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Abstract A novel biological software approach to define and evolve 3D com-
puter art forms is described based on a re-implementation oftheFormGrow sys-
tem produced by Latham and Todd at IBM in the early 1990’s. This original work
is extended by using DNA sequences as the input to generate complex organic-
like forms. The translation of the DNA data to 3D graphic formis performed
by two contrasting processes, one intuitive and one informed by the biochem-
istry. The former involves the development of novel, but simple, look-up tables
to generate a code list of functions such as the twisting, bending, stacking, and
scaling and their associated parametric values such as angle and scale. The lat-
ter involvesan analysis of the biochemical properties of the proteins encoded by
genes in DNA, which are used to control the parameters of a fixed FormGrow
structure. The resulting 3D data sets are then rendered using conventional tech-
niques to create visually appealing art forms. The system maps DNA data into an
alternative multi-dimensional space with strong graphic visual features such as
intricate branching structures and complex folding. The potential use in scientific
visualisation is illustrated by two examples. Forms representing the sickle cell
anaemia mutation demonstrate how a point mutation can have adramatic effect.
An animation illustrating the divergent evolution of two proteins with a common
ancestor provides a compelling view of an evolutionary process lost in millions
of years of natural history.

1 Introduction

We present a novel biological approach to define and evolve 3Dart forms. The work
combines a re-implementation of theFormGrow system of Todd and Latham [1] with an
external source to define the shapes: DNA sequences.FormGrow is a virtual machine
producing 3D computer art forms or designs. It embodies the particular organic aes-
thetics favored by Latham together with a shape grammar madeof primitives (horn-like
structures), transforms and assembly rules, and a number ofparameters encoding color,
scale, texture. We have re-visited theFormGrow system of Latham and Todd adapt-
ing it to a modern implementation taking advantage of standard graphics libraries and
portable coding, and putting the emphasis on bringing this system closer to the realm
of biology.

Two methods for using real DNA data, in the form of nucleotidesequences, were
devised. In the first, sequences are directly transformed via a series of empirically de-
signed tables to become readable byFormGrow. These tables process nucleotides as



codon triplets of data as would ribosomes in a live cell. Notions of “start,” “stop,” and
“junk” DNA code are also embedded in our system. We explore the application of our
novel method to generate 3D organic art forms in the visualisation of particular genetic
defects, and present as a case study the well-known sickle cell anaemia mutation. The
second method for interpreting DNA sequences is to look at the biochemical properties
of the amino acids which are encoded by the codons in a gene. Simple counts of the
amino acids with certain properties, or of a certain type, are turned into parameters for
a fixedFormGrow structure. We demonstrate the use of such an interpretationwith an
animation illustrating the evolution of a pair of related proteins over billions of years.
The precise sequence and structure of the ancestral proteins is unknown, but sophisti-
cated tools and an artistic intepretation of the data gives aglimpse of a process which
is lost in eons of evolutionary history.

2 Background

In the 1980’s. while at the Royal College of Art in London, Latham devised a rule-
based hand-drawn evolution system calledFormSynth [2]. He then joined forces with
Stephen Todd at IBM to develop theFormGrow andMutator systems from 1987 to
1993 [3,4,1,5,6]. Our work started from an open-ended aim torevisit this project which
had been untouched for about twelve years.

FormGrow is a kind of building blocks kit for creating organic-style 3D computer
generated forms. It uses a hierarchical system, building upcomplex forms from primi-
tive shapes. The centralFormGrow construct is a horn which consists ofn ribs: repeated
primitive shapes. Variants of the basic horn are made by applying elementary trans-
forms: stack, bend, twist, and grow.Mutator allows forms to be grown using life-like
techniques such as cross-fertilisation (marriage) and mutation. A form — as obtained
via theFormGrow system — is expressed as a sequential set of instructions, which con-
stitute its encoding.Mutator readsFormGrow instructions to be combined (if coming
from various parents) or modified (simulating mutations). In the original work, the sur-
vival of a form was governed by human selection — typically embodied by the artist
Latham seen as a kind of gardener of art-forms — or by closeness to some pre-defined
measure. Latham and Todd’s work during the period of 1987–93coincided in particular
with the works of Sims on 2D and 3D forms [7,8], of Prusinkiewicz and Lindenmayer
on plants [9], and of Leyton on process grammars [10,11]. Discussion of the differences
and similarities of such systems are covered,e.g., in [6,12].

A mathematical and computational formalism which unites these shape generative
systems is that ofshape grammars whereby objects of various complexities can be gen-
erated by an iteration of a finite number of simple outline transformation instructions,
such asFormGrow’s bends, twists and stacks. Various shape grammars have been de-
veloped in the literature. For example, the generation of self–similar fractal objects is
possible with very simple grammars [13, §8.1]. Selection rules, which forbid the ad-
dition of a sub-unit under certain conditions, have been used by Ulam to generate less
regular patterns [13, §8.2]. Trees and river systems, crystals, tessellations and space fill-
ing organisations are other examples of domain of applications of shape grammars as
object generators [13].



An important example of early work is to be found inL-systems, also called Lin-
denmayer systems orparallel string-rewrite systems, which are made from productions
rules used to define a tracing of piecewise linear segments with joints parameterised
by rotation angles [14,9]. These rules also are a compact wayto iteratively repeat con-
structive sequences in the description of fractals, often used to model groups of plants,
flowers, leaves, and so on [15].

One can generalise shape grammars within the context of cellular automata where
some randomisation is introduced in the manifestation of the rules leading todynamic
shapes; for example see the works of Wolframet al. [16] and more recent studies in
biological pattern genesis [17]. The combination of dynamical L-systems with cellu-
lar automata has been considered, in particular in the worksof Jon McCormack with
application to art form genesis [18].

Another possible generalisation is in the context of genetic programming where
mutations and the natural mixing of a pool of genes (possiblyrepresenting shape com-
ponents or features) is used to obtain evolvingnatural or organic shapes; for example
see the early works of Dawkins on biomorphs [19], and, again,of Latham and Todd on
genetic art [1], and more recent works in art, design [6] and biological sciences [20].

Our motivation for re-visiting Latham and Todd’s work is that it is a powerful sys-
tem which offers the possibility of generating organic-like shapes and which from its
origins was meant as a metaphor to nature’s way of evolving forms. In re-visiting this
work, on the one hand we bring up-to-date the technology developed in [1] in the con-
text of recent advances in graphics and computational geometry, and on the other hand
we bring it much closer to biology via the recent advances made in understanding the
working of nature in the fields of genomics and proteomics, the focus of this paper.

3 Use of DNA in FormGrow

DNA can be thought of as a shape-specification language residing in the cells of ev-
ery living organism, encoding proteins which constitute the body’s key builders and
building blocks. The DNA molecule is essentially a very longstring of much smaller
molecules, the nucleotides, which come in four varieties (A, C, T, G).

How does this apparently simple string of nucleotides encode the complex form of a
protein? A protein is also a string of simpler molecules: theamino acids. As there are 20
types of amino acids and only 4 types of nucleotides, the DNA translation mechanism
looks at nucleotides in groups of three, triplets called “codons;” every codon translates
to a single amino acid [20]. Working down the chain of DNA generates the correspond-
ing chain of amino acids, yielding a protein. The codon-amino acid equivalences can be
represented in a translation table (Tbl.1).

Following this model, we created an analogous translation system to convert DNA
sequences intoFormGrow code. At a coarse level,FormGrow code can be viewed as a
series of function calls, with each function requiring a small number of arguments (this
number varies from 0 to 3 depending on the particular function). Thus, we created 2
translation tables: the “transform table,” which translates from codons to transforma-
tional functions (Tbl.2); and the “number table” (Tbl.3), which translates from codons
to numerical arguments (integers in the range 0 to 63). Givenour input sequence, we



Table 1. Translating Codons to Amino Acids.
Table 2. Codons toFormGrow transforms.

Table 3. Translating Codons to numbers.

Table 4. Translating a Codon Sequence toFor-
mGrow code.

Figure 1. Images generated from real DNA se-
quences.

Figure 2. Images generated from sections of the
mouse keratin DNA.



translate the first codon into a function using the transformtable, and then generate nu-
merical arguments for that function by translating the following codons into numbers,
using the number table. Once we have sufficient arguments, wereturn to the transform
table to generate our next function, and so the cycle continues (Tbl.4). Finally we ren-
der the generatedFormGrow code to produce a 3D shape. Figures 1 and 2 show some
images generated from genuine DNA sequences.

Figure 3. Translating an example DNA sequence (Human Insulin).

It is interesting to note some similarities between nature’s translation method and
ours, these being features which we needed in our system and realised that the biological
precedents were well worth adopting. In the original translation table there is a “start”
codon (AUG) which signals that a new protein is being specified. Likewise, in our
transform table, the “add horn” transform flags the beginning of a new shape. The “stop”
codon is also mirrored in our system. This instructs termination of the current protein or
shape. A side effect of adopting the “start” and “stop” mechanism is that we end up with
large sections of “junk code,”i.e., code which generates no proteins or shapes because
it lies in a non-coding section of the sequence (Fig.3). By changing the layout of the
transform table we could affect the proportion of junk code produced. We experimented
with producing a few different iterations of the transform table in order to get a balance
of functions that would produce a visually interesting variety of shapes.

3.1 Case study: Sickle Cell Anaemia

Using this novel method of converting DNA into 3D shapes, we wondered if we could
compare different DNA sequences. We selected as our case study the gene for sickle cell
anaemia. This inherited disease affects millions of peopleworldwide. It damages the
red blood cells which deliver oxygen to vital organs, resulting in anaemia and further
complications. It is particularly common in malarial regions, because it offers some
protection against malaria. All this is caused by one faultygene. The problem appears as
a single point mutation in the beta haemoglobin gene: a single “A” nucleotide is changed



to a “T” (Fig.4). The reason that this single nucleotide substitution is so influential is
because “GTG” encodes a different amino acid to “GAG.” And this amino acid switch
changes the physical behaviour of haemoglobin in the body. In our initial transform
table, there is no difference between “GAG” and “GTG,” so both normal and sickle cell
forms of the DNA sequence generated identical shapes. It is not unusual for a single
mutation to go unregistered. Both the amino acid table and the transform table exhibit
some redundancy — in fact, there is an evolutionary advantage in this redundancy,
as it makes DNA more resistant to minor changes. However the transform table only
produces 7 different output functions (unlike the amino acid table which has 21), so
more repetition is inevitable. Rather than adjusting the table further by hand, we applied
a procedure to randomise it.

Figure 4. Sickle Cell Anaemia Mutation.
Figure 5. Forms generated from Normal and
Sickle Cell Beta Haemoglobin.

After a small number of randomisation runs, a table was produced which translated
“GTG” and “GAG” differently. This new table generated the images shown in Fig.5.
The two forms are easily distinguished, though many similarities can be seen in their
component parts. Effectively we had produced an alternative way of visualising this
genetic mutation. It is an artistic impression of how a pointmutation can have such
a dramatic effect on phenotype. Ideally we would like to optimise the table such that
visualisation reflects the sequence in some expected or sensible manner for a large set of
proteins and mutations. This optimisation may take place using any standard algorithm,
for example an evolutionary method might be appropriate, making stepwise changes in
the table and asking a human (artist or biologist) if the resulting visualisations are an
improvement on those produced by the parent transform table.

4 Use of amino acid biochemistry in FormGrow

The approach of directly using DNA sequences (interpreted as codons) to generateFor-
mGrow shapes ignores the biochemical characteristics of the amino acids which the
codons represent. Amino acids are the building blocks of proteins, which are the ba-
sic product of the genes encoded in DNA. A protein, in the formof a chains of amino



acids, folds into a specific shape, governed by the properties of the amino acids. The
relationship between the amino acid sequence of a protein and the way the protein
folds is complex and is probably the most fundamental unsolved problem in biology.
Sometimes a point mutation, such as that in sickle cell anaemia, has a fundamental and
devestating effect on the protein structure. But sometimesit has no effect, or a very
small effect. It is often impossible to predict which will happen, and therefore adjust
theFormGrow output to reflect the importance of a mutation. But we can say that the
general nature of the fold depends upon the general make-up of the amino acid chain.
Therefore if we summarise the amino acids content of a protein into a set of numbers,
this provides a reasonable overview of the nature of the protein, and how it is related to
other proteins. The 20 amino acids used in proteins can be grouped many ways accord-
ing to their biochemical characteristics. These groupingsare illustrated in Fig.6 (after
[21]). This approach leads to a two-step process for creating FormGrow structures from
genes. First, the DNA sequence for the gene is converted intoa histogram denoting
the relative frequencies of each amino acid type and grouping. We summarise the pro-
tein by counting how many of its amino acids fall into each group and also count the
amino acids of each type. This produces a histogram “profile”of the protein’s amino
acid content. Secondly, these values are used as input into afixed FormGrow structure.
The process is illustrated in Fig.7.

Figure 6. Venn diagram.

Figure 7. Histogram of biochemical properties
derived from the DNA sequence for a gene is
used to control parameters of a fixedFormGrow
structure

The advantages of this approach are twofold. Firstly, the most reliable significant
information from the protein is captured in the histogram which captures features of
the entire sequence. Any further interpretation of the sequence would rely on predictive
techniques which carry some uncertainty. This technique isused in bioinformatics and
is related to the “spectral decomposition” approach [22]. It is alike a Fourier transform
in that the amino acid frequencies are similar to first order terms of a Fourier trans-
form, the dipeptide frequencies are akin to second order terms, etc. Furthermore, we do
not need to worry about frame-shifts of the sequence using this technique, which was
one problem with the original simpler codon model. Secondly, using a fixed structure
means two shapes can be directly compared visually, and can be morphed in-between



to create a smooth animation. Therefore, the differences inamino acid composition of
two proteins can be shown in a compelling new way.

4.1 Case study: Evolution of related proteins

Figure 8. Divergent evolution of two proteins. This is not a conventional evolutioary tree. It shows
how ancescon thinks the proteins are related, based upon the sequence of the proteins in modern
organisms. This does not necessarily correspond to the trueevolutionary tree, since the signal of
evolution in protein sequence is sometimes lost in the “noise” of mutations over billions of years.
The arrows show the route of the History of the Species film in visualising the devolution of one
protein then the evolution of another.

Proteins evolve within organisms, with random mutations inDNA either causing
the death of the organism, or increasing its chances of survival, or (usually) having
no particular effect. A protein with one function can evolveinto one with a different
function through accumulation of mutations. Sometimes a whole gene is duplicated,
meaning that one copy can continue to perform the original function, whilst the other
can evolve to do something else. We looked at one such case as an interesting test
of our histogram-based translation. Argininosuccinate lyase is a protein involved in
producing argnine, which is one of the twenty amino acids from which proteins are
made. In producing arginine, it consumes nitrogen, a product of many activities in the
cell which can be toxic to an organism if it turns into ammonia. This protein exists in
most organisms, from single-celled bacteria to humans and other apes. Approximately
450 million years ago, this protein was duplicated in a common ancestor of all animals,
possibly some mobile multi-cellular organism. The duplicate accumulated mutations
which eventually turned the protein into a structure, Deltacrystallin, which, when fitted
together in a specific pattern with many other proteins, forms part of the lens of the eye.
The original protein has become important in removing nitrogen in the liver. The outline
of this evolutionary history is given in Fig.8. We wanted to visualise this history using
FormGrow. We chose to trace the development of the protein in the eye, backwards in
evolutionary history, to the common ancestor from which it evolved. From there, we



wanted to trace the evolution of this into the protein used for removing nitrogen in the
liver. The path through evolution we took is shown by the arrows in Fig.8.

The ancestral sequence are unknown — we only have the proteinsequences from
modern organisms. However, the ancestral sequences can be reconstructed, with some
uncertainty, from the sequences in modern day organisms. For example, the protein
sequence of 25 million years ago can be reconstructed by combining the sequence from
humans with the sequence from the crab-eating macaque. The result is the sequence
as it may have existed in a common ancestor of the primates. The sequence from 65
million years ago can be reconstructed from that sequence bycombining it with the
sequence from the pig. We usedancescon [23] to construct the ancestral sequences.
Initial sequences came from a number of sources, including Pfam [24], and UniProt
[25].

We can then morph through forms created for all the ancestralsequences from
human eye, back to the earliest ancestral sequence, and thenforwards to the human
liver. Stills from the resulting film are shown in Fig.9. The film is available to view
at [http://hos.mrg-gold.com] and covers up to 50 million years per second. The sound-
scape for the film was generated from the forms themselves, therefore both the audio
and visual elements of the film are inspired by biology.

Figure 9. Stills from the animation “History of the Species.”

5 Discussion/Conclusion

At the core of this paper is a simple idea of feeding DNA data sequences into a rich 3D
form generator calledFormGrow, to generate organic-looking 3D growth structure, cre-
ating an equivalence of the DNA mapped into an alternative multi-dimensional space.
How useful this mapped equivalence may be will become clearer as we work closer
with biologists and engage in further cross-fertilizationof ideas. Could this methodol-
ogy have more direct and short-term scientific applicationsas well? While our shapes
bear no resemblance to the proteins that the genes encode, they are still being driven
by the same initial DNA sequences. So it is possible that we could use our system as
a visualisation tool. Conceivably, our tool could enable users to identify whether two
given sequences are similar or identical. The advantage of this tool being that it is faster
and easier for the human eye to compare shapes than repetitive string sequences. The
primary method used by researchers in bioinformatics is to look at a multiple sequence
alignment,i.e., all the sequences are simply lined up one beneath the other according to



an empirical scoring function. This alignment is often turned into a statistical profile or
hidden Markov model which are useful for sequence matching and structure prediction,
but there is no attempt at visualisation.

Additionally, our system is deterministic. Thus, given a sequence and transform, the
same shape will result every time. But, in the case of direct transformation of a DNA se-
quences using a table, redundancy means that some small changes may go undetected.
To rectify this we could produce more transform variants andcopy the layout of the
amino acid table, so that the redundancy locations are the same.FormGrow produces
shapes which are nothing like the proteins which are actually encoded by genes. Pro-
teins inhabit a completely different “shape space” to the multicellular organisms which
FormGrow is inspired by. Could shapes inspired by proteins rather than entire organ-
isms be as rich a tool for artistry and visualisation asFormGrow? We intend to answer
this question in future work.

References

1. Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press (1992)
2. Latham, W.: Form Synth. In: Computers in Art, Design and Animation. Springer (1989)
3. Latham, W., Todd, S.: Computer sculpture. IBM Systems Journal 28(4) (1989) 682–688
4. Burridge, J.M., et al.: The WINSOM solid modeller. IBM Systems Journal28(4) (1989)
5. Todd, S., Latham, W.: Artificial life or surreal art? In Varela, F.J., Bourgine, P., eds.: Toward

a Practice of Autonomous Systems. MIT Press (A Bradford Book) (1992) 504–513
6. Bentley, P.J., ed.: Evolutionary Design by Computers. Morgan Kaufmann (1999)
7. Sims, K.: Artificial evolution for computer graphics. Computer Graphics25(4) (1991)
8. Sims, K.: Evolving 3D morphology and behavior. In: Proc. of Artificial Life IV. (1994)
9. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmics Beauty of Plants. Springer (1990)

10. Leyton, M.: A process grammar for shape. A.I. Journal34(2) (1988) 213–247
11. Leyton, M.: A Generative Theory of Shape. Number LNCS 2145. Springer-Verlag (2001)
12. Whitelaw, M.: Metacreation — Art and Artificial Life. MITPress (2004)
13. Lord, E.A., Wilson, C.B.: Math. Description of Shape andForm. Halsted Press (1984)
14. Lindenmayer, A.: Mathematical models for cellular interactions in development: Parts I and

II. Journal of Theoretical Biology18 (1968) 280–315
15. Ferraro, P., et al.: Toward a quantification of self-similarity in plants. Fractals13(2) (2005)
16. Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-Wesley (1994)
17. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation.

Modeling and Simulation in Science, Engineering and Technology. Birkhäuser (2005)
18. McCormack, J.: Aesthetic evolution of L-systems revisited. In: EvoMUSART Contributions.

Volume 3005 of Lecture Notes in Computer Science. Springer (2004) 477–488
19. Dawkins, R.: The Blind Watchmaker. (1986)
20. Kumar, S., Bentley, P.J., eds.: On Growth, Form and Computers. Elsevier (2003)
21. Taylor, W.R.: The classification of amino acid conservation. J. Theor. Biology119 (1986)
22. Shamim, M.T.A., et al.: Support vector machine-based classification of protein folds. Bioin-

formatics23(24) (2007) 3320–3327
23. Cai, W., Pei, J., Grishin, N.V.: Reconstruction of ancestral protein sequences and its appli-

cations. BMC Evolutionary Biology4(33) (2004)
24. Finn, R.F., et al.: Pfam: clans, web tools and services. Nucleic Acids Research34 (2006)

D247–51
25. Wu, C.H., et al.: The universal protein resource (uniprot). Nucleic Acids Research34 (2006)

D187–91


