possible to 
initiate an evaluation of living technology without either 
discussing the nature of life,  except in terms of a list of core 
properties, or tackling the problem of “design” – the 
relationship between physical reality and its representation on 
which the natural/artificial divide is founded.  These authors 
then find it unsatisfactory that most people think about 
Frankenstein (Shelley, 1818) or Prey (Crichton, 2002) when 
they hear about protocells – rather minimal artificial life forms 
far simpler than the most elementary modern bacteria – 
without even a hint that what they are proposing might fail to 
respect a value that is intrinsic even to the most primitive 
living systems.  Humanity’s construction of ethics is only now 
beginning to adjust to the idea that our behaviour may be an 
affront to norms that precede our evolutionary arrival in the 
cosmos.   Could it be that the historical transition envisaged by 
proponents of Artificial Life and Synthetic Biology will play 
out as the encounter of H. sapiens with some aspect of reality 
of which, so far, we have only the faintest inkling,  the “life” 
we cannot yet adequately define, but which is as fixed and 
immovable in its reactive behaviour as the physical aspect of 
reality, something we will discover to our own self-
determined peril?  That is what Frankenstein (Shelley,  1818) 
is about primarily, not the shocking monster.
 Both Gibson et al.  (2010) and Bedau et al. (2010) make it  
clear that the prospect of creating Artificial Life raises new 
questions of ethics and they appeal to well-accepted values 
like human health, environmental sustainability and human 
rights as the proper context for in-advance ethical evaluation 
of the emerging technology.  Elsewhere,  another group (Bedau 
et al.,  2009) has proposed ethical guidelines for enterprises 
concerned with artificial cells; and the ramifications of current 
activity in Synthetic Biology has been subjected to quite 
detailed analysis (Rabinow and Bennett,  2009), albeit from a 
perspective deeply imbued with the values of postmodernity 
(Forman,  2010).  Laudable though these efforts are,  none 
involves consideration of the possibility that the socially 
constructed motivation for pursuing Artificial Life, that is,  the 
appropriation by H.  sapiens of nature’s inherent capacity for 
self-construction through symbolic representation, may be 
misdirected in the sense that it will ultimately prove to be a 
mode of self-destruction rather than self-construction.  How 
are we to judge?
 The remainder of this paper can be taken as an illustrative 
approach to this problem, an attempt to start down a pathway 
that may assist  to conceive of and realise a different 
representation of humanity’s future.

Global, historical implications 
Scientists are generally unlikely to warm to much of his 
philosophy,  let alone his politics, but Martin Heidegger has to 
be credited with having set in motion many of the last 
century’s most profound considerations relevant to the 
relationship between physical reality,  its representations and 
its utility.   The early Heidegger (1939) was convinced by 
Aristotle’s portrayal of the real world whose processes are 
open to observation (physis; nature) as more than a succession 
of material states.  He found the role of techné (technique, 
know-how) as a cause of change in the world to be crucial for 

a proper understanding of human reality.   In his discussion of 
Aristotle’s truism “a human being is generated from a human 
being, but not a bedstead from a bedstead” (since Antiphon 
had observed that, at most, a tree would grow from a planted 
wooden bedstead), Heidegger (1939) explains that there has 
been a historical misunderstanding of the role of techné in the 
generation of things that grow, as opposed to artefacts. 
Elsewhere he describes physis as “the realm of things that 
emerge and linger on” (Heidegger, 1959) conceiving of 
nature’s essence in terms more biological than simply physical 
or mechanical.  According to Heidegger, our misconstruing of 
nature as a self-making artefact provides the ground for our 
mastering nature through technology and making it  subject to 
our own narrow purposes.  The later Heidegger (1977) is more 
concerned with the historical consequences of our 
technological mastery of nature and he characterizes 
technological society’s consciousness of the real world as Ge-
stell (“En-framing”),  a conception that leads us to treat 
existence, our own even,  as Bestand (“standing reserve”), at 
hand, ready for use.
 Whether or not one is sympathetic to Heidegger at all,  he is 
the major figure in a philosophical tradition that can hardly be 
ignored by scientists finally seeking to exercise,  in advance, 
some responsibility for actions of theirs that may have 
momentous historical consequences.  One of the things we 
learn from that tradition is to question the structure of 
consciousness and its dependence on the vagaries and 
arbitrariness of internal constructs, especially as these 
influence and constrain our conception of nature; and that 
means bringing to bear rigorously, in a self-reflective fashion, 
considerations and critical analyses from all disciplines, 
especially those that challenge the complacency of the modern 
scientific perspective and the culture of power in which it is 
embedded.  In respect of assessing the value of Artificial Life, 
we have to ask, outside of the comfort of the cultural context 
of our own experience,  what each of the things that self-
evidently has value, like health, environmental sustainability, 
and human rights, actually is;  from what more general point of 
view might these things have value (and therefore justify the 
pursuit of ALife); whether they have anything like a “natural” 
connection to terrestrial life; and therefore whether these 
values are related to ALife in a way that may not become 
obvious in the process of creating the technology.  The ethical 
issues raised by Artificial Life cannot be framed without 
deconstructing some of the most basic tenets of international 
law, global business practice and even scientific 
experimentation,  namely,  human ownership of and control 
over the functional processes and genetic identity of 
biological systems.   While Rabinow and Bennett (2009) 
conclude their considerations of the ethical ramifications of 
Synthetic Biology by alluding to some of these problems, 
their descriptions of the relevant research activities accept 
proponents’ ideas of technological progress and its legitimacy 
rather unquestioningly. 
 Normative values like wealth, innovation,  growth, health 
and security, derived from spheres of predominantly 
economic, medical and military activity in what is known to 
itself as “the developed world”, provide a poor basis for 
determining humanity’s relationship with complex biological 
systems.  It is clear that science is now losing much of its 
previously proud independence from such norms.  As Forman 
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(2010) shows, the moment we attempt to investigate how 
modern global society places science and technology in 
relation to its normative values, we see that science has been 
downgraded and technology upgraded in cultural rank.   This 
process has occurred during the last three decades or so, the 
exact period during which the basic properties and functions 
of living systems have started to become objects of human 
exploitation.  Artificial Life and Synthetic Biology are both 
positioned as primarily technological rather than scientific 
enterprises, with strong links to the privileged economic base 
of global human power (Rabinow and Bennett, 2009).   The 
effect of the recent elevation of technology above science can 
be seen in the research community itself.  The methodical, 
disinterested scientist has been displaced by the single-minded 
entrepreneur,  who resourcefully pursues self-interest with 
clever disregard for apparently irrelevant aspects of prevalent 
codes of practice.  Attention or lip-service to ethics is 
integrated into a system of shallow legitimation of whatever is 
deemed desirable and economically achievable by those who 
seek, or have become accustomed to, the power that shifts into 
the sphere of the new technology.
 Rather than accepting this state of affairs and assuming that 
Darwinian forces operating in various institutional, social, 
economic and legal systems will finally determine what is of 
value,  we are in a position to use the forces of reason and 
conscience to evaluate and choose what contribution we make 
to science and technology.  There are some broad lessons to be 
learned by taking history as our guide,  lessons that have to do 
largely with the state of ignorance, rather than knowledge, that 
obtains in any particular epoch.  Humanity’s current global 
crises are aggregations of the effects of many local actions 
conceived and conducted largely in the absence of any 
perception of their possible broader consequences.   However, 
even scientifically informed and motivated judgments can 
result directly in consequences that turn out, with hindsight, to 
be undesirable because the science of any epoch, our own 
included,  is limited to over-arching assumptions that cannot 
be guaranteed to do justice to all of reality.  For example, the 
early Darwinian naturalist Walter Buller believed that the 
replacement of endemic avian species in New Zealand by 
superior exotic types was a foregone conclusion.  He shot the 
already rare huia,  now extinct, so that there would be forever 
preserved, in far off imperial museums, good specimens of 
this species,  unique on account of its sexually differentiate 
mandibles (Buller, 1873). 
 In what potential ways could current conceptions of 
Artificial Life be proved inadequate in respect of actions, 
performed now, being deemed, on the basis of subsequent 
experience, later to have been based on profound ignorance?

Assessing future prospects 
If, as has been proposed in this paper,  the cardinal feature of 
living systems is the self-representing (“reflexive”), 
information-interpreter/constructor coupling which emerged 
on the planet in its most primitive manifestation with the 
origin of the genetic code some three to four billion years ago; 
and if,  associated with major evolutionary transitions, the 
establishment of further couplings of that character enabled 
more complex versions of biological autonomy based on the 
exchange of symbolically encoded information between 

differentiated subsystems (Barbieri, 2003); and if the general 
possibility of such couplings is a purely formal feature of the 
cosmos,  not necessarily related in any specific way directly to 
any detailed feature of the particular physical universe that we 
happen to inhabit; then, because biology lacks concepts 
adequate for the task of answering the question “What is 
life?”, we are indeed profoundly ignorant of the consequences 
that may follow from our appropriation of the fundamental 
processes of biological causation in pursuit of short-term 
institutional or societal goals.
 If there is anything that should bear the name “bioethics” 
then it is not to be found in the endless committee 
considerations of the immediate consequences of 
experimentation in genetic manipulation, cloning or 
reproductive biology, but rather in a critical enquiry into the 
intrinsic value which various forms of life bear relative to one 
another simply on account of their biology.  The recent 
appearance of “sustainability” on the global political agenda is 
one of the few causes for optimism, for it demonstrates a 
nascent recognition of not only past human failures but also 
the need, for survival, to give effect to the sense that the high 
intrinsic value that we assign to ourselves, primarily on 
account of our consciousness,  has an intimate connection with 
the much more prosaic “health of the biosphere”.  Seen within 
that context the biotechnological commodification of the 
terrestrial version of life might indeed be interpreted as the 
arrogation of value which has a natural location outside of 
human control.  
 Therefore, it would seem unwise to pursue the creation of 
Artificial Life simply because it is technically possible to do 
so and because it holds the promise of further power forH. 
sapiens.   There is much evidence that humanity is ill-equipped 
to handle the complex distribution of power over nature and 
global society that technologies have already conferred, often 
resulting in irreversible losses due to uncontrollable processes, 
all uncompensated by any increase in value elsewhere.  The 
fundamental modes of biological causation are far more 
obscure and convoluted than those of mechanical,  thermal or 
nuclear technology.  Seizing the power offered by “living 
technology” and using it to further current human interests, 
while failing to recognize the intrinsic value of the systems 
being tinkered with, is likely to result  in a recapitulation of 
errors made in the deployment of other transforming 
technologies.  It is singularly inappropriate that scientists 
whose consciousness is embedded in a privileged culture 
which already wields global power should create and 
propagate, according to their perceptions of what is of value to 
humanity and nature,  a new mode of controlling the most 
fundamental processes of nature – those that make life itself 
possible.  The scientific community owes it to the rest of 
global society to engage in a broad-ranging discussion 
concerning the disposition of the power that the new 
technologies of Artificial Life and Synthetic Biology make 
available, instead of attempting to reassure a skeptical public 
that their unfounded fears are guaranteed to evaporate into 
thin air as a result of appropriate education framed in terms of 
current scientific concepts. This author is one scientist who 
does not hold to the majority opinion that Artificial Life is a 
value-free scientific enterprise and wishes to endorse his work 
as follows.
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Abstract

Most multilevel selection models in the literature focus on ad-
dressing the evolution of cooperation. There is, however, an-
other aspect of multilevel selection theory. It might be able to
provide explanations for evolutionary transitions, which in-
volve the creation of higher level complexes out of simpler
elements. Here, we propose a multilevel selection model to
support evolutionary transitions. This model employs a ge-
netic operator called “cooperation” to build the hierarchical
structure used in multilevel selection theory, and applies two
types of multilevel selection to achieve transitions. Our ex-
periments on an extended N-player Prisoner’s Dilemma game
demonstrate that groups with all required skills emerge from
a population of independent individuals, no matter whether
skills are equally rewarded or not. Our experiments confirm
that both types of multilevel selection mentioned are relevant
to evolutionary transitions.

Introduction
Our biological world is hierarchically organized. Starting
from the bottom level to the top, the hierarchy includes
atoms, molecules, organelles, cells, tissues, organs, organ
systems, organisms, populations, communities, ecosystems
and biospheres. It is also generally accepted that the sim-
pler, smaller components appeared before the more com-
plex, composite systems. The creation of new higher level
complexes out of simpler entities is referred to as an “evo-
lutionary transition” (Buss, 1987; Michod, 1999; Smith and
Szathmáry, 1995).

How and why evolutionary transitions take place during
evolution is an important question to address for biologists
and sociologists. Increasingly, multilevel selection (MLS)
has been suggested as a potent explanation (Michod, 1999;
Smith and Szathmáry, 1995; Sober and Wilson, 1999). MLS
theory posits that natural selection may simultaneously oper-
ate at multiple levels of the biological hierarchy. Multilevel
selection theory has its origins in group selection theory,
which initially was aimed to explain the evolution of coop-
eration1: Individuals are divided into groups; within-group

1Group selection is a longstanding controversial area in the evo-
lution of cooperation. It recently re-emerged as an important com-

selection favors selfish individuals, while between-group se-
lection favors cooperative individuals. When between-group
selection dominates within-group selection, a major transi-
tion occurs and the group becomes a higher level organism
in its own right (Wilson and Wilson, 2007).

The way to explain evolutionary transitions extends MLS
theory in an important new way. Nevertheless, investiga-
tions of most existing MLS models focus on the conditions
necessary for the emergence of cooperation during evolu-
tion. The purpose of this paper is to computationally ver-
ify the idea that evolutionary transitions can indeed occur
through multilevel selection. To this end, we consider a new
MLS model and investigate its ability to exploit the divi-
sion of labor. A crucial step in many of the major tran-
sitions (Smith and Szathmáry, 1995) is the division of la-
bor between components of an emerging higher level unit
of evolution (Gavrilets, 2010). This new MLS model dis-
tinguishes itself from existing MLS models in two ways.
First, it integrates two types of multilevel selection (Okasha,
2005), which are believed to be relevant to the evolution-
ary transitions, each at a different stage. To encourage a
transition, group fitness (fitness of higher level units) is de-
fined to be “decoupled” (Michod and Nedelcu, 2003) from
the individual fitness (fitness of the lower level units). Sec-
ond, the model does not take the existence of the hierarchical
structure for granted; multicellular organisms do not exist at
the beginning of life. Our model constructs the hierarchy
through evolutionary transitions. The experiments shown
here confirm that in appropriately defined models indepen-
dent individuals are able to transit to groups with totally dif-
ferent functionalities using multilevel selection; in terms of
the division of labor, those are groups with members execut-
ing various skills with possibly different rewards.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly describes multilevel selection theory, espe-
cially the two types of multilevel selection. Section 3 in-

ponent of a multilevel theory of evolution. Many strong advocates
of other alternatives in explaining the evolution of cooperation have
come to accept multilevel analysis (Borrello, 2005; Okasha, 2001,
2008; Wilson, 1983).
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troduces our multilevel selection model. Section 4 shows
experiments with the model and their results. Section 5 con-
cludes and discusses future work.

Multilevel Selection
Group selection (Sober and Wilson, 1999) tries to explain
the evolution of cooperation by introducing selection be-
tween groups. Between-group competition allows traits to
arise from evolution that are costly for individuals but bene-
ficial to groups. This is therefore one mechanism by which
cooperation is able to emerge in evolution. Individuals and
groups, however, are relative: an entity can be regarded as a
group for individuals at the level below, and as an individual
of a group at the level above. This new perspective is now
called multilevel selection (MLS) theory.

When higher level selection (i.e. between-group selec-
tion) dominates lower level selection (i.e. within-group se-
lection), an evolutionary transition occurs (Wilson and Wil-
son, 2007). The reason that individuals would give up their
survival and reproductive opportunity to become a part of
complexes is that the complexes are able to protect their
members from being eliminated by selection. For exam-
ple, by hunting together or by watching predators for others,
members in a group have a greater chance to survive severe
competition. In addition, a consequence of higher level se-
lection is adaptation, which minimizes conflict among lower
level entities and increases cooperation. Therefore, lower
level selection does not interrupt the formation of higher
level entities (Okasha, 2005).

For the hierarchical structure used in MLS with a num-
ber of individual entities nested within each group entity,
we need to clarify which entities should become the ob-
jects of evolution or which level should undergo evolution
(Okasha, 2005). If we are interested in the changing fre-
quencies of different individual traits, individual entities will
be the objects of evolution; group entities are only a struc-
ture or an environment where fitness-affecting interactions
take place. Most multilevel selection models proposed for
the evolution of cooperation, such as Wilson (1975)’s and
Traulsen and Nowak (2006)’s models, belong to this kind.
These models focus on how to propagate the altruistic trait
among individuals in a population. To this end, groups are
regularly formed and evaluated. Groups with more altruists
will have a higher fitness; hence cooperative individuals in
such groups will have higher probabilities to be reproduced.
In other words, groups are only temporary fitness-bearing
entities; even though they are selected, it is not them but in-
dividuals that are reproduced, and also it is the frequency of
individual traits that is changed. This type of MLS is called
MLS type 1 (MLS1) (Damuth and Heisler, 1988; Okasha,
2005).

Alternatively, if we are interested in the changing frequen-
cies of different group traits, group entities need to be the ob-
jects of evolution. They are not merely an environment to in-

dividual entities or an object of selection; they actually have
their own heritable traits. Group entities with higher fitness
will reproduce more offspring group entities with similar
traits. Individual entities may still undergo evolution within
each group entity, which leads to changes in the distribution
of individual traits and potentially affects group traits. This
type of MLS is called MLS type 2 (MLS2) (Damuth and
Heisler, 1988; Okasha, 2005). As a result, since the entities
undergoing evolution are different in these two types of mul-
tilevel selection, the evolutionary changes obtained on each
level are different. MLS1 will contribute the most individual
entities to the next generation, while MLS2 will contribute
the most groups. Both MLS1 and MLS2 are distinct pro-
cesses that can occur in nature.

According to Okasha (2005), both types of multilevel
selection may be relevant to evolutionary transitions. An
evolutionary transition is more complicated than the evolu-
tion of cooperation. However, before transitions take place
and complexes emerge, simpler entities which constitute the
complexes have to be able to work together. They need
to sacrifice their individuality and exhibit cooperative traits.
Therefore, in the early stage of evolutionary transitions, the
evolution of cooperation has to emerge, so that cooperative
traits can spread among simpler entities in the population.
That is exactly what MLS1 promotes: using groups as an
environment to help individual traits to propagate. Once in-
dividuals are willing to form cohesive complexes, evolution
should work on complexes to gradually develop their own
traits. In other words, complexes should now themselves
become objects of evolution. Through selection and repro-
duction, complexes are better adapted to their environment
and eventually become discrete units, normally with traits
different from their constituents’ traits. It follows that MLS2
should be applied at a later stage of an evolutionary transi-
tion.

The shift from MLS1 to MLS2 also indicates a change in
the definition of group fitness. In MLS1, group fitness is de-
fined as the average fitness of the individuals within a group,
while in MLS2, group fitness is defined independent of the
average fitness of its individuals. As the transition proceeds,
group fitness gradually becomes “decoupled” from individ-
ual fitness (Michod and Nedelcu, 2003), until it is no longer
closely related to the average individual fitness. Once group
fitness is decoupled, the transition has been achieved, and
new complexes have been created that assume an existence
of their own.

A New MLS Model
The concept of multilevel selection is very simple: levels are
like “Russian matryoshka dolls” (Wilson and Wilson, 2008)
nested one within another; selection simultaneously oper-
ates on every level and favors different types of adaptations.
Many models have been proposed based on this concept (see
Wu and Banzhaf (2011) for examples). However, their main
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focus is to investigate under which conditions the evolution
of cooperation will occur or what mechanisms could pro-
mote the evolution of cooperation. Furthermore, these mod-
els take the hierarchical structure in a MLS for granted; that
is, they treat the hierarchical structure as given. Biologi-
cal hierarchies, on the other hand, have developed gradu-
ally; a good example is the evolution of multicellular organ-
isms: it did not exist at the beginning of life. We therefore
need to consider other MLS models to explain evolutionary
transitions: how simpler entities form complexes and how
complexes emerge as discrete units with traits different from
their constituents.

This contribution aims at introducing such a new multi-
level selection model for evolutionary transitions. The inves-
tigation uses the division of labor as an example. Division of
labor is a group trait resulting from evolutionary transitions,
where low level independent entities with specialized skills
cooperate to increase the reproductive success of high level
complexes. Examples include the separation of germ and
soma cells in simple multicellular organisms, appearance of
multiple cell types and organs in more complex organisms,
and emergence of casts in eusocial insects (Gavrilets, 2010).

We adopt the extended N-player Prisoner’s Dilemma
(NPD) game to study the division of labor. The NPD game
(Sober and Wilson, 1999) is the classical setting for ad-
dressing the evolution of cooperation. Once cooperation
is reached, all players possess the same cooperative trait,
which is also the only trait required for cooperation. Even if
such cooperation breaks down by loosing some individuals,
the rest are still capable of cooperating with others. Evi-
dently, the game does not serve the need for investigating
the division of labor unless extensions are made. We first
change the NPD game by attaching a new trait called “skill”
to each player; then we redefine the goal of the NPD game:
findN players who not only are willing to cooperate but also
possess all required skills.

The general framework of our model is illustrated in
Fig. 1. This model accommodates two types of entities:
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Figure 1: A general framework of the new MLS model

individuals (white circles) and groups (black circles). The
initial population contains individuals and groups on level
0, which are composed of two randomly selected individu-
als. The genome of individuals carries two genes. One gene
has two variants (alleles); one allele codes for cooperators,
the other for defectors. When the former trait is expressed,
the individual is said to be a cooperator; otherwise, it is a
defector. The other gene encodes the skill possessed. An in-
dividual’s fitness is determined by the following equations,
depending on whether it is a cooperator (C) or a defector
(D):

fCi
(x) = base+ w(

b(niqi − 1)

ni − 1
− c), (0 ≤ i < m) (1)

fDi
(x) = base+ w

bniqi
ni − 1

, (0 ≤ i < m) (2)

wherem is the number of groups in the population; base the
base fitness of cooperators and defectors; qi the fraction of
cooperators in group i; ni the size of group i; b and c are
the benefit and cost caused by the altruistic act, respectively;
w is a coefficient. From the above fitness definitions, it be-
comes clear why the initial population must contain groups
on level 0: those groups are the smallest units in which the
individual fitness can be evaluated. This fitness definition
also implies that cooperation is not supported at the indi-
vidual level, as cooperators always have lower fitness than
defectors. Because individuals are unaware of what skills
are needed without higher level entities being formed, the
skill trait has no effect on the individual fitness.

Groups in the evolution of cooperation simply pool indi-
viduals together; however, groups in our model have their
own genotype definition, which is represented by a boolean
list. Each position in the list is connected to a unique skill,
so that the genotype of a group can keep track of all differ-
ent skills of its members. When a skill is possessed by at
least one cooperator in a group, the corresponding position
in the genotype is set to true (we say is activated); when the
skill is no longer possessed by any cooperator in that group,
we inactivate the position by setting it to false. Again, com-
pared to groups in the evolution of cooperation, groups here
require their members to develop different skills, not just to
cooperate. As a result, groups exhibit more traits than sim-
ply the cooperative trait of individuals. Genetically, groups
in our model are ready for evolutionary transitions.

From level 0, an operator called “cooperation” starts to
build the hierarchical structure level by level. In each gen-
eration, it selects two existing groups proportional to fitness
to form a new group. For example, as highlighted in Fig. 1,
a group on level 0 and a group on level 2 can be made to co-
operate in a new group on level 3. After the cooperation op-
erator is applied, the genotype of the new group contains all
unique skills from the two parent groups. This operator al-
lows evolution to tinker with varying group memberships in
order to find the best combination of individuals and groups
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at lower levels for a higher level function. It in fact is a ge-
netic operator for selecting and reproducing groups; there-
fore, heritable traits of groups can pass from parent groups to
offspring groups. Other genetic operators, such as crossover
and mutation, can also be applied to groups. Because groups
should be the objects of evolution, multilevel selection of the
MLS2 type is employed here.

Group fitness is defined as follows.

g(y) =

∑n
i=0 fidv(xi)

n
× activegeno(y)

lengthgeno(y)
(3)

It measures the performance of a group in two respects: (i)
the average individual fitness of its n members and (ii) the
percentage of activated skills in the genotype. The inten-
tion behind this fitness definition is straightforward; the first
part encourages the appearance of cooperators, as coopera-
tors improve the overall individual fitness, and the second
part rewards groups in which cooperators possess as many
different skills as possible. Obviously, this group fitness is
not defined as the average individual fitness, but it can be ei-
ther proportional to average individual fitness, or completely
“decoupled” from individual fitness, depending on the influ-
ence of the second term of the fitness function. According
to Okasha (2005), the former indicates the transition from
MLS1 to MLS2, and the latter indicates the groups have
fully emerged as discrete units. Both encourage evolution
to reach transitions.

Individuals also evolve. To do so, a group is first selected
proportional to fitness; an individual is then selected from
this group as a parent. For simplicity, asexual reproduction
is considered here. Obviously, even though the survival of
individuals is now associated with the performance of their
group, individuals at this stage are the objects of evolution.
Groups provide context for individual fitness evaluation and
selection. Hence, multilevel selection of type MLS1 is ap-
plied here.

The specific computational implementation of the frame-
work is shown in Algorithm 1. It begins with initialization.
N individuals, r percent of which are cooperators, are ran-
domly created and exclusively paired into groups at level 0.
Groups at level 0 have their fitness evaluated right away.

In each generation, only one group is created by the co-
operation operator, which selects two groups proportional to
fitness to create a new group. The consequence of cooper-
ation is the increase of group complexity or the appearance
of new levels in the hierarchical structure. To prevent lev-
els from ceaselessly growing, we assign every individual a
unique number as its ID; no individuals with the same ID
can appear within the same group. After fitness evaluation,
the new group is added to the population P . If at that point
the maximum number of groups, sayN ′, is reached, another
group has to be removed from the population selected in-
versely proportional to fitness. To highlight the effect of the

Algorithm 1: Computational Implementation of the
New Multilevel Selection Model

1 P ← Initialize Population(N, r);
2 Evaluate Individual Fitness (P );
3 Evaluate Group Fitness(P);
4 while population does not converge or max generation

is not reached do
5 gp← Conduct Cooperation(P);
6 Evaluate Individual Fitness (gp);
7 Evaluate Group Fitness(gp);
8 Add a Group to Population(gp, P);
9 if Population Size(P) > N ′ then

10 Remove a Group();
11 end
12 for i← 0 to n do
13 idv ← Reproduce an Individual(P);
14 Replace an Individual(idv, P);
15 Update Changes(idv, P);
16 end
17 end

cooperation operator, crossover and mutation on groups are
currently not included.

We also asexually reproduce n individuals every gener-
ation. Individuals are selected proportional to fitness from
another selected group, instead of from the pool of individ-
uals. The offspring inherits its parent’s genome, and further
replaces the genome of a less fit individual in the individual
pool. The absolute fitness of individuals in the pool is de-
termined by the average fitness of its copies (i.e. individuals
with same ID) in all groups. Individuals from the pool are
allowed to participate in composing more than one group, so
they may have multiple copies in different groups. Depend-
ing on group composition, they have different fitness within
groups. So the simplest way to determine their absolute fit-
ness is to average the fitness of all copies.

After an individual in the pool is replaced, the change
needs to be implemented in all groups that contains the copy
of the replaced individual. The group fitness and individual
fitness of affected groups need to be updated, accordingly.

We repeat the process until a termination condition has
been reached or the population converges.

In summary, this new model distinguishes itself from
other multilevel selection models in two ways. First, it in-
tegrates two types of multilevel selection, both of which
are believed to be relevant to the evolutionary transitions
(Okasha, 2005). Individual evolution with the help of group
selection is analogous to multilevel selection type 1 (MLS1).
It propagates cooperators in the population, which is a pre-
requisite of evolutionary transitions. Group evolution is then
analogous to multilevel selection type 2 (MLS2). The selec-
tion pressure on group levels forces groups to evolve adap-
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tations for regulating conflicts among their members. The
adaptations indicate that groups emerge as discrete entities
with heritable traits. Second, instead of taking the hierar-
chical structure resulting from evolutionary transitions for
granted, our model introduces a “cooperation” operator to
create higher level complexes out of simpler ones.

Experiments
In the experiments, we closely examine the transition by our
multilevel selection model to the division of labor from a
population of independent individuals. First, we examine
the ability of our model to evolve groups fulfilling various
numbers of skills, when all skills receive the same reward.
Second, we examine the dynamics within the model and the
responses of individuals when different skills are given dif-
ferent rewards.

Experimental Setup
The experiments are conducted on the extended NPD game
with a population of 200 individuals and a maximum of 50
groups on level 1 and above. The initial fraction of coop-
erators in the population is 0.5; half of the individuals play
cooperators in the game, while the other half are defectors.
Eq. 1 and Eq. 2 are used to calculate the fitness of cooper-
ators and defectors within a group, respectively. The base
fitness base is set to 10, benefit b to 5, cost c to 1, and co-
efficient w to 1 in these two equations2. Group fitness is
calculated according to Eq. 3. Group size is a self-adaptive
parameter affected by the cooperation operator.

Because the purpose of these experiments is to study the
division of labor, our investigation will focus on the effects
of two parameters: the number of desired skills and the re-
wards associated with each skill. For each parameter setting,
we ran the model 20 times, each with 5000 generations. We
measure the performance of the model by the probability
of fixation to cooperators Pfixation and the number of ac-
tivated skills Sactivated. Pfixation is computed as the ratio
of the number of runs where population converges to coop-
erators over 20 runs. We also collect the convergence speed
Sconverge in each run, which is the number of generations
after which group fitness stops to change.

Varying Skills
The first experiment is given 5 different skills. At initializa-
tion, individuals independently choose to be a cooperator or
a defector. In addition, they need to randomly pick a skill
from 5 skills, {1, 2, 3, 4, 5}. An individual with an attached
skill will perform a specific task. The best performing group

2Sensitivity analysis of our model wrt. the initial fraction of
cooperators and selection pressure (w), as well as a performance
comparison with an improved Traulsen’s group selection model
(Wu and Banzhaf, 2011) can be found in (Wu, 2011). These exper-
iments confirm that our model promotes cooperation over a wider
range of parameter settings.

should contain only cooperators and should have all 5 skills
presented in its genotype. We then gradually increase the
number of desired skills to 10, 15 and 20. For each setting,
we run the algorithm 20 times. The results are collected in
Table 1. The probability of fixation Pfixation with a value
of 1 is obtained under all settings, which indicates that de-
fectors, despite a relatively high individual fitness, are elim-
inated from the population, whereas cooperators dominate
the population eventually. MLS1 is the explanation for this
result. More importantly, the best performing group for each
setting develops all required skills through evolution. This
demonstrates that MLS2 is at work. It is not surprising to see
the larger the number of desired skills, the slower the pop-
ulation was to reach the equilibrium on group fitness. This
is simply a reflection of the problem becoming harder when
the number of desired skills is raised.

To get a better idea of how the division of labor develops
through evolution, we select a typical run for each of {5, 10,
15, 20} roles for further analysis. Figure 2 depicts the maxi-
mum and average number of unique skills of all groups over
500 generations. Starting from at most 2 skills, the best per-
forming groups gradually evolve to perform more and more
different skills until the number of desired skills is reached
(see Fig. 2a). This growth is due to the guidance provided by
the group fitness. Take the run for 20 desired skills for ex-
ample. We collect the following information from this run:
group fitness, the number of activated roles, and the percent-
age of cooperators in the best performing group, as well as
the percentage of cooperators in the population; that is plot-
ted in Fig. 3.

Group fitness (refer to Eq. 3) is determined by the aver-
age individual fitness and the percentage of activated skills.
We plot the percentage of cooperators, instead of the aver-
age individual fitness, in the best group because of two rea-
sons; we can easily extrapolate the average individual fitness
from this percentage, and it also shows the fixation process
in the best group. Figure 3 clearly shows how the percent-
age of cooperators and the number of activated roles affect
the group fitness. Interestingly, we notice that the popula-
tion converges to cooperators first, and then the best group
develops all required skills. The same trend is also observed
in other runs with {5, 10, 15} skills. This observation in-
dicates that cooperators spread in the population before the
evolutionary transition happens, a result confirming the dis-
cussion about the relationship between MLS1 and MLS2.
Group fitness, in turn, influences the execution of individ-
ual evolution and group evolution (i.e. cooperation opera-
tor). Since defectors bring no fitness benefit on group levels,
they are eliminated from the population by group selection
at reproduction; hence the percentage of cooperators in the
best group and in the population increases steadily towards
1. As shown in Fig. 2b, the average number of activated
skills never comes close to the number of desired skills. This
implies that the population maintains groups with various
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Settings Pfixation Sactivated Sconverge

role = 5 1 5 96.3
role = 10 1 10 181.55
role = 15 1 15 247.60
role = 20 1 20 301.25

Table 1: The performance of our multilevel selection model when individuals play various skills.
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Figure 2: The changes of the maximum and average number of unique skills in a typical run.

skills. They are potential building blocks, out of which the
cooperation operator is able to test different combinations of
existing groups, and gradually hones in on optimal groups
with all required skills.

In summary, our model is able to successfully evolve
groups with all desired skills for the extended NPD game; or
we can say that our model is able to evolve groups to engage
in the division of labor between equally rewarded skills.
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Figure 3: The changes of group fitness, percentage of coop-
erators and activated roles when 20 skills are set.

Varying Rewards
We continue the exploration of whether or not our model
can evolve the division of labor, but this time skills are un-
equally rewarded. The different rewards put extra pressure
on accomplishing the task, as it attracts individuals to spe-
cialize on the most rewarding skills while avoiding the less
rewarding skills.

To distinguish skills with different rewards, we refer to
the “leader/follower” situation described by Goldsby et al.
(2009). Individuals who have skill 1 are appointed as leader
of that group, while individuals performing other skills are
followers. Leaders receive different reward than followers,
but followers, no matter what specific skills they have, re-
ceive no other rewards. A coefficient, α, is used to control
how much reward a leader can receive. Coefficient α basi-
cally is a multiplicative of the individual fitness; the individ-
ual fitness of a leader is calculated as the product of α and
the individual fitness obtained by Eq. 1 or Eq. 2.

We vary the value of α in the range of {0.5, 2, 4, 8, 64}
on each of {5, 10, 15, 20} roles, and run the model on each
setting 20 times. The performance is summarized in Table 2.
Clearly for each setting the population converges to cooper-
ators as a result of MLS1, and the best performing group is
composed of cooperative individuals with all required skills
as a result of MLS2.

Because the group fitness can hardly converge in this ex-
periment, the convergence speed Sconverge is judged by the
stabilization of Pfixation and Sactivated. Fig. 4 displays a
typical run when the number of desired skills is set to 5
and coefficient α is set to 8. Although the percentage of
cooperators in the population and the number of activated
skills in the best group converge quickly (around generation
350), group fitness and the percentage of leaders in the best
group never stop increasing. After generation 350, the per-
centage of leaders is the only factor that changes the group
fitness. Leaders in this case receive much higher rewards
than followers, and maximizing this percentage at the same
time maximizes the group fitness. Therefore, both values
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Settings Pfixation Sactivated Sconverge

role=5

α = 0.5 1 5 90.45
α = 2 1 5 145.35
α = 4 1 5 193.00
α = 8 1 5 238.10
α = 64 1 5 330.00

role=10

α = 0.5 1 10 152.2
α = 2 1 10 232.40
α = 4 1 10 379.05
α = 8 1 10 488.00
α = 64 1 10 607.75

role=15

α = 0.5 1 15 196.60
α = 2 1 15 313.80
α = 4 1 15 531.50
α = 8 1 15 696.55
α = 64 1 15 950.55

role=20

α = 0.5 1 20 314.80
α = 2 1 20 407.35
α = 4 1 20 586.85
α = 8 1 20 902.35
α = 64 1 20 1394.75

Table 2: The performance of runs when leaders are assigned with various rewards.
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are constantly improving. Because there is no upper bound
on group size, the cooperation operator keeps creating larger
groups with more leaders; therefore an equilibrium distribu-
tion of different roles can hardly be reached.

To facilitate the investigation on how different rewards af-
fect the division of labor, we restrict the maximum group
size to 20. We plot in Fig. 5 the percentage of leaders in
the best performing group collected from a typical run with
5 desired skills when α is set to each of {0.5, 2, 4, 8, 64}.
When α is set to 0.5, 5% of 20 individuals, which is only
1 individual, play the role as a leader, while when α is set
to 2, 55% of the group, that is 11 individuals, choose to be
a leader; similarly, 15 out 20 individuals (75%) become the
leader when α is 4 or 8, and 16 leaders (80%) when α is 64.

When α is less than 1, leaders are in fact receiving a
penalty, not a reward. Very naturally, individuals avoid be-
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Figure 5: The percentage of leaders in the best group when
α is set to 0.5, 2, 4 ,8, 64, respectively.

coming a leader, but because of the selection pressure on the
group level, the role of a leader must be present in a group.
Therefore, the best group ends up with only 1 leader, which
maximizes the group fitness. By contrast, when α is greater
than 1, individuals strive to be leaders because of the positive
reward. An α value of 64 shows another extreme distribu-
tion of different roles. Driven by such a significant reward,
the best group only has 4 individuals as followers, each for
the rest 4 skills, while all other individuals play the role as
a leader. The higher the reward, the greater the number of
leaders in a group, and the slower the population converges
(see Sconverge column in Table 2).

The experiment perfectly shows the adaptability of our
model in response to changes in group selection pressure,
and the importance of selection pressure on group levels in
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developing division of labor. Selection pressure eliminates
defectors from a population, adjusts the distribution of roles
according to the received reward or penalty, and forces all
skills to be present even though some of them have lower
fitness than others.

Conclusion
In this paper, we considered a new multilevel selection
model to investigate evolutionary transitions. This model
introduces a genetic operator called “cooperation” to cre-
ate higher level complexes out of simpler ones of lower lev-
els. Different types of selection, MLS1 and MLS2, are inte-
grated in the model to determine whether or not the com-
plexes are able to transit to discrete units with their own
heritable traits. We test the transition ability of the new
model on an extended N-player Prisoner’s Dilemma game
for achieving the division of labor from a population of in-
dependent individuals. The experiments confirm that our
model is able to evolve groups fulfilling various numbers of
skills whether skills are equally rewarded or not. The experi-
ments also demonstrate that multilevel selection, both MLS1
and MSL2, are necessary for transitions to occur. MLS1
propagates cooperators in a population. Only when partici-
pating individuals are willing to cooperate, will evolutionary
transitions occur. MLS2 forces complexes to evolve adap-
tations for regulating conflicts among their members. The
adaptations are guided by group fitness, which in our model
is decoupled from individual fitness to promote the appear-
ance of new group traits. In future work, we seek to adapt
this model for evolutionary computation to solve problems
where transitions are needed.
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Abstract

A virtual elastic robot is proposed which has a body with
multiple degrees of freedom. It is capable of fitting its body
to the given surrounding environment. This study focuses
to allow the elastic robot to adapt to various environments.
The intended robot is modeled by rigid objects connected by
spring joints in a circular structure. Its control system ma-
nipulates spring actuators to realize elastic movements. This
paper aims to acquire its control system for the robot to be-
have autonomously. A behavior acquisition is implemented
as an optimization problem by the use of Evolutionary Com-
putation. A physical simulation on the computer is carried out
to achieve given tasks for the virtual elastic robot. The task
is set to achieve a locomotion which moves toward a destina-
tion on a flat ground. Simulation results show that the elastic
robot acquires a locomotion. Moreover, we assume a com-
plicated circumstance in which obstacles are placed. In order
to allow the robot to adapt to a complicated circumstance,
we propose ”Behavior Composed” to design a complicated
behavior from several simple behaviors. These experimental
results prove that the robot is capable of acquiring an adaptive
locomotion in specific circumstances.

Introduction
An autonomous robot is capable of adapting itself to the sur-
rounding environment. This paper focuses on a behavior ac-
quisition for it which can behave to achieve a given task.
Accomplishing the task is regarded as a learning problem
for autonomous robots. It has been studied actively in areas
such as evolutionary robotics and artificial life.

In order to construct an adaptive behavior, a bottom-
up approach or evolutionary approach is adopted in recent
works. This approach aims to construct an optimum control
system so as to achieve a given task by a parameter optimiza-
tion. It is generally implemented by the use of evolutionary
computation. There are many studies to acquire autonomous
behaviors by computer simulations (Sims, 1994). As the
typical methodology, a virtual creature (Sims, 1994) is pro-
posed to generate the geometric morphology for a model
structure and a neural system for controlling a creature au-
tomatically. The virtual creature indicated a problem what
shape would be optimum to accomplish a task. Similarly, a

behavior emergence and an evolution of the artificial crea-
ture become a significant problem in the area of artificial
life.

The virtual creature (Sims, 1994) is expected to design the
specialized shape in a specific environment. However, the
obtained model cannot exploit its adaptive ability in other
environment. Therefore, we have focused on an autonomous
robot which has a body with multiple degrees of freedom
(DOF) and its behavior acquisition. It can behave flexibly
such as an amoeba and a snake. There are many studies to
design an adaptive behavior for their original robots (Yim
et al., 2000; Kamimura et al., 2005; Ishiguro et al., 2008;
Yoneda et al., 2009).

The self-reconfigurable robots have a multiple DOF body
and consist of simple modules (Yim et al., 2000; Kamimura
et al., 2005). Controlling the robot is generally studied by
the use of a rule-based control which is described by the
specific behavior rule for each module (Yim et al., 2000).
Then, an evolutionary heuristic approach is adopted instead
of a traditional rule-based approach to control its behav-
ior (Kamimura et al., 2005). However the obtained behav-
iors are a only simple. The robot cannot behave in the com-
plicated situation. Then, an amoeboid robot (Ishiguro et al.,
2008) is proposed to make it possible to behave flexibly. It
has a circular structure body which is connected by springs
joints and behaves based on a mathematically-modeled pro-
toplasmic streaming motion which is the specific feature of
an amoeba. Although it can behave to move toward a light
source, it has not obtained composite behaviors.

In those background, we have focused on a circular struc-
ture spring robot as a multiple DOF robot, an elastic circular
robot (Yoneda et al., 2009). Previously, we have shown that
the robot can acquire a locomotion by the use of the decen-
tralized autonomous control system and evolutionary com-
putation. In recent works on behavior acquisition for mul-
tiple DOF robots, it is confirmed that the robot can achieve
a simple task. For instance, the straight locomotive task on
a flat ground without obstacles is regarded as a simple task.
However, their robots cannot behave properly in a compli-
cated circumstance in which obstacles are placed. There-
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fore, this study aims to acquire an adaptive behavior in a
complicated circumstance. We propose ”Behavior Com-
posed” which consists of several simple behaviors to design
an adaptive behavior for a multiple DOF robot. Learning
experiments are carried out to design ”Behavior Composed”
for the elastic circular robot. Simulation results show the
effectiveness of the proposed control approach.

The rest of this paper is composed as follows. Section II
explains about a concept of proposed control system, ”Be-
havior Composed”. Section III proposes an elastic circu-
lar robot consisting of modular units. Section IV describes
learning experiments to acquire an autonomous locomotion
and shows some experimental results. Section V describes
learning experiments to design ”Behavior Composed” to
adapt to the complicated circumstance. Section VI con-
cludes this study with some remarks and gives some direc-
tions toward the future work.

”Behavior Composed”
In order to acquire an autonomous composite behavior for a
mobile robot, the subsumption architecture (Brooks, 1986),
which is a layered control system, is proposed as a typical
approach. It consists of several primitive behaviors, such
as ”avoid objects”, ”wander”, ”explore”, ”build maps” and
so on. They are assigned to each layer hierarchically based
on their priorities. The robot behaves properly by using a
selected primitive behavior as the situation demands. This
control system shows good performance in a complicated
situation. However, its behavior is an unnatural behavior,
because each primitive behavior is previously designed.

Then, we have proposed ”Behavior Composed” to design
an adaptive behavior by the use of Evolutionary Computa-
tion (Furukawa et al., 2010). Fig. 1 shows the concept of
”Behavior Composed”. It consists of several primitive be-
haviors, ”Behavior Simple”. ”Behavior Simple” is obtained
by a learning experiment of a simple task. As the situation
demands, the robot combines several ”Behavior Simple” to
design ”Behavior Composed”. For instance, a wandering
behavior is a combination of three behavior simples, ”avoid
object”, ”runaway” and ”halt” (Fig. 1).

We have implemented ”Behavior Composed” by using an
Artificial Neural Network (ANN) (Furukawa et al., 2010).
”Behavior Composed” consists of Neural Controller (”Be-
havior Simple”) and Neural Selector (Fig. 2). In the previous
work (Yoneda et al., 2010), we conduct two types of learn-
ing experiments (simple task and complicated task). The
simple task aims to acquire locomotion on a flat ground as
a primitive behavior. Then, the complicated task aims to
acquire ”Behavior Composed” in which obstacle is placed.
From experimental results, we confirmed that the robot is
capable of an adaptive behavior by switching several ”Be-
havior Simple”. This paper focuses on the decentralized
”Behavior Composed” that each actuator is controlled by the
independently-selected ”Behavior Simple”.

Sensor Actuator

Behavior Composed Behavior Simple

wander

explore

grabber

avoid object

runaway

halt

Figure1: A concept of ”Behavior Composed”
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Figure2: ANN based ”Behavior Composed”
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Figure3: Body system of the elastic robot

Elastic Circular Robot
Body System
An intended elastic robot is modeled by connecting rigid
modules circularly with spring joints (Fig. 3). All modules
have the same prismatic shape. They are connected to four
modules by two spring actuators and two spring joints. This
robot can behave by the elastic motion of springs and the
friction force between the modules and ground. The robot
behavior is controlled by manipulating elastic velocities of
each spring actuator. Accordingly, all modules move by
propagating spring forces to the whole modules efficiently.

The followings are physical properties used for the robot.
The robot is constructed from 20 modules. The density of
each module is 2,700[kg/m3]. The coefficient of restitution
of each module is 0.3. The coefficient of dynamic friction
between the modules and the ground is 0.4. The coefficient
of static friction between the modules and the ground is 0.6.
The natural length of each spring actuator is 0.2[m]. The nat-
ural length of each spring joint is 0.4[m]. All spring lengths
are able to range from 0.5-fold to 1.5-fold in length. The
spring constant is 500[N/m].

Sensor System
This elastic robot aims to achieve a locomotive task that the
robot mainly moves toward the goal. Then, a goal sensor is
installed on each module to perceive a target location. The
goal sensor of thei-th module is capable of perceiving a
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distancedLi(t) measuredfrom the i-th module to the goal
at timet. However, when the obstacle is placed between the
i-th module and the goal, the sensor cannot perceive its goal
(Fig. 4). Similarly, an obstacle sensor is installed on each
module to measure a distance to the nearest obstacle. The
obstacle sensor of thei-th module is capable of perceiving a
distancedOi(t) which is the shortest distance to the nearest
obstacle at timet.

Spring Actuator
Expansion and compression of springs make mainly this
module move. Each spring actuator is controlled indepen-
dently by adding an elastic force calculated by Eq. (1).

fi(t + ∆t) = Ai(t) sin(ωi(t)∆t + θi(t)) (1)

wherefi(t) is the elastic force of thei-th spring actuator at
time t, Ai(t) is the amplitude,ωi(t) is the angular velocity,
θi(t) is the accumulated phase (θi(0) = 0, θi(t + ∆t) =
θi(t)+ωi(t)∆t). If fi(t) > 0, the spring is expanded, and if
fi(t) < 0, it is compressed. Thus, the behavior of the whole
body is controlled by manipulatingAi(t) andωi(t) for the
i-th spring actuator.

Neural Controller
In order to control the robot behavior, each spring actua-
tor has a neural controller. Each neural controller is im-
plemented by ANN to acquire an autonomous behavior in
evolution. Neural controller manipulates an elastic force in-
dependently for the corresponding spring actuator to realize
a decentralized autonomous control system. The controller
has eight input neurons and two output neurons to calculate
control parametersAi(t) andωi(t).

In this paper, we implement two types of neural controller.
The first one isCL which has a light sensor to perceive a
light source. The other isCLO which has a light sensor and
an obstacle sensor to perceive a light source and the nearest
obstacle. Input parameters of controller are sensor informa-
tion of connected modules and state variables of the actuator.
For two modulesa andb that are connected by thei-th spring
actuator, the target information (La(t) andLb(t)) is calcu-
lated from a distancedLa(t) anddLb(t) by Eq. (2). Simi-
larly, The obstacle information (Oa(t) andOb(t)) is calcu-
lated from a distancedOa(t) anddOb(t) by Eq. (3).

Li(t) =
{

e−αdLi(t) (if modulei receives light)
0 (otherwise)

(2)

Oi(t) = e−βdOi(t) (3)

whereα andβ are constant values. We setα = 0.8 and
β = 1.0. Li(t) andOi(t) take 1.0 at the maximum value
and decays in the inverse ratio to the measured distance.

As state parameters for thei-th actuator, a current
spring lengthli(t), an accumulated phaseθi(t), an am-
plitude Ai(t), phase coherencesR(θi(t), θi−1(t)), and
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Figure4: Sensor system and neural controller

R(θi(t), θi+1(t)) are also input to the controller. The phase
coherences are phase differences between thei-th spring ac-
tuator and adjacent actuators. They are calculated by Eq. (4).

R(θa(t), θb(t)) =
1
2
∥ ejθa(t) + ejθb(t) ∥ (4)

Then, the controller outputsAi(t) and ωi(t) as control
parameters for Eq. (1). Fig. 4 shows a configuration dia-
gram of the ANN which has a feed-forward network with
a three-layered structure. The controllerCL has eight in-
put neurons and the controllerCLO has ten input neurons.
Both controllers have ten hidden neurons and two output
neurons. The synaptic weights of ANN, bias values of neu-
ron and temperature coefficients of the sigmoid function are
optimized to acquire an adaptive behavior.

Acquisition of ”Behavior Simple”
Behavioral Acquisition

A simulation experiment is carried out to achieve a task for
a given elastic circular robot. This experiment implements a
numerical simulation to optimize parameters of ANN for all
spring actuators to acquire an adaptive behavior. All ANNs
have the same parameters to simplify the parameter opti-
mization. Then all ANNs are a homogeneous neural con-
troller. In order to optimize parameters assigned to one of
ANNs, we adopt the real-coded genetic algorithm (RCGA).

In order to allow the robot to accomplish a task, the sim-
ulation environment is implemented by the use of a physics
computing library PhysX1. PhysX1 is able to numerically
calculate a position and a velocity of the object in consider-
ation of a gravity, a friction, and collision detections. Ad-
ditionally, we assume a noisy environment as a fluctuation
effect in the real world. Then, noises are added to the ANN
in each simulation step. The noise is a normal real random
number and its strength is 1.0% against each input value.

1NVIDIA PhysX
http://www.nvidia.com/object/physx new.html/
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(a) initial state (b) intermediate state (c) goal state
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Figure5: An outline of a task to move toward a light source

Experimental Conditions
A learning experiment is carried out to acquire an adaptive
behavior for the robot. It aims to acquire a locomotive be-
haviors, moving toward a light source, as a ”Behavior Sim-
ple”. Fig. 5 is an outline of the learning experiment. In this
task (Fig. 5), a light source is placed around 4.0[m] from
the center of gravity of the robot at the initial condition.
The robot behaves autonomously by using the controllerCL.
The obtained behaviors are evaluated by Eq. (5).

E1 =
Ns∑
t=0

Nm∑
i=1

dLi(t) (5)

where,Ns is the number of steps in a simulation andNm

is the number of modules of which the robot consists.E1

plays a role of a fitness function to evaluate a photo-tactic be-
havior. It evaluates an accumulated distances between each
module and the light source during one episode simulation.
RCGA optimizes the controllerCL so as to minimizeE1

and results become adaptive behaviors.
As experimental conditions, the simulation step time∆t

is1/60 [sec]. The number of simulation steps in one episode
simulation Ns is 3,600. As optimization conditions for
RCGA, the number of individuals is 30, the number of gen-
erations is 500, the probability of crossover is 80 [%] and the
probability of mutation is 30 [%]. They are determined em-
pirically and this work does not discuss about a difference
in those parameters. In order to observe obtained behaviors,
we conduct this learning experiment five trials in the same
conditions.

Experimental Results
Fig. 6 shows a diagram which shows the evaluated value
along the vertical axis and the number of generations in
RCGA along the horizontal axis. The evaluated values for
the best and worst trial, and the average evaluated value of
all trials are plotted in this diagram. In this figure, the ob-
tained evaluated value of each trial converges as the RCGA
generation elapses. Fig. 8 shows snapshots of the obtained
behaviors at the 500th generation in RCGA. For this behav-
ior, Fig. 7 shows a diagram which shows the distance be-
tween the robot and the light source along the vertical axis
and the elapsed simulation steps along the horizontal axis.
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Figure6: An evaluated value of the locomotive task in each
RCGA generation
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Figure7: A distance to the destination in each simulation
step

As the RCGA generation elapses, it is observed that behav-
iors are obtained to move toward the light source and stay
close to its goal. Therefore, this experiment shows that the
robot is capable of achieving the locomotion task.

An optimization experiment shows that the elastic robot
acquire a locomotive behavior to achieve a given task. Then,
we observe a motion mechanism for the obtained behavior.
Fig. 9 shows a diagram which shows the elastic force calcu-
lated by using the obtained controller along the vertical axis
and the elapsed simulation steps along the horizontal axis.
In this charts, lines assigned by ”a”, ”b”, ”c” and ”d” cor-
respond to four actuators respectively in Fig. 8. Fig. 9 indi-
cates a motion at the 1,000th step while the robot is moving.
It is observed that four actuators output their elastic forces
with the same frequency. Additionally, they make a phase
difference locally from a front actuator to a rear actuator in
the direction of movement (Fig. 8(b)).

In this way, phase differences of output values make it
possible to propagate elastic forces to the whole body effec-
tively. Then, we observe the global phase difference for all
actuators. Fig. 10 shows an analysis result for all actuators.
The horizontal axis and the vertical axis show the elapsed
simulation steps and the label of each actuator. This figure
indicates the sign of the elastic force of each actuator in a
motion at the 1,000th step. In this chart, the mark ”A”, ”B”,
”C” and ”D” correspond to four parts in Fig. 8. From this re-
sult, it is confirmed that all actuators make a phase difference
from a front part to a rear part in the movement direction.
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(a) 0 steps (b) 1,000 steps (c) 2,000 steps (d) 3,000 steps
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Figure8: Obtained locomotive behaviors at the 500th gen-
eration
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Acquisition of ”Behavior Composed”
Complicated Task

The experiment in the previous section aims to acquire a
locomotion which behaves toward a light source. However,
the previous experiment is not supposed to accomplish a task
in consideration of an obstacle. Fig. 11 is an outline of the
complicated task. This task also aims to move toward the
light source on a flat ground. However, the obstacle is placed
to interrupt light information. In the initial state, the robot
can perceive its goal incompletely (Fig. 11(a)). Then, the
robot has to explore its goal to reach there.

In order to show the difficulty to achieve the task, we ver-
ify behaviors for the locomotive controllers which are ob-
tained in the previous section. Fig. 12, 13, 14 and 15 show
the verification results. Fig. 12 and 14 show snapshots of
behaviors by using the obtained controller in RCGA trials.
Fig. 13 indicates the sign of the elastic force of each actuator
in a motion of Fig. 12 at the 1,000th step like Fig. 10. Fig. 15
also indicates the sign of the elastic force of each actuator in
a motion of Fig. 14 at the 1,000th step. From Fig. 12 and

(a) initial state (b) intermediate state (c) goal state
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Figure11: An outline of a task to search a light source
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Figure12: A verification result of the searching task for the
locomotive controller obtained in the first trial
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Figure13: An output sign in each simulation step for the
locomotive controller obtained in the first trial

14, those behaviors cannot behave properly. Because, those
controllers have not learned the situation which cannot per-
ceive the light source in the previous experiment. Although
they cannot achieve the task, we confirm that their behav-
ior has different characteristics in the unlearning situation
by comparing Fig. 13 and 15.

Behavioral Acquisition of ”Behavior Composed”
We observed that the robot cannot behave properly by the
use of the obtained locomotive controller (Fig. 12 and 14).
Then, in the complicated task (Fig. 11), a learning experi-
ment is carried out to acquire an adaptive behavior which
avoids the obstacle and moves toward the light source.
This experiment aims to acquire ”Behavior Composed” to
achieve the task. In order to solve this problem, we focus
on the obtained locomotive behaviors in the previous sec-
tion. In the previous experiment, we observed that some
behaviors are obtained by conducting optimization trials re-
peatedly. They are capable of achieving the locomotive task
(Fig. 5). However, we confirmed that they have diverse be-
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Figure14: A verification result of the searching task for the
locomotive controller obtained in second trial
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Figure15: An output sign in each simulation step for the
locomotive controller obtained in the second trial

haviors in unlearning situation (Fig. 11). The purpose of this
experiment is to examine how to establish ”Behavior Com-
posed” by combining diverse behaviors.

Experimental Conditions
In order to establish ”Behavior Composed”, a neural selector
is installed on each actuator. Fig. 16 shows a configuration
diagram of a neural selector. It outputs priorities to deter-
mine the appropriate ”Behavior Simple” with a maximum
priority. Each prioritypij is corresponding to thej-th opti-
mized controller (”Behavior Simple”) for thei-th actuator.
In this experiment, we set three types of controllers which
obtained in the previous section as ”Behavior Simple”. They
are chosen randomly from five obtained controllers, and ca-
pable of locomotion as the common capability. Then, each
actuator selects an appropriate controller by the use of its
neural selector at each simulation step.

This experiment implements numerical simulation to op-
timize parameters assigned to the ANN for all neural selec-
tors like the previous learning experiment. All ANNs also
have the same parameters. The optimization evaluates ob-
tained behaviors based on Eq.(6).

E2 =
Ns∑
t=0

Nm∑
i=1

Li(t) + A (6)

where,Ns is the number of steps in a simulation,Nm is the
number of modules of which the robot consists, andA is the
transit area cost (Fig. 17). The first term plays a role of a
fitness to evaluate a photo-tactic behavior. It evaluates how
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much all modules receive a light during one simulation. The
second term plays a role of a fitness to evaluate an exploring
behavior. Then, when the robot cannot perceive the light
source,E2 evaluates the transit area. RCGA optimizes the
neural selector so as to maximizeE2 and results become
adaptive behaviors. This optimization is expected to acquire
behaviors that a robot avoids the obstacle and moves toward
a bright area.

In order to show the effectiveness of the proposed ap-
proach, we conduct the same experiment without ”Behavior
Composed” as a comparison experiment. In this experiment,
we set the robot which has the controllerCLO to perceive
the light source and the nearest obstacle. This comparison
experiment optimizes the controllerCLO like the previous
experiment. Then, we confirm the evaluated values and the
obtained behaviors for two types of learning experiments.

As experimental conditions, the simulation step time∆t
is1/60 [sec]. The number of simulation steps in one episode
simulationNs is 5,400. The optimization conditions for
RCGA use a set of values the same as the previous exper-
iment. In order to observe obtained behaviors, we also con-
duct this experiment five trials in the same conditions.

Experimental Results
Fig. 18, 19 and 20 are experimental results for the optimiza-
tion of the controllerCLO. Fig. 18 shows a diagram which
shows the evaluated value along the vertical axis and the
number of generations in RCGA along the horizontal axis.
The evaluated values for the best and worst trial, and the av-
erage evaluated value of all trials are drawn in this diagrams.
For this result, Fig. 19 and 20 show snapshots of the obtained
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Figure18: An evaluated value of the searching task in each
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Figure19: Obtained searching behaviors at the 50th genera-
tion
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Figure20: Obtained searching behaviors at the 500th gener-
ation

behaviors for the best trial at the 50th and 500th generations
in RCGA. It is observed that behaviors are obtained to reach
the light source as the RCGA generation elapses. However,
The converged evaluated value of the worst trial is about one
third of the converged value of the best trial.

Similarly, Fig. 21, 22 and 23 are experimental results for
the optimization of a neural selector to acquire ”Behavior
Composed”. Fig. 21 shows a diagram which shows the eval-
uated value along the vertical axis and the number of gen-
erations in RCGA along the horizontal axis. Fig. 22 and 23
show snapshots of the obtained behaviors for the best trial at
the 50th and 500th generations in RCGA. In this result, it is
observed that the obtained behavior achieves the given task
even a behavior obtained at the 50th generation (Fig. 22).
Moreover, each trial obtains a better evaluated value than
one of the comparison experiment. Then, these results show
that ”Behavior Composed” has a good performance to es-
tablish an adaptive behavior.

For the obtained behavior (Fig. 23), we observe a feature

of the optimized neural selector. Fig. 24 indicates the elas-
tic force of each actuator at the 1,000th step. The horizon-
tal axis and the vertical axis show the elapsed simulation
steps and the label of each actuator. Fig. 25 shows a se-
lected ”Behavior Simple” in a motion at the 1,000 step. In
those figures, the mark ”A”, ”B”, ”C” and ”D” correspond to
four parts in Fig. 23(a). From Fig. 24, the robot can behave
making proper phase difference like Fig. 10. Additionally,
from Fig. 25, we observe that the obtained neural selector
switches two ”Behavior Simple” periodically. In particu-
lar, by comparing Fig. 24 and 25, we also confirm that the
switching frequency of ”Behavior Simple” equals to the fre-
quency of an elastic motion. Then, the neural selector would
switch ”Behavior Simple” to make the specific rhythm pat-
tern and phase differences between neighboring actuators.

Now, we observe the behavior, which reaches the light
source, in a motion. Fig. 26 shows a selected ”Behavior Sim-
ple” in a motion at the 3,000th step. Then, when the robot
reaches the light source, its neural selector mainly uses one
”Behavior Simple”. This mean that each ”Behavior Simple”
has a locomotive ability in this situation.

Conclusions and Future Works
We have focused on an elastic robot and its physical simu-
lation. Behavioral acquisition for the virtual elastic robot in
simulation can be regarded as a learning problem how the
robot acquires the adaptive behavior. Evolutionary compu-
tation is a successful approach to this learning problem. This
study is summarized as follows.

1. A locomotive behavior is acquired when each actuator
makes a phase difference of an elastic force from a front
actuator to a rear one in the movement direction.

2. ”Behavior Composed” is acquired to adapt to the unlearn-
ing situation by combining obtained locomotive behav-
iors, ”Behavior Simple”.

The searching task shows that the proposed approach is
capable of acquire an adaptive behavior at the only 50th
generation. It is equivalent to the obtained behavior which
obtained at the 500th generation without ”Behavior Com-
posed”. Then, our approach is possible to acquire proper
behavior effectively in a short time. For these experiments,
moving images are put on our website2. The followings are
the rest as some challenges in a future work.

1. Analyzing a switching mechanism mathematically for the
obtained ”Behavior Composed”.

2. Applying ”Behavior Composed” to the other multiple
DOF robots which have other types of body structure.

2AutonomousSystem Engineering Lab., Hokkaido Univ.
http://autonomous.complex.eng.hokudai.ac.jp/
researches/physics-modeling/movies/yoneda/
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Figure21: An evaluated value of the searching task for ”Be-
havior Composed” in each RCGA generation
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Figure22: Obtained ”Behavior Composed” for the search-
ing task at the 50th generation
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Figure23: Obtained ”Behavior Composed” for the search-
ing task at the 500th generation
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Abstract

Creating gaits for legged robots is an important task to en-
able robots to access rugged terrain, yet designing such gaits
by hand is a challenging and time-consuming process. In
this paper we investigate various algorithms for automat-
ing the creation of quadruped gaits. Because many robots
do not have accurate simulators, we test gait-learning algo-
rithms entirely on a physical robot. We compare the per-
formance of two classes of gait-learning algorithms: locally
searching parameterized motion models and evolving artifi-
cial neural networks with the HyperNEAT generative encod-
ing. Specifically, we test six different parameterized learning
strategies: uniform and Gaussian random hill climbing, pol-
icy gradient reinforcement learning, Nelder-Mead simplex,
a random baseline, and a new method that builds a model
of the fitness landscape with linear regression to guide fur-
ther exploration. While all parameter search methods outper-
form a manually-designed gait, only the linear regression and
Nelder-Mead simplex strategies outperform a random base-
line strategy. Gaits evolved with HyperNEAT perform con-
siderably better than all parameterized local search methods
and produce gaits nearly 9 times faster than a hand-designed
gait. The best HyperNEAT gaits exhibit complex motion pat-
terns that contain multiple frequencies, yet are regular in that
the leg movements are coordinated.

Introduction and Background
Legged robots have the potential to access many types of
terrain unsuitable for wheeled robots, but doing so requires
the creation of a gait specifying how the robot walks. Such
gaits may be designed either manually by an expert or via
computer learning algorithms. It is advantageous to auto-
matically learn gaits because doing so can save valuable en-
gineering time and allows gaits to be customized to the id-
iosyncrasies of different robots. Additionally, learned gaits
have outperformed engineered gaits in some cases (Hornby
et al., 2005; Valsalam and Miikkulainen, 2008).

In this paper we compare the performance of two dif-
ferent methods of learning gaits: parameterized gaits opti-
mized with six different learning methods, and gaits gener-
ated by evolving neural networks with the HyperNEAT gen-
erative encoding (Stanley et al., 2009). While some of these

Figure 1: The quadruped robot for which gaits were evolved.
The translucent parts were produced by a 3D printer. Videos
of the gaits can be viewed at http://bit.ly/ecalgait

methods, such as HyperNEAT, have been tested in simula-
tion (Clune et al., 2009a, 2011), we investigate how they
perform when evolving on a physical robot (Figure 1).

Previous work has shown that quadruped gaits perform
better when they are regular (i.e. when the legs are co-
ordinated) (Clune et al., 2009a, 2011; Valsalam and Mi-
ikkulainen, 2008). For example, HyperNEAT produced
fast, natural gaits in part because its bias towards regu-
lar gaits created coordinated movements that outperformed
gaits evolved by an encoding not biased towards regular-
ity (Clune et al., 2009a, 2011). One of the motivations of
this paper is to investigate whether any learning method
biased towards regularity would perform well at produc-
ing quadruped gaits, or whether HyperNEAT’s high perfor-
mance is due to additional factors, such as its abstraction
of biological development (described below). We test this
hypothesis by comparing HyperNEAT to six local search al-
gorithms with a parametrization biased toward regularity.

An additional motivation is to test whether techniques for
evolving gaits in simulation, especially cutting-edge evolu-
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tionary algorithms, transfer to reality well. Because Hyper-
NEAT gaits performed well in simulation, it is interesting to
test whether HyperNEAT can produce fast gaits for a phys-
ical robot, including handling the noisy, unforgiving nature
of the real world. Such tests help us better understand the
real world implications of results reported only in simula-
tion. It is additionally interesting to test how more traditional
gait optimization techniques compete with evolutionary al-
gorithms when evolving in hardware. A final motivation of
this research is simply to evolve effective gaits for a physical
robot.

Related Work
Various machine learning techniques have proved to be ef-
fective at generating gaits for legged robots. Kohl and
Stone presented a policy gradient reinforcement learning ap-
proach for generating a fast walk on legged robots (Kohl
and Stone, 2004), which we implemented for compari-
son. Others have evolved gaits for legged robots, pro-
ducing competitive results (Chernova and Veloso, 2005;
Hornby et al., 2005; Zykov et al., 2004; Clune et al.,
2009a, 2011, 2009b,c; Téllez et al., 2006; Valsalam and
Miikkulainen, 2008). In fact, an evolved gait was used
in the first commercially-available version of Sony’s AIBO
robot (Hornby et al., 2005). Except for work with Hyper-
NEAT (Clune et al., 2009a, 2011, 2009b,c), the previous
evolutionary approaches have helped evolution exploit the
regularity of the problem by manually decomposing the task.
Experimenters have to choose which legs should be coor-
dinated, or otherwise facilitate the coordination of motion.
Part of the motivation of this paper is to compare the reg-
ularities produced by HyperNEAT to those generated by a
more systematic exploration of regularities via a parameter-
ized model.

Problem Definition
The gait learning problem aims to find a gait that maximizes
some performance metric. Mathematically, we define a gait
as a function that specifies a vector of commanded motor
positions for a robot over time. We can write gaits without
feedback — also called open-loop gaits — as

~x = g(t) (1)

for commanded position vector ~x. The function depends
only on time.

It follows that open-loop gaits are deterministic, produc-
ing the same command pattern each time they are run. While
the commanded positions will be the same from trial to trial,
the actual robot motion and measured fitness will vary due
to the noisiness of trials in the real world.

For the system evaluated in this paper, we chose to com-
pare open-loop gaits generated by both the parameterized
methods and HyperNEAT. An interesting extension would

Figure 2: (a) Top-down perspective of the robot with the
nine joints and associated servos labeled. (b) The robot in a
flat pose with the hip joint centered. (c,d,e) Various views of
a pose in which the hip joint is rotated.

be to allow closed-loop gaits that depend on the measured
servo positions, loads, voltage drops, or other quantities.

The ultimate goal was to design gaits that were as fast
as possible. Our performance metric was thus displacement
over the evaluation period of 12 seconds. Details of how this
displacement was measured are given below.

Experimental Setup
Platform Details
The quadruped robot in this study was assembled from off-
the-shelf components and parts printed on the Objet Connex
500 3-D Printing System. It weighs 1.88 kg with the on-
board computer and measures approximately 38 centimeters
from leg to opposite leg in the crouch position depicted in
Figure 1. The robot is actuated by 9 AX-12+ Dynamixel
servos: one inner joint and one outer joint servo in each of
the four legs, and one servo at the center “hip” joint. This
final unique servo allows the two halves of the robot to ro-
tate with respect to each other. Figure 2 shows this unique
motion, as well as the positions and numerical designations
of all nine servos. Each servo could be commanded to a
position in the range [0, 1023], corresponding to a physical
range [-120◦, +120◦]. The computer and servos can be pow-
ered by two on-board batteries, but for the tests presented in
this paper power was provided by a tethered cable.

All of the computation for gait learning, fitness evalua-
tion, and robot control was performed on the compact, on-
board CompuLab Fit-PC2, running Ubuntu Linux 10.10.
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Figure 3: A Nintendo Wii remote provided the location
of the robot by tracking the infrared LED mounted on the
robot’s antenna. The position was measured in pixels and
transmitted from the Wii remote to the robot via bluetooth.

The slowest portion of code was HyperNEAT, which took
less than one second per generation to run (excluding phys-
ical evaluations). Thus, we chose not to offload any com-
putation. All gait generation, learning, and fitness evalua-
tion code, except HyperNEAT, was written in Python and is
available on our website (http://bit.ly/ecalgait). HyperNEAT
is written in C++. We controlled the servos with the Py-
dynamixel library, sending commanded positions at 40Hz.
The robot connected to a wireless network on boot, which
enabled us to control it via SSH.

Robot gaits are defined by a Python gait function that
takes time (starting at 0) as a single input and outputs a list
of nine commanded positions (one for each servo). To safe-
guard against limb collision with the robot body, the control
code cropped the commands to a safe range. This range was
[-85◦, +60◦] for the inner leg servos, [-113◦, +39◦] for the
outer leg servos, and [-28◦, +28◦] for the center hip servo.

Fitness Evaluation Details
To track the position of the robot and thus determine gait
fitness, we mounted a Nintendo Wii remote on the ceiling
and an infrared LED on top of the robot (Figure 3). The
Wii remote contains an IR camera that tracks and reports
the position of IR sources. The resolution of the camera
was 1024 by 768 pixels with view angles of about 40◦ by
30◦, which produced a resolution of 1.7mm per pixel when
mounted at a height of 2.63m. At this height, the viewable
window on the floor was approximately 175 x 120 cm.

A separate Python tracking server ran on the robot and in-
terfaced with the Wii remote via bluetooth using the CWiid
library. Our fitness-testing code communicated with this
server via a socket connection and requested position up-
dates at the beginning and end of each run.

As mentioned earlier, the metric for evaluating gaits was
the Euclidian distance the robot moved during a 12-second
run on flat terrain. For the manual and parameterized gaits,
the fitness was this value. The HyperNEAT gaits stressed
the motors more than the other gaits, so to encourage gaits
that did not tax the motors we penalized gaits that caused
the servos to stop responding. When the servos stopped re-
sponding they could, in nearly all cases, be restarted by cy-
cling power, though over the course of this study we did have
to replace four servos that were damaged. The penalty was
to set the fitness to half of the distance the robot actually
traveled. We tested whether the servos were responding af-
ter each gait by commanding them to specific positions and
checking whether they actually moved to those positions.
This test had the additional benefit of rewarding those gaits
that did not flip the robot into a position where it could not
move its legs, which HyperNEAT also did more than the
other learning methods. Because the fitness of HyperNEAT
gaits were often halved, in results we compare actual dis-
tance traveled in addition to fitness for the best gaits pro-
duced by each class of gait-generating algorithms.

Since only a single point on the robot — the IR LED —
was measured for the purposes of computing fitness, it was
important that the position of the IR LED accurately reflect
the position of the robot as a whole. To enforce this con-
straint, the robot was always measured while in the ready
position (the position shown in Figure 1). This was done
to prevent assigning extra fitness to, for example, gaits that
ended with the robot leaning toward the direction of travel
(this extra distance would not likely generalize in a longer
run, which is why we did not want to reward this behavior).

In order to measure the start and end position in the same
pose, and to ensure fair fitness evaluations with as little noise
as possible, we linearly interpolated the motion of the robot
between the ready position and the commanded gait, g(t).
As shown in Figure 4, the instantaneous robot limb config-
uration during the first and last portions of the evaluation
was an interpolation between the initial ready position and
g(t); during the rest of the evaluation, the robot followed the
commanded gait exactly.

The only human intervention required during most learn-
ing trials was to occasionally move the robot back into the
viewable area of the Wii remote whenever it left this win-
dow. Initially this was a rare occurrence, as the gaits did not
typically produce motion as large as the size of the window
(roughly 175 x 120 cm). However, as gaits improved, par-
ticularly when using HyperNEAT, the robot began to walk
out of the measurement area a non-negligible fraction of the
time. Whenever it did so, we would discard the trial and
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Figure 4: Motion was interpolated linearly between a sta-
tionary pose and the commanded gait g(t) for one second
at the beginning of each run and two seconds at the end, as
shown above. The position of the robot was measured at the
beginning and end of each run (red circles) in the ready pose.

repeat it until the gait finished within the window. While
this process guaranteed that we always obtained a measure-
ment for a given gait before proceeding, it also biased some
measurements downward. Because the performance of the
robot on a given gait varied from trial to trial, a successful
measurement was more likely to be obtained when the gait
happened to perform poorly. This phenomenon was negli-
gible at first, but became more pronounced as gaits began
traversing the entire area. HyperNEAT gaits were especially
likely to require additional trials, meaning that the reported
performance for HyperNEAT is worse than it would have
been otherwise. Future studies could employ an array of
Wii remotes to increase the size of the measurement arena.

Gait Generation and Learning
We now describe the classes of gait-generating algorithms.

Parameterized Gaits
By a parameterized gait, we mean a gait produced by a pa-
rameterized function g(t; ~θ). Fixing the parameters ~θ yields
a deterministic motion function over time. We tried several
parametrizations on the robot and, upon obtaining reason-
able early success, settled on one particular parametrization,
which we call SineModel5. Its root pattern is a sine wave
and it has five parameters (Table 1).

Intuitively, SineModel5 starts with 8 identical sine waves
of amplitude α and period τ , multiplies the waves for all
outer motors by mO, multiplies the waves for all front mo-
tors by mF , and multiplies the waves for all right motors by

Parameters
in ~θ Description Range
α Amplitude [0, 400]
τ Period [.5, 8]
mO Outer-motor multiplier [-2, 2]
mF Front-motor multiplier [-1, 1]
mR Right-motor multiplier [-1, 1]

Table 1: The SineModel5 motion model parameters.

mR. To obtain the actual motor position commands, these
waves are offset by fixed constants (CO = 40 for outer mo-
tors, CI = 800 for inner motors, and CC = 512 for the cen-
ter hip motor) so that the base position (when the sine waves
are at 0) is approximately a crouch (the position shown in
Figure 1). To keep the size of the model search space as
small as possible, we decided to keep the ninth (center) mo-
tor at a fixed neutral position. Thus, the commanded posi-
tion for each motor as a vector function of time is as follows
(numbered as in Figure 2):

~g(t) =



α · sin(2πt/τ) ·mF +CI

α · sin(2πt/τ) ·mO ·mF +CO

α · sin(2πt/τ) +CI

α · sin(2πt/τ) ·mO +CO

α · sin(2πt/τ) ·mR+CI

α · sin(2πt/τ) ·mO ·mR+CO

α · sin(2πt/τ) ·mF ·mR+CI

α · sin(2πt/τ) ·mO ·mF ·mR+CO

0 +CC


Learning Methods for Parameterized Gaits
Given the SineModel5 parameterized motion model (see
previous section) and the allowable ranges for its five pa-
rameters (Table 1), the task is discovering values for the five
parameters that result in fast gaits.

If we choose a value for the five dimensional parameter
~θ, then a given physical trial gives us one measurement of
the fitness f(~θ) of that parameter vector. Two things make
learning difficult. First, each evaluation of f(~θ) is expen-
sive, taking 15-20 seconds on average. Second, the fitness
returned by such evaluations has proved to be very noisy,
with the standard deviation of the noise often being roughly
equivalent to the size of the measurement.

We test the ability of different learning algorithms to
choose the next value of ~θ to try, given a list of the ~θ val-
ues already evaluated and their fitness measurements f(~θ).

We evaluated the following six different learning algo-
rithms for the parameterized motion models:

Random: This method randomly generates parameter vec-
tors in the allowable range for every trial. This strategy
serves as as baseline for comparison.

Uniform random hill climbing: This method repeatedly
starts with the current best gait and then selects the next ~θ
by randomly choosing one parameter to adjust and replac-
ing it with a new value chosen with uniform probability in
the allowable range for that parameter. This new point is
evaluated, and if it results in a longer distance walked than
the previous best gait, it is saved as the new best gait.

Gaussian random hill climbing: This method works sim-
ilarly to Uniform random hill climbing, except the next ~θ
is generated by adding random Gaussian noise to the cur-
rent best gait. This results in all parameters being changed
at once, but the resulting vector is always fairly close to the
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previous best gait. We used independently selected noise in
each dimension, scaled such that the standard deviation of
the noise was 5% of the range of that dimension.

N-dimensional policy gradient ascent: We implemented
Kohl and Stone’s (Kohl and Stone, 2004) method for local
gradient ascent for gait learning with noisy fitness evalua-
tions. This strategy explicitly estimates the gradient of the
objective function. It does this by first generating n parame-
ter vectors near the initial vector by perturbing each dimen-
sion of each vector randomly by either −ε, 0, or ε. Then
each vector is run on the robot, and for each dimension we
segment the results into three groups: −ε, 0, and ε. The
gradient along this dimension is then estimated as the aver-
age score for the ε group minus the average score for the −ε
group. Finally, the method creates the next ~θ by changing all
parameters by a fixed-size step in the direction of the gradi-
ent. For this study we used values of ε equal to 5% of the
allowable range in each dimension (ranges listed in Table 1),
and a step size scaled such that if all dimensions were in the
range [0, 1], the norm of the step size would be 0.1.

Nelder-Mead simplex method: The Nelder-Mead simplex
method creates an initial simplex with d + 1 vertices for a
d dimensional parameter space. It then tests the fitness of
each vertex and, in general, it reflects the worst point over
the simplex’s centroid in an attempt to improve it. Several
additional rules are used to prevent cycles and local minima;
see Singer and Nelder (2009) for more information.

Linear regression: To initialize, this method chooses and
evaluates five random parameter vectors. It then fits a lin-
ear model from parameter vector to fitness. In a loop, the
method chooses and evaluates a new parameter vector gen-
erated by taking a fixed-size step in the direction of the gra-
dient for each parameter, and fits a new linear model to all
vectors evaluated so far, choosing the model to minimize
the sum of squared errors. The step size is the same as in
N-dimensional policy gradient ascent.

Three runs were performed per learning method. To most
directly compare learning methods, we evaluated the differ-
ent methods by starting each of their three runs, respectively,
with the same three randomly-chosen initial parameter vec-
tors (~θA, ~θB , and ~θC). Runs continued until the performance
plateaued, which we defined as when there was no improve-
ment during the last third of a run.

HyperNEAT Gait Generation and Learning
HyperNEAT is an indirect encoding for evolving artificial
neural networks (ANNs) that is inspired by the way natural
organisms develop (Stanley et al., 2009). It evolves Com-
positional Pattern Producing Networks (CPPNs) (Stanley,
2007), each of which is a genome that encodes an ANN phe-
notype (Stanley et al., 2009). Each CPPN is itself a directed
graph, where the nodes in the graph are mathematical func-
tions, such as sine or Gaussian. The nature of these func-
tions can facilitate the evolution of properties such as sym-

Figure 5: HyperNEAT produces ANNs from CPPNs. ANN
weights are specified as a function of the geometric coordi-
nates of each connection’s source and target nodes. These
coordinates and a constant bias are iteratively passed to the
CPPN to determine each connection weight. The CPPN has
two output values, which specify the weights for each con-
nection layer as shown. Figure from Clune et al. (2011).

metry (e.g. a Gaussian function) and repetition (e.g. a sine
function) (Stanley et al., 2009; Stanley, 2007). The signal
on each link in the CPPN is multiplied by that link’s weight,
which can magnify or diminish its effect.

A CPPN is queried once for each link in the ANN phe-
notype to determine that link’s weight (Figure 5). The in-
puts to the CPPN are the Cartesian coordinates of both the
source (e.g. x = 2, y = 4) and target (e.g. x = 3, y = 5)
nodes of a link and a constant bias value. The CPPN takes
these five values as inputs and produces two output values.
The first output value determines the weight of the link be-
tween the associated input (source) and hidden layer (target)
nodes, and the second output value determines the weight of
the link between the associated hidden (source) and output
(target) layer nodes. All pairwise combinations of source
and target nodes are iteratively passed as inputs to a CPPN
to determine the weight of each ANN link.

HyperNEAT can exploit the geometry of a problem be-
cause the link values between nodes in the ANN pheno-
type are a function of the geometric positions of those
nodes (Stanley et al., 2009; Clune et al., 2009c, 2011). For
quadruped locomotion, this property has been shown to help
HyperNEAT produce gaits with front-back, left-right, and
four-way symmetries (Clune et al., 2009a, 2011).

The evolution of the population of CPPNs occurs ac-
cording to the principles of the NeuroEvolution of Aug-
menting Topologies (NEAT) algorithm (Stanley and Mi-
ikkulainen, 2002), which was originally designed to evolve
ANNs. NEAT can be fruitfully applied to CPPNs because of
their structural similarity to ANNs. For example, mutations
can add a node, and thus a function, to a CPPN graph, or
change its link weights. The NEAT algorithm is unique in
three main ways (Stanley and Miikkulainen, 2002). Initially,
it starts with small genomes that encode simple networks
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Figure 6: ANN configuration for HyperNEAT runs. The first
two columns of each row of the input layer receive informa-
tion about a single leg (the angles requested in the previous
time step for its two joints). The final column provides the
previously requested angle of the center joint and, to enable
periodic movements, a sine and cosine wave. Evolution de-
termines the function of the hidden-layer nodes. The nodes
in the output layer specify new joint angles for each respec-
tive joint. The unlabeled nodes in the input and output layers
are ignored. Figure adapted from Clune et al. (2011).

and slowly complexifies them via mutations that add nodes
and links to the network, enabling the algorithm to evolve
the topology of an ANN in addition to its weights. Sec-
ondly, NEAT has a fitness-sharing mechanism that preserves
diversity in the system and gives time for new innovations to
be tuned by evolution before competing them against more
adapted rivals. Finally, NEAT tracks historical information
to perform intelligent crossover while avoiding the need for
expensive topological analysis. A full explanation of NEAT
can be found in (Stanley and Miikkulainen, 2002).

The ANN configuration follows previous studies that
evolved quadruped gaits with HyperNEAT in simula-
tion (Clune et al., 2011, 2009a), but was adapted to accom-
modate the physical robot in this paper. Specifically, the
ANN has a fixed topology (i.e. the number of nodes does
not evolve) that consists of three 3 × 4 Cartesian grids of
nodes forming input, hidden, and output layers (Figure 6).
Adjacent layers were allowed to be completely connected,
meaning that there could be (3 × 4)2 = 288 links in each
ANN (although evolution can set weights to 0, functionally
eliminating the connection). The inputs to the substrate were
the angles requested in the previous time step for each of the
9 joints of the robot (recall that gaits are open-loop, so ac-
tual joint angles are unknown) and a sine and cosine wave
(to facilitate the production of periodic behaviors). The sine
and cosine waves had a period of about half a second.

The outputs of the substrate at each time step were nine
numbers in the range [−1, 1], which were scaled according

to the allowable ranges for each of the nine motors and then
commanded the positions for each motor. Occasionally Hy-
perNEAT would produce networks that exhibited rapid os-
cillatory behaviors, switching from extreme negative to ex-
treme positive numbers each time step. This resulted in mo-
tor commands to alternate extremes every 25ms (given the
command rate of 40Hz), which tended to damage and over-
heat the motors. To ameliorate this problem, we requested
four times as many commanded positions from HyperNEAT
ANN’s and averaged over four commands at a time to obtain
the actual gait g(t). This solution worked well and did not
restrict the expressiveness of HyperNEAT.

As with the parameterized methods, three runs of Hyper-
NEAT were performed. Runs lasted 20 generations with a
population size of 9 organisms in 3 species, allowing a bare
minimum of diversity within and between NEAT species.
These numbers were necessarily small given how much time
it took to conduct evolution directly on a real robot. The re-
maining parameters were identical to Clune et al. (2011).

Results and Discussion
Learning Methods for Parameterized Gaits
The results for the parameterized gaits are shown in Figure 7
and Table 2. A total of 1217 hardware fitness evaluations
were performed during the learning of parameterized gaits,
with the following distribution by learning method: 200 ran-
dom, 234 uniform, 284 Gaussian, 174 gradient, 172 simplex,
153 linear regression. The number of runs varies because
each run plateaued at its own pace. The best overall gait
for the parameterized methods was found by linear regres-
sion, which also had the highest average performance. The
Nelder-Mead simplex also performed quite well on average.
The other local search methods did not outperform random
search; however, all methods did manage to explore enough
of the parameter space to significantly improve on the pre-
vious hand-coded gait in at least one of the three runs. No
single strategy consistently beat the others: for the first trial
Linear Regression produced the fastest gait at 27.58 body
lengths/minute, for the second a random gait actually won
with 17.26, and for the third trial the Nelder-Mead simplex
method attained the fastest gait with 14.83.

One reason the randomly-generated SineModel5 gaits
were so effective may have been due to the SineModel5’s
bias toward regular, symmetric gaits. This may have al-
lowed the random strategy — focusing on exploration — to
be competitive with the more directed strategies that exploit
information from past evaluations.

HyperNEAT Gaits
The results for the gaits evolved by HyperNEAT are shown
in Figure 8 and Table 2. A total of 540 evaluations were per-
formed for HyperNEAT (180 in each of three runs). Over-
all the HyperNEAT gaits were the fastest by far, beating all
the parameterized models when comparing either average
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Average Std. Dev.
Previous hand-coded gait 5.16 –

Random search 9.40 6.83
Uniform Random Hill Climbing 7.83 4.56
Gaussian Random Hill Climbing 10.03 6.00

Policy Gradient Descent 6.32 7.39
Nelder-Mead simplex 12.32 3.35

Linear Regression 14.01 12.88
Evolved Neural Network

(HyperNEAT) 29.26 6.37

Table 2: The average and standard deviation of the best gaits
found for each algorithm during each of three runs, in body
lengths/minute.
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Figure 7: Average results (± SE) for the parameterized
learning methods, computed over three separately initialized
runs. Linear regression found the fastest overall gait and
had the highest average, followed by Nelder-Mead simplex.
Other methods did not outperform a random strategy.

or best gaits. We believe that this is because HyperNEAT
was allowed to explore a much richer space of motions, but
did so while still utilizing symmetries when advantageous.
The single best gait found during this study had a speed of
45.72 body lengths/minute, 66% better than the best non-
HyperNEAT gait and 8.9 times faster than the hand-coded
gait. Figure 9 shows a typical HyperNEAT gait that had high
fitness. The pattern of motion is both complex (containing
multiple frequencies and repeating patterns across time) and
regular, in that patterns of multiple motors are coordinated.

The evaluation of the gaits produced by HyperNEAT was
more noisy than for the parameterized gaits, which made
learning difficult. For example, we tested an example Hyper-
NEAT generation-champion gait 11 times and found that its
mean performance was 26 body lengths/minute (± 13 SD),
but it had a max of 38 and a min of 3. Many effective Hyper-
NEAT gaits were not preserved across generations because
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Figure 8: Average fitness (± SE) of the highest performing
individual in the population for each generation of Hyper-
NEAT runs. The fitness of many high-performing Hyper-
NEAT gaits were halved if the gait overly stressed the mo-
tors (see text), meaning that HyperNEAT’s true performance
without this penalty would be even higher.

a single poor-performing trial could prevent their selection.
The HyperNEAT learning curve would be smoother if the
noise in the evaluations could be reduced or more than one
evaluation per individual could be afforded.

Conclusion and Future Work
We have presented an array of approaches for optimizing
a quadrupedal gaits for speed. We implemented and tested
six learning strategies for parameterized gaits and compared
them to gaits produced by neural networks evolved with the
HyperNEAT generative encoding.

All methods resulted in an improvement over the robot’s
previous hand-coded gait. Building a model of gait per-
formance with linear regression to predict promising di-
rections for further exploration worked well, producing a
gait of 27.5 body lengths/minute. The Nelder-Mead sim-
plex method performed nearly as well, likely due to its ro-
bustness to noise. The other parameterized methods did
not outperform random search. One reason the randomly-
generated SineModel5 gaits performed so well could be be-
cause the gait representation was biased towards effective,
regular gaits, making the highly exploratory random strategy
more effective than more exploitative learning algorithms.

HyperNEAT produced higher-performing gaits than all of
the parameterized methods. Its best-performing gait trav-
eled 45.7 body lengths per minute, which is nearly 9 times
the speed of the hand-coded gait. This could be because Hy-
perNEAT tends to generate coordinated gaits (Clune et al.,
2011, 2009a), allowing it to take advantage of the sym-
metries of the problem. HyperNEAT can also explore a
much larger space of possibilities than the more restric-
tive 5-dimensional parameterized space. HyperNEAT gaits
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Figure 9: Example of one high-performance gait produced
by HyperNEAT showing commands for each of nine motors.
Note the complexity of the motion pattern. Such patterns
were not possible with the parameterized SineModel5, nor
would they likely result from a human designing a different
low-dimensional parameterized motion model.

tended to produce more complex sequences of motor com-
mands, with different frequencies and degrees of coordina-
tion, whereas the parameterized gaits were restricted to scal-
ing single-frequency sine waves and could only produce cer-
tain types of motor regularities.

Because all 1217 trials were done in hardware, it was dif-
ficult to gather enough data to properly rank the methods
statistically. One direction for future work could be to ob-
tain many more trials. However, a more effective extension
might be to combine frequent trials in simulation with infre-
quent trials in hardware (Bongard et al., 2006). The simula-
tion would produce the necessary volume of trials to allow
the learning methods to be effective, and the hardware trials
would serve to continuously ground and refine the simula-
tor. One could also guide evolution to the most fertile ter-
ritory by penalizing gaits that produced large discrepancies
between simulation and reality (Koos et al., 2010). Another
extension would be to allow gaits that sensed the position
of the robot and other variables to enable the robot to adjust
to its physical state, instead of providing an open-loop se-
quence of motor commands. All of these approaches would
likely improve the quality of automatically generated gaits
for legged robots, which will hasten the day that humanity
can benefit from their vast potential.
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Abstract

Inspired by astonishing navigation ability of insects and other
animals, many studies observed their behaviors, and consid-
ered biomimetic application to robotic systems by investigat-
ing mechanisms based on various senses. In this paper, we
suggest a new landmark vector model for homing navigation
with quantized distance information. The method is highly
successful for homing navigation in both perspectives of an-
gular error and success rate. This work has been published in
Yu and Kim (2011).

Introduction
Animals have developed navigation skills based on various
senses. Desert ants and honeybees are known to use vi-
sual information (Collett, 1996), turtles migrating long dis-
tance rely on magnetic compass (Luschi et al., 1996), while
other studies have shown that birds use olfactory cues to
navigate (Papi, 1990). Many studies have focused on de-
signing bio-inspired navigation algorithms for robotic sys-
tems inspired by the excellent performance animals demon-
strate. Among them, vision-based homing navigation has
been studied through a number of bio-inspired algorithms.
One of the simplest method suggested, inspired by desert
ants and honeybees, is the ‘snapshot model’ (Cartwright and
Collett, 1983).

In the snapshot model, currently obtained visual informa-
tion is compared to that in the snapshot image taken at home
location. Several different methods were suggested to pro-
cess the snapshot images for homing navigation. One of the
methods based on the concept is the average landmark vec-
tor (ALV) model by Lambrinos et al. (2000).

The ALV model is one parameter method where the av-
erage landmark vector is obtained by averaging every unit-
length landmark vectors perceived in the snapshot. Compar-
ing the average landmark vectors obtained from snapshots
taken at the current location and at home location, it is suffi-
cient to guide the agent for the homing direction. The ALV
model is based on a simple representation of the environ-
ment with powerful performance results in homing naviga-
tion, but the model necessarily requires a reference compass
information.

L

C

P

R
δθ +

θ

δψ +

d
ψ

L
C

P

Figure 1: Image shift of landmarks when the agent moves
from the positionP toC with moving distanced. The head
orientation angle changes byψ, and the viewing angle of a
landmark isθ andθ+ δ in two positions, respectively (mod-
ified from Yu and Kim (2010)).

In this paper, we propose a new landmark-based naviga-
tion algorithm without any reference compass. The method
we suggest is the distance-estimated landmark vector model
(DELV) using quantized distance estimation along with the
rotational landmark arrangement matching. This work has
been published in Yu and Kim (2011).

Methods
While the ALV model (Lambrinos et al., 2000) considers
landmark vectors in unit length, and perceives only angular
directions of landmarks ignoring their distances, the DELV
model includes distance information as well as the angular
position of landmarks in the landmark vector. Both methods
share similar concept in perceiving landmark information as
a vector form, but the matching process between information
in two snapshots have a different point of view in exploiting
the landmark vectors.

Distance estimation and quantization
The DELV method includes distance information of land-
marks in the landmark vector representation, which can be
obtained by inducing the image motion. Using an omni-
directional camera, the mobile robot is able to monitor 360◦

view of its surroundings, and the angular position of land-
marks observed in the view is shifted as the robot moves
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one step forward. Fig. 1 describes the geometric relation-
ship between angular shift and the distance, and Eq. 1 shows
the distance estimation based on the relationship.

R =
dsin(θ − ψ)

sin(δ + ψ)
(1)

As in Eq. 1, the estimation of landmark distance is af-
fected by variables such asθ, δ andd, and their accuracies
can affect the estimation results. The angular position of
landmarksθ andθ + δ is sensitive to noise in the captured
image, while the moving distanced is influenced by odome-
try error. In addition, it may be plausible to argue that insects
or other animals perceive the distances to landmarks in a rel-
ative manner rather than in the absolute values. Therefore,
we apply quantization on the estimated distance to landmark
vectors. Through arrangement matching of landmark vec-
tors for heading direction estimation and homing direction
computation, it is shown that the landmark vector model
with quantized distance is effective, which will be described
in more details.

Rotational matching of landmark vectors
The landmark vector set perceived at home location is stored
as a reference map in which the landmark vectors at an arbi-
trary location will be projected to obtain a homing direction.
By reversely projecting the landmark vector obtained at the
current location to the reference map, the end point of each
landmark vector would represent the vector from the home
location to the current location. WithN landmarks avail-
able in the environment, the estimation on the current posi-
tion pk(x) is defined as the average of the landmark vectors
projected on the reference map. Assuming the appropriate
arrangementk, the equation is given as:

p
k(x) =

1

N

N
∑

i=1

[

V
R

i (xo, αr) − V
k

i (x, α)
]

(2)

whereV R
i (xo, αr) is the landmark vector for thei-th landmark in

the reference map, andV k
i (x, α) is thei-th landmark vector with

the matching orderk at the current location x.
Without a reference compass, the DELV method solves the cor-

respondence problem between landmarks in a pair of snapshots
with the rotational arrangement matching of landmark vectors. The
variance of end points of the projected landmark vectors is used as
the criterion for finding the best matching orderz and heading di-
rectionαz as:

arg mink,α

[
∑N

i=1

([

V R
i (xo, αr) − V k

i (x, α) − pk(x)
]

[

V R
i (xo, αr) − V k

i (x, α) − pk(x)
]T

)]

(3)

Results and discussion
Vector map results in Fig. 2 (a) to (c) indicate the decided homing
direction with the suggested method for three different quantiza-
tion levels. Angular error curves in Fig. 2 (d) efficiently compares
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Figure 2: Vector map results with quantization in (a) level 1,
(b) level 3, and (c) level 5, respectively and (d) error curves

the results and show low angular errors. As a result, the DELV
model with quantized distance shows homing ability with simple
representation of environments and low complexity in computa-
tion even without any reference compass information. The quanti-
zation of distances to landmarks may allow some errors in heading
direction search and current location estimation, but experimental
results showed that the method leads to the homing direction deci-
sion.
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Abstract

The dynamics of real-world systems often involve multiple
processes that influence system state. The timescales that
these processes operate on may be separated by orders of
magnitude or may coincide closely. Where timescales are not
separable, the way that they relate to each other will be im-
portant for understanding system dynamics. In this paper, we
present a short overview of how modellers have dealt with
multiple timescales and introduce a definition to formalise
conditions under which timescales are separable.

We investigate timescale separation in a simple model, con-
sisting of a network of nodes on which two processes act. The
first process updates the values taken by the network’s nodes,
tending to move a node’s value towards that of its neighbours.
The second process influences the topology of the network,
by rewiring edges such that they tend to more often lie be-
tween similar individuals. We show that the behaviour of
the system when timescales are separated is very different
from the case where they are mixed. When the timescales
of the two processes are mixed, the ratio of the rates of the
two processes determines the systems equilibrium state. We
go on to explore the impact of heterogeneity in the system’s
timescales, i.e., where some nodes may update their value
and/or neighbourhood faster than others, demonstrating that
it can have a significant impact on the equilibrium behaviour
of the model.

Introduction
Real-world adaptive systems typically involve many inter-
acting parts and processes operating at multiple timescales.
However, models of these systems often proceed by identi-
fying a single substantive timescale. Faster processes are of-
ten idealised as essentially instantaneous, while slower pro-
cesses are often treated as a constant background influence
that parametrises the model’s dynamics.

For instance, Kauffman’s (1993) NK landscape model of
adaptation on rugged fitness landscapes has a single substan-
tive timescale. At each step the genotype of a genetically fix-
ated population is updated to one of the fitter adjacent geno-
types. In reality, a newly discovered fitter mutant takes time
to reach fixation. This process is idealised as instantaneous.
During a single run of Kauffman’s model, the parameters N

and K, which determine the length of a genome and the de-
gree of epistasis within it, are held fixed. They parametrise
the system’s dynamics. Of course in reality both N and K
vary as a consequence of evolutionary change. The security
of Kauffman’s idealisations hinges on whether these pro-
cesses are separable: the faster processes are much faster,
and the slower processes much slower, than the timescale of
the process that he focuses on. There are various interpreta-
tions of this kind of concept and in the scope of this paper we
define separation of timescales as follows. The timescales of
two processes are separated if one process leads the system
into equilibrium before the other process influences the sys-
tem. This means when the second process sets in, the system
has already reached equilibrium.

Where processes take place over similar timescales and
affect each other, i.e., they are coupled, dealing with these
interacting timescales becomes an important issue. For real-
world systems there are further considerations that may be
significant. To what extent is there component-wise hetero-
geneity in the rates at which different components operate?
While, on average, a genome’s alleles might mutate with
probability p, it may be the case that some alleles are more
vulnerable to mutation than others. While, on average, the
children in a schoolyard might update their social ties at
rate r, some might update these ties more often than oth-
ers. Moreover, a system’s timescales might vary with time.
The traffic on a network might be diurnal, with higher rates
during the day. The rate of plasticity in a neural component
might decay with the age of the component.

Here we are interested in exploring these issues in the con-
text of adaptive processes modelled on networks. In the co-
evolutionary networks literature (Gross and Blasius, 2008),
two processes are typically modelled: one governing the
tendency for nodes to change their state, and one govern-
ing topological change in the network. These two processes
may occur on separable timescales where interactions be-
tween the two processes can perhaps be neglected. If the
timescales for the two processes are not separable, their in-
terplay will affect the behaviour exhibited by the network.

Here we explore a very simple coevolutionary network in
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which both state and topology evolve over time. We first
vary the rates of change for both processes and demonstrate
that their ratio impacts on the equilibrium state of the net-
work. We proceed to explore the impact of heterogeneity
in timescale, demonstrating that it can impact on both the
distribution of node states and the topology at equilibrium.
Before introducing the simple model and its results, we re-
view some literature demonstrating the issue of timescale in
modelling adaptive systems. We conclude with discussion
of the results presented here and ideas for future work.

Dealing with timescale
Synchrony vs. asynchrony
Several studies have revealed that models of adaptive sys-
tems can be sensitive to the updating scheme chosen. Us-
ing a synchronous model of the iterated prisoner’s dilemma,
Nowak and May (1992) found complicated spatial patterns
within which co-operation persisted. Using an asynchronous
update scheme for the same model, Huberman and Glance
(1993) found that spatial patterns disappeared with defec-
tion the only strategy adopted. While Kauffman (1993) has
shown that synchronous Random Boolean Networks can ex-
hibit many stable cyclic behaviours, glossed as analogous
to the multiple cell types that may result from the same
genome, Harvey and Bossomaier (1997) showed that the
same Random Boolean Networks with asynchronous update
would tend to evolve to a fixed point.

Multiple timescales
Artificial life has typically considered multiple adaptive
timescales in the context of interactions between learn-
ing and evolution (Ackley and Littman, 1992; Belew and
Mitchell, 1996), such as the Baldwin effect (Hinton and
Nowlan, 1987). Further examples where the separation of
timescales is critical to adaptive dynamics include the inter-
action between processes of neurotransmission and (much
slower) neuromodulation (Buckley et al., 2004, 2005; Buck-
ley, 2008; Husbands et al., 2010), and the interaction be-
tween the evolution of individual behaviours and ecological
relationships (e.g., Powers et al., in press; Watson et al., in
press; Van Der Laan and Hogeweg, 1995).

Timescales on networks
Most research involving dynamic networks has focused on
addressing either the dynamics ‘on’ a network, or the dy-
namics ‘of’ the network (Gross and Blasius, 2008). The
dynamics ‘on’ a network describe the state transitions of
the network’s nodes, while the dynamics ‘of’ a network de-
scribe topological changes. Research on so-called coevolu-
tionary networks recognises that these processes are inher-
ently reflexive, with network state influencing topological
change (as when edges are formed between similar nodes),
and topology constraining state change (as when neighbours
exchange information) (Blasius and Gross, 2009; Gross and

Blasius, 2008; Gross and Sayama, 2009). Coevolutionary
networks have been the subject of recent study in the context
of the epidemic spread of diseases (Newman, 2002; Zhong
et al., 2010; Funk and Jansen, 2010; Van Segbroeck et al.,
2010), cascading network behaviour (Watts, 2002), opinion
dynamics (Kozma and Barrat, 2008; Demirel et al., 2011),
diffusion of innovations / information (Onnela and Reed-
Tsochas, 2009; Ke and Yi, 2008), evolution of social groups
(Palla et al., 2007), the growth of social networks (Sun and
Wang, 2008), co-operation (Pacheco et al., 2006; Van Seg-
broeck et al., 2009), community formation (Bryden et al.,
2010), synchronisation (Zhu et al., 2010) and global adap-
tation (Watson et al., in press). The dynamical interplay of
state update and rewiring processes are typically central to
the evolution of these systems.

Heterogeneous timescales
Typically, models make a simplifying assumption that all
components update their state at a shared characteristic rate,
while structural relationships change at some other arbitrary
rate. However, some models have explored systems with
heterogeneous rates. Van Segbroeck et al. (2009), for in-
stance, found that increased diversity in their model acceler-
ates the rate of evolution to an equilibrium state where co-
operation is a robust and dominant strategy. Pacheco et al.
(2006) employed variable re-wiring rates in a social agent
model. Their results suggest that introducing heterogeneity
has an effect on the system as a whole which can change the
frequency of co-operation observed at equilibrium.

A simple model
To study the influence of timescale separation we introduce
an abstract model based on models of opinion dynamics that
include adaptive change in network topology as well as the
spread of opinions over the network (e.g., Kozma and Bar-
rat, 2008). Here, nodes have an internal value and tend to
update this value in the direction of their neighbours’ val-
ues. The second process changes the network topology by
rewiring edges between nodes such that nodes disconnect
from dissimilar neighbours and connect to nodes with more
similar values.

To illustrate what kind of processes this model could be
related to we could assume that each node’s value represents
the opinion of a different person and that edges represent so-
cial interactions between people. In this setup, we can imag-
ine that either rewiring or state update might be the faster
process. If we assume a node’s value represents something
such as the religion a person believes in or a political affil-
iation, we can assume that this value changes very slowly.
We can further assume that therefore a person would more
readily change to associate with individuals sharing a simi-
lar opinion than change their own opinion to match that of
their neighbours. In this case, the rewiring process would
be faster than the value update process. At the other end of
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Figure 1: A typical network after initialisation.

the spectrum, we could assume a node’s value represented
a person’s preference for meeting friends at one restaurant
rather than another. In this case the individuals would be
likely to change their opinion based on the opinions of their
friends, rather than changing their friends on the basis of
their restaurant preference. In between these two extremes
we can think of intermediate cases where individuals have a
preference for socialising with individuals that share a sim-
ilar opinion, but also change their own opinion towards that
of their neighbours.

The model
The model consists of a network of N interconnected nodes
(here N = 100). Each node has a single value in the inter-
val [0.0, 1.0]. Even though a node’s value can be any value
between 0 and 1, each starts with the value 0.0 or 1.0, with
equal probability. Nodes are connected by undirected, un-
weighted edges, meaning an edge is either present or absent
and if node a cuts a tie to b, b also loses it’s connection to
a. Self-connections are not allowed. To initialise the net-
work between the nodes, we specify an average degree d
and generate a random network by making an edge between
each possible pair of unique nodes with probability d

N−1 . In
the examples presented here, we use an average degree of
d = 10. A visualisation of a typical network after initialisa-
tion is given in Figure 1.

Value Update: When a node i updates its value, it chooses
a random individual n from the set of its neighbours. It then
discovers the value of its neighbour v(n) and calculates the
difference v(n) − v(i) between the neighbour’s value and
its own. The node then updates its state towards the state
of its neighbour, proportional to the difference in values:
v(i)t+1 = v(i) +m(v(n)− v(i)). The factor m determines
the maximal change that can occur in one step. Here we
choose m = 0.01, to ensure that it takes several updates for
two nodes to reach the same value. If the updating node and

its chosen neighbour have the same state, i.e., v(i) = v(n),
the update results in no change to v(i).

Rewiring: When node i rewires, it compares its own value
to the values of its neighbours, identifying the neighbour
with which it is most dissimilar, n. The node i then gen-
erates a list of all neighbours of all of its neighbours, com-
prising all nodes that are two edges away. Members of this
list that are already neighbours of i are discarded. If the
list is non-empty, i drops the connection to n and rewires
this edge to a randomly chosen member of the list of neigh-
bours’ neighbours. This implies that, if an individual is al-
ready connected to all neighbours of its direct neighbours,
an attempt to rewire will result in no topological change.

Timescales: In each step of the algorithm, a list is gener-
ated containing all nodes that are ready to update their state
in the current time step. These nodes are then updated in a
random order, one at a time. After this, the same procedure
is repeated for all nodes ready to rewire. Whether a node is
ready to update or rewire depends on the timescales of the
two processes. The relation of the timescales is incorporated
in the model as follows. Each node is assigned two values,
Vi and Ri, specifying the number of time steps in the in-
terval between two consecutive value updates for i and two
consecutive rewiring events for i, respectively. In the case of
homogeneous timescales, all nodes have identical values for
V and identical values for R, i.e., ∀iVi = V and ∀iRi = R.
In the case of heterogeneous timescales this constraint does
not hold and values for the two rates may differ from node
to node. The algorithm stops when neither the state update
nor rewiring process effects any change in the network. We
will consider this stopping criterion in more detail next.

Equilibriation: Both the value update and the rewiring
process can only change the system’s state if there is a lo-
cal difference between two nodes. A local difference is
present if two nodes that are connected by an edge have non-
identical values. This difference can be reduced by updating
the value of one or both nodes or by deleting the edge be-
tween the two nodes and rewiring it to a node with a more
similar value. Once there there are no local differences in the
system anymore, neither the value update process nor the
rewiring process change the system’s state when invoked.
Therefore both processes need a value difference between
connected nodes to operate. Thus, we can see the difference
in values between connected nodes as some kind of energy
available to the two processes to use for changing the sys-
tem’s state. Both processes can only operate if there is en-
ergy left in the system and both processes reduce the energy,
at least locally. One way of formally defining this energy is
as the sum of absolute value differences between all pairs of
connected nodes, e =

∑
i,j connected

|v(i)− v(j)|.

The energy specified in this way reduces over time and
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once it has reached zero, the system’s state cannot change
any more. Therefore, we can use reaching zero energy as a
formal stopping criterion and terminate the algorithm when
the energy has reached zero. Note that, from the initial con-
ditions considered here, each process is capable of reducing
energy to zero in the absence of the other.

In the case of homogeneous timescales, whether they are
separated depends on the ratio of the values V and R. For
R >> V the timescales of the two processes are separated,
with only the value update process influencing the dynam-
ics. We also have separation of timescales in the opposite
case, V >> R, where the rewiring process dominates the
dynamics. Let us now specify further when exactly the
timescales are separated to find values for the parameters
V and R for which we can be certain the timescales are
separate. Based on the definition presented in the introduc-
tion, the timescales of the two processes are separate if one
process acts after the other process has reached equilibrium.
Based on the equilibrium definition as a zero energy state,
we define the equilibrium points tR and tV as the number
of steps the rewiring or value update process takes in isola-
tion to reduce the energy of the system to zero and therefore
reach equilibrium. We measure these two points for a par-
ticular set of initial conditions by running the algorithm with
only one of the two processes operating. Measuring the time
the system takes to reach zero energy when only one process
acts on it is the equilibrium time for that process, tV or tR.
If the second process acts only after the system has reached
equilibrium, it is unable to change the system state as there is
no energy for it to exploit (i.e., no value difference between
connected nodes). This means that the timescales of the two
processes are separated in two cases. The first case is when
V > tR, meaning that the value update only happens after
the rewiring process has brought the system to equilibrium.
In the second case, for R > tV , the rewiring process hap-
pens after the value update process has already reduced the
system’s energy to zero. In any other case the timescale are
mixed to some degree.

Results
We now observe the system behaviour for varying ratios R

V ,
first for homogeneous timescales and then for varying de-
grees of heterogeneity.

Homogeneous timescales
If only the rewiring process is active and its rate is the same
for all nodes, the system reaches equilibrium after tR ≈ 10.0
steps. If only the state update process is active, it takes
longer for the system to reach equilibrium, tV ≈ 6500. Hav-
ing measured these values, we can assign values to the pa-
rameters V andR for which the timescales are separated and
one of the two processes dominates the dynamics.

Setting V = 100 and R = 11 the timescales are separated
1Note that the equilibrium times measured above assume that

as V > tR = 10, with only the rewiring process influenc-
ing the dynamics as it reaches equilibrium before the state
change process has time to affect the network.

The equilibrium state of the system under these parame-
ters is shown in Figure 2a2. Since the network is initially
populated by equal numbers of nodes with value 0.0 and
value 1.0, the rewiring process removes edges between dis-
similar nodes and replaces them with edges linking nodes
with identical value, forming two homogeneous compo-
nents, one containing all the nodes with value 0.0 and the
other containing the nodes initialised with value 1.0. At the
other extreme, V = 1 and R = 10000 > tv , only the state
update process shapes the network. Figure 2j depicts the
equilibrium state under these conditions. Node values have
gradually changed towards the average value of the initial
population until all nodes have exactly this value. Since all
the nodes have identical values no rewiring can take place
and the network topology does not change at all.

Intermediate cases where the timescales are mixed are
shown in Figures 2b–2i. Where the rewiring process is
fast relative to the state update process, the network breaks
up into several components, each eventually consisting of
nodes with the same value, but with values differing signifi-
cantly between the components (see, e.g., Figure 2b). Where
the system’s dynamics are more influenced by the state up-
date process (see, e.g., Figure 2e) the values adopted by dif-
ferent components tend to be less diverse and closer to the
system mean. Eventually, the state update dynamic is fast
enough to equilibrate the network before the rewiring pro-
cess can cause it to fragment (see, Figures 2h–2j).

These results show that the system reaches the predicted
equilibrium when the timescales are separated. For the in-
termediate cases with mixed timescales however, the ratio
between the two timescales determines which equilibrium
the system ends up in and the character of this equilibrium,
in terms of the node values and the network topology.

Figure 3 depicts how the distribution of node values at
equilibrium varies with R

V . It shows that for very low values
of R

V , the rewiring process dominates the system dynam-
ics and only the initial values (0.0 and 1.0) are present. As
R
V increases, we observe more and more intermediate val-
ues, converging to the average value in the system. For high
values of R

V , there is only one value present in the system,
corresponding to the mean of the system’s initial values.

A similar transition can be observed for the topology of
the network. Figure 4 depicts how the distribution of com-
ponent sizes at equilibrium varies with R

V . Here we ob-
serve that when rewiring dominates, the two network com-
ponents have nearly the same size, consisting of roughly half
of the nodes each (one is larger as a consequence of the ini-

the process considered happens each time step (V = 1 or R = 1).
We therefore set the frequency of the faster process to 1.

2In the examples presented here, the same initial network
shown in Figure 1 is used.
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tial random allocation of value to the population of nodes).
For mixed timescales, components are smaller and isolated
nodes (with component size 1) exist. As we move towards

(a) V = 100, R = 1 (b) V = 1, R = 10

(c) V = 1, R = 15 (d) V = 1, R = 20

(e) V = 1, R = 50 (f) V = 1, R = 500

(g) V = 1, R = 1500 (h) V = 1, R = 2000

(i) V = 1, R = 3000 (j) V = 1, R = 10000

Figure 2: Networks at equilibrium for different values of R
and V . Node shading indicates the nodes states, with the
heaviest shading indicating 0.0 and no shading indicating
1.0.
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Figure 3: Values present in the equilibrium state for different
ratios R

V . For each value the system is started with the same
initial conditions.
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Figure 4: Component sizes present in the equilibrium state
for different ratios R

V . For each value the system is started
with the same initial conditions.

the regime where the state update process dominates the
systems dynamics, larger components exist at equilibrium.
Once state update is the only active process, only one con-
nected component is present at equilibrium.

Comparing these two graphs, we observe that the appar-
ent thresholds in system behaviour exhibited by node val-
ues and network topology are different. From the perspec-
tive of node values, we can see three regimes separated by
two threshold values of R

V . First, a transition occurs around
R
V = 0.5, with a second qualitative change in the equilib-
rium behaviour at around R

V = 250. However, when we
consider the network’s equilibrium topology, the equivalent
transitions seem to occur around R

V = 0.1 and R
V = 2500.
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Figure 5: Node values present at equilibrium for differ-
ent levels of heterogeneity in the value update and rewiring
intervals. Only α, which specifies the heterogeneity of
timescales, is varied here (with α = αV = −αR). The
runs are otherwise identical and share the same initial con-
ditions. For each value of α all node values, v(i), present at
equilibrium are displayed.

Heterogeneity in timescales

We now consider the case where some nodes might update
their value or their neighbourhood faster than others. We
model this by allocating each node, i, a pair of values, Vi
and Ri, governing the individual rates of change for value
and neighbourhood, respectively. The Vi and Ri values are
Pareto-distributed, meaning that while most of the values are
close to the characteristic population mode, V or R, a few
are significantly different, due to the long tail of the distri-
bution. Values are generated by transforming a uniform ran-
dom variable U by the functions V

U1/αV
for Vi and R

U1/αR

for Ri (Newman, 2004). The parameters αV and αR deter-
mine the spread of values in each distribution. We set αR to
a negative value and αV to a positive value so that the tails
of the distribution point towards each other. Large absolute
magnitudes for α (such as α = 100) lead to a relatively
small average distance between the resulting values and the
modal value, V or R, whereas small absolute values for α
(e.g., α = 2.5) produce a larger spread. This introduction
of heterogeneity into the model means that each node has its
own internal clocks governing when to update its state and
when to rewire.

The effect of heterogeneity on the value process is as-
sessed for the case in which V = 1 and R = 50, as this
is an intermediate case where both processes influence the
dynamics. Figure 5 shows that for a low degree of hetero-
geneity in both processes (higher values of α) the distribu-
tion of values present at equilibrium is not very different
from the base case without heterogeneity. For higher levels
of heterogeneity, however, the diversity of values increases

significantly. The effects of heterogeneity on the network
topology are illustrated in Figures 6 and 7 for V = 1 and
R = 2000, as this ratio of R

V is the threshold separating sin-
gle component equilibria from multi-component equilibria.
Without heterogeneity, the network forms one component
(Figure 7a) with a degree distribution that differs from that
of the initial network (compare Figures 6a and 6b). In the
presence of heterogeneity however, the network fragments
into eleven components (Figure 7b) with a qualitatively dif-
ferent degree distribution (Figure 6c).

Discussion
The results presented here show that in the cases where the
timescales are separated, the system behaves as we would
expect: if only the value update process is active, there is
no topological change and the values of all nodes converge
to the average of the initial network. If only the rewiring
process acts on the system state, we only observe changes in
topology and the network splits into two components, with
nodes being sorted according to their initial value. The num-
ber of components in that case depends only on the number
of initial values present in the system. For example, if we
initialise the system with three (e.g. 0.0, 0.5, 1.0) different
values instead of two the network fractures into three clus-
ters. To sum up, when timescales are sufficiently separated,
the system behaves in the same way as an equivalent system
with the slower process ‘switched off’.

The results also show that if the timescales are not sepa-
rated, the exact ratio between the rates of the two processes
influences the system’s equilibrium state. If the rewiring
process dominates the dynamics, the values we find in the
system in equilibrium differ significantly. As the value up-
date process gains more influence, the values of the compo-
nents found in the equilibrium state become more and more
similar. We can explain this behaviour by observing the
system dynamics over time. Starting from a random initial
network, the rewiring process stretches the network into a
predominantly white and a predominantly black end. In be-
tween, there are nodes of intermediate value. At this stage, if
the rewiring is fast, the network fractures at several points.
In the case where the value process is the main influence
on the system, the values of nodes are more similar at the
point when the rewiring sets in, as sufficient time has passed
for the node values to become more similar. Therefore, the
rewiring fractures the network into fewer and larger clusters.

Furthermore, we have shown that heterogeneity changes
the state the system reaches in equilibrium. Although the in-
fluence of heterogeneity is clearly visible, it is not as strong
as we had anticipated. The heterogeneous case needs to be
investigated further as we do not fully understand how het-
erogeneity in the rates influences the dynamics.

We have presented a definition for timescale separation in
the case of homogeneous and therefore well defined rates,
but we need an extended definition for the case of hetero-
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(a) initial distribution

(b) no heterogeneity

(c) heterogeneity in rates of both processes

Figure 6: Histogram of the degree distribution under differ-
ent conditions. The rate parameters used are V = 1 and
R = 2000. In the heterogeneous case the α values are
αV = 2.1 and αR = −4.1.

geneous rates. There are of course further complications in
real-world systems that we have not considered in the model
presented here. For example, processes often have dynamic
rates, i.e., the change of the rate is a process itself, perhaps
influenced by the current state of the system.

(a) no heterogeneity

(b) heterogeneity in rates of both processes

Figure 7: The effect of heterogeneity on network topology
for V = 1, R = 2000, αV = 2.1 and αR = −4.1.

Conclusions

In this paper we have presented an initial investigation of
timescale separation in adaptive networks, by identifying ex-
amples from the literature of different ways of dealing with
multiple timescales and proposing a definition of timescale
separation, based on the time taken by a system to reach
equilibrium under the action of individual processes. Given
this definition, we confirmed that, if the timescales of two
processes are sufficiently separated, we can ignore their in-
teraction. Where timescales do not separate cleanly, how-
ever, the system dynamics exhibit higher variability and
hence become more difficult to predict. Heterogeneity com-
plicates matters further as it can result in the system relax-
ing to different equilibria in comparison to the same system
under homogeneous conditions. Where we can not be cer-
tain that the timescales are sufficiently separated in a system
under consideration, we should expect the dynamics to be
sensitive to the interplay between the timescales of the pro-
cesses present.
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