In ZUM’95: The Z Formal Specification Notation, J. Bowen and M. Hinchey, (eds.), L ecture Notes
in Computer Science, 967, 83-102, Springer-Verlag, Heidelberg, 1995

Structuring Specification in Z to Build a
Unifying Framework for Hypertext Systems

Mark d’Inverno and Mark Priestley

School of Computer Science, University of Westminster, 115 New Cavendish Street,
London, W1M 8JS, UK. Email {dinverm,priestm }@westminster.ac.uk

Abstract. A report is given on work undertaken to produce a struc-
tured specification in 7 of a model which aims to capture the essential
abstractions of hypertext systems. The specification is presented in part
and the potential value of this specification to the hypertext community
is explored and discussed. We argue that this specification provides a
framework for hypertext systems in that it provides: explicit and un-
ambiguous definitions of hypertext terms, an explicit environment for
the presentation, comparison and evaluation of hypertext systems and
a foundation for future research and development in the field. Although
there are many formal reference models of hypertext, we have found 7
expressive enough to allow a unified account of a system and its opera-
tions. Our model does not restrict the specifier to any particular design,
but provides a mathematical framework within which different models
may be compared. Further, we were able to structure the specification
in order that the model could be described initially at the highest level
of abstraction with complexity added at increasingly lower levels of ab-
straction. This structured specification allows the functionality of hyper-
text systems to be considered at different levels of granularity which, we
argue, gives rise to a well-defined robust model and a beneficial envi-
ronment within which to reason about hypertext design. The use of this
model in presenting and comparing existing models, as well as its use in
developing a new hypertext learning model, is briefly discussed.

1 Introduction

Many formal reference models of hypertext have been presented in the literature
[1, 12, 17, 20, 21], and whilst these models give valuable theoretical insights into
certain aspects of the structure of hypertext, they are not by themselves adequate
vehicles for the presentation, evaluation and comparison of different systems. In
this paper we describe an approach to the formal specification of hypertext sys-
tems which allows the development of a common conceptual framework and
provides an environment in which to discuss, design, develop and evaluate hy-
pertext systems.

The language Z is based upon basic mathematical ideas. This means that it
is accessible to many hypertext practitioners, and unlike many models [20, 21],
is expressive enough to allow a consistent formal unified account of a system

and its associated operations. We claim further that a well-structured 7 specifi-
cation built up from basic mathematical ideas can provide the following for the
hypertext community:

Clarity. The use of formal concepts allows explicit and unambiguous descrip-
tions of terms and complex systems to be given.

Common Conceptual Framework. The availability of explicit notations allows
a movement from informal mutually inconsistent descriptions of systems
towards a common understanding of the basic features and concerns of a
particular class of systems.

Design Fvaluation. This common framework enable alternative designs of par-
ticular systems to be explicitly presented, compared and evaluated.

Reliability. A formal specification language provides a proof system and a set
of proof obligations which enables a reliable and robust model of systems to

be built.

A well-structured specification in this context is one which first describes a
system at its highest level of abstraction, with complexity added at each suc-
cessive lower level of abstraction, allowing irrelevant information to be removed
from consideration. Further, different modular components of a system can be
isolated and described separately and commonalities in different parts of a sys-
tem can be recognised and presented as such. Abstraction renders prejudice
about design unnecessary; consequently, a specification of a “general system”
can be written. Indeed, Z schema boxes have been 1deal for manipulation in the
design process since, viewing in many cases the design process as a constraint
of possible states, design strategies can be presented as predicates in the appro-
priate state schemas. Such a structured specification, we argue, is a tool which
enables a more considered hypertext analysis.

1.1 Motivation

This paper 1s a consequence of two separate ongoing areas of work. The first
area involved the writing of programs to translate between various hypertext
systems currently used at University of Westminster. In order to ensure that the
structure of a document is preserved in its translation, it was decided to produce
full formal specifications of the University of Westminster systems [9, 10]. This
activity produced great benefits in understanding the differences and similari-
ties between these systems and indicated that a suitable formal specification of
a general hypertext system would be of great value in comparing different hy-
pertext systems. The second major influence 1s the writing and presentation of
formal specifications (in Z) with similar ‘unifying’ motivations in certain areas
of computer science including the fields of interactive conferencing systems [8],
distributed artificial intelligence [7] and multi-agent systems [18]. These papers
demonstrate the need to provide further suitable formal specifications of complex
systems in diverse application areas.

1.2 Related Work

There is another attempt in the hypertext literature to provide a formal spec-
ification of a ‘general’ hypertext system known as the Dexter Model of Hyper-
text [15]. Interestingly, the authors also chose Z with the motivation - to capture
formally and informally the important abstractions found in a wide range of
existing and future hypertext systems - similar in some respects to our own. The
model essentially comprises a collection of components - links and nodes - with
an accessor function which maps a unique identifier to a node and an resolver
function which maps descriptions of components to the components themselves.
The operations specified are that of adding, modifying and retrieving compo-
nents.

However the specification is often obtuse and over-complicated, and only
the most experienced Z practitioner with a good knowledge of hypertext would
be able to gain much from the specification. Part of the problem is that no
structuring of the specification takes place, rather it starts with a large collection
of given sets and introduces many concepts and functions before the first state
schema is actually presented. In this sense, the specification is very ’flat’ and
does not aid the reader in building up a picture of their model of a hypertext.
Further, the specification describes hypertext at a very low level of detail and
hence 1s much more orientated towards implementation concerns.

We argue that the immediate complexity will not serve the standard hy-
pertext practitioner in providing an accessible model which can be commonly
adopted by the hypertext community, and that the lack of abstraction mecha-
nisms within the ‘flat’ specification does not provide a framework in which to
present and develop ideas in the design of hypertext systems.

In addition, there is a system known as HAM - A General-Purpose Hypertext
Abstract Machine [3], which is a general purpose server for a hypertext storage
system. HAM has several general features similar to our own including nodes,
links, graphs and attributes and describes the way information is represented be-
fore 1t 1s used in Information Retrieval. The motivation is essentially to lay the
foundations for a standard terminology for the development of hypertext tech-
nology. Important as this work is, the model is only concerned with problems of
storage, and not with representing an Information Retrieval session. In addition,
the model is not formal, and subsequently does not provide the precision of a
mathematical specification. Our work on the other hand is both formal and, we
argue, sufficiently expressive to provide a framework within which to detail all
aspects of hypertext.

1.3 An Overview of the Paper

The specification of our framework is split into two parts, and these are defined in
sections 2 and 3. The first part, given in section 2, presents what we believe 1s the
most straightforward and intuitive description of a model of hypertext systems
where nodes are treated as given sets and links as a pair of system nodes. The
second part, given in section 3, builds on the basic model and increases the

level of specification detail in order to describe the internal details of a node.
Each of these two sections i1s divided into three subsections: the first defines
the structure of the system, the second the state of the system as it is being
read and the third presents a description of the basic applications of hypertext,
namely how it facilitates structured movement through a particular information
space. Section 4 outlines how the model can be used to detail other features and
applications of hypertext. Section 5 provides a summary of the paper and details
current and future work.

2 The Basic Hypertext

2.1 Structure

If we consider a hypertext system at its highest level of abstraction, it consists
of a collection of basic elements. These elements are typically called nodes, but
the name can vary from system to system: for example, they are called cards in
NoteCards [14], frames in KMS [2], documents in Intermedia [22], and statements
in Augment [11]. In this specification we chose to use the word node, being the
most common.

[NODE]

CONTENTS
FNodes : P NODE

However, if we take a closer look at a hypertext system, we find that the
structure is more sophisticated and that between nodes there exist certain con-
nections, known as links, each suggesting some relationship between the nodes
they connect. A link is directional, pointing from one node (sometimes referred
to as the parent node) to another node (sometimes referred to as the child node).
A link is therefore characterised by the nodes it connects.

LINK == NODE x NODE

LINKS
FLinks P LINK

We define a hypertext system as a collection of nodes and links, where links
must point from an existing system node. However, it is not the case that a link
must necessarily point to a system node: many hypertext systems include the
notion that some links only have the potential to point to such a node (e.g. [9]).

— HYPERTEXT
CONTENTS
LINKS

dom Links C Nodes

Button Nodes A more detailed investigation of a hypertext system will reveal
that some nodes are special in that they may be reached without using a link. We
call such nodes button nodes. Further, there may or may not be a default starting
node when a hypertext system is first used in an IR session. (For definitions of
optional and related concepts, please consult the Appendix).

— ButtonHYPERTEXT
HYPERTEXT
Buttons : PNODE
StartNode : optional [NODE]

StartNode C Nodes
Buttons C Nodes
StartNode C Buttons

Typed Links In certain hypertext systems [9], links may be grouped into Link
Functions.

LINKFUNCTION == NODE + NODE

_ TypedLINKS
LINKS
LinkFunctions : P LINKFUNCTION

\J LinkFunctions C Links

A particular system might insist that a link could not belong to more than
one function and that every link should belong to a function. In which case, we
would simply include the following predicate in the above schema.

setdisjoint LinkFunctions A |J LinkFunctions = Links

2.2 The State of the Hypertext

The next aspect of this simple hypertext model is to specify the state of the
model as it is used in an Information Retrieval (IR) session. In all systems
that we have investigated, there is a notion of the position of a user within the
information space, and the history of that user’s IR session. A history provides a
record of the nodes visited by a user in a session, and possibly the way in which
they were visited.

Our general model of a hypertext session history is, then, a set of sequences of
nodes, where each of these sequences is updated in one of four ways depending on
what type of move is made: the sequence can remain unchanged, the last-visited
node can be appended, the sequence can be truncated at the first occurrence of
the last-visited node, or fourthly, at the last occurrence of the last-visited node.
For the sake of brevity, we do not present this mechanism in this paper, but

for the purposes of exposition, we will show how two commonly-found browsing
histories are used in IR. We define Standard History as a sequence of all the nodes
visited, and Visited to be the set of nodes which have been visited.

__HISTORY
StandardHistory : seq NODE
Visited : P NODE

Visited = ran StandardHistory

We represent a user session by the hypertext, their history and their current
position within the information space.

__HYPERTEXTState
HYPERTEXT
HISTORY
CurrentNode : NODE

CurrentNode € Nodes

As mentioned, the buttons which become available during a session might
be dependent on the session itself. Here the variable RunButtons, a superset
of Buttons, represents those nodes which can currently be visited without the
use of a link. In particular, it is typical that any previously visited node can be
re-visited without using a link.

__ButtonHYPERTEXTState
HYPERTEXTState
ButtonHYPERTEXT
RunButtons : P NODE

(defined StartNode) A (Visited # {}) =
head StandardHistory =the StartNode
Buttons C RunButtons
RunButtons C Nodes
Visited C RunButtons

2.3 Applications

One of the benefits of Z is that the operations that a system provides can be
specified within the same formal framework. This property is not shared by many
of the mathematical models presented in the literature; for example, [21] uses
hypergraphs to give a formal account of the structure of a hypertext, but then
specifies the operations of reading the hypertext using a mixture of pseudocode
and informal English description. A particular advantage of a unified specifica-
tion, as provided by Z, is that the properties of operations, and their effects on
the state of the system, can be explored and reasoned about formally.

Any operation in an IR session will not alter the actual linked structure of
the hypertext.

AHYPERTEXTState
HYPERTEXTState
HYPERTEXTState’
EHYPERTEXT

Starting a hypertext session changes the state of the hypertext by resetting
the history.

__Login
AHYPERTEXTState

StandardHistory' = ()

We now show how the hypertext is used in an IR session by moving through
an information space using the hypertext system. Essentially a hypertext system
supports two types of moves: first, a user may move from one node to another
node by use of a link from their current node to another related node; second, if
they have some knowledge of a node - because it is a button node or a previously
visited node, for example - they may move directly to that node without using
a link.

We structure the specification by first describing the properties that we want
a general move operation to have before giving details of a particular move. This
provides an example of how Z has enabled us to modularise this specification
and so present the model in levels of increasing detail. In particular it shows
how the small schemas defined in our specification can be combined to define
more complex states and operations. In general, a move operation will change
the state of the hypertext: the current node may alter and the history may alter,
but the actual linked structure of the hypertext will remain unchanged. Further,
a move operation may return a message to the user.

Move
AHYPERTEXTState
message! : optional [ERROR]

We can next distinguish between successful and unsuccessful attempts to
move. A successful move will update the history list, appending the node that
has just been visited. Further, there will be no message.

_ MoveOk

Move

Visited' = Visited U { CurrentNode}
StandardHistory' = StandardHistory ~ {CurrentNode)
undefined message!

Failed moves leave the hypertext state unchanged. An error message is given.

_ MoveFail
Move

ZHYPERTEXTState

defined message!

Now we describe using a link to move from the current node to another.

_ FollowLinkOk
link : LINK
MoveOk

CurrentNode' = second link

This move can be made in one of two ways. The user can select either the
link to be used, or, a link function intended to i1solate an appropriate link.

_ UserChosesLinkOk
FollowLinkOk[link? / link]

link? € Links N first ink? = CurrentNode N second link? € Nodes

__FollowLinkFunctionOk
LinkFunction? : LINKFUNCTION
FollowLinkOk

TypedLINKS

LinkFunction? € LinkFunctions
CurrentNode € (dom LinkFunction?)
link = (CurrentNode, LinkFunction? CurrentNode)

UserChoosesLinkFunctionOk = FollowLinkFunctionOk \ (link).
Moves can be made using buttons by supplying the node to be visited.

__MoveButtonOk
MoveOk
AButtonHYPERTEXTState
SButtonHYPERTEXT
button? : NODE

button? € RunButtons
CurrentNode' = button?

Moving back to the previously visited node requires no input node.

_ MoveBack
MoveOk

StandardHistory # ()
CurrentNode’ = last StandardHistory

The history may be up updated in a different way as follows. This justifies
the need to model a more general history mechanism as mentioned previously.

_ MoveBackAlternative
Move

StandardHistory # ()

undefined message!

CurrentNode' = last StandardHistory
StandardHistory = front StandardHistory

3 The Highlight Hypertext

We now lower the level of description of a hypertext system, in order to model
the fact that a node contains certain hypertext elements. These elements are
references, typically taking the form of highlighted text, which can then serve
as the destination of, or source for, hypertext links. Many hypertext systems
facilitate not only links connecting nodes, but regions within nodes.

3.1 Structure

Each node has a - possibly empty - set of internal hypertext references which
we call highlights. Many hypertext systems support the operations of scrolling
backwards and forwards through these highlights. Assuming that the highlights
are unique within a node, we represent them using an injective sequence.

[HIGHLIGHT]

Highlight NODE
Highlights : iseq HIGHLIGHT

The inside of each node then consists of highlights.

—_HighlightNODES
CONTENTS
GetHighlights : NODE —+ HighlightNODE

dom GetHuighlights = Nodes

Next, we extend the notion of a link so that they can point to highlights
within a node. We use the categories of Conklin [6] who differentiates two cat-
egories of link by drawing a distinction between organisational and referential
links. We use these categories and introduce a third type which can be found in
current hypertext systems [10] known as span links.

Organisational links Many hypertexts have an underlying structure, either as
a consequence of the information space itself, or the way that the information
space 1s required to be presented to a user. Organisational links capture this
underlying structure. For example, these may be hierarchical in nature so
that there might be a standard way within the hypertext of moving from a
given node to a “parent”, “child” or “sibling” node.

Referential links Referential links are typically non-hierarchical. They con-
nect a highlight, which can be a point or a region within a node, to a another
node. Referential links are motivated by the content of a node, rather than
by the underlying structure of the hypertext or information space.

Span links We define Span links to be links which connect a highlight within
a node to a highlight within another node. The notion of a cross-reference,
for example, could be modelled in this fashion.

In this specification, we differentiate between these three types of link: we call
organisational links orglinks, referential links reflinks and span links spanlinks.
Some other mathematical models have had problems defining different kinds
of link. In [13], this ability is described as an “innovative feature”. In order to
specify this more detailed hypertext, we must define a new type to represent links
between highlights, and define each of the three link categories as subtypes.

__HighlightLINK
From, To : NODE
FromHighlight, ToHighlight : optional [HIGHLIGHT]

— OrgLINK
HighlightLINK

undefined FromHighlight A undefined ToHighlight

_ RefLINK
Highlight LINK

defined FromHighlight A undefined ToHighlight

_ SpanLINK
HighlightLINK

defined FromHighlight A defined ToHighlight
(From # To) A (FromHighlight # ToHighlight)

We may wish to reason about these links in terms of the nodes they connect
without concern about the kind of link they are. In order to do this we introduce
a function which maps our new representation of links to our old representation.

RecoverLink : HighlightLINK — LINK
RecoverLinks : P HighlightLINK — P LINK

¥ ¢ : HighlightLINK; ¢s : P HighlightLINK e
RecoverLink ¢ = (¢.From, c¢.To) A
RecoverLinks ¢s = RecoverLink(cs)

We can now give the set of all links of the hypertext and relate the two
representations of organisational link within the model.

—_HighlightLINKS
LINKS
OrgLinks : P OrgLINK

RefLinks : P RefLINK

SpanLinks : P SpanLINK
HighlightLinks : P HighlightLINK

HighlightLinks = OrgLinks U RefLinks U SpanLinks
Links = RecoverLinks OrgLinks

Our new model of hypertext is then given by the following schema which
ensures that all links are well defined.

__Highlight HYPERTEXT
HYPERTEXT
HighlightLINKS
Highlight NODES

V1 : HighlightLinks e (I.From € Nodes) A
({.FromHighlight C ran (GetHighlights l. From). Highlights)

Typing the links is similar to that given in the basic model, but the definition
of what constitutes a link function is slightly different. A link function is any set
of links for which no two links have the same ‘from-node’ and ‘from-highlight’.
In other words, there is only one way to leave a given position given a particular
link function. Further, we assert that a typed link function will only contain
links which are either all organisational, referential or span.

HlightLINKFUNCTION == {zs : P HighlightLINK; z, y : HighlightLINK |
((zexs)N(y€zs) ANz #y)) =
(z.Prom, . FromHighlight) # (y.From, y. FromHighlight) e s}

_ TypedHighlightLINKS
HighlightLINKS
OrgLinkFuns, RefLinkFuns, SpanLinkFuns : P Hlight LINKFUNCTION

\J OrgLinkFuns C OrgLinks
\J RefLinkFuns C RefLinks
\J SpanLinkFuns C SpanLinks

3.2 State

We now define the position of a user within the hypertext. This will not only
include the current node and history from the state of the basic model, but also
the position of a user within a node. This position will either be defined, in which
case the user will be positioned at some highlight, or undefined, which occurs,
for example, when a node has no highlights or an organisational link has just
been used to move to the current node.

_ HighlightHYPERTEXTState
HYPERTEXTState
HighlightHYPERTEXT
Position : optional [HIGHLIGHT]
HighlightNODE

GHighlightNODE = GetHighlights CurrentNode
Position C (ran Highlights)

3.3 Applications
A change in the state will not affect the structure.

AHighlightHYPERTEXTState
HighlightHYPERTEXT State
Highlight HYPERTEXTState’
ZHighlightHYPERTEXT

Any move using highlights may affect the state.

HighlightMove
AHighlightHYPERTEXTState
Move

We distinguish between two types of move. Internal moves involve the user
scrolling through or selecting one of the highlights of the current node. External
moves, on the other hand, involve the user taking a link, or moving to a button
node. An internal move will not affect the state of the basic hypertext - the

current node and history are not altered - and can only be made if the current
node actually contains highlights.

__InternalMoveOk
HighlightMove
SHYPERTEXT State
MoveOk

Highlights # ()

There are three basic internal moves within a node: moving to the next
highlight, moving to the previous highlight - both which necessarily entail that
the current position is defined - and moving to a chosen highlight. For a definition
of CycleNext and CyclePrevious please see the appendix.

— NextHighlight
InternalMoveOk

defined Position
the Position’ = CycleNext ((the Position), Highlights)

_PreviousHighlight
InternalMoveOk

defined Position
the Position’ = CyclePrevious ((the Position), Highlights)

_SelectHighlight
InternalMoveOk
highlight? : HIGHLIGHT

highlight? € (ran Highlights)
the Position’ = highlight?

The general external move may affect the position and the current node. Note
that the use of buttons is not changed in any way in this more sophisticated
model.

ExternalMoveOk
HighlightMove
MoveOk
ZHighlightHYPERTEXT

To use a link successfully, the parent node of the link must necessarily be the
current node. If we use an organisational link then this 1s sufficient; they can be
used from any position within a node. However, if we use a span or referential

link then the link must have a from-highlight equal to the current position. We
re-use our basic model definition as follows:

— FollowHighlightLinkOk
ExternalMoveOk
FollowLinkOk
highlightlink : OrgLINK

highlightlink. From = CurrentNode

highlightlink € OrgLinks Vv (highlightlink € (RefLinks U SpanLinks)
A Position = highlightlink. From Highlight)

link = (highlightlink. From, highlightlink. To)

Position’ = highlightlink. ToHighlight

UserChoosesHighlightLinkOk = FollowHighlightLinkOk \ (link)

Again the user either chooses the link, or a link function intended to isolate
the required link.

4 Extensions

Although many formal models of hypertext have been proposed in the literature,
there is still little consensus about what a definitive model should be. Indeed one
might argue that, in view of the rapid progress of the technology, it is probably
premature to attempt a definitive formalisation. However, a significant benefit of
7 that we have discovered in this respect is that 1t does not restrict the specifier
to any particular mathematical model; rather it provides a general mathematical
framework within which different models, and even particular systems, can be
defined and contrasted.

We now justify this claim here by considering a number of more sophisticated
features of hypertext and show how the model defined in the previous sections
can be elaborated to define and describe features and extensions found in a
variety of hypertext systems.

4.1 Values and Attributes

A node or link may have a collection of types with associated values which may
be used to structure the state space. In this case, the hypertext can be structured
so that only certain types of links have access to certain types of nodes. In the
following schema, we assert that for any two nodes connected by a link, the link
and the nodes must have an associated type in common.

[TYPE, VALUE]
TYPEVALUEPAIRS == P(TYPE x VALUE)

_ TypedHYPERTEXT
Highlight HYPERTEXT

Node Type : NODE — TYPEVALUEPAIRS
Highlight Link Types : HighlightLINK — TYPEVALUEPAIRS

dom NodeType = Nodes
dom HighlightLink Types = HighlightLinks
Y ¢ : HighlightLinks | ¢.To € Nodes o
(3t : TYPE o (¢ € N{first|HighlightLink Types ¢,
first(NodeType (¢.To)), first (Node Type (¢. From)) }))

4.2 Specifying Different Topologies

The topology of a hypertext describes the way in which the nodes are connected.
In the simplest case, a hypertext is seen simply as being a directed graph, but
other organisations are possible to facilitate the successful movement though
an information space. In [19] a survey is given of possible topologies and, as an
example, we define a hypertext which has a hierarchical structure. This is defined
in terms of the organisational link function Parent and a set of organisational
link functions called Children.

_HierarchicalHYPERTEXT
HighlightHYPERTEXT
TypedHighlightLINKS
ButtonHYPERTEXT
Parent : HlightLINKFUNCTION
Children : P HlightLINKFUNCTION

Parent € OrgLinkFuns
Children C OrgLinkFuns
defined StartNode
ran (RecoverLinks (| Children)) = Nodes \ StartNode
(RecoverLinks Parent)™ = RecoverLinks (|J Children)

4.3 User Navigation

As a mechanism to help the user navigate through a document, a number of
proposals have been made for defining paths through the document [20]. A path
would offer a reader a pre-defined route through a subset of the document, thus
enabling an overview of the hypertext, or of a particular subject to be presented.
A path may be just a set of nodes. Equally it may take the form of a sequence of
links which actually take the user through particular highlights in the hypertext.

SIMPLEPATH == seq NODE
PATH == seq HighlightLINK

— SimplePATHS
CONTENTS
SimplePaths : P SIMPLEPATH

ran (| Simple Paths) C Nodes

— PATHS
HighlightLINKS
paths : P PATH

Vp : paths o (Y1, m : HighlightLINK | {{, m)in p e
({.To, . ToHighlight) = (m.From, m.ToHighlight))

4.4 Content of Nodes

In this specification we have not considered the text that is stored at each node.
In the following, Tezt is defined as a schema since we wish to allow for the
possibility of different nodes sharing the same content, cited as an advantage of
the hypergraph model in [21].

[CHAR]
STRING == seq CHAR
TEXT = [text : STRING]

_ TextHYPERXTET
SEHYPERTEXT
Text : NODE = TEXT

dom Text = Nodes

Once a notion of content has been defined, it is possible to define a further
class of move operations which Conklin [6] calls keyword links. A simple example
would be to search for all nodes containing a given string. The schema which
describes the successful operation is given below. The input, keyword?, is the
search string and the set of nodes in the document containing the string is
returned in the set found!. One of these nodes may become the current node.

_KeywordSearch
TextHYPERXTET
keyword? : STRING
found! : P NODE

found! = {n : Nodes | keyword? in (Text n).text o n}

4.5 Properties of Hypertext

It is straightforward in the Z framework to define additional properties of hy-
pertext. We give two examples here. The first states that every node in the
hypertext can be reached from the start node of a user session (whether user
or system defined) using organisational links only. The second that no nodes
are dead ends, or equivalently, that there 1s always at least one organisational,
referential or span link out of any node.

__Accessibility
ButtonHYPERTEXT

defined StartNode = Nodes C ran (StartNode <0 Links*)
undefined StartNode = (¥ n : Nodes o Nodes C ran ({n} < Links™))

__NoDeadEnds
HighlightHYPERTEXT
TypedHighlightLINKS

Nodes C dom (RecoverLinks (OrgLinks U RefLinks U SpanLinks))

4.6 Authoring

In addition to operations for reading an information space using hypertext, many
systems also provide authoring operations by means of which nodes and links can
be added to a hypertext to represent the information space in a more effective
way. Adding a new node is known as indexing, adding a new link is known as
hyperization. In the following schema we describe the hyperization operation of
creating a new organisational link in the highlight hypertext.

_AddHighlightLink
AHighlight HYPERTEXT
hlink? : HighlightLINK

hlink? ¢ HighlightLinks

hlink?. From € Nodes

hlink? € OrgLINK

OrgLinks' = OrgLinks U {hlink?}
RefLinks’ = RefLinks
SpanLinks’ = SpanLinks

As a further example, we define the operation of removing a node from the
basic model where any links which point to or from that node are also deleted.

_ RemoveNode
node? : NODE
AHYPERTEXT

node? € Nodes
Nodes' = Nodes \ {node?}
Links' = {node?} 9 Links & {node?}

5 Summary and Future Work

In this paper we have presented part of the formal specification we have de-
veloped in order to define a framework for hypertext systems. This, we argue,
provides an environment in which to discuss, design, develop and evaluate such
systems. 7 has enabled us to produce a well structured specification accessible
to researchers from a non-formal background. We have been able to describe
hypertext at the highest level of abstraction and then, using increasingly de-
tailed specification, we have been able to add necessary system complexity at
appropriate levels. We have shown how constructing Z in such a way does not
restrict a specifier to any particular mathematical model; rather it provides a
general mathematical framework within which different models, and even par-
ticular systems, can be defined and contrasted.

The framework has provided the foundation upon which to build a formal
model of a new learning system in hypertext [16]. This system uses statistical
information collected in Information Retrieval sessions over a period of time to
learn how best to aid the user in navigating through a given information space.
Since our framework specification is well structured, we were able to choose the
appropriate level of abstraction relevant to our purpose of modelling this new
system. In this case, the learning model is concerned only with organisational
links between nodes, and so we have developed the formalisms of the learning
techniques within our most basic model of hypertext. Next we intend to formalise
certain hypertext systems within this framework in order that the new learning
model of hypertext may be incorporated into these systems.

Further work continues in developing a more general and generic version
of the specification and in applying it to existing hypertext systems. We have
specified several existing hypertext systems including HyperCard [4] and the
World Wide Web [5] within our framework. Further, using the specifications of
the two systems used by Westminster University [9, 10], we are now able to
investigate a means of providing automatic translation rules between the two.

Acknowledgements

Thanks to Claire Cohen, Jennifer Goodwin, Paul Howells, Michael Hu and
Michael Luck and the anonymous referees for comments on earlier versions of
this paper. The specification contained in this paper was checked for correctness
using the fuzz package.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

F. Afrati and C. Koutras. A hypertext model supporting query mechanisms. In
Hypertext: Concepts, Systems and Applications. Proceedings of the European Con-
ference on Hypertext, pages 52—66, 1990.

. R. Akscyn, D. McCracken, and E. Yoder. KMS: A distributed hypertext for man-

aging knowledge in organizations. Communications of the ACM, 31(7), July 1988.

. B. Campell and J. Goodman. HAM: A General Purpose Hypertext Abstract Ma-

chine. Communications of the ACM, 31(7):856-861, 1988.

. C. Cohen, M. d’Inverno, and M. Priestley. 7 Specification of HyperCard. Technical

report, Software Engineering Division, University of Westminster, 1995.

. C. Cohen, M. d’Inverno, and M. Priestley. 7 Specification of the World Wide Web.

Technical report, Software Engineering Division, University of Westminster, 1995.

. J. Conklin. Hypertext: An Introduction and Survey. Computer, 20(9):17-41, 1987.
. M. d’Inverno. Using 7 to capture the essence of a contract net. Master’s thesis,

Programming Research Group, Oxford University, 1988.

. M. d’Inverno and J. Crowcroft. Design, specification and implementation of an

interactive conferencing system. In Proceedings of IEEF Infocom, Miami, USA.
Published IEEE, 1991.

. M. d’Inverno and M. Priestley. 7 specification of GNU Emacs info system. Tech-

nical report, Software Engineering Division, University of Westminster, 1994.

M. d’Inverno and M. Priestley. Z specification of IDEAs system. Technical report,
Software Engineering Division, University of Westminster, 1994.

D. Englebart. Authorship provisions in Augment. In Proceedings of the IEEFE
COMPCON, Spring 1984.

P. Garg. Abstraction Mechanisms in Hypertext. Communications of the ACM,
31(7):862-870, 1988.

F. Garzotto, P. Paolini, and D. Schwabe. HDM-A Model-Based Approach to Hy-
pertext Application Design. ACM Transactions on Information Systems, 11(1):27—
50, 1993.

F. Halasz. Reflections on NoteCards: Seven Issues for the Next Generation of
Hypermedia Systems. Communications of the ACM, 31(7), July 1988.

F. Halasz and M. Schwartz. The Dexter Hypertext. Communications of the ACM,
37(2):30-39, 1994.

M. J. Hu. An Intelligent Information System. PhD thesis, UCL, 1994.

D. Lange. A formal model for hypertext. In Proceedings of the NIST Hypertext
Standardization Workshop, 1990.

M. Luck and M. d’Inverno. A formal framework for agency and autonomy. In
Proceedings of the First International Conference on Multi- Agent Systems, pages
254-260. AAAT Press / MIT Press, 1995.

H. Van Dyke Parunak. Hypermedia Topologies and User Navigation. In Hypertext
89 Proceedings, 1989.

D. Stotts and R. Furata. Petri-Net-Based Hypertext: Document Structure with
Browsing Semantics. ACM Transactions on Information Systems, 7(1):3-29, 1989.
F. Tompa. A Data Model For Flexible Hypertext Database Systems. ACM Trans-
actions on Information Systems, 7(1):85-100, 1989.

N. Yankelovich, B. Haan, N. Meyrowitz, and S. Drucker. Intermedia: The concept
and the construction of a seamless information environment. [IEEFE Computer,
1988.

Appendix: Z Extensions

We have found it useful in a specification to be able to assert that an element is
optional. For example, in the specification given in this paper, the error message
returned by a hypertext move is optional. If the move is unsuccessful, there is
an error message, if the move is successful then there is no error message. The
following definitions provide for a new type, optional 7', for any existing type, T,
along with the predicates defined and undefined which test whether an element
of optional T is defined or not. The function, the, extracts the element from a
defined member of optional 7. We further define a prefix relation, setdisjoint,
which holds for a set of sets if all the members of that set of sets are pairwise
disjoint. Lastly we define two functions which cycle forwards and backwards
through non-empty injective sequences.

optional [X] == {as :P X | #as < 1}

=[X]
defined _, undefined _ : P(optional [X])
the: optional [X] —+ X

Y zs :optional [X] edefined zs < #2s = 1 A
undefined s < #as = 0

Y zs :optional [X] | defined zs o
the zs = (pz : X | 2 € 2s)

—[X]
setdisjoint _ : P(P(P X))

Vass : P(P X) esetdisjoint zss < (Ves,ys :P X o
((zs € xss) A (ys € zss) A (zs # ys)) = (zs Nys) = O)

=[X]
CycleNext, CyclePrevious: (X X iseq X) -+ X
Index: (X x iseq X)+ N

Vs:iseqX;z: X |z € (rans) eIndex (z,s) = s~z A
Index (z,s) # #s = CycleNext (z,s) = s(Index (z,s) + 1) A
Index (z,s) = #s = CycleNext (z,s) = head s A
Index (z, s) # 1 = CyclePrevious (z, s) = s (Index (z,s) — 1) A
(z,5)

Index (2, s) = 1 = CyclePrevious (z, s) = last s

This article was processed using the INTpX macro package with LLNCS style

