
In ZUM’95: The Z Formal Specification Notation, J.
Bowen and M. Hinchey, (eds.), Lecture Notes
in Computer Science, 967, 83-102, Springer-Verlag, Heidelberg,
1995Structuring Speci�cation in Z to Build aUnifying Framework for Hypertext SystemsMark d'Inverno and Mark PriestleySchool of Computer Science, University of Westminster, 115 New Cavendish Street,London, W1M 8JS, UK. Email fdinverm,priestmg@westminster.ac.ukAbstract. A report is given on work undertaken to produce a struc-tured speci�cation in Z of a model which aims to capture the essentialabstractions of hypertext systems. The speci�cation is presented in partand the potential value of this speci�cation to the hypertext communityis explored and discussed. We argue that this speci�cation provides aframework for hypertext systems in that it provides: explicit and un-ambiguous de�nitions of hypertext terms, an explicit environment forthe presentation, comparison and evaluation of hypertext systems anda foundation for future research and development in the �eld. Althoughthere are many formal reference models of hypertext, we have found Zexpressive enough to allow a uni�ed account of a system and its opera-tions. Our model does not restrict the speci�er to any particular design,but provides a mathematical framework within which di�erent modelsmay be compared. Further, we were able to structure the speci�cationin order that the model could be described initially at the highest levelof abstraction with complexity added at increasingly lower levels of ab-straction. This structured speci�cation allows the functionality of hyper-text systems to be considered at di�erent levels of granularity which, weargue, gives rise to a well-de�ned robust model and a bene�cial envi-ronment within which to reason about hypertext design. The use of thismodel in presenting and comparing existing models, as well as its use indeveloping a new hypertext learning model, is brie
y discussed.1 IntroductionMany formal reference models of hypertext have been presented in the literature[1, 12, 17, 20, 21], and whilst these models give valuable theoretical insights intocertain aspects of the structure of hypertext, they are not by themselves adequatevehicles for the presentation, evaluation and comparison of di�erent systems. Inthis paper we describe an approach to the formal speci�cation of hypertext sys-tems which allows the development of a common conceptual framework andprovides an environment in which to discuss, design, develop and evaluate hy-pertext systems.The language Z is based upon basic mathematical ideas. This means that itis accessible to many hypertext practitioners, and unlike many models [20, 21],is expressive enough to allow a consistent formal uni�ed account of a system

and its associated operations. We claim further that a well-structured Z speci�-cation built up from basic mathematical ideas can provide the following for thehypertext community:Clarity. The use of formal concepts allows explicit and unambiguous descrip-tions of terms and complex systems to be given.Common Conceptual Framework. The availability of explicit notations allowsa movement from informal mutually inconsistent descriptions of systemstowards a common understanding of the basic features and concerns of aparticular class of systems.Design Evaluation. This common framework enable alternative designs of par-ticular systems to be explicitly presented, compared and evaluated.Reliability. A formal speci�cation language provides a proof system and a setof proof obligations which enables a reliable and robust model of systems tobe built.A well-structured speci�cation in this context is one which �rst describes asystem at its highest level of abstraction, with complexity added at each suc-cessive lower level of abstraction, allowing irrelevant information to be removedfrom consideration. Further, di�erent modular components of a system can beisolated and described separately and commonalities in di�erent parts of a sys-tem can be recognised and presented as such. Abstraction renders prejudiceabout design unnecessary; consequently, a speci�cation of a \general system"can be written. Indeed, Z schema boxes have been ideal for manipulation in thedesign process since, viewing in many cases the design process as a constraintof possible states, design strategies can be presented as predicates in the appro-priate state schemas. Such a structured speci�cation, we argue, is a tool whichenables a more considered hypertext analysis.1.1 MotivationThis paper is a consequence of two separate ongoing areas of work. The �rstarea involved the writing of programs to translate between various hypertextsystems currently used at University of Westminster. In order to ensure that thestructure of a document is preserved in its translation, it was decided to producefull formal speci�cations of the University of Westminster systems [9, 10]. Thisactivity produced great bene�ts in understanding the di�erences and similari-ties between these systems and indicated that a suitable formal speci�cation ofa general hypertext system would be of great value in comparing di�erent hy-pertext systems. The second major in
uence is the writing and presentation offormal speci�cations (in Z) with similar `unifying' motivations in certain areasof computer science including the �elds of interactive conferencing systems [8],distributed arti�cial intelligence [7] and multi-agent systems [18]. These papersdemonstrate the need to provide further suitable formal speci�cations of complexsystems in diverse application areas.

1.2 Related WorkThere is another attempt in the hypertext literature to provide a formal spec-i�cation of a `general' hypertext system known as the Dexter Model of Hyper-text [15]. Interestingly, the authors also chose Z with the motivation - to captureformally and informally the important abstractions found in a wide range ofexisting and future hypertext systems - similar in some respects to our own. Themodel essentially comprises a collection of components - links and nodes - withan accessor function which maps a unique identi�er to a node and an resolverfunction which maps descriptions of components to the components themselves.The operations speci�ed are that of adding, modifying and retrieving compo-nents.However the speci�cation is often obtuse and over-complicated, and onlythe most experienced Z practitioner with a good knowledge of hypertext wouldbe able to gain much from the speci�cation. Part of the problem is that nostructuring of the speci�cation takes place, rather it starts with a large collectionof given sets and introduces many concepts and functions before the �rst stateschema is actually presented. In this sense, the speci�cation is very '
at' anddoes not aid the reader in building up a picture of their model of a hypertext.Further, the speci�cation describes hypertext at a very low level of detail andhence is much more orientated towards implementation concerns.We argue that the immediate complexity will not serve the standard hy-pertext practitioner in providing an accessible model which can be commonlyadopted by the hypertext community, and that the lack of abstraction mecha-nisms within the `
at' speci�cation does not provide a framework in which topresent and develop ideas in the design of hypertext systems.In addition, there is a system known as HAM - A General-Purpose HypertextAbstract Machine [3], which is a general purpose server for a hypertext storagesystem. HAM has several general features similar to our own including nodes,links, graphs and attributes and describes the way information is represented be-fore it is used in Information Retrieval. The motivation is essentially to lay thefoundations for a standard terminology for the development of hypertext tech-nology. Important as this work is, the model is only concerned with problems ofstorage, and not with representing an Information Retrieval session. In addition,the model is not formal, and subsequently does not provide the precision of amathematical speci�cation. Our work on the other hand is both formal and, weargue, su�ciently expressive to provide a framework within which to detail allaspects of hypertext.1.3 An Overview of the PaperThe speci�cation of our framework is split into two parts, and these are de�ned insections 2 and 3. The �rst part, given in section 2, presents what we believe is themost straightforward and intuitive description of a model of hypertext systemswhere nodes are treated as given sets and links as a pair of system nodes. Thesecond part, given in section 3, builds on the basic model and increases the

level of speci�cation detail in order to describe the internal details of a node.Each of these two sections is divided into three subsections: the �rst de�nesthe structure of the system, the second the state of the system as it is beingread and the third presents a description of the basic applications of hypertext,namely how it facilitates structured movement through a particular informationspace. Section 4 outlines how the model can be used to detail other features andapplications of hypertext. Section 5 provides a summary of the paper and detailscurrent and future work.2 The Basic Hypertext2.1 StructureIf we consider a hypertext system at its highest level of abstraction, it consistsof a collection of basic elements. These elements are typically called nodes, butthe name can vary from system to system: for example, they are called cards inNoteCards [14], frames in KMS [2], documents in Intermedia [22], and statementsin Augment [11]. In this speci�cation we chose to use the word node, being themost common.[NODE]CONTENTSNodes : �NODEHowever, if we take a closer look at a hypertext system, we �nd that thestructure is more sophisticated and that between nodes there exist certain con-nections, known as links, each suggesting some relationship between the nodesthey connect. A link is directional, pointing from one node (sometimes referredto as the parent node) to another node (sometimes referred to as the child node).A link is therefore characterised by the nodes it connects.LINK == NODE� NODELINKSLinks : � LINKWe de�ne a hypertext system as a collection of nodes and links, where linksmust point from an existing system node. However, it is not the case that a linkmust necessarily point to a system node: many hypertext systems include thenotion that some links only have the potential to point to such a node (e.g. [9]).HYPERTEXTCONTENTSLINKSdomLinks � Nodes

Button Nodes A more detailed investigation of a hypertext system will revealthat some nodes are special in that they may be reached without using a link. Wecall such nodes button nodes. Further, there may or may not be a default startingnode when a hypertext system is �rst used in an IR session. (For de�nitions ofoptional and related concepts, please consult the Appendix).ButtonHYPERTEXTHYPERTEXTButtons : �NODEStartNode : optional [NODE]StartNode � NodesButtons � NodesStartNode � ButtonsTyped Links In certain hypertext systems [9], links may be grouped into LinkFunctions.LINKFUNCTION == NODE� NODETypedLINKSLINKSLinkFunctions : � LINKFUNCTIONSLinkFunctions � LinksA particular system might insist that a link could not belong to more thanone function and that every link should belong to a function. In which case, wewould simply include the following predicate in the above schema.setdisjoint LinkFunctions ^ SLinkFunctions = Links2.2 The State of the HypertextThe next aspect of this simple hypertext model is to specify the state of themodel as it is used in an Information Retrieval (IR) session. In all systemsthat we have investigated, there is a notion of the position of a user within theinformation space, and the history of that user's IR session. A history provides arecord of the nodes visited by a user in a session, and possibly the way in whichthey were visited.Our general model of a hypertext session history is, then, a set of sequences ofnodes, where each of these sequences is updated in one of four ways depending onwhat type of move is made: the sequence can remain unchanged, the last-visitednode can be appended, the sequence can be truncated at the �rst occurrence ofthe last-visited node, or fourthly, at the last occurrence of the last-visited node.For the sake of brevity, we do not present this mechanism in this paper, but

for the purposes of exposition, we will show how two commonly-found browsinghistories are used in IR. We de�ne StandardHistory as a sequence of all the nodesvisited, and Visited to be the set of nodes which have been visited.HISTORYStandardHistory : seq NODEVisited : �NODEVisited = ran StandardHistoryWe represent a user session by the hypertext, their history and their currentposition within the information space.HYPERTEXTStateHYPERTEXTHISTORYCurrentNode : NODECurrentNode 2 NodesAs mentioned, the buttons which become available during a session mightbe dependent on the session itself. Here the variable RunButtons, a supersetof Buttons, represents those nodes which can currently be visited without theuse of a link. In particular, it is typical that any previously visited node can bere-visited without using a link.ButtonHYPERTEXTStateHYPERTEXTStateButtonHYPERTEXTRunButtons : �NODE(de�ned StartNode) ^ (Visited 6= f g))head StandardHistory = the StartNodeButtons � RunButtonsRunButtons � NodesVisited � RunButtons2.3 ApplicationsOne of the bene�ts of Z is that the operations that a system provides can bespeci�ed within the same formal framework. This property is not shared by manyof the mathematical models presented in the literature; for example, [21] useshypergraphs to give a formal account of the structure of a hypertext, but thenspeci�es the operations of reading the hypertext using a mixture of pseudocodeand informal English description. A particular advantage of a uni�ed speci�ca-tion, as provided by Z, is that the properties of operations, and their e�ects onthe state of the system, can be explored and reasoned about formally.

Any operation in an IR session will not alter the actual linked structure ofthe hypertext.�HYPERTEXTStateHYPERTEXTStateHYPERTEXTState0�HYPERTEXTStarting a hypertext session changes the state of the hypertext by resettingthe history.Login�HYPERTEXTStateStandardHistory 0 = hiWe now show how the hypertext is used in an IR session by moving throughan information space using the hypertext system. Essentially a hypertext systemsupports two types of moves: �rst, a user may move from one node to anothernode by use of a link from their current node to another related node; second, ifthey have some knowledge of a node - because it is a button node or a previouslyvisited node, for example - they may move directly to that node without usinga link.We structure the speci�cation by �rst describing the properties that we wanta general move operation to have before giving details of a particular move. Thisprovides an example of how Z has enabled us to modularise this speci�cationand so present the model in levels of increasing detail. In particular it showshow the small schemas de�ned in our speci�cation can be combined to de�nemore complex states and operations. In general, a move operation will changethe state of the hypertext: the current node may alter and the history may alter,but the actual linked structure of the hypertext will remain unchanged. Further,a move operation may return a message to the user.Move�HYPERTEXTStatemessage! : optional [ERROR]We can next distinguish between successful and unsuccessful attempts tomove. A successful move will update the history list, appending the node thathas just been visited. Further, there will be no message.MoveOkMoveVisited 0 = Visited [fCurrentNodegStandardHistory 0 = StandardHistory � hCurrentNodeiunde�ned message!

Failed moves leave the hypertext state unchanged. An error message is given.MoveFailMove�HYPERTEXTStatede�ned message!Now we describe using a link to move from the current node to another.FollowLinkOklink : LINKMoveOkCurrentNode0 = second linkThis move can be made in one of two ways. The user can select either thelink to be used, or, a link function intended to isolate an appropriate link.UserChosesLinkOkFollowLinkOk[link?=link]link? 2 Links ^ �rst link? = CurrentNode ^ second link? 2 NodesFollowLinkFunctionOkLinkFunction? : LINKFUNCTIONFollowLinkOkTypedLINKSLinkFunction? 2 LinkFunctionsCurrentNode 2 (domLinkFunction?)link = (CurrentNode;LinkFunction?CurrentNode)UserChoosesLinkFunctionOk b= FollowLinkFunctionOk n (link):Moves can be made using buttons by supplying the node to be visited.MoveButtonOkMoveOk�ButtonHYPERTEXTState�ButtonHYPERTEXTbutton? : NODEbutton? 2 RunButtonsCurrentNode0 = button?Moving back to the previously visited node requires no input node.

MoveBackMoveOkStandardHistory 6= hiCurrentNode0 = last StandardHistoryThe history may be up updated in a di�erent way as follows. This justi�esthe need to model a more general history mechanism as mentioned previously.MoveBackAlternativeMoveStandardHistory 6= hiunde�ned message!CurrentNode0 = last StandardHistoryStandardHistory = front StandardHistory3 The Highlight HypertextWe now lower the level of description of a hypertext system, in order to modelthe fact that a node contains certain hypertext elements. These elements arereferences, typically taking the form of highlighted text, which can then serveas the destination of, or source for, hypertext links. Many hypertext systemsfacilitate not only links connecting nodes, but regions within nodes.3.1 StructureEach node has a - possibly empty - set of internal hypertext references whichwe call highlights. Many hypertext systems support the operations of scrollingbackwards and forwards through these highlights. Assuming that the highlightsare unique within a node, we represent them using an injective sequence.[HIGHLIGHT]HighlightNODEHighlights : iseqHIGHLIGHTThe inside of each node then consists of highlights.HighlightNODESCONTENTSGetHighlights : NODE� HighlightNODEdomGetHighlights = Nodes

Next, we extend the notion of a link so that they can point to highlightswithin a node. We use the categories of Conklin [6] who di�erentiates two cat-egories of link by drawing a distinction between organisational and referentiallinks. We use these categories and introduce a third type which can be found incurrent hypertext systems [10] known as span links.Organisational links Many hypertexts have an underlying structure, either asa consequence of the information space itself, or the way that the informationspace is required to be presented to a user. Organisational links capture thisunderlying structure. For example, these may be hierarchical in nature sothat there might be a standard way within the hypertext of moving from agiven node to a \parent", \child" or \sibling" node.Referential links Referential links are typically non-hierarchical. They con-nect a highlight , which can be a point or a region within a node, to a anothernode. Referential links are motivated by the content of a node, rather thanby the underlying structure of the hypertext or information space.Span links We de�ne Span links to be links which connect a highlight withina node to a highlight within another node. The notion of a cross-reference,for example, could be modelled in this fashion.In this speci�cation, we di�erentiate between these three types of link: we callorganisational links orglinks, referential links re
inks and span links spanlinks.Some other mathematical models have had problems de�ning di�erent kindsof link. In [13], this ability is described as an \innovative feature". In order tospecify this more detailed hypertext, we must de�ne a new type to represent linksbetween highlights, and de�ne each of the three link categories as subtypes.HighlightLINKFrom;To : NODEFromHighlight ;ToHighlight : optional [HIGHLIGHT]OrgLINKHighlightLINKunde�ned FromHighlight ^ unde�ned ToHighlightRefLINKHighlightLINKde�ned FromHighlight ^ unde�ned ToHighlightSpanLINKHighlightLINKde�ned FromHighlight ^ de�ned ToHighlight(From 6= To) ^ (FromHighlight 6= ToHighlight)

We may wish to reason about these links in terms of the nodes they connectwithout concern about the kind of link they are. In order to do this we introducea function which maps our new representation of links to our old representation.RecoverLink : HighlightLINK� LINKRecoverLinks : �HighlightLINK�� LINK8 c : HighlightLINK; cs : �HighlightLINK �RecoverLink c = (c:From; c:To) ^RecoverLinks cs = RecoverLink�cs�We can now give the set of all links of the hypertext and relate the tworepresentations of organisational link within the model.HighlightLINKSLINKSOrgLinks : �OrgLINKRefLinks : �RefLINKSpanLinks : � SpanLINKHighlightLinks : �HighlightLINKHighlightLinks = OrgLinks [RefLinks [SpanLinksLinks = RecoverLinks OrgLinksOur new model of hypertext is then given by the following schema whichensures that all links are well de�ned.HighlightHYPERTEXTHYPERTEXTHighlightLINKSHighlightNODES8 l : HighlightLinks � (l :From 2 Nodes) ^(l :FromHighlight � ran (GetHighlights l :From):Highlights)Typing the links is similar to that given in the basic model, but the de�nitionof what constitutes a link function is slightly di�erent. A link function is any setof links for which no two links have the same `from-node' and `from-highlight'.In other words, there is only one way to leave a given position given a particularlink function. Further, we assert that a typed link function will only containlinks which are either all organisational, referential or span.HlightLINKFUNCTION == fxs : �HighlightLINK; x ; y : HighlightLINK j((x 2 xs) ^ (y 2 xs) ^ (x 6= y)))(x :From; x :FromHighlight) 6= (y :From; y :FromHighlight) � xsg

TypedHighlightLINKSHighlightLINKSOrgLinkFuns;RefLinkFuns; SpanLinkFuns : �HlightLINKFUNCTIONSOrgLinkFuns � OrgLinksSRefLinkFuns � RefLinksS SpanLinkFuns � SpanLinks3.2 StateWe now de�ne the position of a user within the hypertext. This will not onlyinclude the current node and history from the state of the basic model, but alsothe position of a user within a node. This position will either be de�ned, in whichcase the user will be positioned at some highlight, or unde�ned, which occurs,for example, when a node has no highlights or an organisational link has justbeen used to move to the current node.HighlightHYPERTEXTStateHYPERTEXTStateHighlightHYPERTEXTPosition : optional [HIGHLIGHT]HighlightNODE�HighlightNODE = GetHighlights CurrentNodePosition � (ranHighlights)3.3 ApplicationsA change in the state will not a�ect the structure.�HighlightHYPERTEXTStateHighlightHYPERTEXTStateHighlightHYPERTEXTState0�HighlightHYPERTEXTAny move using highlights may a�ect the state.HighlightMove�HighlightHYPERTEXTStateMoveWe distinguish between two types of move. Internal moves involve the userscrolling through or selecting one of the highlights of the current node. Externalmoves, on the other hand, involve the user taking a link, or moving to a buttonnode. An internal move will not a�ect the state of the basic hypertext - the

current node and history are not altered - and can only be made if the currentnode actually contains highlights.InternalMoveOkHighlightMove�HYPERTEXTStateMoveOkHighlights 6= hiThere are three basic internal moves within a node: moving to the nexthighlight, moving to the previous highlight - both which necessarily entail thatthe current position is de�ned - and moving to a chosen highlight. For a de�nitionof CycleNext and CyclePrevious please see the appendix.NextHighlightInternalMoveOkde�ned Positionthe Position 0 =CycleNext ((the Position);Highlights)PreviousHighlightInternalMoveOkde�ned Positionthe Position 0 =CyclePrevious ((the Position);Highlights)SelectHighlightInternalMoveOkhighlight? : HIGHLIGHThighlight? 2 (ranHighlights)the Position 0 = highlight?The general external movemay a�ect the position and the current node. Notethat the use of buttons is not changed in any way in this more sophisticatedmodel.ExternalMoveOkHighlightMoveMoveOk�HighlightHYPERTEXTTo use a link successfully, the parent node of the link must necessarily be thecurrent node. If we use an organisational link then this is su�cient; they can beused from any position within a node. However, if we use a span or referential

link then the link must have a from-highlight equal to the current position. Were-use our basic model de�nition as follows:FollowHighlightLinkOkExternalMoveOkFollowLinkOkhighlightlink : OrgLINKhighlightlink :From = CurrentNodehighlightlink 2 OrgLinks _ (highlightlink 2 (RefLinks [SpanLinks)^ Position = highlightlink :FromHighlight)link = (highlightlink :From; highlightlink :To)Position0 = highlightlink :ToHighlightUserChoosesHighlightLinkOk b= FollowHighlightLinkOk n (link)Again the user either chooses the link, or a link function intended to isolatethe required link.4 ExtensionsAlthough many formalmodels of hypertext have been proposed in the literature,there is still little consensus about what a de�nitive model should be. Indeed onemight argue that, in view of the rapid progress of the technology, it is probablypremature to attempt a de�nitive formalisation. However, a signi�cant bene�t ofZ that we have discovered in this respect is that it does not restrict the speci�erto any particular mathematical model; rather it provides a general mathematicalframework within which di�erent models, and even particular systems, can bede�ned and contrasted.We now justify this claim here by considering a number of more sophisticatedfeatures of hypertext and show how the model de�ned in the previous sectionscan be elaborated to de�ne and describe features and extensions found in avariety of hypertext systems.4.1 Values and AttributesA node or link may have a collection of types with associated values which maybe used to structure the state space. In this case, the hypertext can be structuredso that only certain types of links have access to certain types of nodes. In thefollowing schema, we assert that for any two nodes connected by a link, the linkand the nodes must have an associated type in common.[TYPE;VALUE]TYPEVALUEPAIRS== �(TYPE� VALUE)

TypedHYPERTEXTHighlightHYPERTEXTNodeType : NODE" TYPEVALUEPAIRSHighlightLinkTypes : HighlightLINK" TYPEVALUEPAIRSdomNodeType = NodesdomHighlightLinkTypes = HighlightLinks8 c : HighlightLinks j c:To 2 Nodes �(9 t : TYPE � (t 2 Tf�rst�HighlightLinkTypes c�;�rst�NodeType (c:To)�; �rst�NodeType (c:From)�g))4.2 Specifying Di�erent TopologiesThe topology of a hypertext describes the way in which the nodes are connected.In the simplest case, a hypertext is seen simply as being a directed graph, butother organisations are possible to facilitate the successful movement thoughan information space. In [19] a survey is given of possible topologies and, as anexample, we de�ne a hypertext which has a hierarchical structure. This is de�nedin terms of the organisational link function Parent and a set of organisationallink functions called Children.HierarchicalHYPERTEXTHighlightHYPERTEXTTypedHighlightLINKSButtonHYPERTEXTParent : HlightLINKFUNCTIONChildren : �HlightLINKFUNCTIONParent 2 OrgLinkFunsChildren � OrgLinkFunsde�ned StartNoderan (RecoverLinks (SChildren)) = Nodes n StartNode(RecoverLinks Parent)� = RecoverLinks (SChildren)4.3 User NavigationAs a mechanism to help the user navigate through a document, a number ofproposals have been made for de�ning paths through the document [20]. A pathwould o�er a reader a pre-de�ned route through a subset of the document, thusenabling an overview of the hypertext, or of a particular subject to be presented.A path may be just a set of nodes. Equally it may take the form of a sequence oflinks which actually take the user through particular highlights in the hypertext.SIMPLEPATH == seq NODEPATH == seq HighlightLINK

SimplePATHSCONTENTSSimplePaths : � SIMPLEPATHran (SSimplePaths) � NodesPATHSHighlightLINKSpaths : �PATH8 p : paths � (8 l ;m : HighlightLINK j hl ;mi in p �(l :To; l :ToHighlight) = (m:From;m:ToHighlight))4.4 Content of NodesIn this speci�cation we have not considered the text that is stored at each node.In the following, Text is de�ned as a schema since we wish to allow for thepossibility of di�erent nodes sharing the same content, cited as an advantage ofthe hypergraph model in [21].[CHAR]STRING == seq CHARTEXT b= [text : STRING]TextHYPERXTET�HYPERTEXTText : NODE� TEXTdomText = NodesOnce a notion of content has been de�ned, it is possible to de�ne a furtherclass of move operations which Conklin [6] calls keyword links. A simple examplewould be to search for all nodes containing a given string. The schema whichdescribes the successful operation is given below. The input, keyword?, is thesearch string and the set of nodes in the document containing the string isreturned in the set found !. One of these nodes may become the current node.KeywordSearchTextHYPERXTETkeyword? : STRINGfound ! : �NODEfound ! = fn : Nodes j keyword? in (Text n):text � ng

4.5 Properties of HypertextIt is straightforward in the Z framework to de�ne additional properties of hy-pertext. We give two examples here. The �rst states that every node in thehypertext can be reached from the start node of a user session (whether useror system de�ned) using organisational links only. The second that no nodesare dead ends, or equivalently, that there is always at least one organisational,referential or span link out of any node.AccessibilityButtonHYPERTEXTde�ned StartNode) Nodes � ran (StartNode � Links�)unde�ned StartNode) (8 n : Nodes � Nodes � ran (fng� Links�))NoDeadEndsHighlightHYPERTEXTTypedHighlightLINKSNodes � dom (RecoverLinks (OrgLinks [RefLinks [SpanLinks))4.6 AuthoringIn addition to operations for reading an information space using hypertext, manysystems also provide authoring operations by means of which nodes and links canbe added to a hypertext to represent the information space in a more e�ectiveway. Adding a new node is known as indexing, adding a new link is known ashyperization. In the following schema we describe the hyperization operation ofcreating a new organisational link in the highlight hypertext.AddHighlightLink�HighlightHYPERTEXThlink? : HighlightLINKhlink? =2 HighlightLinkshlink?:From 2 Nodeshlink? 2 OrgLINKOrgLinks0 = OrgLinks [fhlink?gRefLinks0 = RefLinksSpanLinks0 = SpanLinksAs a further example, we de�ne the operation of removing a node from thebasic model where any links which point to or from that node are also deleted.

RemoveNodenode? : NODE�HYPERTEXTnode? 2 NodesNodes0 = Nodes n fnode?gLinks0 = fnode?g� Links � fnode?g5 Summary and Future WorkIn this paper we have presented part of the formal speci�cation we have de-veloped in order to de�ne a framework for hypertext systems. This, we argue,provides an environment in which to discuss, design, develop and evaluate suchsystems. Z has enabled us to produce a well structured speci�cation accessibleto researchers from a non-formal background. We have been able to describehypertext at the highest level of abstraction and then, using increasingly de-tailed speci�cation, we have been able to add necessary system complexity atappropriate levels. We have shown how constructing Z in such a way does notrestrict a speci�er to any particular mathematical model; rather it provides ageneral mathematical framework within which di�erent models, and even par-ticular systems, can be de�ned and contrasted.The framework has provided the foundation upon which to build a formalmodel of a new learning system in hypertext [16]. This system uses statisticalinformation collected in Information Retrieval sessions over a period of time tolearn how best to aid the user in navigating through a given information space.Since our framework speci�cation is well structured, we were able to choose theappropriate level of abstraction relevant to our purpose of modelling this newsystem. In this case, the learning model is concerned only with organisationallinks between nodes, and so we have developed the formalisms of the learningtechniques within our most basic model of hypertext. Next we intend to formalisecertain hypertext systems within this framework in order that the new learningmodel of hypertext may be incorporated into these systems.Further work continues in developing a more general and generic versionof the speci�cation and in applying it to existing hypertext systems. We havespeci�ed several existing hypertext systems including HyperCard [4] and theWorld Wide Web [5] within our framework. Further, using the speci�cations ofthe two systems used by Westminster University [9, 10], we are now able toinvestigate a means of providing automatic translation rules between the two.AcknowledgementsThanks to Claire Cohen, Jennifer Goodwin, Paul Howells, Michael Hu andMichael Luck and the anonymous referees for comments on earlier versions ofthis paper. The speci�cation contained in this paper was checked for correctnessusing the fuzz package.

References1. F. Afrati and C. Koutras. A hypertext model supporting query mechanisms. InHypertext: Concepts, Systems and Applications. Proceedings of the European Con-ference on Hypertext, pages 52{66, 1990.2. R. Akscyn, D. McCracken, and E. Yoder. KMS: A distributed hypertext for man-aging knowledge in organizations. Communications of the ACM, 31(7), July 1988.3. B. Campell and J. Goodman. HAM: A General Purpose Hypertext Abstract Ma-chine. Communications of the ACM, 31(7):856{861, 1988.4. C. Cohen, M. d'Inverno, and M. Priestley. Z Speci�cation of HyperCard. Technicalreport, Software Engineering Division, University of Westminster, 1995.5. C. Cohen, M. d'Inverno, and M. Priestley. Z Speci�cation of the World Wide Web.Technical report, Software Engineering Division, University of Westminster, 1995.6. J. Conklin. Hypertext: An Introduction and Survey. Computer, 20(9):17{41, 1987.7. M. d'Inverno. Using Z to capture the essence of a contract net. Master's thesis,Programming Research Group, Oxford University, 1988.8. M. d'Inverno and J. Crowcroft. Design, speci�cation and implementation of aninteractive conferencing system. In Proceedings of IEEE Infocom, Miami, USA.Published IEEE, 1991.9. M. d'Inverno and M. Priestley. Z speci�cation of GNU Emacs info system. Tech-nical report, Software Engineering Division, University of Westminster, 1994.10. M. d'Inverno and M. Priestley. Z speci�cation of IDEAs system. Technical report,Software Engineering Division, University of Westminster, 1994.11. D. Englebart. Authorship provisions in Augment. In Proceedings of the IEEECOMPCON, Spring 1984.12. P. Garg. Abstraction Mechanisms in Hypertext. Communications of the ACM,31(7):862{870, 1988.13. F. Garzotto, P. Paolini, and D. Schwabe. HDM{A Model-Based Approach to Hy-pertext Application Design. ACM Transactions on Information Systems, 11(1):27{50, 1993.14. F. Halasz. Re
ections on NoteCards: Seven Issues for the Next Generation ofHypermedia Systems. Communications of the ACM, 31(7), July 1988.15. F. Halasz and M. Schwartz. The Dexter Hypertext. Communications of the ACM,37(2):30{39, 1994.16. M. J. Hu. An Intelligent Information System. PhD thesis, UCL, 1994.17. D. Lange. A formal model for hypertext. In Proceedings of the NIST HypertextStandardization Workshop, 1990.18. M. Luck and M. d'Inverno. A formal framework for agency and autonomy. InProceedings of the First International Conference on Multi-Agent Systems, pages254{260. AAAI Press / MIT Press, 1995.19. H. Van Dyke Parunak. Hypermedia Topologies and User Navigation. In Hypertext'89 Proceedings, 1989.20. D. Stotts and R. Furata. Petri-Net-Based Hypertext: Document Structure withBrowsing Semantics. ACM Transactions on Information Systems, 7(1):3{29, 1989.21. F. Tompa. A Data Model For Flexible Hypertext Database Systems. ACM Trans-actions on Information Systems, 7(1):85{100, 1989.22. N. Yankelovich, B. Haan, N. Meyrowitz, and S. Drucker. Intermedia: The conceptand the construction of a seamless information environment. IEEE Computer,1988.

Appendix: Z ExtensionsWe have found it useful in a speci�cation to be able to assert that an element isoptional. For example, in the speci�cation given in this paper, the error messagereturned by a hypertext move is optional. If the move is unsuccessful, there isan error message, if the move is successful then there is no error message. Thefollowing de�nitions provide for a new type, optional T , for any existing type, T ,along with the predicates de�ned and unde�ned which test whether an elementof optional T is de�ned or not. The function, the, extracts the element from ade�ned member of optional T . We further de�ne a pre�x relation, setdisjoint,which holds for a set of sets if all the members of that set of sets are pairwisedisjoint. Lastly we de�ne two functions which cycle forwards and backwardsthrough non-empty injective sequences.optional [X] == fxs : �X j # xs � 1g[X]de�ned ; unde�ned : �(optional [X])the: optional [X]�X8 xs : optional [X] � de�ned xs , # xs = 1 ^unde�ned xs , # xs = 08 xs : optional [X] j de�ned xs �the xs = (� x : X j x 2 xs)[X]setdisjoint : �(�(�X))8 xss : �(�X) � setdisjoint xss , (8 xs; ys : �X �((xs 2 xss) ^ (ys 2 xss) ^ (xs 6= ys))) (xs \ ys) = �)[X]CycleNext; CyclePrevious: (X � iseqX)� XIndex: (X � iseqX)�
8 s : iseqX ; x : X j x 2 (ran s) � Index (x ; s) = s�x ^Index (x ; s) 6= #s)CycleNext (x ; s) = s(Index (x ; s) + 1) ^Index (x ; s) = #s)CycleNext (x ; s) = head s ^Index (x ; s) 6= 1)CyclePrevious (x ; s) = s (Index (x ; s) � 1) ^Index (x ; s) = 1)CyclePrevious (x ; s) = last sThis article was processed using the LaTEX macro package with LLNCS style

