In ZUM'95: The Z Formal Specification Notation, J. Bowen and M. Hinchey, (eds.), Lecture Notes
in Computer Science, 967, 47-62, Springer-Verlag, Heidelberg, 1995

Structuring a Z Specification to Provide a Formal
Framework for Autonomous Agent Systems

Michael Luck and Mark d’Inverné

1 Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
Email: mikeluck@dcs.warwick.ac.uk

2 School of Computer Science, University of Westminster, London, W1M 8JS, UK.
Email: dinverm@westminster.ac.uk

Abstract. This paper describes a project which is using Z in the field of artifi-
cial intelligence (Al) to provide a defining framework for agency and autonomy.
Specifically, the use of Z has provided a means for escaping from the termino-
logical chaos surrounding agency and autonomy that is prevalent not just in the
Al community, but also in other areas of computer science. We outline how we
have developed a Z specification which serves as a framework that satisfies three
distinct requirements. First, a framework should be defining in the sense that it
must precisely and unambiguously provide meanings for the common concepts
and terms. Second, it should be designed in such a way as to enable alternative
models of particular classes of system to be explicitly described, compared and
evaluated. Third, the framework should be sufficiently well-structured to provide

a foundation for subsequent development of increasingly more refined concepts.
The state based specification language Z is accessible to researchers from a vari-
ety of different backgrounds and allows us to provide a consistent unified formal
account of an abstract agent system.

1 Introduction

1.1 Agency and Autonomy

The use ofgents of many different kinds in a variety of fields of computer science and
artificial intelligence is increasing rapidly. In artificial intelligence, the introduction of
the notion of agents is partly due to the difficulties that have arisen when attempting to
solve problems without regard to a real external environment or to the entity involved
in that problem-solving process. Thus, though the solutions constructed to address these
problems are significant, they are limited and inflexible in not coping well in real-world
situations. In response, agents have been proposgtliated andembodied problem-
solvers capable of functioning effectively in their environment.

It is now common for people to speak sifftware agents, intelligent agents, inter-
face agents, autonomousagentsand so on. The richness of the agent metaphor that leads
to such different uses of the term is both a strength and a weakness. Its strength lies in the
fact that it can be applied in very many different ways in many situations for different
purposes. The weakness, however, is that the égant is now used so frequently that
there is no commonly accepted notion of what it is that constitutes an agent. For exam-
ple,agents are often taken to be the sameaatonomous agents, and the two terms are

used interchangeably, without regard to their relevance or significance. The difference
between these related, but distinct, notions is both important and useful in considering
aspects of intelligence. Given the range of areas in which the notions and terms are ap-
plied, this lack of consensus over meaning is not surprising. As Shoham [7] points out,
the number of diverse uses of the teagent are so many that it is almost meaningless
without reference to a particular notion of agenthood.

It is now generally recognised that there is no agreement on what it is that makes
something an agent, and it is standard, therefore, for many researchers to provide their
own definition. In a recent collection of papers, for example, several different views
emerge. Smith [8], takes an agent to be a “persistent software entity dedicated to a spe-
cific purpose.” Selker [6] views agents as “computer programs that simulate a human
relationship by doing something that another person could do for you.” More loosely,
Riecken [5] refers to “integrated reasoning processes” as agents. Others avoid the issue
completely and leave the interpretation of their agents to the reader. In this paper, we
report on a formal framework that we have constructedafdonomy andagency that
attempts to bring together such disparate notions [4].

This section considers why we need a formal framework and what should be required
of such formalisms. The second section introduces the key ideas contained in the frame-
work and provides as overview of the specification which follows in the next section.
Then we discuss the framework specification in relation to its usefulness in artificial in-
telligence and consider how it can be extended to incorporate architecture-specific ideas,
illustrating this with the particular example kfiowledge interchange protocols.

1.2 Formal Specification

In the current work, we have adopted the specification language Z [9] for two major
reasons. First, it provides modularity and abstraction and is sufficiently expressive to al-
low a consistent, unified and structured account of a computer system and its associated
operations. Such structured specifications enable the description of systems at different
levels of abstraction, with system complexity being added at successively lower levels.
Second, we view our enterprise as that of building programs. Z schemas are particularly
suitable in squaring the demands of formal modelling with the need for implementation
by allowing transition between specification and program. Thus our approach to formal
specification is pragmatic — we need to be formal to be precise about the concepts we
discuss, yet we want to remain directly connected to issues of implementation.

Furthermore, Z is gaining increasing acceptance as a tool within the artificial intel-
ligence community (e.g. [3], [2]) and is therefore appropriate in terms of standards and
dissemination capabilities.

Our concern has been to develop well-defined formal concepts that can be used both
as the basis of an implementation, and also as a precise but general framework for further
research.

1.3 Requirements of Formal Frameworks

We argue that formal framework must satisfy three distinct requirements:

1. Aformal framework must precisely and unambiguously provide meanings for com-
mon concepts and terms and do so in a readable and understandable manner. The
availability of readable explicit notations allows a movement from vague and con-
flicting informal understandings of a class of models towards a common concep-
tual framework. A common conceptual framework will exist if there is a generally
held understanding of the salient features and issues involved in the relevant class
of models.

2. Aframework should enable alternative designs of particular models and systems to
be explicitly presented, compared and evaluated. It must provide a description of
the common abstractions found within that class of models as well as a means of
further refining these descriptions to detail particular models and systems.

3. The framework should be sufficiently well-structured to provide a foundation for
subsequent development of new and increasingly more refined concepts. In other
words, a practitioner should be able to choose the level of abstraction suitable for
their purpose.

The use of abstraction renders prejudice about design unnecessary and enables a
specification of a general system to be written. Z schema boxes are ideal for manipu-
lation in the design process since by viewing the design process as a constraint of pos-
sible states, design strategies can be presented as further predicates in an abstract state
schema.

2 A Framework for Agency and Autonomy: Overview

It was stated earlier that there is a lack of consensus over the meaning of the term agent
and that there exist many diverse notions of agency. In this section, we introduce terms
and concepts which are used to explicate our understandimgeofs andautonomous

agents and then developed into formal definitions.

Shoham [7] takes aagent to be any entity to which mental state can be ascribed.
Such mental state consists of components such as beliefs, capabilities and commitments,
but there is no unique correct selection of them. This is sensible, and we too do not de-
mand that all agents necessarily have the same set of mental components. Indeed, we
recognise the limitations associated with assuming an environment comprising homo-
geneous agents and consequently include in this discussion heterogeneous agents with
varying capabilities. However, we do specify what is minimadiyuired of an entity for
it to be considered an agent in our framework.

We require a model that initially describes the environment and then, through in-
creasingly detailed description, defines objects, agents and autonomous agents to pro-
vide an account of a general multiagent system. (This is what we mean by decreasing
the level of abstraction in our descriptions of the world.) The definition of agency that
follows is intended to subsume existing concepts as far as possible. In short, we propose
a three-tiered hierarchy of entities comprisoigjects, agents andautonomous agents.

The basic idea underlying this hierarchy is that all known entities are objects. Of this set
of objects, some are agents, and of these agents, some are autonomous agents.

Autonomous
Agents

Objects
Environment

Fig. 1. The Entity Hierarchy

The specification had to be structured so that it reflected our view of the world as
shown in the Venn diagram of Figure 1. It was required that the specification be built
up in such a way that, starting from a basic description of an environment, each suc-
ceeding definition could be a refinement of the previously described entity. In this way,
an object would be a refinement of the environment, an agent a refinement of an object,
and an autonomous agent a refinement of an agent. Accordingly, the specification is thus
structured into four parts.

Environment Our most abstract description of the world describes an environment sim-
ply as a collection of attributes.

Object Next, we cluster together some of the attributes in the environment and con-
sider each such cluster as an object. Naturally, these objects are still collections of
attributes, but we also give a more detailed description of these entities by describing
their capabilities. The capabilities of an object are defined by a set of action primi-
tives which can theoretically be performed by the object in some environment and,
consequently, change the state of that environment.

Agent If we consider objects more closely, we can distinguish some objects which are
serving some purpose or, equally, can be attributed some set of goals. This then be-
comes our definition of an agent, namely, an object with goals. With this increased
level of detail in our description, we can define the greater functionality of agents
over objects.

Autonomous Agent Further refinement of this description enables us to distinguish a
subclass of the previously defined class of agents which are those agents that are
autonomous. These autonomous agents are self-motivated agents in the sense that
they follow their own agendas as opposed to functioning under the control of another
agent. We thus define an autonomous agent as an agent with motivations and, in

turn, show how these agents behave in a more sophisticated manner than their non-
autonomous counterparts.

The Z specification language allowed just such a structured specification to be writ-
ten by describing a system at its highest level of abstraction with further complexity be-
ing added at each successive lower level of abstraction. An overview of the structure of
our framework is given in Figure 2, where the arrows represent schema inclusion. Def-
initions of environment, object, agent andautonomous agent are given byEnv, Object,

Agent andAutonomousAgent respectively. This shows how we constructed the most de-
tailed entity description in the framework (of an autonomous agent situated in some en-
vironment) from the least detailed description (of an environment).

For objects, agents and autonomous agents, we define how they act in an environ-
ment in the schemabjectAction, AgentAction andAutonomousAgentActionrespectively.

For agents and autonomous agents, we detail how they perceive in a given environ-
ment inAgentPerception andAutonomousAgentPerception. For objects, agents and au-
tonomous agents we define their state when situated in an environn@sjeatState,
AgentState andAutonomousAgentState.

The framework is specified below. Whenever a new conceptis introduced, a textual
definition is given before its formal specification.

3 The Framework Specification

3.1 Environment

The first primitive that we need to define is an attribute. Attributes are simply features of

the world and are the only characteristics which are manifest. They need not be perceived

by any particular entity, but must be potentially perceivable in an omniscient sense.
Definition: An attributeis a perceivable feature.

[ATTRIBUTE]
Definition: An environment is some collection of attributes.

Env
FEnm’ronment :PATTRIBUTE

For the purposes of readability, we define a new tyli¥IRONMENT as the power
set of attributes.

ENVIRONMENT == PATTRIBUTE

3.2 Objects

At a basic level, an object can be defined in terms of its abilities and its attributes. An
object, in this sense, is just a ‘thing’ or entity with no further defining characteristics.
This provides us with the basic building block to develop our notion of agency.

Env
Object
/ Action \
. Object
Object Stafe
Agent
/ Action \
Agent
Agent State
\ Agent
Perception
Autonomous
Agent ™
Action
Autonomous Autonomous
Agent Agent
/ State
Autonomous
Agent
Perception

Fig. 2. Bottom-up View of the Use of Schema Inclusion in the Framework for Agency
and Autonomy

Definition: An actionis a discrete event which changes the state of the environment.

[ACTION]

Definition: An object comprises a set of actions and a set of attributes.
An object in our model then is some subset of the environment to which we ascribe
the notion of a set of basic capabilities.

__Object
Env
CapableOf : PACTION
Attributes : PATTRIBUTE

Attributes C Environment

Next, we define how an object will behave in an environment, determined by the
function, objectactions, which states the set of actions which will be performed in a
given environment. Notice that the predicate insists that any such actions will necessarily
be within the capabilities of the object.

__ObjectAction
Object
ObjectActions : ENVIRONMENT — PACTION

Venv : ENVIRONMENT e (ObjectActions env) C Capable Of

Then for an object we define its state in a particular environment. We define a vari-
able which represents the sequence of sets of actions that the object has previously per-
formed, and a variable which gives the set of actions that the object will perform next.

In our model, we often wish to introduce terms which were totally dependent (math-
ematically) on other terms. We call such termgundant and any such terms presented

in a schema are separated from the non-dependent state variables by use of a horizontal
space.

__ObjectState
Env
ObjectAction
History : seq (PACTION)

WillDo : PACTION

Y as : ran History e as C CapableOf
WillDo = ObjectActions Environment

Lastly, we show how an object actually behaves in an environment. When an ob-
ject performs some set of actions, neither the basic capabilities, nor the action selection
function will be changed.

___AObjectState
ObjectState
ObjectState’

CapableOf' = CapableOf
ObjectActions’ = ObjectActions

An interaction is simply that which happens when actions are performed in an en-
vironment. The effects of an interaction on the environment are determined by applying
the EffectInteraction function in the axiom definition below to the current environment
and the actions taken. An axiom definition was chosen since in our model, all actions
will result in the same change to an environment whether taken by an object, agent or
autonomous agent.

| EffectInteraction : ENVIRONMENT — PACTION -+ ENVIRONMENT

When an object interacts in its environment and performs an action, both the state
of the object and the environment change. The history variable is updated by concate-
nating the current set of actions to the end of the sequence, and the new environment is
given by applyingtffectinteraction to the old environmentand the currentactions. The
last line states that the actions which follow the current actions are found by applying
ObjectActions to the new environment.

__ObjectEnvinteract
AObijectState

History' = History ™ (WillDo)
Environment’ = EffectInteraction Environment WillDo
WillDo' = ObjectActions Environment’

3.3 Agents

We proceed to define agents in much the same way as for objects. There are many dic-
tionary definitions for an agent. A recent paper by Wooldridge and Jennings [10] quotes
The Concise Oxford Dictionary [11] definition of an agent as “one who, or that which,
exerts power or produces an effect.” However, they omitted the second sense of agent
whichis given as “one who acts for another’. This is important, for it is not the acting
alone that defines agency, but the actingsmmeone or something that is the defining
characteristic.

In this sense, agents are just objects with certain dispositions. They may always be
agents, or they may revert to being objects in certain circumstances. An objectis an agent
if it serves a useful purpose either to a different agent, or to itself, in which case the
agent isautonomous. This latter case is discussed further later. Specifically, an agent is

something that ‘adopts’ or satisfies a goal or set of goals (often of another). Thus, if |
want to store coffee in a cup, then the cup is my agent for storing coffee. It has been
ascribed or hasadopted my goal to have the coffee stored. It is, therefore, the goals of
an agent which are its defining characteristics. We take a traditional Al view of goals as
describable environmental states.

Definition: A goal is a state of affairs to be achieved in the environment.

[GOAL]

Definition: An agentis an instantiation of an object together with an associated goal
or set of goals.
The schema for an agent is simply that of an object but with the addition of goals.

—_Agent
Object
Goals : PGOAL

Goals #{ }

Thus an agent has, orascribed, a set of goals which it retains over any instantiation
(or lifetime). The same object may give rise to differentinstantiations of agents. An agent
is instantiated from an object in response to another agent. Thus agérangient, and
an object may become an agent at some point in time, but may subsequently revert to
being an object.

We now introduce perception. An agent in an environment may have a set of per-
cepts available. These are the possible attributes that an agent could perceive, subject to
its capabilities and current state. However, due to limited resources, an agent will not
normally be able to perceive all those attributes possible, and bases action on a subset,
which we call theactual percepts of an agent. Some agents will not be able to perceive
at all. In the case of a cup, for example, the set of possible percepts will be empty and
consequently the set of actual percepts will also be empty. The robot, however, may have
several sensors which allow it to perceive. Thus it is not a requirement of an agent that
it is able to perceive.

In our model we wish to distinguish between sets of attributes which represent a
mental model of the world and those which represent the ‘actual’ environment. For clar-
ity of exposition, we choose to define a typEW to be the perception of an Environ-
ment by an agent. This has an equivalent type to theNafIRONMENT, but now we
can distinguish between physical and mental components offty)p&RIBUTE.

VIEW == PATTRIBUTE

Itis also important to note that it is only meaningful in our model to consider percep-
tual abilities in the context of goals. Thus when considering objects which have no goals,
perceptual abilities are not relevant. Objects respond directly to their environments and
make no use of percepts even if they are available. We say that perceptual capabilities
areinert in the context of objects.

In the schema for agent percepti@dmentPerception, we add further detail to the
definition of agency and so include the schefgant. An agent has: a set of perceiv-
ing actions,PerceivingActions, which are a subset of the capabilities of an agent; a
function, CanPerceive, which determines the attributes potentially available to an agent
through its perception capabilities; and a functi@ii/lPerceive, which describes those
attributes which are actually perceived by an agent.

—_AgentPerception
Agent
PerceivingActions : PACTION
CanPerceive : ENVIRONMENT — PACTION -+ VIEW
WillPerceive : PGOAL — ENVIRONMENT — VIEW

PerceivingActions C CapableOf
Venv : ENVIRONMENT; as : PACTION e

as € dom (CanPerceive env) = as = PerceivingActions
dom WillPerceive = { Goals}

Directly corresponding to the goal or goals of an agent is an action-selection func-
tion, dependent on the goals, current environment and the actual perceptions. This is
built up from theAgent andObjectAction schemas.

__AgentAction
Agent
ObjectAction
AgentActions : PGOAL — VIEW — ENVIRONMENT — PACTION

Vgs : PGOAL; envl, env2 :ENVIRONMENT e
(AgentActions gs envl env2) C CapableOf

dom AgentActions = { Goals}

ObjectActions = AgentActions Goals Environment

The state of an agent includes two variables which describe those percepts possible
in the current environment and a subset of these which are the current (actual) percepts
of the agent in the environment.

—_AgentState
AgentPerception
AgentAction
ObjectState
PossiblePercepts : VIEW
ActualPercepts : VIEW

ActualPercepts C PossiblePercepts

PossiblePercepts = CanPerceive Environment PerceivingActions
ActualPercepts = WillPerceive Goals PossiblePercepts
(PerceivingActions = { }) = (PossiblePercepts = { })
ObjectActions = AgentActions Goals ActualPercepts

We now define which of thelgentState variables remain unchanged after a set of
actions has been performed by that agent. If any of these variables ever did change, a
different agent schema would have to be instantiated.

__AAgentState
AgentState
AgentState’

CapableOf' = CapableOf

Goals' = Goals

PerceivingActions’ = PerceivingActions
CanPerceive’ = CanPerceive
WillPerceive' = WillPerceive
AgentActions' = AgentActions

The history and environment are altered in exactly the same way as previously de-
scribed in thedbjectEnvinteract schema.

AgentEnvinteract
AAgentState
ObjectEnvinteract

3.4 Autonomous Agents

The definition of agency that we have developed above relies upon the existence of other
agents which provide goals that are adopted in order to instantiate an agent. In order to
ground the chain of goal adoption, to escape what could be an infinite regress, and also
to bring out the notion c&utonomy, we introducemotivation.

Definition: A motivation is any desire or preference that can lead to the generation

and adoption of goals and which affects the outcome of the reasoning or behavioural
task intended to satisfy those goals.

[MOTIVATION]

Definition: An autonomous agent is an instantiation of an agent together with an
associated set of motivations.

__AutonomousAgent
Agent
Motivations : PMOTIVATION

Motivations # { }

The cup of the previous example cannot be considered autonomous because it cannot
generate its own goals. By contrast, the robot is potentially autonomous in the sense that
it may have a mechanism for internal goal generation, depending on its environment.
Suppose the robot has motivations of achievement, hunger and self-preservation, where
achievement is defined in terms of fixing tyres onto a car on a production line, hunger is
defined in terms of maintaining power levels, and self-preservation is defined in terms
of avoiding system breakdowns. In normal operation, the robot will generate goals to
attach tyres to cars through a series of subgoals. If its power levels are low, however,
it may replace the goal of attaching tyres with a newly-generated goal of recharging its
batteries. A third possibility is that in satisfying its achievement motivation, it works for
too long and is in danger of overheating. In this case, the robot can generate a goal of
pausing for an appropriate period in order to avoid any damage to its components. Such
a robot is autonomous because its goals are not imposed, but are generated in response
to its environment.

The motivations, as well as the goals, of autonomous agents determine the way in
which they perceive their environment. In the schema given below, the fundtiagn;

Will Per ceive, is then a more complex version of an ageVdPerceive, but they are
related — and must be since an autonomous agent is still an agent — as shown in the
schema. However, that which an autonomous agemaipabl e of perceiving at any time

is independent of its motivations. Indeed, it will always be independent of goals and
motivations and there is consequently no equivalent increase in functionalityrto
Perceive.

—AutonomousAgentPerception
AutonomousAgent
AgentPerception
AutoWillPerceive : PMOTIVATION — PGOAL —

ENVIRONMENT — VIEW

WillPerceive = Auto WillPerceive Motivations
dom Auto WillPerceive = { Motivations }

We build up our schemas as follows:

__AutonomousAgentAction
AutonomousAgent
AgentAction
AutoActions : PMOTIVATION — PGOAL —

VIEW — ENVIRONMENT — PACTION

dom AutoActions = { Motivations}
AgentActions = AutoActions Motivations

__AutonomousAgentState
AutonomousAgentPerception
AutonomousAgentAction
AgentState

WillPerceive = Auto WillPerceive Motivations
AgentActions = AutoActions Motivations

Lastly, we specify the operation of an autonomous agent performing its next set of
actions in its current environment. Notice that no explicit mention is made of any change
in motivations, they may change in response to changes in the environment. If they do
change, then the agent functioRsllPerceive andAgentActions will also change. Fur-
ther, motivations may generate new and different goals for the agent to pursue. In any
of these cases, the characterizing features of an agent are in flux so that an autonomous
agent can be regarded as a continually re-instantiated non-autonomous agent. In this
sense, autonomous agents are permanentas opposed to transient non-autonomous agents.

__AAutonomousAgentState
AutonomousAgentState
AutonomousAgentState’

CapableOf' = CapableOf
PerceivingActions’ = PerceivingActions
CanPerceive’ = CanPerceive
AutoWillPerceive' = Auto WillPerceive
AutoActions' = AutoActions

A description of an autonomous agent acting in the environmentis built from that of
an agent acting in the environment.

AutonomousAgentEnvinteract
AAutonomousAgentState
AgentEnvinteract

4 Evaluating the Framework

We have formal definitions for agents and autonomous agents which are clear, precise
and unambiguous, but which do not specify a prescribed internal architecture for agency
and autonomy. This is exactly right, since it allows a variety of different architectural and
design views to be accommodated within a single unifying structure. All that is required
by our specification is a minimal adherence to features of, and relationships between, the
entities described therein.

Thus we allow a cup to be viewed as an object or an agent depending on the manner
in which it functions or is used. Similarly, we allow a robot to be viewed as an object,
an agent or an autonomous agent depending on the nature of its control structures. We
do not specify here how those control structures should function, but instead how the
control is directed.

The framework is suitable for reasoning batbout entities in the world, angith
entities in the world. That is to say that an agent itself can also use the entity hierarchy
as a basis for reasoning about the functionality of other agents and the likelihood, for
example, that they may or may not be predisposed to help in the completion of certain
tasks.

4.1 A Foundation for Further Work

The framework described and specified here is intended to stand by itself, but also to
provide a base for further development of agent architectures in an incremental fash-
ion through refinement and schema inclusion. In this context, we are currently extend-
ing the framework to incorporate notions and mechanisms of communication through
knowl edge interchange protocols.

Knowledge interchange protocols (KIPs) provide scripts for communication between
autonomous agents, first introduced by Campbell and d’'Inverno [1]. While they have
been used in many implemented systems, they seem to have been used in conflicting
ways, possibly because a formal description has never been constructed. Essentially,
KIPs provide a well-defined structure within which both agents and autonomous agents
may communicate freely. If the communicating agents can agree on the reason for the
communication, their dialogue follows a pre-compiled script or protocol, governed by
the agreed purpose of the particular dialogue. Thus agents’ contributions to a dialogue
will depend on what is regarded as the purpose or intention of an exchange of informa-
tion.

Each protocol can be seen as a sequence of general statements by agents taking part
in the information exchange. For a particular instantiation of a protocol in a communi-
cation, a sequence of well-defined slots will be filled by the particular information that
an agent has to contribute. Thus the actual amount of information communicated is min-
imised. There is no need for an agent to say things that are redundant because all agents
know which protocol is being used, and the protocol itself ensures that risks of loops
and long meaningless interactions are avoided. Communication overheads are thus min-
imised.

Here we give a very brief description of the specification of these protocols in rela-
tion to the framework described above.

In order to define protocols, we must show how actions can be structured and must
therefore model the world at thject level. First, we describe an object with the ability
to communicate in that some subset of its capabilities are potent@iignunicating
actions.
__CommunicateObiject

Object
CommunicatingActions : PACTION

CommunicatingActions C CapableOf

The set of protocols is given by:
[PROTOCOL]

A protocol objectis defined as an object with communication capabilities, which has
at its disposal a set of protocols which may be followed. Each protocol has associated
with it a set of basic communicating actions.

__ProtocolObject
CommunicateObject
Protocols : PPROTOCOL
ActionsOfProtocol : PROTOCOL - PACTION

dom ActionsOfProtocol = Protocols
Vp : Protocols e ActionsOfProtocol p C CommunicatingActions

An autonomous agent with a set of protocols is then as follows:

ProtocolAutonomousAgent
’7AutonomousAgent

ProtocolObject

5 Conclusions

We have constructed a formal specification which identifies and characterises those enti-
ties that are called agents and autonomous agents. The work is not based on any existing
classifications or notions because there is no consensus. Recent papers define agents in
wildly different ways, if at all, and this makes it extremely difficult to be explicit about
their nature and functionality. The taxonomy given here provides clear and precise def-
initions for objects, agents and autonomous agents that allow a better understanding of
the functionality of different systems. It explicates those factors that are necessary for
agency and autonomy, and is sufficiently abstract to cover the gamut of agents, both
hardware and software, intelligent and unintelligent, and so on.

Z has enabled us to produce a specification that is generally accessible to researchers
in Al, as well as practitioners of formal methods. Through the use of schema inclusion,
we are able to describe our framework at the highest level of abstraction and then, by
incrementally increasing the detail in the specification, we add system complexity at ap-
propriate levels. Our use of Z does not restrict us to any particular mathematical model,
but instead provides a general mathematical framework within which different models,
and even particular systems, can be defined and contrasted.

In particular, the nature of Z allows us to extend the framework and to refine it further
toinclude a more varied and more inclusive set of concepts. The particular ¢ase/bf
edgeinterchange protocols, by which the original framework was extended through new
schemas and schema inclusion, indicates just how we intend to proceed in this respect,
and how appropriate Z is for this task. It enables a practitioner to choose the level of de-
tail required to present a particular design, and further provides an environmentin which
the design itself can be presented in increasing levels of detail.

Acknowledgements

Thanks to John Campbell, Jennifer Goodwin, Paul Howells, Colin Myers, Mark Priest-
ley and John Wolstencroft for comments on earlier versions of this paper. The specifi-
cation contained in this paper was checked for correctness usifigzzepackage.

References

1.

2.

3.

11.

J. A. Campbell and M. d’Inverno. Knowledge interchange protocols. In Y. Demazeau and
J. P. Muller, editorsDecentralized Artificial Intelligence. Elsevier North Holland, 1989.

I. D. Craig. The formal specification of ELEKTRA. Research Report RR261, Department
of Computer Science, University of Warwick, 1994.

R. Goodwin. Formalizing properties of agents. Technical Report CMU-CS-93-159,
Carnegie-Mellon University, 1993.

. M. Luck and M. d’Inverno. A formal framework for agency and autonomyProceedings

of the First International Conference on Multi-Agent Systems, 1995.

. D. Riecken. An architecture of integrated age@smmunications of the ACM, 37(7):107—

116, 1994.

. T. Selker. A teaching agent that lear@mmunications of the ACM, 37(7):92-99, 1994.
. Y. Shoham. Agent-oriented programmirdgtificial Intelligence, 60:51-92, 1993.
. D. C. Smith, A. Cypher, and J. Spohrer. Programming agents without a programming lan-

guage.Communications of the ACM, 37(7):55—-67, 1994.

. J. M. Spivey.The Z Notation. Prentice Hall, Hemel Hempstead, 2nd edition, 1992.
. M. J. Wooldridge and N. R. Jennings. Agent theories, architectures, and languages: A sur-

vey. InProceedings of the 1994 Workshop on Agent Theories, Architectures, and Languages,
1994.

The Concise Oxford Dictionary of Current English. Oxford University Press, 7th edition,
1988.

