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ABSTRACT 
  

 Number sense is defined as the process of extracting numerical information 

by estimating numerosity and magnitudes of numerical symbols. Humans show great 

variability in estimation skills from an early age. Although little is known about the 

origin of individual differences in number sense, these individual variations positively 

correlate with mathematics. This thesis presents the first large-scale genetically 

sensitive investigation into the origins of number sense and into the nature of its 

relationship with mathematics. The research plan can be devised in two parts. In the 

first phase, a battery of web-tests age appropriate for 16-year olds, designed to 

assess number sense (as measured by numerosity and magnitude estimation), 

mathematics and cognitive abilities was created and validated. The battery was then 

administered to the large UK representative of twins of the Twins Early Development 

Study (TEDS). In the second phase, using data from 7,598 sixteen year-old twins from 

the TEDS sample, this thesis used univariate and multivariate genetic analyses to 

investigate the contribution of genes and environment to individual differences in 

number sense and to its association with mathematics. The results suggested that 

individual differences in number sense abilities were mostly driven by non-shared 

environmental factors, with modest contribution of genetic factors. No average or 

aetiological sex differences were found in number sense. The relationship between 

mathematics and number sense was largely genetically mediated. However, contrary 

to the predictions, the genetic relationship between number sense and mathematics 

was found to be mediated by g. The existing longitudinal data in the TEDS sample was 

used to investigate the retrospective relationship between number sense, measured 

at 16, and mathematics and a range of cognitive abilities, measured at 16 and at 

previous ages as far back as age 7. The results suggest that the relationship between 

mathematics and number sense may be uneven across development. In particular, 

numerosity estimation may be important only at the very early stages of 

mathematical learning. Overall, this investigation did not find evidence that number 

sense is what is "special" about mathematics. The results support the Generalist 

Genes Hypothesis that same genes contribute to individual differences in various 

aspects of cognition and learning.  
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Chapter 1: Theoretical Background 

 

1.1 Overview 

 This introductory chapter is divided in eleven sections providing a literature 

review to serve as a framework for the experimental chapters of this thesis. The first 

7 sections give an overview of the current efforts and progress in the understanding 

of the number sense and of its relationship with mathematics. The chapter provides 

separate sections of background research in estimation of numerical magnitude 

(symbolic estimation in 1.2.5) and estimation of numerosity (non-symbolic estimation 

in 1.2.6). The most common tasks used to detect number sense are described in 

section 1.2.3 together with a discussion of some of the controversies and limitations 

of these measurements. There are also sections giving a brief overview of the 

theories on sex differences in mathematics (1.2.8), theories of mathematical learning 

and how the number sense is related to the development of numerical concepts 

(1.2.2). Although the relationship between mathematics and other abilities is not the 

primary focus of this thesis, a synopsis of these associations is included in section 

1.2.7, as the relationship between mathematics and number sense may be mediated 

by other cognitive mechanisms. These reviews will provide the framework for the 

investigation of the relationship between number sense, mathematics and cognitive 

abilities and the involvement of number sense in sex differences in mathematical 

ability and achievement.  

 The following sections present findings from behavioural genetic 

investigations into the genetic and environmental contribution to mathematical 

abilities (1.2.9); the aetiology of the relationship with other abilities; and the 

aetiology of gender differences in mathematics (1.2.10).  

 The final section of this chapter, 1.2.11, identifies the current gap in the 

understanding of the number sense structure, the aetiology of individual and sex 

differences in number sense and the aetiology of the relationship between number 

sense and mathematics.   
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1.2 Introduction 

 Number sense can be broadly defined as a basic intuition about numbers and 

numerical material (Dehaene, 1997). This ability is considered critical for the 

development of early mathematical concepts. Its definition, however, is 

heterogeneous with researchers and mathematical educators interpreting it in 

different ways. One review, for example, identified thirty definitions used in the 

mathematical literature that refer to a number sense construct (Berch, 2005). These 

definitions mostly refer to basic skills such as understanding of numerical meaning, 

estimation of numerical magnitudes and of quantities. The concepts of number sense 

also extend to mechanisms such as motivation and desire to learn mathematics, a 

"feel" for numbers, numerical processes developed with experience and knowledge. 

The review also points to a disagreement in the origin of number sense as some 

consider this ability as a product of experience and training, others suggest individual 

differences in number sense to be under strong genetic influence. Despite 

disagreement in the definition and aetiology of number sense, its attributes can be 

easily identified in people. Case (1998) describes children with good number sense as 

able to: conceive novel methods to perform numerical operation; represent numbers 

independently from a context; recognise numerical patterns; show good sense of 

numerical magnitude; and show confidence in translating real word quantities into 

numerical concepts and expressions ( in Gersten & Chard, 1999). In practical terms, a 

good number sense defines a good grasp of numbers which is often associated with 

flexibility in representing basic numerical material, understanding of quantity and 

numerosity concepts or of relationships among numbers. These skills assist the 

assimilation of more advanced numerical and mathematical concepts (Gallistel & 

Gelman, 1992; Gersten & Chard, 1999; Butterworth, 2005). 

 

1.2.1 Number sense and estimation 

 Since early age, children show various degrees of numerical understanding. 

For example, when entering school some children already understand that 8 is bigger 
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than 5 by 3 units. These children may have been purposely taught this information by 

the family or may have acquired it accidentally through family/environmetal 

interaction. However, some other children lacking of this knowledge can work out the 

numerical magnitude with the aid of strategies such as using fingers (Gersten & 

Chard, 1999). These are the children showing "good number sense". Gersten & Chard 

draw attention to estimation abilities as the components of the number sense 

construct relevant to early mathematics. They propose that the ability to estimate 

numerical magnitudes and numerosity is at the basis of the understanding of 

numerical concepts. They further compare this aspect of number sense to phonemic 

awareness for reading, proposing estimation abilities as early precursors of 

mathematical learning. 

  Gersten & Chard (1999) consider that numerical estimation abilities in many 

respects have similarities with phonemic awareness. Briefly, phonemic awareness 

underlies the ability to identify and manipulate the smallest meaningful unit of sound. 

It can be considered as the awareness of the sounds that make up a word. It has been 

found that auditory skills positively correlate with reading skills (Kavale, 1984) and 

that phonemic awareness was the best predictor of early reading abilities beyond IQ, 

socio-economic status and readiness tests scores (Adams, 1990). Instruction in 

phonemic skills has been proven to enhance reading skills (Cunningham, 1990; 

Torgesen, Morgan & Davis, 1992), although intervention seems more beneficial to 

children with normal abilities as compared to children with reading disability (Smith, 

Simmons, & Kameenui, 1998).  

 The following section describes theories of development of early numerical 

skills (counting) and the role of estimation skills in this process. These theories agree 

with the role of estimation skills as fundamental processes for early mathematics, as 

proposed by Gersten and Chard (1999).  
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1.2.2 Numerosity concept and counting 

 Knowing about numbers is not just about recognising their symbols. When 

children start learning numbers they associate the symbol 1 to one unit/item and the 

symbol 2 to two units, for example. The symbols 1 and 2 do not just differ in their 

notations; their meanings are also different as they are associated with different 

quantities. In order to understand numbers children need to be able to mentally 

represent them. Conceptualization of numbers has various implications. First, 

children need to reason that 1 is smaller than 2, as 1 is associated with a smaller 

quantity than 2. This means that children need to have an appreciation of the 

quantity/numerosity of the set associated with the symbol. In other words, prior to 

being able to reason about the size or magnitude of symbols children need to 

perform a quantity/numerosity comparison: they need to evaluate quantities in 

terms of more and less. When numbers are mentally represented, they are sorted 

according to their magnitude and ordered, with numbers smaller in size placed before 

the larger. This process, described in Butterworth (2005), highlights the importance of 

numerosity representation as the first elemental processing behind the number 

system. A correct mental number representation, based on a correct numerosity 

representation, is fundamental for counting. Gelman & Gallistel (1978) proposed a 

model identifying the skills that children need to acquire in order to be able to count. 

First, children must understand that the number words or symbols follow always the 

same order: the stable order principle. This principle derives directly from an 

understanding of numerosity as described above: smaller numbers (associated with 

smaller numerosity) are placed before larger numbers (larger numerosity). Second, 

children must understand that an item can be counted only once. This is known as the 

one-to-one principle and underlies the understanding that each item to be counted is 

associated with one and only one number word. Third, children must be aware that 

the total number of items to be counted corresponds to the last counting word used. 

This principle, known as the cardinal principle encompasses knowledge of numerical 

magnitudes as the number sequence follows number numerical magnitudes. Fourth, 

it is important to understand that anything can be counted (the abstractness 
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principle). Finally, children must understand that counting can start from any of the 

objects in the set – order irrelevance principle.  

 The concept of numerosity and the ability to estimate numerosity is important 

for counting, and in turn, counting provides the basis for arithmetic. Problems such as 

3 + 2, expressed in symbolic notation, can be solved in terms of arrays of numerosity: 

the items of the two arrays can be combined together in a new set (a 5 items set) and 

then counted. Alternatively, a total can be obtained by considering the two sets 

separately and counting on from one of the two sets, starting from 3 for example 

(Carpenter & Moser, 1984). Counting is a very basic process of mathematical learning:  

counting skills have been found to be predictive of mathematical achievement in 

normally functioning children (Jordan et al., 2007), as well as children at risk for low 

mathematical achievement (Locuniak & Jordan, 2008). Children showing problems in 

mathematical learning show poor conceptual understanding of some or all of the 

counting principles mentioned above (Geary, 1993). For example, children with 

mathematical learning disability often fail to understand the order irrelevance 

principle. These children consider wrong counting objects not in sequence (i.e. 

jumping from an object to a non contiguous one) thus showing poor flexibility in 

mental representation of numbers (Geary, 2004).   

 

1.2.3 Number sense tasks  

 The evidence above shows how numerosity and number symbols are 

interconnected. When referring to estimation abilities as number sense abilities, 

often in the literature there is no clear distinction between estimations carried out in 

non-symbolic (discrete number of objects) and symbolic (numerals) systems. As 

previously mentioned, the construct of number sense involves a variety of elements. 

As a consequence, in addition to estimation skills in both symbolic and non-symbolic 

notations, studies assessing number sense in children make use of tasks that assess a 

wide range of numerical abilities. Based on tests validated by research into 

mathematical development, Jordan, Kaplan, Oláh, & Locuniak (2006) for example, 
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included Counting Skills, Number Knowledge, Number Transformation, Estimation and 

Number Patterns as tasks assessing number sense in kindergarten children (5/6 year-

olds). In this study, the Counting Skills principles of one-to-one correspondence, order 

irrelevance and abstractness as described by Gelman & Gallistel (1978), were tested 

with a task adapted from Geary, Hoard, & Hamson (1999). Children were shown a 

puppet facing a set of alternated yellow and blue chips. They were told that the 

puppet was learning to countand and were asked to judge whether the puppet was 

counting correctly or not. The correct counting involved counting from right-to-left, 

left-to-right, and counting all the yellow or all the blue dots first (order irrelevance 

and abstractness). Incorrect counting involved counting left-to-right, but counting the 

first dot twice, for example. Counting the same dot twice was in violation of the one-

to-one correspondence; the left-to-right counting was not a real mistake but added 

confusion to the real error. Enumeration and Count Sequence tasks were used to test 

cardinality and stable order principles. In the Enumeration task the children were 

asked to touch and count a set of five and a set of seven stars. The Count Sequence 

involved verbally counting to 10 in a sequence, not allowing the children to correct 

themselves in case of mistakes. In Number Knowledge children were shown two 

numerals and asked which was bigger or smaller; or asked which number comes one 

and two numbers after a target number. Clearly, this task assesses two different 

types of processing: the first involves estimation of numerical magnitudes (in the 

symbolic system), as it requires comparison between the magnitudes of two numbers 

in order to judge which one is bigger or smaller. The second involves counting and 

some notion of basic arithmetic, as children may derive the correct answer also by 

adding one or two to the target number. As part of Number Knowledge children were 

also asked which number was placed on top of an equilateral triangle with a number 

in each angle. This task assessed whether children understood the relationship among 

numbers rather than relying on visual perception. A task like Number Knowledge 

clearly assesses more developed abilities compared to basic estimation skills. In fact, 

Number Knowledge development relies to some extent on informal numerical 

instruction (e.g. numerical concepts developed in a home environment) (Saxe et al., 

1987). Number Transformation included 3 tasks of addition and subtraction: 

Nonverbal Calculation, Story Problems, and Number Combination. In Nonverbal 
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Calculation, the children were placed in front of an array of chips and told by the 

experimenter how many chips there were. The experimenter then covered the chips 

with a lid and added or removed some of the chips under the lid (without the 

knowledge of the children). The children were then told exactly how many chips were 

added/removed and had to state how many chips remained under the lid. Story 

Problems presented the same arithmetical operations as the Nonverbal Calculation 

task but the children were not presented with physical objects on which to perform 

the operations. They were told stories such as "Mark has three cookies, Colleen takes 

away one of his cookie. How many cookies does Mark have now?”. In Number 

Combination, the third test of Number Transformation, the problems were verbally 

presented but without a story. Children were asked "How much is 2 and 1?". Number 

Transformation is another assessment of abilities emerging from the mastery of 

quantities and numerosity. As the children have to calculate the exact solution to the 

problem, it assesses a more conventional arithmetic that relies on some training and 

exposure to previous instructions. Estimation was assessed with a test adapted from 

Baroody & Gatzke (1991). The children were presented with arrays of 3, 8, 15, 25 and 

35 dots randomly arranged on a card. Children had to tell how many dots there were 

on a particular card. Correct responses were considered answers within 25% range of 

the actual number; for example in the card with 25 dots, a correct answer was 

considered ranging from 19 to 31. Only for the card with 3 dots an exact estimation 

was required. This Estimation task can be considered an hybrid between symbolic and 

non-symbolic estimation: from a non symbolic input (dots) children have to derive a 

symbolic output. Although this task does not require manipulation of number or 

numerosities, as is the case with the previous arithmetic tasks, it does require the 

knowledge of numbers. Therefore, in order to be able to perform this basic task 

children must have undergone some numerical training. Number Patterns assessed 

the ability to combine patterns using numerical rules. Children were presented with 

strings of beads of 3 colours, red (R), yellow (Y) and blue (B), in sequences such as: 

RRBYYRRBYYRRB?Y. Children had to figure out the correct colour that completed the 

sequence in place of the question mark. According to Ginsburg (1997), sense of 

number pattern is a strategic concept for the development of early mathematics 

because it facilitates the development of number combination. This skill seems also 



 

 

26 

sensitive to training. In fact, a correlation has been found between number patterns 

and social class (Starkey, Klein, & Wakely, 2004). 

 A more conservative approach to measuring number sense was taken in 

another study. Fuchs et al. (2010a) used Number Line and Exact Representation of 

Small Quantities to assess number sense in first graders (6 to 7 year-olds). In the 

Number Line task, children were presented with a line with the edges marked 

respectively 0 and 100. The task required the children to correctly place on the line a 

series of numerals, ranging from 0 to 100 (for example, on a line from 0 to 100 the 

number 50 would be correctly placed in the middle of the line). Performance on this 

task requires very little if not the total absence of arithmetical abilities. In order to 

carry out Number Line tasks, children need to be able to mentally represent numbers 

and to estimate on the basis of numerical magnitudes. The Number Line task will be 

discussed in more details in section 1.2.5.2. The task Representation of small 

quantities required children to combine together numerals and/or objects in order to 

match a target number. The target numbers to be represented were 5 and 9. Children 

were given cards containing arrays with varying numbers of objects (i.e. a group of 3 

circles, another group of 5 squares etc.) and some numerals. Children had to make all 

the possible combinations to reach 5 or 9 which were allowed by the objects and 

numbers in the cards. For example they could make the target 5 by grouping together 

an array with 2 circles and another with 3 squares, or an array with 3 circles and the 

numeral 2. It is clear that in addition to estimation skills in the symbolic and non-

symbolic systems, this task requires some arithmetic abilities as children should have 

a basic understanding of addition as combination of sets. The study assessed 

mathematical skills with a Word Problem task, where the children had to change, 

compare, and equalize relationships; as well as execute addition and subtraction. 

 Based on the tasks used to assess number sense in the two studies mentioned 

above it is possible to make the following considerations: 

 Estimation in the symbolic and non-symbolic notation are used together in the 

same tasks (e.g. task of exact representation of small quantities in Fuchs et al., 

2010a). To justify such choice, there must be the underlying assumption that 
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symbolic and non-symbolic estimation measure the same ability or at least are 

supported by the same mechanism.  

 Number sense abilities are measured by estimation skills, while tasks requiring 

arithmetical knowledge are treated as mathematical outcomes (Fuchs et al. 

(2010a). However, in other studies (e.g. Jordan et al., 2006) Number 

Combination and Story Problem measure number sense - while in Fuchs et al. 

they were used to measure mathematical outcomes.  

 Such inconsistency requires further consideration. The literature recognises 

that number sense is a multi-dimensional construct. Berch (2005) and Jordan et al. 

(2006), for example, identify low order number sense skills in comparison of 

numerical magnitudes, understanding of numerosity and counting. They also 

characterise high order number sense features in abilities resulting from conventional 

education such as arithmetic. One question arising from such a vague distinction 

between mathematics and number sense is whether some number sense tasks 

measure arithmetic/mathematics as an outcome, rather than number sense. Another 

question is whether a distinction between mathematics and number sense can be 

properly made. 

 

1.2.4 Estimation and comparison 

 Comparison and estimation of quantities in the symbolic and non-symbolic 

system - two aspects of number sense - have been used to investigate the 

development of number concepts. Tasks using estimation processes have enabled to 

understand how numbers are processed, how people conceptualise and internally 

represent numbers, and how people access to the storage of semantic number 

knowledge. Studies have been conducted in adults and children using numerals in 

various modality (e.g. Arabic notation, verbal and auditory numbers) and 

numerosities.  
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1.2.5 Estimation and comparison in the symbolic system 

 The counting process is strictly related to our mental representation of 

numbers. Comparison of Arabic numerals activates some specific automatic 

responses that reveal how numbers are mentally represented.  

 The SNARC effect (Spatial Numerical Association of Response Codes) was first 

revealed in parity judgement tasks that require participants to decide whether the 

number presented is an even number. Responses to larger numbers are given faster 

with the right hand; conversely, smaller numbers elicit faster responses with the left 

hand (Dehaene, Bossini, & Giraux, 1993). Later studies showed that the SNARC effect 

is not specific to parity judgement, but takes place in numerical comparison tasks 

(e.g. Fias, Lauwereyns, & Lammertyn, 2001). This effect is a function of the relative 

numerical magnitude of the numerals assessed and depends on the direction of 

writing: in participants writing in a right-to-left direction (participants writing in 

Arabic language) the effect is reversed (Dehaene et al., 1993). Numerical magnitude is 

an important component in number representation. Magnitude characteristics have 

an influence on the strategies that children use to solve arithmetic (Butterworth, 

Zorzi, Girelli, & Jonckheere, 2001). For this reason it has been suggested that the 

comparison process relies on direct retrieval from the semantic store of simple 

arithmetic properties (Dehaene et al., 1993). This effect points to a spatial-numerical 

magnitude association; numerical magnitudes are spatially organised in the ascending 

order that follows the direction of writing. Handedness or hemispheric dominance do 

not affect the response. This spatial representation is also amodal, as the SNARC 

effect has been detected in judgement of magnitudes in visual number words and 

dice patterns, as well as in auditory modality (Nuerk, Wood, Willmes, 2005). The 

SNARC effect is a strong indicator that numerical mental representation is culturally 

determined (by the direction of writing); however many factors may influence the 

way we process numbers. Japanese language is written right-to-left in vertical 

columns top-to-bottom. Interestingly, in one study, Japanese writers associated small 

numbers with the bottom response keys and large numbers with the top response 

keys - which is in conflict with the writing direction top-to-bottom (Ito & Hatta, 2004). 

This phenomenon has been explained by the way we physically perceive "more" as 
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something taller and therefore at the top of a scale, while "less/smaller" is placed at 

the bottom. Once again, this suggests that the mental organisation of numbers is 

culturally or environmentally affected. 

 Although the evidence above supports a spatial coding of numbers, research 

also suggests a complex relationship between numbers and space. For example 

negative numbers did not show a reliable spatial association in parity judgement tasks 

(Nuerk, Iversen, & Willmes, 2004). In fact, negative numbers larger in magnitude 

were associated with right responses but when the judgement was to be made 

between a negative and a positive number (-9 and 9 for example) with 0 in the middle 

as reference, the negative numbers were associated with left space suggesting a 

degree of automaticity in magnitudes representation and their spatial association 

(Fischer & Rottmann, 2004). Neuropsychological investigations have suggested that 

number spatial representation takes into account internal representation of 

numerical information. Brain damaged patients displaying hemi-neglect (with inability 

to attend the left side of the visual field) had selective difficulties attending the left 

side of space when presented with a fixed reference. The difficulty in attending the 

left side was observed for different references (when the number showed was either 

5 or 7). This evidence suggests that the association small-numbers with the left space 

and large numbers with right space seems to be dynamically driven by referent 

frames rather than carried out on the basis of a permanent representation of 

numbers. Studies that have used different variants of the SNARC effect suggest that 

single and double digit numbers may have separate mental representations (Fias, 

Lammertyn, Reynvoet, Dupont, & Orban, 2003; Nuerk, Weger, & Willmes, 2001). 

Under these circumstances a single number line would provide a restrictive model for 

what in reality could be a flexible mental representation of numbers. 

 Another phenomenon observed during tasks of magnitude comparison (in 

deciding between two numbers which one is the largest) is the increase in error rate 

and reaction time as a linear function of the numerical distance between two 

numbers: performance for discriminating two numerosities declines as the distance 

betweenthe two decreases (Moyer & Landauer, 1967). In practice, it is easier to 

decide that 8 is bigger than 4 compared to 5 vs 4. This finding, known as the 
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numerical distance effect suggests that when two numerals are presented, they are 

not seen as abstract discrete entities but they are automatically converted, from 

symbols to an analog format (mentally represented in a continuum, as in a 

continuous line). Therefore the magnitude comparison is based on the same process 

underlying comparison of continuous physical properties. Another phenomenon 

occurring when comparing numerals is that the error rates and reaction times on 

responses increase if the distance between the numbers is maintained constant but 

the absolute value of the numeral increases (e.g. it is easier to compare 10 vs 20 than 

100 vs 110) (Whalen, Gallistel, & Gelman, 1999). This finding, the number size effect, 

suggests that we represent larger numbers (in magnitude) as more close to one 

another compared to smaller numbers. This means that mental representation of 

larger numerical magnitudes is much noisier compared to the smaller numerical 

magnitudes. As larger numbers are represented overlapping with neighbouring 

numbers, it is more difficult to tell them apart. 

 Similarly to the distance effect, numerical Stroop tasks give an indication that 

number processing takes into account some perceptual properties of the stimulus 

together with its numerical information. When comparing two written numerals, 8 vs 

4 for example, the physical size of the number interferes with its magnitude. In a 

congruent trial, the physical size corresponds with the magnitude of the digits to be 

compared (e.g. 8 vs 4); an incongruent trial will have a mismatch between the size 

and magnitude (e.g. 8 vs 4). Incongruent trials are processed slower than congruent 

trials by both adults and children (e.g. Besner & Coltheart, 1979; Tzelgov, Meyer, & 

Henik, 1992; Rubinsten, Henik, Berger, & Shahar-Shalev, 2002). This size-congruity 

effect is a well established phenomenon and shows that physical size, although being 

task irrelevant, is automatically processed in numerical comparison. 

 

1.2.5.1 Magnitude representation on a number line  

 Studies on magnitude comparison suggest that mental representation of 

numbers is a construct derived by practice with number symbols. Numbers in their 

symbolic system, although referring to discrete items and real/physical quantities, 
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have the characteristics of abstractness. However, number processing is bound to 

physical properties due to perceptual transformations automatically made at the 

sight of numbers. Research also suggests that there is a one-to-one correspondence 

between numbers and specific locations in space that takes the trajectory of a mental 

number line (e.g. Dehaene, Piazza, Pinel, Cohen, 2003; Zorzi, Priftis, Umiltá, 2002). 

 Two major models provide an account of how people of all ages, from 

childhood to adulthood, represent numerical magnitudes along a number line. 

According to the logarithmic ruler representation (e.g. Dehaene, 1997, Dehaene & 

Mehler, 1992), the mental distance between numbers of small magnitudes (at the 

beginning of the line) is overestimated, in comparison to the distance between 

numbers with larger magnitudes. According to this model we think of the distance 

between 1 and 100 as greater than the distance between 700 and 800, that is to say 

that numbers at the end of our mental number line are represented in a 

"compressed" fashion. The alternative accumulator model, proposed by Gibbon and 

Church (1981) (but also Gallistel & Gelman, 1992; 2000; Whalen et al., 1999), suggests 

that the distance between numbers is constant, although this distance has scalar 

variability with the increase of the magnitude. In effect, it is difficult to assess which 

of the two models provides the more realistic account to mental numerical 

representation. The two models propose the same behavioural outcome: comparison 

between numbers in the high range is slower and less accurate than that between 

smaller numerical magnitudes. This is because magnitude representation of larger 

numbers, in both models, is noisier due to the closeness and overlapping with 

neighbouring magnitudes.  

 Another theory suggests that numbers are actually represented with more 

than one scale/model and that the scale used depends on the task demands (e.g. 

Siegler & Opfer, 2003; Lourenco & Longo, 2009). Siegler & Opfer reason that many 

studies show how children have poorer estimation skills compared to adults (e.g. 

Sowder & Wheeler, 1989; LeFevre, Greenham, & Naheed, 1993). Children poorer 

estimation skill shave been attributed to different causes, among which the 

inappropriate manipulation of number symbols or lack of number sense (Case & 

Sowder, 1990; Joram, Subrahmanyam, & Gelman, 1989). If numbers across all ages 

http://rer.sagepub.com/search?author1=Elana+Joram&sortspec=date&submit=Submit
http://rer.sagepub.com/search?author1=Kaveri+Subrahmanyam&sortspec=date&submit=Submit
http://rer.sagepub.com/search?author1=Rochel+Gelman&sortspec=date&submit=Submit
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are represented according to one of the two mentioned models, the estimation 

process should be carried out in the same way in adults and children. Siegler & Opfer 

(2003) found that although even young children possess multiple numerical 

representations, they rely on an imprecise/inefficient logarithmic representation of 

numbers. With development, exposure to numerical knowledge and increased 

numerical skills, children are able to use the most appropriate numerical 

representation in various circumstances and tend to use the more accurate linear 

representation more often. In adulthood, estimation skills peak because estimation 

relies almost exclusively on the linear representation, although a logarithmic account 

of numbers remains present.  

 

1.2.5.2 Estimation on a number line  

 To assess whether numerical mental representation follows a linear or 

logarithmic pattern, the most used test is the Number Line task. In a number-to-

position task of estimation participants are presented with a line with the left edge 

usually marked with 0 and the right edge marked 100 or 1,000. Participants are told 

that the line goes from zero to one hundred (or one thousand) and are asked to place 

some numerals between zero and one hundred (one thousand), as accurately as 

possible. The level of accuracy in estimation is indexed by the discrepancy between 

the number to estimate and the number actually estimated. The score is calculated as 

the error or the absolute value of the difference between the estimated and the 

actual numbers divided by the scale of estimation. In a practical example if, on a line 

going from 0 to 100, a child positions number 20 in the place where 30 should be, the 

error is (20-30)/100 = .10. Figure 1.1 shows that a linear representation of numbers 

provides the most accurate estimation as each number on the line corresponds to the 

same value for the estimation and the number to be estimated (y = x). The curved line 

represents a logarithmic representation. From the graph it is clear that on this line 

the distance between numbers from 0 and ~150 is overestimated compared to the 

distance between numbers from 750 and 1,000 for example. 
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 Figure 1.2 shows the progression from a logarithmic to a linear representation 

as a consequence of development (Siegler & Booth, 2004). The children in this study 

were presented with a line from 0 to 100. The choice of the scale was determined by 

the numerical knowledge of the participants; the majority of children between 

kindergarten and second grade have experience with numbers within the range 0-

100, while estimation on a range 0-1,000 may prove not to be age appropriate. 

Performance-estimation in children as young as 5 years of age fitted the logarithmic 

function, indicating poorer estimation skills compared to older children (7-8 years); 

Second Graders produced estimates consistent with the linear representation of 

numerical magnitudes. 

Figure 1.1:  Linear vs 
Logarithmic representation. 
 
The line at 45⁰, represents a 
linear numerical 
representation. The curved 
line represents a logarithmic 
numerical representation. 
The greatest errors in 
estimations are observed for 
numeral 150. (from Opfer & 
Siegler, 2006).  
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 Siegler & Booth (2004) attributed the switch from logarithmic to linear 

numerical representation to age related improvement in the ability to estimate.   

 

 Improvements may have occurred as a result of more mature motor control 

that gave children the flexibility to position the mark on the line in the wanted 

position; other improvements may have occurred in thinking processes. Lastly, with 

age, children accumulate experience in dealing with numerical material and may 

simply improve performance because they have more knowledge about numbers. 

 We use estimation in everyday life when making judgements about real 

quantities. For example we can approximate how much the food in our shopping 

trolley will cost, or, we can lift an object to judge its approximate weight. These kinds 

of estimations require knowledge of the measurement scale. In the aforementioned 

examples, in order to make the estimations we need to have some previous 

knowledge about money and weight. In addition, intuitively, practice with the scale of 

measurement may lead to more accurate estimations; for example, having 

experience with weighting items, people may develop sensitivity to variations in 

weight, leading to more accurate estimates. Some estimation processes convert 

measurement scales. If for example we need to estimate how long it will take to go 

from one place to another, we make a translation from length to time. Some other 

Figure 1.2: Progression from a Logarithmic to a Linear pattern of response in 
children. 
The first panel shows performance on the number line estimation in Kindergarten 
children (5.8 years). The middle panel shows performance for children in the First 
Grade (6.9 years), the last panel shows performance for Second Graders (7.8 
years). The panels display the fit function for each performance. The best fit for 
Kindergarten children was the logarithmic function. In the First Graders the fit of 
the linear and logarithmic functions did not differ, thus indicating the equal use 
of both representations. The liner function was the best fit for Second Graders 
(from Siegler & Booth, 2004). 
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estimations may involve transforming a non numerical entity to a numeral (in weight 

judgement for example). All these estimations require previous knowledge of the 

measurement scale or familiarity with the entity assessed. Estimation on a number 

line, on the other hand, relies on the mental numerical representation of numbers 

and the knowledge of number symbols, and does not require previous knowledge or 

training/familiarity of measurement scales.  

 Despite this, estimation on a number line, to a certain extent, is driven by 

training. Siegler & Booth (2004) found that older children had less variability in 

number line scores compared to younger children. In addition, children who were 

given feedback on response during the number line task were more accurate 

compared to the children who did the task without any correction of the errors. This 

suggests that experience/training helps to understand numbers and their 

representation. This hypothesis is supported by the finding that numerical activities 

such as playing numerical board games improved children's estimation abilities on the 

number line (Siegler & Ramani, 2008; 2009).  

 

1.2.5.3 Number line estimation and mathematics  

 Estimation skills are linked to children’s numerical knowledge. In turn, 

numerical knowledge exhibited as early as in kindergarten has been shown to be 

predictive of mathematical achievement in later years up to high school (e.g. Duncan 

et al., 2007; Stevenson & Newman, 1986). Several studies have found a correlation 

between mathematical achievement and performance on the number line task (e.g. 

Siegler & Booth, 2004; Booth & Siegler, 2006; 2008; Fuchs et al., 2010a; Geary, 2011). 

As discussed earlier, numerical magnitude representation is linked to various cultural 

factors. The correlation between number line estimation and mathematics however, 

was found across cultures (Siegler & Mu, 2008), despite average cross-cultural 

differences in number line estimation. Chinese kindergarten children were 

significantly more accurate in a number line task compared to their American peers. 

This advantage was attributed to the greater exposure to numbers and to more 

practice using them, prior to starting schooling in China as compared to the US.  
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 Although much evidence suggests a link between estimation abilities and 

mathematics, the nature and the direction of this relationship is yet to be established. 

Intuitively, formal mathematical education should provide some of the training 

responsible for accurate estimations. Research however, shows that improvement in 

numerical estimation does not profit from a gradual and systematic learning typical of 

school training. The shift from a logarithmic to a linear pattern of estimation often 

happens rapidly and suddenly, as a result of feedback on direct performance for 

example (Opfer & Siegler, 2007). It is possible that estimation drives performance in 

mathematics and not the other way around. In one intervention study, 7 year-old 

children received training on a number line task. As compared to the control group, 

the trained children, in addition to showing improved estimation skills, showed 

increased learning of novel mathematical problems that lasted several weeks after 

the intervention (Booth & Siegler, 2008).  

 

1.2.5.4 Number line estimation and other cognitive abilities 

 The correlation between performance on number line tasks and mathematical 

performance may lead to the assumption that the development of estimation skills is 

supported by number specific systems. Although this thesis will address estimation 

abilities as an aspect of number sense in the general population, research on 

disabilities has linked estimation of numerical magnitudes to other cognitive abilities. 

Individuals with Williams syndrome perform poorly on tasks of magnitude 

comparison, showing that a general cognitive impairment is linked to impairment in 

magnitude representation (Patterson et al., 2006). Brain damage to the right parietal 

areas resulting in unilateral neglect (inability to attend to stimuli in the left side of the 

visual area), produces deficits in mental imagery and disrupts the ability to think of 

numbers in spatial terms, along a mental number line (Zorzi et al., 2002). This finding 

suggests an involvement of visual skills in the mental representation of numerical 

magnitudes. At the age of 7 and 8 years, individual differences in IQ have been found 

to be related to the overall accuracy in number line estimation and in the use of the 

logarithmic or linear pattern of responses, suggesting that logical thinking associated 

with intelligence assists the learning of the numerical knowledge and structure of the 
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number line (Geary, Hoard, Nugent, Byrd-Craven, 2008). The same study found an 

association of the central executive component of working memory and number line 

in children with mathematical learning disability, thus involving central executive 

functions in the development of number-magnitude representation. However, some 

relationships between number-magnitude representation and other abilities may not 

be stable. An association between visuo-spatial working memory and number line 

was found only when the children were in the first grade, at around 7 years of age 

(Geary et al., 2008). When re-tested in the second grade, visuo-spatial working 

memory was no longer predictive of number line performance. The authors reasoned 

that once the children have mastered the structure of the number line, its mental 

representation relies on central executive attentional control rather than visual 

imagery.  

 To summarise, the way numbers are mentally represented is central to the 

development of early arithmetic. The most established tool to assess this mental 

representation is with a number line task. There is evidence of great individual 

variation in estimation skills, although to date the sources of these individual 

differences are unclear. Because of the relationship between mathematics and 

accuracy in number line estimation, understanding the aetiology of individual 

differences in this task may help to understand the origins of individual differences in 

mathematical achievement. Individual differences in number line estimation skills and 

their relationship with mathematics are investigated in this thesis using a genetically 

sensitive design. 

 

1.2.6 Non-symbolic comparison and estimation 

 Estimation on a number line has been regarded as a "pure" process as it does 

not involve past exposure to the scale-measurement used or the entity assessed 

(Siegler & Booth, 2004). This process however requires at least the acquired 

knowledge of numerical symbols.  
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 Exact representation of numerosities can be performed if the numerosities are 

translated into numerals. Numerosities however, can be estimated in terms of 

more/less or approximated in terms of greater/smaller than. This very basic type of 

processing is unlikely to rely on formal education. In fact the ability to discriminate 

more from less, as well as being present in adult humans, has been detected in 

human infants and in various animal species (e.g. Pica, Lemer, Izard, Dehaene, 2004;  

Lipton & Spelke, 2003; Xu & Spelke, 2000; Agrillo, Dadda, Serena,  & Bisazza, 2009; 

Reznikova & Ryab, 2011). 

 

1.2.6.1 Non-symbolic estimation in human-infants 

 Human infants exhibit a basic numerical knowledge in the ability to 

differentiate more from less. As early as 6-months, babies are able to discriminate 8 

from 16 and 16 from 32 in arrays of dots or sequences of sounds. They are able to 

discriminate differences with a ratio of 1:2, independently from the absolute value of 

the items in the array. At 9 month they succeed in distinguishing between arrays with 

a smaller discrepancy between them, with a 2:3 ratios (Xu, Spelke & Goddard, 2005; 

Lipton & Spelke, 2003; Xu & Spelke, 2000; Libertus & Brannon, 2010). Studies on 

infants and young children show that, at the early stage of life this ability is very 

coarse, but improves with development. Between the age of 3 and 6 years children 

discriminate between 3:4 and 5:6 ratios (Halberda & Feigenson, 2008). From 14 years 

it is possible to discriminate ratios as fine as 9:10 (Halberda, Mazzocco, Feigenson, 

2008; Pica, Lemer, Izard, & Dehaene, 2004). More recently, a study that used a dot 

estimation task, surveyed number sense in over 10,000 individuals between 11 and 

85 years old (Halberda, Ly, Wilmer, Naiman, & Germine, 2012). The study reported 

individual differences and developmental changes in non-symbolic estimation skills, 

identifying three main transitional age-related trends in the population: a rapid 

increase in estimation accuracy between the age of 11 and 16 years, a steady 

improvement up to the age of ~30 years and a decline from 30 to 85 years. 

 One logical question when dealing with infants' performance is whether their 

response is driven by numerical information or by other continuous variables (i.e. the 

physical properties of the object such as the cumulative surface area, contour length 
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or density). Studies have shown that when continuous variables are controlled for or 

compete for response against numerical information, infants fail to discriminate small 

numerosities (i.e. 1, 2 and 3) (Clearfield & Mix, 1999; Feigenson, Carey, & Spelke, 

2002; Xu, 2003). For example, in work by Feigenson and colleagues, 6 month-old 

infants following habituation to 1 large object or 2 small objects, looked longer at the 

display with the objects having a novel surface area but not to the display with a 

novel number of objects. These findings suggest that infants cannot represent 

numerosities and respond on the basis of perceptual properties of the objects. 

 On the other hand, when the physical characteristics are controlled, infants 

can discriminate large numerosities (8 vs 16 and 16 vs 32) (e.g. Xu, 2003; Xu, Spelke & 

Goddard, 2005). These inconsistencies in babies' performance suggest that when 

comparing small numerosities, babies attend to the surface. However, when 

comparing two large numerosites, babies find the number more salient (Brannon, 

Abbott, Lutz, 2004). It is also possible that infants attend to the variable (numerical or 

continuous) depending on the context. In one experiment, 10-12 month old babies 

had to choose from two buckets: one containing 1 large cracker and a second with 2 

smaller crackers, with a total area of half of the first cracker. The babies were allowed 

to keep the content of the bucket. Babies chose the container based on the 

surface/area of the crackers, not the number, thus maximising the quantity of food 

and not pieces (Feigenson, Carey, & Hauser, 2002). Although it is unclear why infants 

process either continuous or numerical variables in comparison of numerosities, this 

last study suggests that infants can represent numerosities even with small numbers.  

 Another recent study found that individual differences in numerosity 

detection at 6 month predicted the ability at 9 month beyond the babies' short-term 

memory (Libertus & Brannon, 2010). This suggests that individual differences in 

estimation of numerosities are present very early and that these differences are 

stable, at least in the first year of life. 
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1.2.6.2 Non-symbolic estimation in animals 

 Basic estimation skills, similar to the ones displayed in human infants, are also 

detected in animals. One early study on animal numerical competences found that, 

after training, rats were able to press a lever accordingly to a 2 or an 8 sound-

sequence. In addition, the animals used the learned behaviour - responding to 

different numerical cues - even without reward (Meck & Church, 1983). This finding 

suggests that non-human animals can represent numbers using the same internal 

mechanism employed for timing. In more recent years, studies have provided 

evidence that basic numerical abilities are present in many animal species, from 

mammals (Beran, Evans, Leighty, Harris, & Rice, 2008) to birds (Rugani, Fontanari, 

Simoni, Regolin, & Vallortigara, 2009) and insects (Reznikova & Ryab, 2011). 

 Similarly to infants' response, with animals it is difficult to discern whether 

their response is driven by numerical cues or physical properties of the objects, such 

as the surface area or the contour. One theory suggests that animals prefer to use 

continuous variables in discrimination of numerosites when these are available. 

However, they resort to the numerical information when discrimination is not 

possible on the basis of other properties (Davis & Perusse, 1988; see also Davis & 

Memmott, 1982). There is evidence that animals spontaneously use continuous 

variables in numerosity discrimination (shown with cats; Pisa & Agrillo, 2009), and 

that they use the numerical information when they have failed the discrimination 

task based on other properties of the objects (e.g. shown with rats; Breukelaar & 

Dalrymple-Alford, 1998). This hypothesis has been challenged as there is evidence 

that animals automatically process numerical information irrespectively of physical 

properties under certain circumstances (Cantlon & Brannon, 2007; Agrillo, Dadda, 

Serena, & Bisazza, 2009, Agrillo, Piffer, & Bisazza, 2011, Rugani, Regolin, & 

Vallortigara, 2011). 

 In one study mosquito fish were exposed to stimuli in one modality, either 

numerically, continuously, or both. Fish learned to discriminate numerosities quicker 

when the two variables were present, as compared to when only the continuous or 

numerical variable was available on its own. There were no differences in learning 
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when fish were presented with the numerical or continuous variable alone (Agrillo et 

al., 2011). These findings suggest that animals, even with a simple nervous system, do 

not find it "easier" to process continuous variables compared to numerical ones (the 

rate of learning was the same is the two conditions). Drawing from this evidence, it 

can be assumed that numerosity processing, by default, does not rely on processing 

of continuous variables if these are available. More importantly, these findings 

suggest that discrimination of numerosity is facilitated when there is another source 

of information in addition to the numerical one. This result is consistent with studies 

on infants showing that accuracy and/or reaction time improves with a multisensory 

stimulus (the same stimulus presented in two modalities) compared to a unisensory 

one (e.g. Neil et al., 2006).  

 Consistent with the finding above, Jordan, Suanda, & Brannon (2008) found 

that 6 month-old infants were able to make more accurate numerical discriminations 

if the same stimulus was presented simultaneously in auditory and visual modality. 

 In the real world, often numerical and continuous information are combined 

together in one stimulus. Consequently, it is more likely that processing of numerical 

information happens in multisensory modality and that numerical processing is aided 

by perceptual features of the stimuli. The studies reviewed in this section provide 

evidence for similarity in the way non-human animals and infants process 

numerosities vs continuous variables. This similarity in processing, implicitly supports 

a continuity between humans and animal species and suggests that numerosity 

estimation has been evolutionary conserved. 

 

1.2.6.3 Non-symbolic estimation: ratio dependency and Weber Fraction 

 Estimation in the non-symbolic system follows similar rules to those that apply 

in the symbolic system. The numerical distance effect (it is more difficult to 

discriminate between 8 vs 5 compared to 6 vs 2 as their comparison is a function of 

their numerical distance) and number size effect (discrimination is harder between 

larger numbers compared to smaller numbers even if the numerical distance is the 

same, e.g. 10 vs 20 and 80 vs 90) have been observed in discrimination of numerosity 
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sets. The phenomenon has been detected in animal studies (e.g. Gibbon, 1977; 

Gallistell & Gelman, 1992; Nieder & Miller, 2003), in adults (e.g. Piazza et al., 2004; 

Pica et al., 2004), and in infants (e.g. Libertus & Brannon, 2010). 

 Just as with numbers, which are more difficult to tell apart when distance 

between them decreases and numerical size increases, it is more difficult to 

discriminate between numerosities when the discrepancy between the two sets is 

smaller and with more items in the sets.  

 Discrimination of numerosities for animals, human adults and infant depends 

on the ratio between the sets compared. For example, comparing an array with 5 

items and one with 10 (5 vs 10, ratio 0.5) should be less difficult than comparing one 

with 10 vs 15 (ratio 0.6) although the numerical distance between is 5 units in both 

examples. This pattern of response is described by the Weber Law or the law of the 

"just noticeable difference" (Weber, 1834). The Weber Law quantifies the minimum 

change we are able to perceive in a given stimulus as a constant ratio of the initial 

stimulus. So, if we start with an array of 100 items, we may not be able to notice 2 

more items added to the set, but we may start noticing an increase after adding 20 

items. 20 represents the threshold from which we start detecting the change. If we 

were starting with a smaller set of 50 items for example, we would start noticing the 

difference after adding 10 items. Intuitively, we need to add less to a smaller set to 

notice a variation, that is why the noticeable difference is a function of the initial 

stimulus and is indexed with the Weber Fraction (K) as follow: K = ΔI/I, where I = 

initial stimulus, ΔI = incremental threshold. Therefore, the Weber Fraction measures 

the sensitivity of people to discern a change in the initial stimulus due an intensity 

increment/decrement. The Weber Fraction derived for the two examples above 

would be (20/100) = (10/50) = 0.2. From this ratio it is clear that smaller values from 

the Weber Fraction correspond to the ability to perceive smaller changes in the 

variation of the stimulus. This index can be applied to quantify changes in any 

stimulus in a variety of sensory modalities such as loudness, weight or brightness. 
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1.2.6.4 Non-symbolic estimation in adults and children 

 As previously discussed, the physical size of numbers interferes with 

magnitude comparison in symbolic processing tasks. What happens in non-symbolic 

processing and the extent to which adults process numerical information 

independently from continuous variables has also been investigated, mostly with 

non-symbolic Stroop paradigms.  

 Generally, Stroop tasks involve arrays of dots visually presented with 

congruent/incongruent trials combined with size of dots/size of the array. Studies 

have shown that when adults have to make judgements about the items in arrays 

that include both continuous (area or contours) and numerical variables available, 

they are unable to ignore the continuous variable (e.g. the cumulative area of the 

items) (Gebuis et al., 2009; Hurewitz, Gelman, & Schnitzer, 2006). 

 The findings are however inconsistent as other evidence suggests that 

continuous variables do not interfere with adults' non-symbolic numerosity 

judgement (e.g. Barth et al., 2006; Barth, 2008). For example, in one study adults 

performed numerosity comparison with cross-modal comparison (e.g. visual vs 

auditory) as accurately as within modality (e.g. visual vs visual) according to the 

Weber Law (Barth, Kanwisher, & Spelke, 2003). This finding suggests that adults are 

more likely to carry out judgment of non-symbolic numerosities on the basis of 

abstract representation of numbers rather than considering properties of the 

stimulus. Based on the results of the multi-modal presentation and cross-modal 

comparisons, the authors also concluded that the abstract representation of 

numerosities is achieved through multiple perceptual cues. This conclusion has a 

similarity with the multisensory facilitation discussed for animals and infants. 

 A more recent study has also shown that during numerosity comparison, 

adults automatically extract the continuous features of a stimulus. However, the 

relevant numerical information was found to be as salient as the continuous, thus 

holding the same chance to drive performance (Nys & Content, 2012).  
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  As with adults, there is some controversy as to whether children process 

continuous or numerical variables using non-symbolic processing. Preschool children 

seem unable to ignore continuous task-irrelevant physical features of the stimuli in 

numerosity discrimination (e.g. Soltész, Szűcs, Szűcs, 2010; Gebius et al., 2009; 

Rousselle & Noël, 2008). Contrary to this, another study has shown that 5 year old 

children completed numerosity comparison tasks based on numerical variables 

ignoring the dot area, dot density and the dot colour (Barth et al., 2006).  

 To sum up, although not entirely consistent, overall evidence suggests that 

non-perceptual properties of the stimuli cannot be ignored during symbolic numerical 

processing. Adults seem to show more control over the variable features compared 

to children. 

 

1.2.6.5 Non-symbolic estimation and mathematical abilities  

 Similarly to magnitude processing in the symbolic system, individual variations 

in non-symbolic numerical processing show a relationship with mathematics. 

Therefore, understanding the mechanisms of non-symbolic numerical processing 

could help to understand the mechanisms of mathematical learning. In light of the 

evidence examined above, it may be argued that the relationship between 

mathematics and non-symbolic processing may be driven by other perceptual 

mechanisms rather than purely numerical processing. It is important to address the 

issue of whether the number sense is part of some "number domain specific" 

construct (Fuchs et al., 2010b) or whether it is an expression of the general cognitive 

construct.  

 Regardless of the mechanism supporting this association, individual 

differences in non-symbolic estimation skills can be used as a predictor of 

mathematical skills. Mazzocco, Feigenson, & Haberda (2011) measured non-symbolic 

estimation skills in preschool children (age 3-6 years). The trials controlled for the size 

and display area of the stimuli, ensuring a response based only on the numerical 

information. When, two years later the same children were assessed on 7 general 

cognitive abilities and mathematical skills, individual differences on the non-symbolic 
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estimation task measured earlier were found predictive only of numerical skills. 

Similarly, individual differences in non-symbolic estimation measured at 14 years 

correlated with mathematical achievement measured in the same children 

retrospectively all the way back to kindergarten (Halberda et al., 2008). In the same 

study, when controlling for 16 measures of behavioural, cognitive abilities and 

intelligence measured at the age of 9 years, the only correlation found was with 

mathematical achievement. These findings suggest a unique relationship between 

non-symbolic estimation and mathematics. More importantly, it means that a simple 

task of dot discrimination, sharing no variance with other cognitive abilities, can be 

used as predictor of mathematical achievement. In this respect, non-symbolic 

estimation can be considered an early precursor of mathematical learning, as 

proposed by Gersten & Chard (1999). 

 Studies have also shown that preschool children are able to perform non-

symbolic arithmetic on numerosity sets - mentally adding the items of two different 

arrays and indicating whether the sum is more or less than a third item array (Barth et 

al., 2005). This ability correlated with symbolic mathematical achievement measured 

two months later, after controlling for verbal IQ (Gilmore, McCarthy, & Spelke, 2010). 

 In assessing the relationship between mathematical abilities and non-symbolic 

estimation, the nature of the tasks used needs to be carefully examined. In another 

longitudinal study, symbolic and non-symbolic estimation measured in kindergarten 

children was predictive of mathematical skills measured in grades 1 and 2 (Desoete, 

Ceulemans, De Weerdt, Pieters, 2010). However, it has been argued that at the time 

of testing the children may have had some knowledge of numbers. This, together 

with the fact that the display of dots did not have a fixed time, could have lead to the 

non-symbolic task assessing the children’s counting skills rather than numerosity 

estimation. In another study, tasks of non-symbolic manipulation were found to be 

predictive of mathematical development (Fuchs et al., 2010b). However, the tasks 

involved some transformation from non-symbolic to symbolic quantities and some 

arithmetic knowledge. These examples show that it is difficult to assess estimation 

skills without tapping into numerical knowledge. The observed links between non-
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symbolic estimation and mathematics may be reflecting the ‘mathematical aspects’ 

of the non-symbolic estimation measures.   

 Indeed, some studies have not found any relationship between pure non-

symbolic estimation and mathematics in children (e.g. De Smedt & Gilmore, 2011; 

Soltész et al., 2010; Rousselle & Noël, 2007; Holloway & Ansari, 2009), questioning 

whether non-symbolic numerosity processing can be considered a precursor of early 

mathematics.   

 Some of the inconsistencies reported in the association between 

mathematics and non-symbolic estimation could find an explanation in the type of 

task used. For example, in Rousselle & Noël (2007) the non-symbolic task used only 

two ratios. If the relationship mathematics-estimation is of small magnitudes, 

perhaps individual differences in non-symbolic estimation can only be captured by a 

task using a greater variety of ratios. A similar suggestion was made in De Smedt & 

Gilmore (2011). The authors explained the absence of significant differences in non-

symbolic estimation between the control and low-maths groups with the smaller 

numerosities used in their task compared to studies where differences were found 

(e.g. Landerl, Fussenegger, Moll, & Willburger, 2009). Another possibility is that the 

relationship between non-symbolic estimation and mathematics is uneven across 

development, although more research is needed to understand the developmental 

course of this relationship. Most studies on non-symbolic estimation to date have 

been conducted with children. However, some research suggests that the relationship 

between mathematics and non-symbolic estimation is stable across development 

(Nys & Content, 2012; Pica et al., 2004; Halberda et al., 2012). 

 

1.2.7 Mathematics and cognitive abilities 

 Mathematical development clearly does not rely solely on estimation skills. 

Studies investigating mathematical learning have shown that many cognitive factors 

contribute to individual differences in mathematics. As previously discussed, several 

previous studies have failed to find a relationship between estimation of non-
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symbolic numerosites and other cognitive abilities, therefore suggesting a unique 

relationship between mathematics and estimation of numerosities (e.g. Halberda et 

al., 2008; 2012; Mazzocco et al., 2011). Other studies suggest a link between number 

sense and other abilities (e.g. Geary et al., 2008). A mediation role for cognitive 

abilities in the relationship between mathematics and number sense cannot be 

excluded. The next section will give a brief and selective overview of the main 

research into the relationship between mathematics and other abilities. 

 A significant role for memory in mathematical development has been 

suggested by research. Children showing poor mathematical skills perform poorly on 

working memory-span tasks - involving counting but not language (Siegler & Ryan, 

1989). This inability to maintain and manipulate on-line numerical material suggests 

the contribution of central executive function to mathematical skills. In line with this 

hypothesis, mathematical difficulties are consistent with poor performance in tasks 

with high executive demand (Case, Kurland, & Golberg, 1982) especially if the task 

requires switching from numerical/linguistic retrieval (McLean & Hitch, 1999), thus 

suggesting poor retrieval of numerical information. Poor retrieval from long-term 

memory is manifested in children who rely on the aid of counting strategies (e.g. 

verbal or finger counting instead of remembering the correct answer) to solve 

arithmetic problems (Siegler, 1987; Geary, Bow-Thomas, & Yao, 1992).   

 The role of memory in mathematical learning has also been found to involve 

the phonological loop (e.g. Furst & Hitch, 2000; Logie, Gilhooly, & Wynn, 1994; Lee & 

Kang, 2002) and the visuo-spatial sketchpad (e.g. Heathcote, 1994; Lee & Kang, 2002). 

In particular, poor mathematical abilities were associated with poor performance in 

visuo-spatial working memory in the Corsi Block task (McLean & Hitch, 1999; Bull, 

Johnston, & Roy, 1999). 

 A low average IQ together with mathematical achievement test scores below 

the 20th-25th percentile identifies the population with mathematical learning disability 

(e.g. Geary, Hamson, & Hoard, 2000). However, this selection criterion has been 

criticised as many children with low average IQ do not display mathematical 

difficulties and vice versa (see Geary, 2004).  
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Speed of processing may be particularly important in mathematical learning. Studies 

have shown that reaction time on response is correlated with psychometric tests on 

intelligence (Kranzler & Jensen, 1989; Deary, Der, & Ford, 2001). Many studies have 

also found that children with mathematical difficulties show slow speed of number 

identification, visual number matching, and encoding of digits (e.g. Geary, 1993), 

supporting a relationship between IQ and mathematics. Alternatively, other studies 

have proposed an indirect association between IQ and mathematics mediated by 

memory. Children with poor speed of processing may have slower access to 

numerical material encoded in memory. Because of the slowness/difficulties in 

accessing the relevant numerical material and strategies from long term memory 

children may not develop sufficient automatic basic arithmetic facts (multiplication 

tables, for example) that are vital for the normal development of mathematical skills 

(Bull & Johnston, 1997). 

 Reading and language abilities have also been shown to be associated with 

mathematical development. Many studies have shown comorbidity between poor 

mathematics and poor reading skills (e.g., Geary, Brown, & Samaranayake, 1991; 

Hitch & McAuley, 1991; Siegel & Ryan, 1989; Lewis, Hitch, & Walker, 1994; Dirks et 

al., 2008; Vukovic & Siegler, 2010). Language abilities have been found to be 

predictive of mathematical skills (e.g. Fuchs et al., 2010). 

 

1.2.8 Sex differences in mathematics 

 Sex differences in mathematical achievement, with males performing better 

overall, is a well known phenomenon in educational and cognitive research (e.g. 

Leahey & Guo, 2001, Penner & Paret, 2008). The research, however, shows a pattern 

of mixed results. Some studies suggest that these differences start to emerge as early 

as kindergarten and first grade (Penner & Paret, 2008; Rathbun, West, & Germino-

Hausken, 2004). These differences may be mediated by the early male advantage in 

spatial abilities (as measured by the mental rotation task; Levine et al., 1999) and by 

the relationship between spatial abilities and mathematics (Halpern, 2000). On the 
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other hand, it has been shown that girls outperform boys on standardised tests of 

early mathematical skills (Lachance & Mazzocco, 2006), problem solving and basic 

computation in elementary school (Hyde, Fennema, & Lamon, 1990). Despite some 

studies reporting early sex differences in mathematics, most research suggests  that 

sex differences start to emerge late in the school years (e.g. Hyde et al., 1990), as 

between the age of 11 and 13 (middle school) no consistent differences between 

boys and girls in mathematical achievement have been reported (e.g. Muller, 1998; 

Leahery & Guo, 2001).  

 The reported sex differences have been attributed to biological factors, such 

as the different rate of maturation with the girls' faster rate of development (Tanner, 

1978; Gullo & Burton, 1992). Social factors such as socialization, stereotypes and 

gender roles have been suggested to encourage girls to conform to gender behaviour 

(Sadker & Sadker, 1994; Steffens, Jelenec, & Noack, 2010). To date, the nature of sex 

differences in mathematical achievement remains poorly understood as research 

provides evidence that mathematical reasoning stems from biologically based 

cognitive mechanisms equally shared by males and females. A review on sex 

differences in mathematics and science aptitudes, presented evidence for early 

numerical abilities equal in males and females  and the absence of infants' sex 

differences in numerosity processing (Spelke, 2005). In the same review it was noted 

that when sex differences emerge later in life, it is difficult to disentangle biological 

and social factors that may contribute to these differences. With evidence supporting 

mediation of other abilities in mathematical sex difference, one question to be 

addressed is whether number sense abilities are involved in the aetiology of gender 

gap in mathematics. This is of particular relevance given the developmental nature of 

number sense abilities and the developmental trend of the reported mathematical 

sex differences. This thesis will specifically examine the aetiology of sex differences in 

numerosity estimation skills and any potential association with mathematics. As 

research provides compelling evidence for the absence of sex differences in cognitive 

abilities at the basis of mathematical thinking, sex differences should not be found in 

estimation processing as suggested by Spelke (2005) and by Spelke and Grace (2006). 
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1.2.9 Behavioural Genetic findings on mathematics* 

 Over the last few decades, the social desirability of mathematic skills has 

increased as a range of advantages have been associated with high mathematical 

competence. A survey from the Organisation for Economic Co-operation and 

Development (OECD, 2010) reports that an increase of half a standard deviation in 

mathematical and science performance at the individual level leads to an increase of 

0.87% in the country Gross Domestic Product annual growth rate. This is reflected in 

the PISA (Programme for International Student Assessment) report for the 2009 

assessment, where the countries whose students show higher levels of mathematical 

performance are also the countries with the fastest rate of economic growth (OECD, 

2010). Similarly, a wide range of disadvantages have been related to low numeracy. 

Individuals with poor mathematical skills tend to have lower level jobs and are more 

prone to depressive symptoms, which in turn are a cost in terms of individual 

suffering, health service use and loss of working days (Gross, Hudson, & Price, 2009).  

 These premises make the quest for understanding how people acquire and 

can improve mathematical skills, more important than ever. This importance is 

reflected in endeavours in mathematical research with an increased number of 

quantitative genetic studies into the aetiology of individual differences in 

mathematically relevant traits. 

 

1.2.9.1 Quantitative Genetic Research 

  Recent behavioural genetic research leaves no doubt that individual 

differences in behaviour and cognition are a product of both genetic and 

environmental factors (e.g. Plomin et al., 2008). This research also suggests that the 

path leading from genes to behaviour is intertwined with the environment. While 

molecular genetic research aims to detect and identify specific genes involved in the 

variation in different aspects of behaviour and cognition, quantitative genetic 

                                                 
*

The following sections, describing behavioural genetic findings, have been adapted from Tosto,   
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methodologies (e.g. twin, adoption) quantify the relative contribution of genes and 

environment to the variation in traits and co-variation among traits. 

 Genetic influences refer to the influence of multiple alleles – genetic markers 

that can differ in the population (rather than evolutionarily conserved invariant 

markers). Mostly, genetic influences are of the additive type, meaning that the 

variance of a trait that is attributed to genetic factors can be derived by adding the 

independent effects of all alleles at all loci that affect the trait. Some genetic 

influences may derive from interactions between genes at different loci. These 

epistatic processes, by which the effects of a gene on a specific trait depend on the 

influences of one or more other genes, remain poorly understood (e.g. Cordell, 2002).    

 From the behavioural genetic perspective, environmental influences are very 

broadly defined as effects on a trait produced by anything other than heritable DNA 

sequence variation. In twin and other family designs, any environmental influences 

contributing to differences between family-members are referred to as ‘non-shared’; 

whereas any environmental influences contributing to the similarity between family 

members are referred to as ‘shared’ (see Plomin & Daniels, 1987; Rijsdijk & Sham, 

2002; Plomin et al., 2008).  

 Non-shared environments defined as any events experienced or perceived 

differently contribute to dissimilarities among family members. These may include 

perinatal events, accidents, surgical procedures, and different peers. Intuitively, 

environments that are objectively shared among individuals within a family seem 

more likely to increase their similarities. We can think of nutrition, parenting 

practices, or socio-economic status as shared experiences that may make family 

members more similar in a specific trait, if these factors affect the trait in question. 

For example, it is reasonable to think that family eating habits could increase 

similarity in weight among family members. However, research shows that adult 

family members do not resemble each other in weight beyond genetically influenced 

similarity (e.g. Grilo & Pogue-Geile, 1991). Often, objectively shared environments 

(e.g. parenting) lead to differences rather than similarities, through differential 

perceptions and other poorly understood mechanisms (e.g. Plomin & Daniels, 1987; 

Dunn & Plomin, 1990). Parental divorce for instance, is a family event and as such 
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shared by siblings, but research shows that divorce often impacts siblings’ behaviour 

in different ways (Hetherington & Clingempeel, 1992; Amato, 2004). The estimate of 

non-shared environment in quantitative genetic methodology also includes any 

measurement and procedural errors, as non-systematic error can only contribute to 

dissimilarity in assessed traits between twins or other family members. 

 

1.2.9.2 Genetic and Environmental aetiology of individual differences in Mathematics 

 In one of the first twin studies into mathematical ability, 146 MZ and 132 DZ 

twin pairs of the Western Reserve Twin Project, aged 6 to 12 years, completed 

standardised tests of school achievement in language, reading and mathematics in 

addition to tests of cognitive abilities (Thompson et al., 1991).The study revealed a 

mathematical heritability of .20 with shared and non-shared environment 

respectively of .71 and .10. Using a sample of 555 twin pairs with learning 

impairments and 570 control twin pairs with age ranging between 8 and 20 years, 

Alarcόn, Knopick, & DeFries (2000) reported an average heritability of .90 in low 

mathematical abilities and control group with virtually non-significant environmental 

influences. The wide range of univariate estimates illustrated in these studies 

deserves some methodological consideration. Twins’ correlations for a trait may be 

overestimated because of common factors unrelated to the trait. Twins in a pair are 

of the same age and some pairs are of the same sex. In twin analyses it is common 

practice to correct for age and sex in order to avoid increase in correlations because 

of these factors (McGue & Bouchard, 1984). In Thompson et al. (1991) this correction 

was not carried out, therefore age and sex may have affected the estimates. Other 

factors also need to be considered. Quantitative genetic investigations of complex 

traits suggest somewhat different patterns of genetic and environmental influences 

on different traits. Reading abilities for example, have shown consistently moderate 

genetic and shared environmental influences across ages and populations (e.g. Light 

et al., 1998; Stromswold, 2001; Byrne et al., 2005, 2006). Conversely, the heritability 

of “g” has been shown to increase consistently from early ages to middle childhood 

(Davis et al., 2009a; Haworth et al., 2010). Although it is unclear whether the 

inconsistencies in the estimates of mathematical heritability can be explained with 
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differences in participants’ age, the findings suggest that age-homogeneous twin 

samples should be used in behavioural genetic investigations for at least two reasons. 

First, the trait itself changes across the school years - what we call "mathematics" 

may involve very different cognitive and motivational processes at different ages, 

reflected in the changes in how mathematics is measured. Second, new genes and 

environments may become active or relevant during development, for example 

reflecting changes in pubertal processes or in social experiences. Estimates of genetic 

and environmental contributions are population and time based as they explain the 

sources of individual differences within a particular population within a specific time-

window; these estimates may differ not only for different ages, but also for different 

countries or cultures. If a particular environment is uniform within a culture (e.g. 

national curriculum or educational standard), this specific aspect of the environment 

is unlikely to explain inter-individual variation. In such population, heritability of a 

trait may be higher. Much more research is needed to understand the sources of 

inconsistencies among different studies, including careful examination of cultural 

norms and provisions. Further, although Thompson et al. (1991) and Alarcόn et al. 

(2000) used samples with a respectable number of twins, power calculation analyses 

indicate that twin studies need much larger samples to provide accurate estimates 

(Plomin et al., 2008).  

 Much recent research into the aetiology of variation in mathematical ability 

comes from the Twins Early Development Study (TEDS), a large-scale longitudinal 

study comprising three cohorts of twins recruited at birth in 1994, 1995 and 1996 in 

the United Kingdom. The TEDS sample is described in detail in Chapter 2. 

 In the assessment of over two thousand twin pairs from the TEDS sample at 

age 7, Oliver et al. (2004) found heritability of mathematical achievement (rated by 

teachers) of .66, with almost negligible shared environmental influences, and .25 non-

shared environment. In the same sample the heritability and estimates of 

environment were highly similar for three different mathematical components: 

“Using and Applying Mathematics”, “Numbers”, and “Shapes, Space and Measures”. 

In the assessment of TEDS at 9 years (Kovas et al., 2007a), mathematics, rated by 

teachers, showed genetic influences of .72, almost non-existent shared 
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environmental influences, and very modest (.23) non-shared environment. The three 

mathematical components yielded estimates of genetic influences ranging between 

.63 (Shapes, Space and Measures) and .73 (Using and Applying Mathematics); almost 

non-existent shared environment; and estimates for non-shared environment with an 

average of .27. At 10 years, 2,674 twin pairs were assessed on three mathematical 

sub-tests: “Understanding Number”, “Non-Numerical Processes”, “Computation and 

Knowledge” (Kovas et al., 2007b). Similarly to previous estimates, shared 

environment had very small effects on all three measures and the non-shared 

environmental influences were between .42 and .48. Although “Non-Numerical 

processes” showed a lower heritability (.32) compared to the other two components 

(.42 and .45 respectively), the differences in heritability among the three measures 

were not significantly different. Assessment of over 5,000 TEDS twin pairs at 12 years 

confirmed strong genetic influences on mathematical achievement (.61), and small 

shared (.18) and non-shared (.21) environmental influences (Davis et al., 2009a). 

Overall, these results demonstrate stable genetic effects on different aspects of 

mathematical ability across the school years, as well as stable non-shared 

environmental influences.   

 Several other recent studies have addressed the aetiology of different aspects 

of mathematical development using different twin samples. The US-based Western 

Reserve Reading Project for Math (WRRPM) assessed 228 10 year-old twins on 4 

different mathematical components: “Calculation”, “Fluency”, “Applied Problems”, 

and “Quantitative Concepts” (Hart et al., 2010b), reporting univariate heritability 

estimates of .35 and .34 for “Calculation“ and “Fluency“, and slightly higher 

heritability for “Applied Problems“ and “Quantitative Concepts“ (.41 and .49 

respectively) . Interestingly, the shared environmental influences estimated in this 

study (.32-.46) were higher as compared to the TEDS estimates for mathematical sub-

components at the same age (.07-.23); whereas the non-shared influences (.19-.25) 

were lower than in TEDS (.42-.48). The discrepancy observed in the strength of 

environmental influences between the two samples could be attributed to different 

curricula or school environments in the two countries. It is possible that the UK 

educational system, with its standardised curricula across schools, may lead to the 

smaller proportion of variance in mathematics explained by shared environment. 
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Alternatively, different estimates may reflect differences in the aetiology of different 

facets of the mathematical domain. Cross-cultural research using identical measures 

of mathematical ability and performance in samples of the same age are needed in 

order to make meaningful comparisons and to establish the true sources of 

differences in estimates from different studies.  

 

1.2.9.3 The aetiology of the relationship between mathematics, cognitive traits, and 
motivation 

 Multivariate genetic methodologies allow investigation of the aetiology of the 

relationship between mathematics and other cognitive abilities, thus enabling 

understanding of the co-occurrence between traits. 

 One of the first studies for normal variation investigated the relationships 

between mathematics and English, and between mathematics and vocabulary in a 

sample of over 2,000 twin pairs in U.S. High Schools (Martin et al., 1984). The study 

reported genetic correlations  of .52 and .39 respectively, suggesting that when genes 

associated with mathematical abilities are identified many of the same genes will be 

associated with English and, to a lesser extent, with vocabulary. A later study 

(Thompson et al., 1991) reported a large genetic correlation between mathematics 

and reading (.98) and mathematics and language (.98), suggesting that largely the 

same genes contributed to variation in each of the examined traits. The same study 

showed that, shared environments were also substantially the same for the three 

traits (shared environmental correlation was .93 on average), thus contributing to 

their association. Non-shared environmental factors explained most of the 

differences among the traits (correlations between .28 and .54). Multivariate analyses 

in 10 year old twins of the WRRPM study (N = 228), investigated the relationship 

between different components of mathematics, reading and general cognitive ability 

(g) (Hart, Petrill, Thompson, & Plomin, 2009). It was found that there was no 

significant genetic overlap between reading fluency, general cognitive ability and the 

mathematical subcomponent of calculation. Conversely, the shared environmental 

overlap with calculation and general cognitive ability was significant (~.50), suggesting 

that the within-families environments that are important for reading fluency and 

cognitive abilities, also influence the learning of calculation. The subcomponent of 
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mathematical fluency shared genetic influences with reading fluency, but, contrarily 

to calculation, fluency seemed to have its own significant independent genetic 

effects: these explained .59 of the total genetic variance in mathematical fluency. 

Further, for this mathematical component there was no significant environmental 

overlap between reading fluency and general cognitive ability. 

 The assessment of TEDS at 7 years found a genetic correlation between 

mathematics and g of .67 and between mathematics and reading of .74 (Kovas et al., 

2005). In the same sample at 10 years, the genetic correlation between mathematics 

and g was .68, while the genetic correlation between mathematics and reading was 

.73 (Davis et al., 2008). Overall, the results of several TEDS studies suggested that, to 

a large extent, the same genes and the same shared environments contribute to 

mathematics and aspects of reading and general intelligence – explaining most of the 

observed correlations among these traits. On the contrary, non-shared environmental 

overlap was very small across the measures, indicating the contribution of non-

shared environment to differences among the measures (Kovas, et al., 2005; Davis et 

al., 2008; Haworth et al. 2008).  

 A number of behavioural studies also reveal significant correlations between 

mathematics, self-perceived ability and interest (Eccles & Wigfield, 1995; Gottfried, 

1985). In more general terms, it has been shown that there is a developmental, 

reciprocal association between achievement (not just mathematical) and self-

evaluation (Guay, Marsh, & Boivin, 2003; Marsh & Yeung, 1997). The reciprocal 

relationship between mathematics and self-evaluation has been investigated using 

longitudinal data from the TEDS sample. Applying a cross-lag design, it was found that 

mathematics, measured at the age of 9 years, predicted self-evaluation at the age of 

12 years. Conversely, self-evaluation at 9 years predicted mathematics at age 12. The 

striking result was that, although these correlations were very small (r = ~ .10), they 

were almost entirely genetically mediated, meaning that the genes influencing 

mathematics at 9 were the same as those influencing self-evaluation of mathematics 

at 12, but not at 9 (Luo et al., 2011). Intuitively we may think that motivational factors 

strictly related to environmental conditions may help to explain mathematical 

learning, but this study proposes a novel perspective on the mechanisms underlying 
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mathematical learning. These mechanisms may be more complex than previously 

thought. 

 In the TEDS sample multivariate genetic analyses have also been applied to 

investigate the aetiology of the links among different aspects of mathematics. At age 

10 years, five different aspects of mathematics (Mathematical Application, 

Understanding Number, Computation and Knowledge, Mathematical Interpretation, 

Non-Numerical Processes) were phenotypically correlated between .45 (Computation 

and Knowledge and Non-Numerical Processes ) and .68 (Mathematical Application 

and Understanding Number) (Kovas et al., 2007c). On average, the genetic correlation 

among the five sub-tests was .91, indicating that the same genetic influences affect 

these different aspects of mathematics. For example, the genetic correlation between 

Understanding Number and Mathematical Application was .94, meaning that the 

genetic influences involved in these two mathematical components were almost the 

same. However, their bivariate heritability was .49 indicating that only 49% in the .68 

of their phenotypic correlation is genetically mediated. Similarly to bivariate 

heritability, the bivariate shared environment explained 29% of the phenotypic 

correlation, while 22% was explained by non-shared environment. Overall, these 

results showed that the observed covariation among different aspects of 

mathematics is largely explained by genetic factors. 

 To sum up, the patterns of genetic overlap between abilities suggest that 

genetic influences on individual differences in mathematics are largely the same as 

those on a wide range of other cognitive and learning abilities, achievement, and 

motivation, supporting the Generalist Genes Hypothesis (Plomin & Kovas, 2005). 

According to this hypothesis, genes that are involved in one learning or cognitive 

domain (e.g. mathematics), are also likely to be associated with other abilities, such 

as language and g. Conversely, most of the environmental effects on mathematics are 

not shared with other domains, suggesting that discrepancy in abilities largely stem 

from the influence of different environments (e.g. Davis et al., 2008). 
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1.2.9.4 High and Low mathematical abilities 

 A number of behavioural genetic studies have investigated the aetiology of 

the relationship between high/low mathematical abilities and other traits. This short 

section provides only a brief outline of this research to complete the picture of the 

genetic research in mathematical domain. 

 Studies conducted on different twin samples have shown that low 

mathematical abilities are as heritable as normal abilities (Alarcón et al., 1997; Oliver 

et al., 2004). In addition these studies suggest the same aetiology for low and normal 

abilities (Haworth et al., 2007; Kovas et al., 2007b). Similarly, the aetiology of high 

mathematical abilities seems to be strongly related to the aetiology of normal 

performance (Petrill et al., 2009; Haworth et al., 2009b). These studies also found that 

some genetic influences may be specific for high abilities only. 

 The observed similarities in the estimates of genetic and environmental 

contribution to high, normal and low abilities suggests that mathematical 

achievement across the whole range of ability is largely influenced by the same 

genetic factors, again providing support the Generalist Genes Hypothesis (Plomin & 

Kovas, 2005; Kovas et al., 2007d; Haworth et al., 2009a; Petrill et al., 2009). This also 

leads to the conceptualization of mathematical ability as a continuum, with one’s 

position on this continuum not driven by ‘good’ or ‘bad’ genes, but by small additive 

effects of ability-increasing and ability-decreasing multiple DNA variants.  

1.2.10  The aetiology of sex differences in mathematical abilities 

 As discussed in section 1.2.8, behavioural studies have reported mean sex 

differences in mathematical abilities. However, the sources of average group 

differences may differ from those driving group members' individual differences. 

Quantitive-genetic sex-limitation models examine the extent to which the same 

genetic and environmental factors contribute to variation within the sex-groups 

(testing for qualitative differences); and whether these factors have the same effect 

on variation in each group (testing for quantitative differences). The sex-limitation 
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models will be described in more detail in Chapter 6 (section 6.3.3.2). Applying sex-

limitation models to the data from TEDS 10 year-old twins revealed no qualitative or 

quantitative sex differences in the aetiology of mathematical abilities or disabilities 

(Kovas et al., 2007b). Furthermore, no sex differences were found in three 

components of mathematics (Understanding Number, Non-Numerical Processes, 

Computation and Knowledge), both in the low ability group and in the unselected 

sample (Kovas et al., 2007b). No sex differences were found in the aetiology of high 

mathematical abilities (Petrill et al., 2009). Similarly, no aetiological sex differences 

were found for parent-rated normal mathematical variation or low mathematical 

performance in a sample of 17-18 year-old Dutch twins (Markowitz et al., 2005). 

These findings suggest that genetic factors that make males better or worse at 

mathematics are the same genetic factors that make females better or worse at 

mathematics; and they exert the same amount of influence on males and females. 

The same studies show the equality of environmental effects on male and female 

variation.   

 

1.2.11  Rationale and research questions 

 Quantitative genetics studies revealed a substantial genetic overlap between 

mathematics and other abilities. However, some genetic effects seem to be specific 

to mathematics (Kovas et al., 2005; Hart et al., 2009), thus indicating that some genes 

may be involved in processes of mathematically-relevant cognition, such as, for 

example, number sense. Further, given the reported average sex differences in 

mathematical achievement, another area of investigation is the potential 

involvement of number sense in the mathematical gender gap. To date, two aspects 

of number sense, symbolic and non-symbolic estimation have been investigated in 

association with mathematics. However the relationship between them remains to 

date unexplored. Further, many of the studies examining the relationship between 

mathematics and number sense are cross-sectional and the longitudinal studies cover 

short periods of development of mathematical skills. Finally, no studies have explored 

the aetiology of these relationship using genetically sensitive designs. 
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 This thesis sets out to investigate:  

1. The structure of the number sense domain by using two measures: a symbolic 

and a non-symbolic task of estimation.  

2. The relationship of the number sense, measured at 16 years of age, and 

mathematical achievement spanning 10 school years (with and without 

controlling for general cognitive abilities measured at the time of previous 

mathematical assessments). 

3. The aetiology of individual differences in number sense at 16 years.  

4. The aetiology of sex differences in number sense at 16 years. 

5. The aetiology of the relationship between number sense, mathematical        

abilities and general intelligence at 16 years. 

 Points 1 and 2 are investigated using analysis of variance (ANOVA) analyses. 

This is the first time that a Number Line task and a Dot Task of numerosity estimation 

are used together to assess number sense in a sample as old as 16 years of age. Both 

tasks are supposed to tap into the number sense domain; therefore a degree of 

association between the two measures is expected. As reviewed in section 1.2.5, a 

number line task may present some limitations in the assessment of symbolic 

estimation, as it may tap just into some aspects of number representation. However, 

the literature has shown a robust and consistent relationship between mathematics 

and number line estimation, therefore the choice of the Number Line task to assess 

symbolic estimation was driven on the basis of this relationship. According to 

previous literature, a relationship between mathematics, assessed at 16, and the two 

number sense measures is also expected. An association between performance in the 

Dot Task at 16 and all the earlier mathematical school achievement (up to the age of 

7) – available in TEDS – is also hypothesised. There are no previous studies reporting 

on retrospective relationship between Number Line performance and mathematics. 

For this reason no specific predictions are made on the relationship between Number 

Line task at 16 and previous mathematical achievement. 
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 Points 3, 4 and 5 are investigated using behavioural genetic methodologies 

(twin method). This is the first time that behavioural genetic methodologies are used 

to investigate number sense abilities and their relationship with mathematics and 

general cognitive ability. It is hypothesised that estimation of numerosity (Dot Task) 

has evolutionary origin, so it is possible that this ability may be highly heritable. 

Conversely, there is evidence that individual differences in evolutionary preserved 

traits are influenced very little by genetic factors. Estimation of numerosity skills have 

shown to have a unique association with mathematics (e.g. Halberda et al., 2008). It is 

possible that this ability is reflected in the specific genetic influences detected in 

various behavioural genetic studies of mathematics. On the other hand, Number Line 

estimation has shown association with other cognitive abilities (visuo-spatial working 

memory, general intelligence, central executive). It is possible that the multivariate 

genetic analyses will show a substantial genetic overlap of Number Line estimation 

with general cognitive ability.  

 The research questions were addressed following the steps listed below: 

 Compilation and validation of an on-line battery of tests aimed to measure 

number sense and mathematical abilities in 16 year-old singletons.  

 Implementation of the validated tests into the mathematical-number sense 

component of the on-line battery in the TEDS' assessment at 16 years. 

 Administration of the battery to the first and second cohort of TEDS twins.  

 Further validation of the mathematical-number sense battery (test-retest) 

using the first data collected from the first cohort of twins. 

 Retrospective investigation of the relationship between number sense 

measured at 16 years, and mathematics and cognitive abilities measured at 

earlier ages.  

 Estimation of the contribution of genetic and environmental factors to the 

two measures of number sense  

 Investigation of the aetiology of sex differences in number sense.  
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 Investigation of the aetiology of the relationship between number sense, 

mathematics and general cognitive abilities. 

 Chapter 2 is a methodological chapter that describes the two samples used in 

this research: the sample of 16 year-old singletons recruited for the pilot study and 

the longitudinal TEDS (Twin Early Development Study) sample. The chapter further 

provides details of the experimental procedure. Description of the quantitative 

genetic methods used for the analyses is provided in the relevant experimental 

chapters. Specifically, the twin method and univariate genetic analyses are presented 

in Chapter 3; the sex limitation model is described in Chapter 6; while the 

multivariate genetic analysis is detailed in Chapter 7. 

 At the age of 12 years, using multivariate genetic analyses on TEDS data, it 

was shown that some genetic influences were specific to mathematics and 

independent from the genetic factors shared with reading and g (Kovas et al., 2005). 

The first study in this thesis, presented in Chapter 3, used the same data to estimate 

the genetic and environmental influences on the residuals of mathematical 

achievement, after removing variance explained by reading and general cognitive 

abilities at 12 years. The involvement of number sense in the genetic influences of the 

residual scores of "Pure Mathematics" is discussed. The results justify further 

investigations into the aetiology of number sense and its relationship with 

mathematics using genetically sensitive methodologies.   

 The investigation of number sense was conducted as part of the larger wave 

of testing of the TEDS sample at age 16 years. Chapter 4 describes the piloting and 

validation of the on-line testing of the mathematical-number sense battery in a 

sample of 16 year-old singletons. This study was conducted in two stages, during 

which, from the initial eleven measures piloted, seven were selected for on-line 

implementation in the mathematical-number sense battery to be included in the 

TEDS on-line assessment. The seven measures comprised of three number sense 

measures, two tests of mathematical skills and two tests of general cognitive abilities. 

The chapter also presents the validation study carried out on a subset of TEDS after 

they completed the on-line assessment. During the pilot study some of the measures 

went through changes, either in the administration format (e.g. from pen and paper 
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to computerised), or in modification of the parameters for on-line adaptation. The 

internal validity of the measures was good throughout the two waves of piloting, but 

the alterations carried out affected the test re-test reliability in the pilot study. This 

required an additional test re-test reliability study to be conducted at the beginning 

of the administration of the whole battery to the TEDS sample. 

 Chapter 5 investigates the relationship of the two measures of number sense 

(estimation of symbolic numbers and non-symbolic numerosities) assessed at 16 

years with mathematics and cognitive abilities measured in previous years. The 

longitudinal TEDS data allowed to investigate the continuity of the relationship 

between mathematics and number sense, controlling for a number of cognitive 

abilities measures in 6 different assessments during 10 school years. The study also 

investigated the structure of the number sense at 16 years and the degree of the 

relationship among the two components: estimation of non-symbolic numerosities 

and estimation of symbolic numbers. This study answers the research questions 

posed at points 1 and 2 above.  

 Chapter 6 aims to estimate the contribution of genetic and environmental 

influences to individual and sex differences in non-symbolic estimation skills. This is 

the first large scale genetically sensitive investigation into this aspect of number 

sense. The results are discussed in relation to the evolutionary origins of this ability. 

This investigation answers the research questions listed at points 3 and 4 above. 

 The study in Chapter 7 presents a multivariate genetic analysis investigating 

the nature of the relationship between the two number sense abilities (symbolic and 

non-symbolic estimation) and mathematics using general cognitive abilities as a 

covariate. The question addressed is whether number sense skills are specifically 

related to mathematics, beyond the contribution of general cognitive factors and 

answers the research question number 5. 

 Taken together, this thesis provides the first large-scale genetically-sensitive 

multivariate investigation into the origins of individual differences in number sense 

and the aetiological links between number sense and mathematics across school 

years. 



 

 

64 

Chapter 2: Methods  

 

2.1 Overview 

 This chapter describes the two samples, procedures and measures used in the 

studies of this thesis. The models and analyses are described at later stages, in the 

relevant chapters. The first sample, described in section 2.2 is made up by twins from 

the TEDS. The section is further divided in paragraphs providing a description of the 

sample by age of testing, together with the procedure used for the recruitment and 

data collection. The section also describes the selection criteria used to recruit a 

subset of TEDS at 16 used for the validation study of the whole online battery 

administrated at 16. The second sample is made of the 16 year old students recruited 

specifically for the pilot study; they are described in section 2.3.   

 The measures are described in section 2.4. Section 2.4.1 contains brief 

descriptions of the measures from previous TEDS assessments at ages 7, 9, 10, 12 and 

14 used for the retrospective-longitudinal analyses illustrated in Chapter 5. Chapter 3 

illustrates a study using data collected from TEDS at the age of 12, therefore a 

detailed description of the measures at this age is further provided in Chapter 3. 

 The number sense measures, together with the tests of mathematical 

performance and numerical-relevant cognitive abilities tests used in the TEDS 

assessment a 16 years were developed as part of the work of this thesis. The 

development and description of the measures are detailed in Chapters 4. The 

behavioural analyses in Chapter 5 and the behavioural genetic analyses in Chapter 7 

were conducted using measures from the general assessment at age 16. These 

measures were not-developed as part of the work for this thesis and are illustrated in 

details in this chapter, section 2.4.2. 
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2.2 TEDS sample 

 

2.2.1 Sample description 

 The behavioural genetic studies and the longitudinal retrospective analyses 

were conducted on data collected as part of the Twins Early Development Study 

(TEDS). TEDS is a large longitudinal study constituted of twins born in England and 

Wales in 1994, 1995 and 1996. Details of 25,815 twins' families were obtained from 

the children's birth records from the Office for National Statistics (ONS). The families 

were contacted via mail. Consent and contact details for 16,810 families were 

obtained between 1995 and 1998 when the twins were on average one and half year 

old.  

 

2.2.2 Representativeness 

 TEDS sample is considered a good representative of the UK population in 

terms of ethnicity and socio-economic status. From a survey conducted for the years 

2000-2001, on average, 93% of the UK population was from a white background, 32% 

of the population had an A-level or higher level of education and the rate of 

employment was 49% for mothers and 89% for fathers (Walker et al., 2001). At the 

time of first contact, 91.7% of TEDS sample came from a white background, 35.5% of  

parents had higher education, employments for mothers was 43.1% and 91.7% for 

fathers' (Oliver & Plomin, 2007). Between the age of 7 and 14 the statistic figures 

maintain the same proportion, with 93.3 and 93.7 per cent of people from a white 

background, higher education between 44.4% and 48.6%, employed mother at these 

ages was 44.8% and 46.1% and fathers 92.8% and 93.8%. In the assessment at 16 the 

new survey reported an ethnicity of 92.6% white and parental higher education 

46.3%. The figure of working mothers increases to 91.6%, following a decrease in 
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childcare. This could be explained by mother returning to work after the children 

have grown up. Fathers' employment is 96.4%. 

2.2.3 Zygosity assessment 

 A correct identification of the twins' zygosity is fundamental, as the twin 

method relies on the comparison between Monozygotic (MZ) and Dizygotic (DZ) 

twins. In TEDS, zygosity was assessed by means of questionnaires at the time of the 

first contact when the twins were one and half year old. Zygosity was further 

assessed through questionnaires at the age of 3 and 4. These questionnaires have 

been shown to be 95% accurate in determining zygosity when tested against zygosity 

assessed with DNA markers (Price et al., 2000). Questions were based on ratings, for 

example on the differences in texture of the hair, differences with ear-lobe shape or 

difficulty to tell the twins apart. From birth statistics, around one third of twins are 

MZ, one third are DZ same sex and one third are DZ opposite sex twins. The TEDS 

sample reflects these proportions.  

 

2.2.4 Procedure adopted on TEDS data collection and sample statistics 

 During the first recruitment/contact, data was collected by means of postal 

booklets addressed to the parents of the twins. The questionnaires asked information 

about the twins, their parents and family environment. Postal booklets sent to the 

families at the age of 2, and 3, included further measures of language and cognitive 

abilities. The assessment at the age of 4 was conducted by means of parents and 

children booklets and home visits. This assessment contained environmental, 

behavioural, language and cognitive abilities measures. The data collected up to the 

age of 4 is not analysed in this thesis but it is relevant because it sets out the 

procedures and defines the sample for the future studies. 

 One of the aims of this thesis involves the investigation of abilities during the 

school years. In this period of time, TEDS have been assessed at the age of 7, 9, 10, 12 
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and 14. At the age of 16 the assessment included the number sense and 

mathematical battery developed as part of this thesis. All data collected starting from 

the age of 7 is used in the retrospective longitudinal study described in Chapter 5.  

2.2.4.1 TEDS sample description and description of data collection at age 7 

 At age 7, data was collected from three sources. Firstly, parents provided 

information about the twins and family environment together with a consent form to 

the study and permission to contact the twins' teachers. Data from the parents was 

collected with a questionnaire and telephone interview. Secondly, the twins' teachers 

filled a questionnaire (sent via mail) about the children academic achievement and 

school behaviour. Lastly, children were assessed by phone interview. In order to carry 

out the telephone testing, prior to the assessment, sealed envelopes containing the 

booklets with questions/items of the tests were sent via post to the families. Separate 

envelopes with instructions explained to the parents to open the testing envelopes 

only at the moment of the TEDS-caller telephone call - the time and date was 

specified in the instruction. The telephone testing followed a set protocol; each TEDS-

caller conducted the assessment following the "twin interview script". TEDS-callers 

also recorded twins' responses into a computerised system at the time of the 

interview, although each call was recorded on audio cassette tape. 14,581 families 

from the 16,810 of the initial TEDS sample were contacted via mail, parents returned 

7,909 questionnaires, teachers 6,532. In this wave of testing only 5,421 twin-pairs 

born in the first and second cohort (1994 and 1995) were assessed via phone.  

 Prior to all analyses in this thesis (at all ages, not just at 7), children with 

specific medical condition such as Down syndrome, cystic fibrosis, cerebral palsy, 

organic brain damage, autism spectrum disorder, severe hearing loss, abnormal birth 

weight or gestational period and if mothers were heavy drinkers during gestation 

were excluded. Children whose English was not the first language were also excluded. 

 After language and medical exclusion the sample at age 7 provided data for 

7,267 twin-pairs with mean age 7.11 (SD = .25). The twins from the first cohort 

received t-shirts as reward for their participation to the study. 
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2.2.4.2 TEDS sample description and description of data collection at age 9 

 In the wave of assessment at age 9 data was collected using postal 

questionnaires from three sources: the twins themselves, their parents and their 

teachers. Parents provided children behavioural information, home environment data 

and consents. Teachers' questionnaires informed on children school achievement, 

behaviour at school and motivation towards schools and achievement. The twins 

completed tests for cognitive abilities, and provided information about their 

motivation and other environmental measures. 

 Only children (and families) from the first and second cohort were included in 

this assessment. The parents and children questionnaires were sent to 7,531 families, 

with a return of 3,412 parents' questionnaires and 3,421 children questionnaire. 

3,869 questionnaires were sent to the teachers (one questionnaire for each pair) with 

a return of 2,740. After medical and language exclusion, the final data for the 

analyses was provided from 7,162 twins (3,581 pairs) with mean age 9.03 (SD = .28). 

A £5 reward voucher for each twin was included together with the questionnaires 

sent to the families of the first cohort. The second cohort of twins received £5 reward 

voucher per twin after return of the questionnaire. 

 

2.2.4.3 TEDS sample description and description of data collection at age 10 

 At age 10, on-line testing was introduced. Children tests of performance and 

achievement were administered with a web-based battery. Parents answered a short 

on-line questionnaire providing information about themselves. Teacher's data 

regarding the twin's academic achievement and school behaviour was collected with 

postal questionnaires. Prior to the web-testing 5,944 families (from the twins born in 

1994 and 1995) were sent an information pack about the data collection. This 

included a consent form to the study, authorization sheet to contact the twins' 

teachers and the logins for parents and children to access the testing website. The 

tests were programmed on-line on the TEDS website at: www.teds.ac.uk. The tests 

were provided with online instructions and were designed to be completed without 

supervision; for some tasks it was possible to practice before the test trials. Internet 
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testing has been deemed as reliable as traditional methods (e.g. Gosling et al., 2004), 

with the advantage of fast access to large and widespread samples. The reliability and 

advantages of the TEDS web-testing has been examined in Kovas et al. (2007a). 

 Out of the recruited 9,411 families of TEDS from the first and second cohorts, 

5,944 active families received the information pack and 3,887 questionnaires (one for 

each twin pair) were sent to teachers. The questionnaires returned from teachers 

were 3,087 while 3,184 parents completed the online questionnaire. After medical 

and language exclusion, data available from the web-tests was from 7,198 twins 

(3,599 pairs) with mean age 10.09 years (SD = .28). Each twin was rewarded with £5 

voucher after completion of the web-assessment, the families received £5 voucher to 

cover for Internet costs. 

 

2.2.4.4 TEDS sample description and description of data collection at age 12 

 The assessment at the age of 12 was conducted via Internet, telephone and 

postal questionnaires. Parents filled questionnaires on family environment, their 

children behaviour and school achievement according to the ratings of the UK 

National Curriculum (NC). Teachers reported on the children academic achievement 

and school behaviour. The twins completed an on-line battery that assessed a 

number of cognitive abilities while a reading test (TOWRE) was administered on the 

telephone. In addition, the children completed a self-reported questionnaire (postal 

questionnaire) answering questions about themselves and their motivation towards 

academic achievement. 

 This wave of testing included the 3 cohorts of twins. Information packs 

containing consent forms, twins and parents questionnaires, twins log-ins to the TEDS 

website and permission to contact the teachers, were sent to 8,439 families (out of 

the 16,810 from inception). In the consent form, parents were asked to provide their 

phone number for the administration of the TOWRE test (if they opted in). The list of 

words for the reading test was in the information pack, and the test was administered 

to the children who had completed the on-line assessment. 6,341 questionnaires 

(one for each pair) were sent to teachers. After medical and language exclusion, data 
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at age 12 was provided from 13,262 twins (6,631 pairs) with mean age 11.72 (SD 

=.67). Each twin was rewarded with £10 voucher after completion of the web-

assessment, the families received £5 voucher to cover for Internet expenses if the 

children had attempted at least one test in the battery. 

 

2.2.4.5 TEDS sample description and description of data collection at age 14 

 The assessment for this wave of testing was carried out with web-based tests, 

telephone interviews and postal questionnaires. Parents answered questionnaires, 

available in pen and paper format and on-line, regarding the children and family 

environment. They also reported on their children academic achievement, according 

the UK NC. Similarly, the teachers' questionnaires were also available in pen and 

paper and on-line format. Teachers answered questions regarding the twins' 

achievement and school behaviour. The twins were assessed on a range of cognitive 

abilities with an Internet based battery of tests. An additional Language telephone 

test was administered to the twins of the first cohort.    

 Prior to the assessment, the families received an information pack (as 

described in previous testing). All the active families were contacted to take part to 

this assessment, 11,005 families were sent log-in details to participate to the study. 

Teachers received questionnaires for 1,323 twin-pairs. After medical and language 

exclusion, data for the 14 year assessment was provided from 4,731 twin-pairs with 

605 pairs language telephone interviews. The mean age was 14.10 (SD = .55). 

 The twins from the first cohort were rewarded with a £5 voucher for 

completing the web activities. All the families, for which the twins attempted at least 

one web test, were sent one £5 voucher as compensation for Internet expenses. 

 

2.2.4.6 TEDS sample description and description of data collection at age 16 

 At 16, data was collected from the twins and their parents using web-based 

tests and postal questionnaires. Parents filled a pen-paper format questionnaire 

regarding family data and twins' behaviour. They also completed an on-line 
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questionnaire assessing the socio-economic status. The twins completed a web-based 

battery assessing a range of cognitive abilities, and filled a behavioural self-report 

questionnaire in pen-paper format. In addition, GCSE (General Certificate of 

Secondary Education) and other school qualification obtained at the age of 16 were 

collected using an exam-result form in pen-paper format sent to the families. 

 GCSE results, behavioural and environmental data from the twins (pen and 

paper) questionnaire is being collected from the children of the three cohorts (still 

under way at the time of this writing with plan to be finished by August 2013).  

 The twins' web-data and parents' data (on-line and pen-paper questionnaires) 

were collected from the first and second cohorts. Prior to the web-testing the families 

were sent an information pack which also contained log-ins for the parents and the 

children. The twins' log-ins were activated after the parents logged in to complete the 

socio-economic status questionnaire and the on-line consent form. 

 At the time of the study presented in Chapter 5, data collection was still under 

way, therefore only data collected from the first cohort was analysed. After medical 

and language exclusion data from the first cohort was provided by 2,100 twins (1,050 

pairs) with mean age of 16.5 (SD = .19). The behavioural genetic investigation in 

Chapters 6 and 7 were conducted on data from the two cohorts, on a total of 7,598 

twins (3,799 pairs). After medical and language exclusion the final sample from the 

two cohorts was provided by 6,854 twins (3,427 pairs) with mean age 16.6 (SD = .28). 

For completion of the web activities each twin was rewarded with a £10 shopping 

voucher an entry to a prize draw. 

 

2.2.4.7 Subset of TEDS for validation study at 16 

 This sample was recruited to carry out test-retest reliability and internal 

validity of the whole TEDS Internet battery administered at 16 years. The assessment 

of the first cohort of TEDS started in October 2010. By January 2011, around 600 

families had completed the web testing. The twins recruited for the validation sample 

were selected among these families. Twenty-four twin-pairs were chosen to match 
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the 600 families in SES (from the online parents questionnaire) and IQ (from the 

Raven and Mill Hill Vocabulary tests). They were invited to the Social Genetic 

Developmental Psychiatry Centre at King's College, University of London (Centre of 

the TEDS study) to repeated the whole battery in the Centre premises. The re-test 

took place two months after the twins completed the online assessment for the first 

time. Each twin received £30 voucher for participating to the validation study. 

 

2.3   16-year old singletons 

2.3.1 Recruitment of the school and of students 

 The pilot study took place between October 2009 and May 2010. It was 

conducted on a sample of 16 year-old singleton students. These students were 

matched on age to TEDS to make sure that number sense/mathematical tests 

included in the TEDS assessment at 16 were age appropriate. The 16 year-olds were 

recruited at year 12 (sixth-form) among students who had taken their GCSE exams in 

mathematics.  

 The students were recruited from two schools in the Greater London area. 

One of the schools contacted Goldsmiths College - Educational Department, asking to 

involve the students in experimental projects as part of their Psychology class 

activities. The Psychology teachers from the second school were contacted via letter 

and showed interest in letting their students participating to the study. In both 

schools, the Head teachers gave permission to carry out the testing on school 

premises. In order to comply with legislative requirements, a Criminal Record Bureau 

certification (CRB) was required for the tester (the author of this thesis). The two 

schools received different ratings in performance and services from the Office for 

Standards in Education, Children's Services and Skills (Ofsted). From its latest Ofsted 

inspection (11/2006) the first school received a Grade 1 rating (Outstanding) in all the 

fields object of the assessment. The second school was inspected in 05/2009 
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receiving ratings of Grades 3 and 4 (respectively Satisfactory and Inadequate), with a 

notice to improve.  

 

2.3.2 Procedure 

 The pilot study was conducted in two sessions. During the first session, 

students were administered a battery of 11 tests: 2 in pen-paper format, 3 

computerised and administered on a laptop off-line and 6 were web-based. These 

web-based tests are available on-line at http://lab.kctam.com/stroop/. Reliability and 

internal validity analyses were carried out on the data collect in the first session. 

Guided by the results of these analyses, the battery was reduced to 7 tests, all 

programmed on-line in the pilot website available at: 

http://www.e-businesssystems.co.uk/teds/. The development of the 7 tests is 

detailed in Chapter 4. The second session of the pilot study took place a couple of 

months later, after that the 7 tests were programmed and implemented online in the 

pilot website. During this session, students recruited in the first session of the pilot 

completed the battery on-line for test-retest reliability and on-line validation 

purposes. 

 Students' participation was voluntary. They received an information sheet 

(Appendix - 1) together with a consent form (Appendix - 2) and if opted-in they 

returned the consent forms signed by their parents/guardians and themselves. The 

consent form was valid for the two testing sessions of the pilot. The testing was 

conducted in a quiet area of the school, on a one to one basis and it lasted around 

one hour. During this phase the results of their GCSE mathematical grade were 

collected (students self report). Although the details of the study were clearly 

explained in the information sheet, a debrief followed the testing session. The 

information given during this phase was the same as in the information sheet. In 

some cases, more details were given if requested by the students. Prior to testing, 

students were reminded that they were free to withdrawn from the study (and from 

http://www.e-businesssystems.co.uk/teds/
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the testing session) at any time, without giving explanations. However, no students 

interrupted the experiment nor reported discomfort or distress due to testing.  

 When the battery comprising of the 7 tests was ready and available online, 

individual log-in details were issued to the students to access the testing website. 

Teachers involved in the testing made sure that the students received the log-ins. 

 Students were rewarded with one £10 voucher for each session completed. As 

token of appreciation, 4 vouchers of £10 each were given to each teacher (3 teachers 

in total) involved in the study. 

 

 2.3.3 Pilot sample description 

 100 students were recruited during the first pilot session, with valid data for 

98. Mean age of the 98 students was 16.78 (SD = .91). There was a predominance of 

female students (83 females vs 15 males) as in the first schools the student-

population was mostly composed by females. 75 students took part to the second 

session of the pilot and repeated the tests on-line. 68 were females and 7 males, with 

mean age 16.74 (SD = .93).  

 

2.4 Measures 

 Measures from TEDS assessments from the age of 7 to 14 are described at a 

later stage as were used in the longitudinal study presented in Chapter 5. TEDS 

general assessment at 16 included other cognitive measures that were not developed 

as part of the work of this thesis. These measures were also used in the study 

presented in Chapter 5, therefore are detailed in Chapter 5. Longitudinal (7 to 14 

years) and contemporaneous measures (at 16 years, not developed as part of this 

thesis) are described in this section. 
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2.4.1 Longitudinal Measures 

 Measures from previous TEDS assessments, their validity, and administration 

procedures are described in detail in previous TEDS publications (e.g., Kovas et al., 

2007a; Haworth et al., 2009). The following paragraphs provide only a brief outline of 

each measure analysed for the purposes of this thesis.  

 

2.4.1.1 Measures at 7 years 

 Cognitive ability measures at 7 were collected using telephone testing. 

Children mathematical school achievements were derived from the teacher’s 

questionnaires. 

Verbal Ability:  A composite measure was obtained from the Wechsler Intelligence 

Scale for Children (WISC-III) Vocabulary test and the WISC-III Similarities test 

(Wechsler, 1992). 

Non-Verbal Ability: A composite measure was obtained from the test of Conceptual 

Grouping (McCarthy, 1972) and WISC Picture Completion test (Wechsler, 1992).  

Reading Ability: Composite of fluency reading was obtained from scores of the two 

TOWRE (Test of Word Reading Efficiency) sub-tests - the Test of Sight Word Efficiency 

(non-words) and the Phonemic Decoding Efficiency test (words) - (Torgesen, Wagner, 

& Rashotte, 1999). 

Mathematical Achievement:  Teachers assessed children’s achievement, based on the 

expected UK standard at Key stage 1 (QCA-Qualifications and Curriculum Authority 

Key stage-1  www.qca.org.uk/ca/tests) on three mathematical components: "using 

and applying mathematics", "numbers", "shapes, space and measures". The 

composite score of the three assessments was used. 

 

 

 

http://www.qca.org.uk/ca/tests
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2.4.1.2 Measures at 9 years  

 Data for this wave of testing was collected by postal booklets. The cognitive 

measures were derived from the child-completed booklets; the mathematical scores 

were derived from the teachers’ questionnaires. 

Verbal Ability: The verbal cognitive score was obtained from the Vocabulary Multiple 

Choice and General Knowledge tests taken from WISC-III-PI (Kaplan et al., 1999). 

Non Verbal Ability:  The non verbal cognitive score was derived from scores of two 

tests: the “Puzzle” and “Shapes” tests adapted from Smith, Fernandes, & Strand, 

(2001). 

Mathematical Achievement: Teachers assessed children’s achievement, based on the 

expected UK standard at Key stage-2 (QCA Key stage-2) on three mathematical 

components: "using and applying mathematics", "numbers and algebra", "shapes, 

space and measures". A composite of the three mathematical scales was used. 

 

2.4.1.3 Measures at 10 years  

 Data at 10 years were collected using a web-based battery of cognitive tests 

and mathematical performance. An additional measure of mathematical school 

achievement was available from the teachers’ questionnaire. 

 

Verbal Ability: The verbal ability scale was derived combining the Vocabulary Multiple 

Choice and the General Knowledge web-tests from the WISC-III-PI (Kaplan et al., 

1999). 

Non Verbal Ability: The scale was obtained from two web tests: Picture Completion 

(Wechsler, 1992) and the Raven Standard Progressive Matrices (Raven et al., 1996). 

Reading Ability:  Reading ability was assessed with the web-test of reading 

comprehension PIAT (Peabody Individual Achievement test; Markwardt, 1997). 
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Mathematics Web Test:  The test was based on the items of the NFER 5–14 

Mathematics Series. The mathematics web score was derived combining together 3 

tests assessing the mathematical sub-components: "non-numerical processes", 

"understanding numbers", "computation and knowledge". 

Mathematical Achievement: Mathematical school achievement was assessed by 

teacher questionnaires based on the standards required from the UK National 

Curriculum at Key Stage 2 (QCA Key Stage-2) on the mathematical components of: 

"using and applying mathematics", "number and algebra" and "shapes, space and 

measures". 

 

2.4.1.4 Measures at 12 years  

 Data at 12 years were collected using a web-based battery of cognitive tests 

and mathematical performance. An additional measure of mathematical school 

achievement was available from the teachers’ questionnaire. 

Verbal Ability:  The verbal ability scale was derived from Vocabulary Multiple Choice 

and General Knowledge web-tests from the WISC-III- PI (Kaplan et al., 1999). 

Non Verbal Ability:  The composite score of non verbal ability was obtained from two 

non-verbal reasoning web-tests: Raven’s Standard Progressive Matrices (Raven, 

Court, & Raven, 1998) and the Picture Completion Test (Wechsler, 1992). 

Reading Ability: Reading ability was assessed with 3 tests of reading fluency and 2 

tests of reading comprehension: TOWRE, reading fluency of words and non-words 

(administered on the phone) (Torgesen, Wagner, & Rashotte, 1999); Woodcock-

Johnson III Reading Fluency Test (Woodcock et al., 2001); GOAL-Reading 

comprehension–Formative Assessment in Literacy - Key Stage 3 (GOAL plc, 2002); 

PIAT- Reading comprehension-Peabody Individual Achievement Test (Markwardt, 

1997). The scores of the 5 tests were combined together in a composite reading 

score. 
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Language Ability: A composite score was obtained from three web-tests: Figurative 

Language - the test of semantic language competences (Wiig et al., 1989); Inferences 

– the test assessing pragmatics skills (Wiig et al., 1989); and TOAL-3 - the test of 

grammar (Hammill et al., 1994). 

Spatial Ability:  A composite score was obtained from the “Hidden Shapes” and the 

“Jigsaw” web-tests, both taken from the nferNelson Spatial Reasoning Series books 

(nferNelson, 2002). 

Mathematics Web test:  The test was based on the nferNelson 5–14 Mathematics 

Series. A composite score was created from scores on the three mathematical 

components:  "understanding numbers", "non-numerical processes", "computation 

and knowledge" (nferNelson, 1994; 1999). 

 

Mathematical Achievement:  Mathematics was assessed by teacher questionnaires 

that rated the twins' school achievement on four mathematical components: "using 

and applying mathematics",  "number and algebra", "shape, space and measures",  

"handling data".  The rating was based on the requirement levels set by UK National 

Curriculum and taken from the booklets Mathematics 5-14 of the National 

Foundation for Educational Research (nferNelson, 1999). 

 

2.4.1.4 Measures at 14 years  

 Data uses in the analyses at 14 years were collected using a web-based 

battery of cognitive tests. The measure of mathematical school achievement was 

available from the teachers’ questionnaire. Scores of the Language test obtained by 

phone were not used in the longitudinal analyses. 

Verbal Ability:  The verbal ability scale was derived from Vocabulary Multiple Choice 

and General Knowledge from the WISC-III- PI (Kaplan et al., 1999). 

Non Verbal Ability:  The non verbal ability was measured by the Raven’s Standard 

Progressive Matrices test (Raven et al., 1998). 
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Mathematical Achievement. Teachers rated the twins mathematical school 

achievement according to the levels required from the  UK National Curriculum on 

four components: "using and applying mathematics",  "number and algebra", "shape, 

space and measures",  "handling data". Teachers' questionnaire was based on the 

booklets Mathematics 5-14 of the National Foundation for Educational Research 

(nferNelson, 1999). 

 

2.4.2 Contemporaneous measures: Tests of General Cognitive Ability a 

age 16 - not developed as part of this thesis 

 5 tests of general cognitive ability were used to measure non-verbal 

intelligence (Raven’s Progressive Matrices), verbal ability (Mill Hill Vocabulary test), 

language ability (Figurative Language) and reading skills (reading fluency and reading 

comprehension). These tests were adapted from previous versions of the TEDS web 

batteries. However, the new versions went through some alteration, therefore they 

are described in details in this section, as no previous TEDS publications report on 

these measures. 

Non-Verbal Ability - Raven Progressive Matrices: This computerized test of non-verbal 

(fluid) intelligence was adapted from Raven, Court, & Raven (1996). The test started 

with a set of animated instructions and one practice trial that could be repeated at 

the discretion of the participant. Participants were presented with a matrix of 

patterns with one piece missing from each pattern. The task required to select the 

missing pattern from a choice of 8 by clicking on it with a mouse. The test consisted of 

30 items organised in 3 levels with 6 items each, and a 4th level with 12 items. The 

first 3 items of the first level were presented sequentially. Twins progressed within 

the same level if a correct response was given to at least one of the 3 items. If the 

first 3 items of the level were answered incorrectly, the following 3 items were 

skipped and the test advanced to the next level. One point was assigned for each 

correct answer; the skipped items received no points. The maximum score for this 

test was 30. If no answer was given within 5 minutes the program returned to the 
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main page of the website. When resuming the session the same question was 

presented. After each response, the next question followed immediately. Participants 

could, however, take a break at any point in the test. Accuracy (measured as the total 

number of correct answers in the test) and response reaction time (time measured 

from the appearing of the stimulus on the screen to the time of response) was 

recorded by the program. 

Verbal Ability:  The test was programmed based on the Mill Hill Vocabulary test 

(Raven, Raven, and Court, 1998). It consisted of 33 questions, where a single word 

was displayed on the screen with 6 other words below it. Words constituting the 

target and the 6 responses were taken from the published measure. This is an 

example of target word: "fascinated" and the 6 choices: "ill-treated, poisoned, 

frightened, modelled, charmed, copied". The task required to click with a mouse on 

one of the words with the meaning closest to the target word presented on top. Only 

one among the 6 choices was the correct answer and one point score was assigned 

for each correct response. Maximum score for the test was 33. A set of instructions 

started the test followed by one practice trial. A button to start the test appeared 

after the practice and the items were presented in the same order for all participants. 

After a response was given, the next question was presented immediately and it was 

possible to pause the test and resume it later. There was no time out for response. 

The test was discontinued after 7 consecutive incorrect answers. Accuracy and 

response reaction time were recorded by the program. 

Language Ability:  Programmed according to Wiig, Secord, and Sabers (1989), the test 

was administered with the additional auditory modality to ensure that children with 

reading disability would not be disadvantaged. The stimuli consisted of 15 target 

expressions or figures of speech, referred to a situation and were displayed one at a 

time with 4 other expressions having similar meaning. For example, the situation was 

described as “Two boys talking at a dog show”; the expression referred to this 

situation was: “He is crazy about that pet”; the 4 possible responses were:  1) “The 

pet makes him angry”, 2) “He is up in arms about the pet”, 3) “The pet is really wild”, 

4) “He is wild about the pet”. The task required to match one of the 4 choices with 

the target expression. One point was assigned for each correct answer. A tutorial 
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played at the beginning of the test advised to switch on the sound on the computer. 

There was one practice trial that provided feedback on response. During the practice 

and the test trials, the situation, target expression and the 4 choices were audio-

played while the text was displayed on screen. It was possible to respond by clicking 

on the choice before the end of the audio recording. The next item was displayed 

immediately following the response. The choice to pause the test and resume it later 

was displayed following each item. Response time out was 60 sec. If during this time 

no answer was given, the question was recorded as incorrect and the next item was 

displayed. Accuracy and response reaction time were recorded by the program. 

Reading Comprehension:  The test was developed by Hayiou-Thomas & Dale, it is not 

published and is available from the authors. The test was based on two passages of 

written text. The task entailed reading the text and answering multiple choice 

comprehension-questions based on the passage. Response was given by clicking on 1 

of the 4 choices, of which, only one was correct. One point score was assigned for 

each correct answer. Thirteen questions were asked for each of the two passages, 

with maximum total score of 26. The test started with an introduction tutorial and 

there was no practice. After the tutorial the first passage was presented on the 

screen, with an option to click on the “next” button to proceed to the first question 

and multiple choice answers. The text remained on the screen together with the 

questions. The next question appeared immediately following the response. It was 

possible to pause the test at any time. Time-out for each response was 5 minutes. If 

during this time no answer was given, the question was recorded as wrong and the 

next question followed. The reading time was recorded from the appearance of the 

passage to the click of the “next” button to see the first question. The program 

recorded accuracy and response reaction time. 

Reading Fluency: The test was programmed according to Woodcock-Johnson III 

(Woodcock, McGrew, & Mather, 2001). This was a timed test with a limit of 2 minutes 

and 30 seconds and consisted of 98 statements which required a yes/no answer (this 

is an example of a statement:  “A jug may be used to pour water”). Response was 

given by clicking with a mouse on the “Yes” or “No” buttons displayed together with 

each statement. The next item was displayed immediately following the response. 
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One point was awarded for each correct answer; no points were assigned for timed 

out or incorrect responses. Maximum time for a response was 40 seconds, if no 

response was given during this time the question was recorded as incorrect and the 

next question was presented. The test was provided with a set of instructions and 

one practice trial with feedback. The program recorded accuracy and response 

reaction time. The total time of completion was also recorded. 
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Chapter 3: Sources of Individual Differences in Maths beyond 

IQ: insights from 12-year old twins  

 

3.1 Abstract  

 Behavioural studies have shown that individual differences in mathematical 

abilities are related to a variety of cognitive and environmental factors. These studies 

also suggest that about half of the variance in mathematics is related to DNA 

variation. Environmental factors have also been shown to be important, especially 

those, that are not shared by family members. Previous research found substantial 

genetic overlap between factors influencing variation in mathematics and other 

cognitive domains at the age of 7 and 10. This study set out to investigate individual 

differences in mathematics and the nature of the relationship of mathematics with 

reading and g at the age of 12. More than 13,000 12 year-old twins (part of the Twins 

Early Development Study, TEDS) were assessed on 11 measures of mathematics, 

reading, and general cognitive abilities. The results showed that removing 

overlapping variance with reading and g from mathematics scores did not reduce 

mathematics variability. The variable obtained removing the common variance with 

reading and g from mathematical scores (Pure Mathematics), was still moderately 

heritable. Beyond genetic influences, only non-shared environment explained 

individual differences in Pure Mathematics. These results suggest that objectively 

shared environments such as growing up in the same family, going to the same 

school, and attending the same teacher’s class, may not make two children more 

similar in their mathematical development beyond genetic similarity. 

 

 

 

 



 

 

84 

3.2 Introduction 

 Several mechanisms contribute to a successful acquisition of mathematics. 

Environmental factors associated with individual differences in mathematics include 

educational resources, such as access to books and parental education  (reports from 

the Third International Math and Science Study -TIMMS, Mullis et al., 2001), content 

of the curriculum and structure of textbooks (Carnine, 1991), teachers’ professional 

development (Saxe et al., 2001). It is important to note that not one single 

environmental factor has been definitively demonstrated to have a large effect on 

individual differences. For example, being in the same class and being taught by the 

same teacher contributes very little to making children more similar to each other in 

achievement (Kovas, Haworth, Dale, & Plomin, 2007a; Byrne et al., 2010). Moreover, 

some factors, considered to be ‘environments’, such as parental education, may 

actually reflect some gene-environment correlations, and therefore not be pure 

measures of environments.   

 Beyond environmental factors, mathematical learning relies on a number of 

general cognitive abilities (e.g.: Geary, 2004; Fuchs et al., 2010). Impairments in any 

of these supporting cognitive mechanisms may give rise to mathematical difficulties. 

For example, reading difficulties and low mathematical performance often co-occur 

(Vukovic, Lesaux & Siegel, 2010; Rubinsten, 2009; Dirks, Spyers & van Lieshout, 2008; 

Badian, 1999). Children with poor mathematical skills, however, can show no 

impairment in non-verbal intelligence and language abilities (Landerl, Bevan, & 

Butterworth, 2004).  

 Low scores in mathematical achievement combined with low-average IQ 

identify Mathematical Learning Disability (Geary, Hamson, & Hoard, 2000). However, 

the relationship between mathematics and IQ is complex as children with average IQ 

can also have low mathematical skills. It is possible that this relationship is mediated 

by other abilities. For example, low mathematical achieving children with an IQ 

similar to typically achieving children, scored as low as mathematics disabled children 

(with significantly lower IQ) on mathematical tests (Geary, Hoard, Byrd-Craven, & 

Numtee, 2007). Conversely, no differences in IQ (Raven's Coloured Progressive 
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Matrices test) were detected between children with Dyscalculia only, reading deficits 

only, reading and Dyscalculia and control (Landerl, et al., 2004).  

 Studies have also shown that children with poor mathematical abilities are 

slower when performing mathematical operations requiring retrieval from long term 

memory (Geary et al., 2000; Geary, 1993). Because speed of processing has been 

associated with fluid intelligence (Deary, Der, & Ford, 2001), it has been suggested 

that the association between mathematics and memory may be mediated through 

speed of processing, thus partially explaining the link of mathematics with IQ (Bull & 

Johnston, 1997). Indeed, in children with learning disabilities, full scale intelligence 

scores can account for variance in achievement scores in all academic domains (Hale, 

Fiorello, Kavanagh, Hoeppner, & Gaither, 2001). 

 Such inconsistent findings have encouraged researches to use different 

approaches in exploring the aetiology of mathematical skills. Recent genetically 

sensitive research has highlighted the importance of genetic factors. By using the twin 

design, behavioural genetic studies can estimate the portion of variance in a trait that 

is attributed to genetic and environmental influences. Using representative age-

homogeneous samples, heritability of mathematical ability and achievement has 

been found to be moderate to substantial and consistent across development (Kovas 

et al., 2005; 2007a; Hart et al., 2009). Findings reported from studies on the large 

longitudinal sample of Twins Early Development Study (TEDS), estimated heritability 

at .68, with non-significant shared environment (Haworth, Kovas, Petrill, & Plomin, 

2007). Moderate genetic (between .32 and .45) and non-shared environmental 

influences (.42 - .48) were found in the TEDS sample at 10 years of age (Kovas, et al., 

2007c). This study also investigated different mathematical components addressing 

the mathematical heterogeneity. Non-numerical processing, that requires the 

understanding of concepts such as mental rotation and spatial operations, was found 

to be slightly less heritable (.32) than other mathematical processing (between .42 

and .45). However, the genetic correlations (indexing common genetic factors) 

between the 5 components of mathematics were extremely high (~.90), indicating 

that mostly the same genes affect these aspects of mathematics, with only a small 

degree of aetiological specificity. 
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 Similar estimates have been reported in studies conducted on different 

samples of twins. Heritability of mathematical fluency (the accuracy and speed in 

retrieving mathematical information and strategies from long term memory) was 

estimated respectively at .63 and .47 in 8.5 and 10 year old twins from the Western 

Reserve Reading Project Math (WRRPM) (Hart et al., 2009). Furthermore, the 

mathematical component of Applied Problems indicated a moderate heritability of 

.54 only at 10 years of age, suggesting developmental changes in genetic effects. 

 The comorbidity of reading and mathematical difficulties with low/normal IQ 

described earlier is reflected in genetic correlations between abilities. TEDS studies 

have reported the genetic correlation between mathematics and reading of .74; and 

between mathematics and g of .67 (Kovas, Harlaar, Petrill, & Plomin, 2005). These 

correlations suggest that if a gene is involved in the development of mathematics, 

there is 74% of probability that the same gene is also involved in reading ability and 

67% of chance that is involved in g. Similarly, other studies have found genetic 

correlations between mathematics and reading ranging from .47 to .61 (Knopik & 

DeFries, 1999) to .98 (Thompson, Detterman, & Plomin, 1991). Genetic correlations 

have also been estimated between measures of reading and g (e.g. Harlaar, Hayiou-

Thomas, & Plomin, 2005; Tiu, Wadsworth, Olson, & DeFries, 2004; Thompson et al., 

1991). These studies suggest that most of the genes influencing mathematics also 

influence reading and/or g. This is referred as the “Generalist Genes Hypothesis” 

(Plomin & Kovas, 2005), according to which different cognitive domains are, to a large 

extent, influenced by the same pool of genes. According to this theory, different 

cognitive abilities share much of the same aetiology. To further support this theory a 

recent report from TEDS at the age of 12 confirmed a strong genetic correlation 

among different abilities: .62 between reading and g; .58 between reading and 

mathematics; .75 between g and mathematics (Haworth et al., 2009a). 

 Although research suggests that the genes involved in learning are, to some 

extent, shared across abilities, there is evidence that some genetic influences are 

trait-specific. An investigation in TEDS at the age of 7 showed that despite the great 

genetic overlap between mathematics, reading and g, approximately 25% of the 

genetic influences in mathematics are independent from reading and g (Kovas et al., 
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2005). At the age of 10, around 20% of the genetic variance in mathematical abilities 

was explained by genetic influence not shared with reading, science and g (Kovas et 

al., 2007a). Studies that used other samples to investigate the relationship between 

mathematics and other abilities have also confirmed genetic effects specific to 

mathematics. In a sample of 10 year old US children, it was found that 59% of the 

genetic variance in mathematical component of fluency was not shared with reading 

fluency and g (Hart et al., 2009).  

 These mathematics-specific genetic influences seem to be stable, at least 

between the ages of 7 and 10. One important question is whether this independence 

from other abilities is maintained at later stages, when the mathematical concepts 

become more complex and abstract. It is possible that different genetic influences get 

involved as a consequence of the change in mathematics, or new genetic influences 

arise with development. Better understanding of the aetiology of these mathematics-

specific genetic influences may help to improve mathematical learning. 

 

3.2.1 Research question 

1. The present study reports the results from 13,262 of 12 year-old twins, part of 

the Twins’ Early Development Study. This large representative sample allowed 

us to address the following research questions: Do the relative contributions 

of genetic and environmental factors to variation in mathematics remain 

similar to those, previously reported at 10 years of age in the same sample? 

This question is not trivial for three reasons. First, at least for some 

educationally-relevant traits, heritability has been shown to increase with age. 

Second, many biological changes occur in children over the two year period. 

Third, under the UK National Curriculum set-up, at 10 years of age, children 

are still in primary school, where the same teacher is likely to teach most 

subjects, including mathematics and reading. At 12, all children are in the 

secondary school, where different subjects are taught by a specialist teacher. 



 

 

88 

These factors may lead to an abrupt change in the relative contribution of 

genes and environments to the variation in mathematics. 

2. How variable is mathematical ability at this age after controlling for variability 

in reading and g? This question is of major practical and scientific interest. As 

described above, a large portion of the mathematical variance has been 

shown to be shared with reading and g at previous developmental stages 

described in this sample. Do reading and general cognitive intelligence 

become even more closely associated with mathematics at 12, or does a lot of 

independent variance in this trait emerge with the increased complexity of the 

subject? 

3. What is the aetiology of this “Pure Mathematics” variance? One hypothesis 

would be that individual differences in mathematics, that are not associated 

with reading or g (Pure Mathematics), would be highly genetic. On the other 

hand, with a specialist mathematics teacher providing mathematical 

education for the first time, shared environmental influences might become 

particularly important. As many children move to a different school between 

the ages of 10 and 12, an additional source of environmental, potentially non-

shared influence may be new peers. 

 The aetiology of “Pure Mathematics” was explored at 12 years of age. 

Univariate genetic analysis was used to estimate genetic and environmental 

influences on mathematical scores after controlling for the effects of reading and g. It 

is hypothesized that by removing the overlapping variance of reading and g, will lead 

to a change in the estimates of genetic and environmental influences on 

mathematical variation at this developmental stage.   
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3.3 Method   

 

3.3.1 Participants 

 Participants in this study were the twins of the TEDS sample at age 12. The 

sample is described in the section 2.2.4.4. Prior to any analysis, all the twins with 

severe medical problems such as cerebral palsy, Down syndrome or autism were 

excluded. For the purpose of this analysis, twins for which English was not the first 

language were also excluded from the analysis. The final sample constituted 13,262 

twins (6,631 pairs), of which 4,636 were MZ (2,318 pairs), 8,626 (4,313 pairs) were 

DZ, with a mean age of 11.71 

 

3.3.2 Measures 

 Measures of reading, mathematical and general cognitive ability were 

obtained using an internet web-based battery and telephone testing. Internet based 

assessments give the opportunity to collect data from large samples quickly and at 

low cost. Furthermore, web data collection requires little human manipulation in 

terms of extraction and data entry, reducing data errors. TEDS internet assessments 

have been previously validated and successfully carried out when the twins were 10 

year of age (Kovas et al., 2007a). In addition to the mathematical scores obtained 

from the web assessment, measures of mathematical school achievement were 

collected with questionnaires sent to the twins' teachers. Each measure used in this 

study is described below, together with means and standard deviation on 

unstandardised scores. Further analyses were conducted on standardized variables of 

the accuracy scores. 

READING was assessed on 2 tests of reading comprehension and 2 tests of reading 

fluency. 
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PIAT – Peabody Individual Achievement Test (Markwardt, 1997). The 3 practice trials, 

followed by 82 test trials were sentences testing the twins’ reading comprehension. A 

written sentence was presented on the screen. The text was replaced by four 

pictures. Answers were given by clicking with the mouse on one of pictures that 

referred to the sentence (M=58.03, SD=10.64). 

GOAL – Formative Assessment in Literacy - Key Stage 3 (GOAL plc 2002). The test is 

based on academic reading achievement required for the UK National Curriculum Key 

stage 3. Reading comprehension was assessed on 36 questions with 4-choice answer. 

(M=23.53, SD=6.37).  

Woodcock-Johnson III Reading Fluency Test – (Woodcock, McGrew, & Mather, 2001). 

Reading fluency was measured with a list of up to 98 statements, either true or false, 

that could be answered with “yes” or “no” within 3 minutes time limit (M=58.41, 

SD=13.38). 

TOWRE – Test of Word Reading Efficiency (Torgesen, Wagner, & Rashotte, 1999).The 

test measured reading fluency and accuracy on two subtests. The test of Sight Word 

Efficiency required the twins to read aloud, as quickly as possible a list of 54 words; 

the Phonemic Decoding Efficiency test required reading a list of 85 non-words. For 

each list there was a time limit of 45 seconds. The testing was carried out via 

telephone. Twins received the lists via mail, in sealed envelopes with separate 

instructions to open the envelopes only at the time of the testing session. (TOWRE 

Word: M=71.71, SD=10.87; TOWRE non-word M=41.95, SD=11.41). 

A reading composite score was computed by averaging the standardized means of 

the five reading tests (M=.005, SD=.997).  

GENERAL COGNITIVE ABILITY (g) was measured with two verbal and two non-verbal 

ability tests. 

General Knowledge. Adaptation of the WISC-III- PI (Kaplan, Fein, Kramer, Delis, & 

Morris, 1999). This test of verbal reasoning consisted of 30 general knowledge 

questions. Response was given by choosing one of the 4 proposed answers (M=21.37, 

SD=4.22). 
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 Vocabulary Test. WISC-III- PI (Kaplan, Fein, Kramer, Delis, & Morris, 1999). This verbal 

test consisted of 30 vocabulary questions. Out of the 4 proposed answers, 3 or 4 were 

correct solutions. 2 points were assigned for the best correct answer, 1 point for the 

others (M=39.77, SD=10.12). 

Picture Completion Test. (Wechsler, 1992). The trials of this test of non verbal 

reasoning consisted of 30 pictures in which one recognisable part was missing. The 

task was to point the screen in the place of the missing detail (M=19.99, SD=3.88). 

Raven’s Standard Progressive Matrices. (Raven, Court, & Raven (1998). Stimuli 

consisted of 24 incomplete patterns (matrices). The task was to choose the correct 

pattern to complete the matrix among the choice of 8 (M=10.81, SD=3.50). 

Standardised means of the 4 tests were averaged to create a composite score of g 

(M=-.00, SD=.99). 

MATHEMATICS was measured with a web-based battery of tests and with Teacher 

Assessment. 

Web-Testing. Test items for this task were 95 questions selected from the nferNelson 

booklets levels 1 to 8 (NFER-Nelson, 1994, 1999, 2001). nferNelson independent 

assessment of mathematic skills reflects the learning achievement levels required by 

the UK National Curriculum. 33 questions were taken from the category 

“understanding numbers”. Answer to the questions of this test required 

understanding of the relationship between algebraic and mathematical operations 

(for example, "Type the correct number in each box: 123 +__= 123;  123 -__= 123;  

123 x__= 123; 123 ÷__= 123"). 25 questions belonged to the “non-numerical 

processes” category and their solution required processing concepts of shapes and 

space without the aid of numerical information (for example: "Which is the longest 

drinking straw? Click on it"). 37 questions were taken from “computation and 

knowledge” which required the recall and application of well rehearsed mathematical 

facts (for example ‘‘Work out the answer to this sum and type it in the box:  64 + 905 

= __"). The task required to click on one of the multiple choice solution proposed or 

to type the correct answer in the box on the screen. For a complete description of 
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scoring systems and administration for the mathematical test, see Kovas et al. 

(2007a). 

 Questions of the three categories were administered in a single mathematical 

test and for the purpose of this analysis the mathematical score was calculated on the 

whole 95 questions, therefore there was no need to compute a composite score  

(M=67.11, SD=14.78 on unstandardized scores, M=.004, SD=.996 on standardized 

scores).  

Teacher Ratings of the National Curriculum Mathematical Achievement. Teachers 

filled in a questionnaire that rated children on their 

 mathematical achievement level according to the UK N.C. The children were assessed 

in 4 sub-components of mathematics: using and applying mathematics; number and 

algebra; shape, space and measures, handling data. Ratings were given on a 1 to 8 

scale, with 9 given for exceptional performance. The correlations among the four sub-

components ranged between .93 and .96 (p<.01, 2-tailed). For analysis purposes we 

derived a single score that best summarised the overall performance according to the 

Teacher rating of achievement on the National Curriculum for each child. The 4 scores 

were combined together into the Teacher rating score using the principal component 

analysis, with the unrotated first principal component explaining 95.7% of the 

variance (M=0.44, SD=0.93). 

 Teacher ratings have been previously shown to be a reliable measure of 

school achievement (Hoge & Coladarci, 1989; Kovas, et al., 2007a). In the present 

sample there was a good correlation (r=.55; N=5,367; p<.01; 2-tailed) between 

teacher ratings of the twins’ academic achievement and the web-testing scores.  

 

3.3.3 Twin method 

 This thesis utilises the twin method as part of the quantitative genetic 

methodology to conduct the genetic sensitive investigation.  
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 In any population, measurements of any traits reveal a degree of variability 

around the means. However, the variability observed among family members is less 

than that across unrelated individuals. The twin method takes advantage of the twins' 

genetic relatedness to make inferences regarding the origins of individual differences 

in traits. Monozygotic (MZ) twins result from the division of a single fertilised egg - 

the zygote, therefore they inherit the same genetic information. It is generally 

assumed that MZ twins are genetically identical, although recent research suggests 

some genotypic differences (e.g. Bruder et al., 2008; Kaminsky et al., 2009). Because 

of their genetic relatedness, MZ twin genetic correlations (described in Chapter 1, 

section 1.2.9.2) is assumed to be 100%. Dizygotic (DZ) twins occur when two eggs are 

fertilised at the same time. DZ twins, like any other pair of siblings, share on average 

50 percent of the segregating genes; for this reason their genetic correlation is 

assumed to be 50%. As described in Chapter 1, section 1.2.9.2, genetic effects arise 

also as results of more complex non-additive effects, these are referred to as 

"dominance". As MZ twins share the same genetic information their correlation due 

to dominance is assumed to be 100%. Dizygotic twins' alleles are made up from a 

random combination of one allele from each parent. In receiving just one allele from 

one of the parents the interaction among genes (causing dominance) will not be 

transmitted from parents to offspring. The chance that offspring inherit the parents' 

genetic interaction is 25%, therefore, DZ twins are expected to correlate on average 

.25 for dominance. Dominance effects are inferred if the correlation of MZ twins is 

more than two times higher than the correlations of DZ twins. 

  Behavioural genetic research suggests that variations in observed traits occur 

because of genetic and environmental reasons (Plomin et al., 2008). In quantitative 

genetic analyses, the total variance in a trait is decomposed into sources that 

contribute to the variation: additive and non-additive genetic influences; and shared 

and non-shared environmental influences. As it is not possible to estimate additive 

and non-additive genetic effects in the same model (non-additive genetic effects 

assume different ratio correlation for DZ twin compared to the additive effects), it is 

common practice to model non-additive effects only when they are indicated by the 

patterns of the twin correlations (if the MZ twin correlation is double the value of the 

DZ twin correlation). Heritability estimates provided by the additive models are 
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referred to as "narrow-sense heritability", as opposed to the "broad-sense 

heritability" that pertains to additive and non-additive genetic influences. Dominance 

effects will not be further discussed in this report as no dominance was indicated by 

the twin correlations in mathematics or any other variables examined in this thesis.

 Twins brought up in the same family may be similar to each other because of 

the influences of their common environment, as well as because of the influences of 

their shared genes. If genes play an important role in a trait, identical (MZ) twins must 

be more similar on that trait, compared to fraternal (DZ) twins. The influence of 

genetic factors (heritability) is calculated as twice the difference between the MZ and 

DZ twin correlations. Shared environmental factors are implicated if the DZ twin 

correlation is greater than half of the MZ twin correlation, and can be calculated as 

the difference between the MZ twin correlation and the heritability. Non-shared 

environmental influences are indicated by the extent to which the correlation 

between MZ twins is not 100%. In a practical example, if the MZ twin correlation for a 

trait is 0.8 and the DZ correlation is 0.5, heritability for that trait would be 60% [2 * 

(0.8 - 0.5) = 0.6], shared environment would be 20% (0.8 – 0.6 = 0.2) and non-shared 

environment would be 20% (1 – 0.8 = 0.2). 

 

3.3.4 Assumptions of the twin method 

 As in many statistical methods, the twin model relies on some assumptions. 

These assumptions are made on equal environment, zygosity determination, 

assortative mating, and generalisability. Violation of these assumptions may lead to 

incorrect conclusions on the causes of variations for that trait. 

 

3.3.4.1 Equal environment assumption 

 One important question about twins is whether the degree of genetic 

similarity is reflected in their environmental experience. In other words, do MZ twins 

go through more similar experience compared to DZ twins because they are more 
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similar genetically? If this was true, the environmental influences would be 

incorrectly included in the genetic estimates (Plomin et al., 2008). In the classic twin 

method it is assumed that the same shared environmental influences will equally 

affect MZ and DZ twins that is to say that shared environment is the same for both 

MZ and DZ twins. Although MZ twins are more likely to be treated alike (Loehlin & 

Nichols, 1976), research that has investigated the equal environments assumption has 

shown that this similar treatment is a reflection of their increased genetic similarities 

(e.g. Evans & Martin, 2000). Using simulation analyses and real data on aggression 

and spatial abilities, it was found no violation of this assumption (Derks, Dolan, & 

Boomsma, 2006). Equality of environment was also tested in relation to the perceived 

twins' zygosity - whether they were perceived more similar/different rather than 

being classified according to zygosity, showing that perception of zygosity had no 

influence on estimates obtained using the twin method (Scarr, & Carter-Saltzman, 

1979). The zygosity perception was treated as a specific family environment showing 

that zygosity perception had no significant influence on any of 5 psychiatric disorders 

investigated (Kendler et al., 1993). Another argument posed against the equal 

environment is that MZ twins have more similar prenatal experience compared to DZ 

twins, as they often share the same amniotic sac (chorion). However, the evidence is 

mixed. For example, no differences in heritability estimates of blood pressure 

between MZ twins have been found as effect of sharing the same chorion (Fagard et 

al., 2003). Conversely, MZ twins sharing the same chorion (monochorionic)  were 

more similar in almost all subscales assessing IQ compared to both, the MZ twins who 

did not share chorions (dichorionic) and to  DZ same-sex twins (Jacobs et al., 2001). 

Similarly, monochorionic MZ twins were found to be more similar than dichorionic 

MZ twins in a range of behavioural traits (Sokol et al., 1995). However, it is also likely 

that MZ twins experience differences in prenatal environments as they have to 

compete for nutrients during gestation, in fact monochorionic MZ twins show greater 

weight differences at birth, as well as in dental characteristics, compared to 

dichorionic MZ twins (Race, Townsend, Hughes, 2006). The equality of environment 

has been one of the most debated assumptions of the twin method; the contrasting 

evidence comes mostly from the pre-natal environmental conditions, calling for more 

research in the area (e.g. Rijsdijk & Sham, 2002). 
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3.3.4.2 Zygosity determination 

 Determining zygosity correctly is a crucial point of the twin method as it relies 

on the MZ - DZ comparison. In the case of opposite sex twins, there are no doubts 

about their zygosity, they can be only dizygotic. MZ twins are always of the same sex, 

but same sex DZ twins occur in around one third of the twin-births. Zygosity can be 

assessed with an accuracy of around 99% using DNA markers (Chen et al., 2010). 

However, costs and time are involved in carrying out such procedures. An alternative 

method to determining zygosity is through questionnaires asking about twins' 

similarity on a variety of traits and features (as described in TEDS zygosity 

questionnaires, Chapter 2, section 2.2.3). The method yields 95% accuracy against 

validation of zygosity with DNA markers (Price et al., 2000). 

 

3.3.4.3 Assortative mating 

 Assortative mating refers to a type of gene-environment relationship, by 

which partners chose each other on the basis of specific characteristics rather than 

randomly. For example, individuals may choose partners similar to themselves on a 

particular trait (positive assortative mating) or dissimilar (negative assortative 

mating). A choice based on phenotypic traits, indirectly may reflect the partners' 

genetic and environmental similarity. Their offspring may receive a non-random 

transmission of genetic influences, with positive assortative mating increasing the 

similarity between parents and offspring. Positive assortative mating (that increases 

similarity among family members) leads to the increase of DZ twin correlations. The 

correlations of the MZ would be unaffected as they are genetically identical. This 

translates into an overestimation of the shared environmental influences at the 

expense of genetic influences (Rijsdijk & Sham, 2002; Neal & Maes, 2002). The 

presence of non-random assortment can be detected in family studies, by looking at 

the parents' phenotypic correlations. For example, there is evidence that partners 

have preferences for some physical characteristics such as weight and height, 

although correlations between spouses are modest, .20 and .25, respectively 

(Spuhler, 1968). Assortative mating is more substantial in behavioural and cognitive 
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traits such as alcohol abuse (e.g. correlation .38 between parents, Agrawal et al., 

2006) and g (correlation .40, Jensen, 1978). Although heritability estimates in twin 

studies may be biased by the presence of assortative mating, these effects are 

modest (Loehlin, Harden, & Turkheimer, 2009) suggesting that in many cases 

violation of this assumption is not crucial.  

 

3.3.4.4 Generalisability 

 Another important question is whether findings from twin studies can be 

generalised to non-twins. Twins do not constitute a random sample and their 

representativeness has been questioned. For example, newborn twins on average 

weight less than singletons (Rutter & Redshaw, 1991); however by middle childhood 

the weight differences disappear (MacGillivray et al., 1988). Other differences 

between twins and singletons are alleged on physical characteristics such as 

increased congenital malformations or perinatal mortality, linked to pre-natal 

condition (Rutter & Redshaw, 1991). Twins also often have shorter gestation periods 

and tend to be born three-four weeks earlier (Phillips, 1993). Although these early 

differences may point to the possibility of different developmental paths between 

twins and singletons, studies found that they do not differ for brain volume measures 

(Hulshoff Pol et al., 2001). Similarly, twins’ achievement in adolescence has been 

shown to be the same as singletons’ (Christensen et al., 2006), despite the slightly 

lower average IQ displayed by twins in early childhood (Ronalds et al., 2005). Using 

genome-wide scans, the heritability of height has been estimated from sibling pairs 

finding estimates similar to twins studies (Visscher et al., 2006). Many studies tested 

the twin method and concluded that findings from twin studies are valid and are 

applicable to the general population (e.g. Kovas et al., 2007a; Plomin et al., 2008; Hart 

et al., 2010a). 

 Overall, the twin method has been found reliable and valid by many studies. 

However, as with any other method, it is important to test its assumptions in relation 

to each trait of interest, as well as to find convergent support for its findings using 

other methods. Adoption studies, experimental methods, animal studies, and 
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molecular genetic approaches,  can all be used to replicate and build on the findings 

from the twin studies. 

 

3.3.5 Univariate genetic analysis 

 

3.3.5.1 Twin analyses 

 As previously described, the sources of the observed variation in traits can be 

attributed to genetic and environmental influences. Behavioural genetic methods 

examine phenotypic similarity in relation to genetic similarity. In the case of twins, it 

is possible to make accurate inferences on their genetic similarity. The degree of their 

phenotypic similarity is indexed by intraclass correlations (ICC; Shrout & Fleiss, 1979). 

This type of correlation is appropriate when the data is structured in groups; in the 

case of twin data, groups of two (the twin pair). The ICC is a ratio of the variance 

between the twins in the pair (within-variance) over the observed total variance in a 

trait. Therefore, this index can be taken as the proportion of total variance that is 

explained by the within twin-pairs variation. In the univariate genetic analysis, the 

comparison of ICCs between MZ and DZ twins allows to estimate the proportion of 

variance in a trait that can be attributed to additive genetic (A), shared (C) and non-

shared (E) environmental influences (e.g. Plomin et al. 2008). These proportions of 

variance can be estimated using the Falconer's formula (Falconer & MacKay, 1996), 

which has already been used in the example in section 3.3.1. The MZ twin correlation 

on a trait is due to the influences of their shared environments and the total of the 

genetic influences: rMZ = A + C, where "r" is the MZ ICC coefficient. The DZ 

correlation due to additive genetics can be half of the correlation displayed by MZ 

twins (DZ share around 50% of the segregating genes): A/2, therefore the overall 

correlation on a trait for DZ twins will be:  rDZ = (A/2) + C. Subtracting the rDZ 

equation from the rMZ it is possible to derive the heritability as: A = 2(rMZ - rDZ). In 

the model, genetic and environmental influences explain 100% of the variance in the 

trait, that is to say that their sum must be 1. From A + C + E = 1 (total variance), it is 
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possible to obtain the shared environmental influences: C = rMZ – A; and the non-

shared environmental influences: E = 1 - rMZ. In the formula the A, C, and E represent 

the genetic, shared environmental, and non-shared environmental components of 

variance explained. The notations h2, c2 and e2   correspond to the standardised values 

of the ACE parameters and represent the proportion of variance explained. Using the 

proportion of variance, the Falconer's formula can then be expressed as: 

 

h2  =  2(rMZ - rDZ)    proportion of variance explained by narrow sense                    (3.1) 
                        heritability 
 

c2  =  rMZ - h2            proportion of variance explained by shared environment       (3.2) 
 

e2  =  1 - rMZ              proportion of variance explained by non-shared                       (3.3) 
                        environment   
 

 Analyses of twin data are carried out on the residuals of standardised scores 

corrected for average effects of age and sex (McGue & Bouchard, 1984). This is 

because twins' age across pairs is completely correlated, which could inflate twin 

correlations and could be wrongly attributed to shared environmental influences. The 

same applies to sex because MZ co-twins are all of the same sex, as are half of DZ 

pairs.   

 

3.3.5.5 Univariate model fitting 

 Although the results of twin analyses can be easily ball parked from the simple 

twin correlations, the effects of genetic, shared and non-shared environmental 

influences are more accurately estimated using structural equation modelling. In twin 

model fitting the A, C, E parameters are estimated as the latent variables that more 

closely reproduce the observed MZ and DZ variance-covariance.  

 The first step of model fitting is to create a model, the saturated model, that 

makes use of the maximum number of parameters to reproduce the observed data 

(the MZ and DZ variance-covariance). The modeled data is then compared to the set 
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of observations in order to obtain the residuals. The comparison between the 

modeled and observed data is iterated until the set of parameters minimising the 

residuals is found. The optimisation process is usually performed with specific 

software; the behavioural genetic analyses in this thesis were conducted using 

OpenMx software (Boker et al., 2011) running in the R environment (http://www.R-

project.org).  

 The process of parameter estimation is carried out using maximum likelihood. 

This method provides an index, -2LL (minus two log-likelihood) indicating how well 

the modeled data fits the observed data. It has to be noted that the saturated model 

provides the best fit possible to the data because it uses the maximum numbers of 

parameters to model the data. The -2LL of the saturated model does not offer a valid 

assessment of the quality of the fit, but it is used to compare different models. Other 

parameters providing information for models comparison are the Akaike Information 

Criterion (AIC; Akaike, 1987) and the Bayesian Information Criterion (BIC). 

 The next step is to model the additive genetic variance (A), the shared 

environmental variance (C) and the non-shared environmental variance (E). The 

random error in the model is modeled in the E parameter estimate. The goodness of 

fit of this last model (ACE model) and the saturated model are compared. If the 

differences in -2LL between the two models is non-significant (p-value > 0.05), it 

means that the ACE model is not a worse fit than the saturated model. The AIC and 

BIC are also used to compare the fit: the lowest AIC and BIC refer to the most 

parsimonious (preferred) model. 

 The better fit is determined following the principle of parsimony, the Occam's 

razor principle, by which the better solution is reached using the fewest resources 

(parameters). Once the ACE parameters are estimated, nested (simpler) models are 

run dropping parameters and comparing the fit to the ACE model. If the difference in 

-2LL  between the nested models and the ACE model is non-significant, it means that 

two estimated parameters describe the observed data as efficiently as three, 

therefore the nested model is preferred. The AE and CE nested models are obtained 

constraining C and A parameters (respectively) to zero. It is not possible to constraint 

E to zero as this would assume no measurement error. Model fitting allows to 
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calculate confidence intervals around the estimates, which give an indication of their 

significance (see Plomin et al., 2008). 

 

3.4 Results 

3.4.1 Derived variables  

 Correlational analysis conducted on unstandardised scores showed a 

moderate correlation between the Mathematical web scores and the 9 measures of 

general cognitive ability and reading. Correlation coefficients ranged between .33 and 

.55 (p<.01, 2-tailed). The magnitudes of these correlations justified the creation of 

composite scores. First, all the scores were standardised, then a variable of general 

cognitive ability, g, was obtained by averaging the standardised means of the 4 

general cognitive tests (General Knowledge, Vocabulary, Picture Completion, Raven). 

Similarly, a single reading score was created by averaging the standardised means of 

the 5 reading scales (GOAL, PIAT, TOWRE-words test, TOWRE-non words test, 

Reading Fluency). The correlation between the Mathematical web-test with the 

reading and g composites was respectively .55 and .61 while between composites of 

reading and g the correlation coefficient was .54 (p<.01, 2-tailed for all correlations). 

Twins are perfectly correlated in age and sex and this correlation can inflate estimates 

of the shared environment (McGue and Bouchard, 1984). For this reason variables 

and the composite scores were corrected for age and sex.  

 The correlation between Mathematical web scores and mathematical 

achievement rated by teachers was .55 (p<.01, 2-tailed). Therefore, a composite 

score was created averaging the standardised means of the mathematical web test 

scores and the teachers' ratings scores. From this variable and from the Mathematical 

web score alone the variance in common with reading and g was removed, - creating 

two ‘Pure Mathematics’ variables: web + teacher and web score only . Scores outside 

+/-3 standard deviations were considered outliers and removed from the analyses. 
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 3.4.2 Descriptive statistics  

 Table 3.1 shows means, standard deviations, and the effect of sex and zygosity 

on the standardised composite scores of g, reading, Mathematics web test, and the 

two variables of Pure Mathematics. No effects of sex or interaction with zygosity 

were significant in any of the measures. The effects of zygosity were significant on 

both the reading and g composites, with MZ twins showing lower average 

performance than DZ twins. However, the effect sizes were very small, with zygosity 

accounting for less than 1% of the variance (η²=.00). 
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3.4.3 Univariate genetic analyses   

 The intraclass correlations, indexing twins’ similarity on Mathematics and the 

two Pure Mathematics variables, are shown in Table 3.2. 

 

 

               

 

 MZ correlations were higher than DZ correlations for all variables, suggesting 

genetic influences on all variables. The significance of the genetic influences was 

indicated from the lack of overlap between the confidence intervals between MZ and 

DZ intraclass correlations. 

 The genetic, shared and non-shared environmental influences on the 3 

measures were estimates with a univariate genetic analysis. Summary of the model fit 

comparison is presented in Table 3.3. 

 

Table 3.2 

Intraclass correlation  for  the  Mathematical  scores  and  the  measures  of  Pure 

Mathematics,  parameter  estimates  and  95%  Confidence  Intervals 

Measure MZ intraclass 

correl. (C.I) 

DZ intraclass 

correl.(C.I) 

Variance 

of  A (C.I) 

Variance of  

C (C.I) 

Variance of  

E (C.I) 

      

Mathematics (web 

test) 
.66  (.64 - .69) .42 (.39 – 45) .52 (.44 - .59) .16 (.10 - .22) .32 (.30 - .35) 

      

Pure Mathematics 

( web test) 
.44 (.39 - .49) .21 (.17 – 25) .44 (.40 - .48) N/A .56 (.52 - .60) 

      

Pure Mathematics 

(web+teachers) 
.59  (.54  - .64) .29 (.24 - .35) .62 (.57 - .66) N/A .38 (.34 - .43) 

      

 

C.I. = 95% confidence intervals; A=variance explained by genetic factors, C=variance 

explained by shared environmental factors, E=variance explained by non shared factors 

plus the error model.  
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 The estimates, reported in Table 3.2, were consistent with the pattern of the 

twin correlations. Individual differences in Mathematics web test scores (including 

variance with reading and g) were explained mostly by genetic influences (.52); with 

non-shared influences of .32; and very modest but significant influence of shared 

environment (.16). The shared environmental influences on the Pure Mathematical 

scores (both web test, and web+teacher composite) were non-significant. Individual 

differences in Pure Mathematical web scores were explained by genetic and non-

shared environmental influence in almost equal measure (.44 and .56 respectively). In 

the Pure Mathematics web+teacher composite, there was a stronger genetic 

contribution (.62) compared to non-shared environmental influences (.38) 

Table 3.3 
 

Model Fitting univariate genetic analysis Mathematics and Pure Mathematics at age 

12 
 

   Model Fit  

Measure Model 

-2 log 

likelihood 

degrees 

of 

freedom 

  Par. 

Est. 

-2LL df (-2LL) AIC BIC ep 

 Sat.Model 23781.27 9269  5243.27 -57781.40 10 

Mathematics  Web 

test 

ACE 23787.29 9275 -6.02 5237.27 -57828.18 4 

AE 23812.62 9276 -31.35 5260.63 -57811.64 3 

       

 Sat. Model 18083.38 6764  4555.38 -41436.51 10 

Pure Mathematics 

web test 

ACE 18087.66 6670 -4.28 4547.66 -41485.03 4 

AE 18087.66 6671 -4.28 4545.66 -41493.83 3 

       

 Sat. Model 10902.61 4087  2728.61 -25060.99 10 

Pure Mathematics  

Web+teacher 

rating 

ACE 10904.82 4093 2.21 2718.83 -25111.57 4 

AE 10904.82 4094 2.21 2716.83   -25120.37  3 

        
 

 

Sat. Model = Saturated Model; Par. Est. = Parameters Estimated; AIC = Akaike’s information 

criterion; BIC = Bayesian information criterion. Lower values of the two indices indicate better 

fit of the model; -2LL= difference between the Saturated Model and the nested models 

likelihoods. The better fitting models are indicated in bold. For the Mathematics web scores, 

the best fit is provided by the ACE model. For the two Pure Mathematics variables, the best fit 

is provided by the AE models: with no decrease in likelihood two estimated parameters fit the 

data as well as three estimated parameters. The better fit is confirmed by the smaller AIC and 

BIC indices in the AE models. 
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3.5 Discussion 

 The aim of this study was to investigate the aetiology of individual differences 

in Mathematics and in Pure Mathematics (a variable obtained by removing the 

phenotypic variance shared by mathematics with reading and g) at 12 years of age, 

using quantitative genetic methodologies.  

 The results revealed that at age 12, mathematics is a heritable trait (.52) with 

environmental influences of the non-shared type (.32), with very modest shared 

environmental influences. These findings are consistent with other TEDS studies, 

suggesting stable genetic influences in mathematics across development.  

 Between the age of 7 and 12, the concepts involved in mathematics become 

more abstract and more complex. However, the results of this investigation show that 

genetic influences contributing to mathematical differences among children have 

highly similar strength at ages 12 and 7. Stable genetic influences indicate that 

environmental influences do not become more or less important in mathematics, 

despite the changes in the trait of study. Starting at the age of 12, in the UK school 

mathematical education is delivered by specialist mathematical teachers. This change 

in the objective-mathematical environment does not seem to contribute to a change 

in the amount of subjectively relevant environments (shared environments) to 

individual differences in mathematics. It is possible that the structured UK National 

Curriculum and the homogeneous training of mathematical teachers contribute to 

the stability of the trait, whereas genetic influences contribute to individual 

differences. The experiences unique to each individual (non-shared environments) 

also contribute to children's differences, almost in the same amount, at ages of 7 and 

12.   

 Given the genetic and phenotypic overlap of mathematics with other abilities, 

it is also important to understand whether the observed stability in heritability 

estimates is mediated by other abilities. In other words, it is possible that later 

mathematical ability is supported more by reading skills, reasoning, and general 

intelligence than earlier mathematics. Our results suggest that this is not the case. 

After removing the shared variance between mathematics, reading and g, what is left 
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in terms of mathematical variation, is still heritable. This means that similarly to what 

was previously found for mathematics at the age of 7 and 10 (Kovas et al., 2005; 

Kovas et al., 2007a), some genetic influences are specific to mathematics at the age of 

12. The mathematics-specific genetic influences in this study were higher compared 

to the unique genetic influences reported at the age 7 and 10. It is possible that later 

mathematics (at 12) shares less genetic influences with other domains than the 

earlier mathematics. 

 Alternatively, the different estimates may be partially due to the different 

mathematical components assessed at the different ages. Some evidence indeed 

exists for different heritability for mathematical components (e.g. Hart et al., 2009; 

Kovas et al. 2007c).  

 Pure Mathematics of web scores was less heritable than when teacher-rated 

school achievement was included in the composite. This difference in heritability is of 

interest, as school achievement may differ from the web assessment, as they assess a 

wider range of skills over time. Alternatively, a rating bias of teachers may inflate MZ 

correlation - resulting in higher heritability estimates.  

 Despite some discrepancy in genetic estimates, the measures of "Pure 

Mathematics"showed the absence of shared environmental influences. Only 

individual- specific, rather than family- or school-wide environmental experiences 

showed influences on unique variance in mathematics 

 

3.5.1 Conclusion 

 The existence of mathematical variance independent from other cognitive 

abilities calls for the search for cognitive mechanisms underlying such variance. 

Recently, cognitive literature has identified some processes that appear to be specific 

to the mathematical domain. These processes, referred to as "number sense" 

underpin the ability to estimate and approximate numerosites (Dehahene, 1997; 

Halberda, Mazzocco, & Feigenson, 2008). Approximation abilities have been found to 
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correlate with mathematical test scores and achievement, even after controlling for 

other cognitive abilities (e.g. Halberda et al., 2008; Booth & Siegler, 2006). One of the 

possibilities is that causes of variation in estimation abilities overlap with those of 

variation in Pure Mathematics. If number sense contributes to mathematical skills, 

independently from other abilities, the understanding of its aetiology could clarify the 

mechanisms that facilitate a successful mathematical acquisition. In turn, this 

information could guide changes in the way we conceptualise and teach 

mathematics. It could also lead to efficient screening for predicting individual 

variation in mathematical skills and apply suitable individualized environmental 

interventions. The following chapters (Chapter 5, 6 and 7) utilises the unique large 

longitudinal TEDS sample to carry out the first genetically sensitive investigation into 

individual differences in number sense and its links with mathematics. 
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Chapter 4:  Development and validation of a mathematical-

number sense web-based battery: a pilot study  

 

4.1 Abstract 

 The aim of this study was to create and validate a web-based battery of tests, 

age appropriate for 16 year olds, and designed to assess mathematical skills, general 

cognitive abilities and number sense. The purpose was to add this new tool of 

assessment to a larger Internet battery of tests to be administered to the 16 year-old 

twins, as part of the Twin Early Development Study (TEDS). The study was conducted 

in two stages. The first stage involved the selection of 11 measures: 4 arithmetic 

tasks, 2 numerical Stroop tasks, 3 number sense tasks and 2 general cognitive tasks. 

The 11 test were administered to a sample of 100 16-year-old students, either in pen 

and paper format, or on computers. In the second stage, 6 of these tests were 

selected based on reliability analyses, conducted on the data collected in the first 

phase. During this stage, a new mathematical task was added. The 7 measures were 

programmed, implemented online and administered to the same sample of 16-year 

old students for test-retest reliability and online validation purposes. In order to be 

implemented in the final TEDS Internet battery, all the measures were further 

modified, therefore a second validation study was conducted on a subset of 48 TEDS 

twins (24 twin-pairs) soon after the first wave of TEDS testing. The new battery 

revealed to be a reliable tool of assessment showing good internal validity and 

reliability for all the measures.  
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4.2 Introduction 

 

4.2.1 Definition of the research problem 

 The acquisition of mathematical competences is a gradual process that 

requires many cognitive abilities and skills working in synergy. The attainment of 

mathematics relies on the support of general cognitive processes including memory, 

reasoning and IQ (Butterworth, 2005). Evidence that acquired skills, such as reading 

and writing, may support mathematical development is provided by the fact that 

dysfunctions in any of these abilities can lead to different manifestations of 

mathematical impairments (e.g. Vukovic et al., 2010; Dirks et al., 2008, Geary, 1993).  

 Overall, less research has been dedicated to mathematics compared to 

reading or language, leading to less information available about mathematical 

cognition compared to these other domains. For example, while a number of 

established tests are used as valid predictors of reading difficulties (Gersten, Jordan & 

Flojo, 2005), a valid instrument for screening measures of mathematical difficulties is 

yet to be determined (Dowker, 2005). The task of predicting and screening for 

mathematical difficulties starts with identifying performance that falls below 

“normal” levels. These tests aim to assess performance into the different 

mathematical components. However, these instruments tag cognitive mechanisms 

that may not necessarily be the ones underlying mathematical difficulty per se. 

Mathematical difficulties are diagnosed on the basis of scores that fall below an 

arbitrary cut-off point of performance (see Dowker, 2005). This kind of assessment 

raises a number of issues. Firstly, these instruments may actually measure a number 

of cognitive traits involved in the mathematical domain, not mathematical abilities. 

Secondly, reaching a diagnostic threshold on one scale may not necessarily mean 

reaching a diagnostic threshold on another scale. Lastly, the sensitivity of the 

measures is determined a priori by the cut off points along a continuous trait. By 

means of this kind of assessment mathematical problems and disabilities are placed 

at the low end of a continuously distributed trait. It remains unclear whether 
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mathematical disability is a qualitatively different dimension from mathematical 

difficulty. This is evident in existing literature where the term “disability” and 

“difficulty” are often used interchangeably (Dowker, 2005). 

 Although the work reported in this thesis is based on normal abilities, this 

brief overview on mathematical difficulties emphasizes the current understanding of 

the multifaceted nature of the mathematical domain. The heterogeneity of 

mathematical disabilities hinders our understanding of the relationship between 

cognitive abilities and mathematical performance. Fundamental questions, such as 

the definition of mathematical ability and disability are still being debated. 

 Two competing (or complementary) views on the development of 

mathematical ability and disability have been proposed. The first attributes 

mathematical difficulties to some dysfunction of the general cognitive mechanisms 

that support the mathematical domain and are shared with other abilities (e.g. Geary 

et al., 2007). The second view attributes the deficits to some numerical processes that 

are specific only to the mathematical domain (e.g. Butterworth, 2005). Genetically 

sensitive designs can be employed to provide deeper insights into the nature of the 

links between mathematics and other cognitive domains. 

 

4.2.2 Domain General Abilities  

 Individual differences in mathematical performance may be driven by the 

same cognitive mechanisms that influence the learning of any skill. According to this 

view, mathematical performance can be predicted from general cognitive 

mechanisms such speed of processing and working memory.  

 

4.2.2.1 Memory  

 Working memory plays a central role in learning as it is considered a 

temporary storage where information is maintained and manipulated before being 
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transferred to the long-term memory system (Baddeley, 1983).The role of working 

memory in the development of mathematical skills has been extensively investigated. 

Mathematical impairments have been attributed to dysfunctions of the three working 

memory components: the central executive, phonological loop and visuo-spatial 

sketchpad. According to Baddeley’s working memory model (Baddeley, 1983), the 

central executive role is to coordinate and mediate information flow and functions of 

the two “slave” systems: phonological loop and visuo-spatial sketchpad. It also 

performs more complex functions, such as selecting and switching between different 

strategies and providing temporary activation of information from long term memory 

(Baddeley, 1996; Miyake et al., 2000).The phonological loop encodes and maintains 

phonological information with the process of subvocal rehearsal; the visuo-spatial 

sketchpad maintains and manipulates visual and spatial material (Baddeley, 1992).  

 A number of studies have demonstrated that the execution of arithmetical 

processes is disrupted when the central executive, phonological loop and visuo-

spatial sketchpad, are engaged by another task, such as in dual task paradigms (e.g. 

Logie, Gilhooloy & Wynn, 1994; Lemaire et al., 1996; Lee & Kang, 2002). Furthermore, 

children with arithmetical difficulties show short term memory deficits. Evidence is 

provided by the fact that children who are slower at counting make greater use of 

fingers to aid their memory and keep track of digits: counting relies on memory span 

and fingers are used as an external support for memory (Geary, 1993). Siegler & Ryan 

(1989) argued that children with impairments in central executive functions showed 

arithmetical difficulties only in material involving numbers. They suggested that 

central executive dysfunction prevented the ability to maintain and manipulate 

numerical information. Another study suggests that impairments in the central 

executive prevent access and retrieval of information from the numerical lexicon 

(D’Amico & Guarnera, 2005).  

 Poor mathematical abilities are also associated with poor performance in 

visuo-spatial working memory in the Corsi Block task (McLean & Hitch, 1999; Bull et 

al., 1999). However, this association may not be significant beyond the common 

variance with reading and IQ (Bull et al., 1999), suggesting that visuo-spatial abilities 

are only indirectly related to mathematical skills. Phonological loop impairments have 
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been linked with problems in recalling numerical material. Children with poor 

mathematical skills perform worse than controls in digit span tasks (Swanson & 

Sachse-Lee, 2001). However, other studies have assessed normal performance in digit 

span tasks in low mathematics performing children (e.g. Bull & Johnston, 1997; 

Passolunghi & Siegler, 2001). These studies show correlation between memory 

components and mathematical disabilities. However, our limited understanding of 

the underlying mechanisms does not allow us to suggest that this relationship is 

causal.  

 

4.2.2.2 Speed of processing 

 The examples provided above show that there are some inconsistencies in the 

mathematical literature regarding the role of working memory in mathematical 

difficulties. It is still debated in the literature whether memory deficits directly affect 

numerical processing. Individual differences in speed of processing (speed of number 

identification, visual number matching, encoding of digits) have been found to affect 

retrieval of information from long term memory, leading to poor mathematical 

performance. This suggests an indirect involvement of memory in mathematical 

abilities, mediated by speed of processing (Bull & Johnston, 1997; Geary & Wiley, 

1991). Speed of processing is associated with physiological factors of the human 

nervous system at the neuronal level (Neubauer, 1997). Perceptual, motor and 

cognitive tasks that require rapid response show slower reaction times in children, 

compared to adults (Kail, 1991). These differences have been attributed to children’s 

developing information processing system, and this supports the theory that speed of 

processing is an index of intellectual development (Kail, 1992). Reaction times are 

related to the individuals’ abilities to gain information and have been associated to 

psychometric intelligence tests scores (Kail, 1992; Deary, Der, Ford, 2001).  

 Individual differences in speed of processing appear to be important in 

mathematical skills. Children with poor mathematical abilities were found to be 

slower when performing mathematical operations that require retrieval from long 

term memory (Geary, 1993). One of the explanations given is that poor 

mathematicians simply have a slower information processing. Alternatively, it is 



 

 

114 

possible that children with mathematical disability fail to develop the automated 

processes of the arithmetical operations because of slow processing of numerical 

information. In support of this theory, it was found that children with arithmetic 

learning disability had no evident impairments in working memory capacity (Hitch & 

McAuley, 1991). However, their poor arithmetical performance indicated that they 

had slower access to numerical material in long term memory due to the lack of 

familiarity with mathematical material. Bull & Johnston (1997) reported lack of 

automaticity in the retrieval of mathematical facts in children with low mathematical 

performance. In this study, difficulties with accessing mathematical material from 

long term memory were attributed to slow speed of processing. Their results were 

evaluated against Hitch and McAuley’s theory, hypothesizing that children with poor 

familiarity in a particular area are not motivated to use that material. The infrequent 

activation creates weaker links with that subject - preventing the creation of 

automaticity of the material in question.    

 To summarise, speed of processing is an indicator of general cognitive abilities 

that is also involved in mathematical skills, linking mathematical abilities with other 

general cognitive functions. This relationship adds an additional layer of complexity to 

the understanding of mathematical abilities in relation to general cognitive functions.   

 

4.2.3 Number Specific Abilities 

 Recent literature suggests that some cognitive mechanisms may be uniquely 

associated with mathematics (e.g. Halberda et al., 2008). Abilities underpinning these 

mechanisms are referred to as "number sense" (Dehaene, 1997). Among these 

abilities, estimation processes have been singled out as predictive of mathematical 

skills (e.g. Gersten & Chard, 1999; Butterworth, 2005). 
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4.2.3.1 Numerosity estimation 

 Discrimination of numerosity sets (the number of items in a set) is based on 

comparison of sets in terms of more or less. Estimation of numerosities reproduces 

inexact quantities, and in this respect is different from exact counting. There is 

evidence that a specific mechanism, the Approximate Number System (ANS), is the 

quantification system responsible for estimation functions (Feigenson, Dehaene & 

Spelke, 2004). Estimations of numerosity are ratio dependent (see Halberda & 

Feigenson, 2008) rather than modality dependent (Barth, Kanwisher & Spelke, 2003). 

Estimation of numerosity follows the Weber Law (Weber, 1834) and is indexed by the 

Weber Fraction (e.g. Pica et al., 2004). Weber Fraction is an amodal index of the 

ability to perceive changes in the appraised measure. For example, given two arrays, 

one with 4 items and one with 6, (ratio 2:3) the Weber Fraction is derived  by dividing 

the difference of the two ratios by the smallest number in the ratio: [(3-2)/2] =0.5. 

Understanding numerosities is of particular relevance as it has been suggested that 

mathematical disabilities and difficulties can arise from deficits in numerosity 

processing (Butterworth, 2005). The aetiology, of estimation remains poorly 

understood.  

 Empirical evidence points to an evolutionary origin of the ANS. Estimation 

abilities are found in animal species (Meck & Church, 1983), as well as in humans at 

pre-verbal age. Infants as young as four days seem to discriminate two and three 

syllable words (Bijeljac-Babic, Bertoncini, & Mehler, 1993). Six month old infants 

respond to numerosity (Xu & Spelke, 2000) and have expectations on the outcome of 

simple arithmetic calculations like adding up to 5 items (McKrink & Wynn, 2004). 

Furthermore discrimination abilities improve with development (Lipton & Spelke, 

2003). It has also been demonstrated that people differ significantly in estimation 

abilities and that these differences positively correlate with mathematical 

performance (Halberda et al., 2008). 
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4.2.3.2 Estimation of numerical magnitudes 

 Another specific numerical process is the estimation of numerical magnitudes. 

Estimation of numerical magnitude is a specific type of estimation that is based 

exclusively on numerical knowledge. If, for example, we were to estimate the weight 

of an object (without using a weighting instrument), we should have some experience 

with weight. Booth & Siegler (2006) propose that estimation on a number line (where 

the estimation occurs between numbers) is based on numerical knowledge only. Such 

estimation requires just the pre-existence knowledge of a numerical construct, 

whereas estimation of numerosity does not require understanding numbers. 

Estimation skills improve with development and experience (Dowker, 2003). For 

example, number line estimation seems to improve with age (Siegler & Opfer, 2003), 

and with improving of number knowledge (Siegler & Ramani, 2008). Children’s 

inaccurate estimation compared to adults' has been attributed to the use of an 

immature logarithmic mental representation of numbers. In a logarithmic numerical 

representation the distance between numerical magnitudes at the end of the range 

are underestimated compared to magnitudes at the beginning and the middle. For 

example, the distance between 10 and 20 is mentally represented as greater than the 

distance between 90 and 100. As a result, in a logarithmic representation the 

numbers at the end of the range are “compressed”. Adults produce more accurate 

estimates, as they rely on the more efficient linear representation of numbers, 

although a logarithmic representation is still present (Siegler & Opfer, 2003; Siegler & 

Booth, 2004; Booth & Siegler, 2006). Estimation abilities vary across individuals, with 

these individual differences positively correlating with mathematical test scores (e.g. 

Booth & Siegler, 2006). 

 

4.2.4 Genetic Studies 

 Quantitative genetics can provide clearer picture of the aetiology of abilities 

and of the nature of relationships among abilities. Behavioural genetic methodologies 

(e.g. twin studies) allow for estimation of the portion of the variance of a trait that is 
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attributed to genetic and environmental influences. These methodologies further 

allow for estimation of the genetic overlap between different measures (i.e. the 

extent to which genetic factors influencing one measure also influence another 

measure). 

 Quantitative Genetic research has shown the contribution of both genetic and 

environmental influences to mathematical abilities, with wide variability of the 

estimates across studies. Heritability of mathematics has been estimated from a low 

.20 (Thompson, Detterman, & Plomin, 1991) to a high .90 (Alarcón, Knopik, & DeFries, 

2000). The same variability has been found for environmental estimates. Shared 

environmental estimates ranged from zero (Oliver et al., 2004) to low.07 to .16; 

Kovas, Haworth, Petrill, and Plomin, 2007b), to very high .73 (Thompson et al., 1991). 

These discrepancies have been attributed to differences in samples, age range, and 

measures used. Quantitative genetic also allows to investigate the stability and 

change in mathematical performance. For example, one study estimated heritability 

of mathematical fluency as .47 and .63 respectively in 8.5 and 10 year old twins (Hart, 

Petrill, Thompson, & Plomin, 2009). The same study found significant heritability (.54) 

for applied mathematical problems only at 10 years, suggesting potential 

developmental changes in genetic effects. These findings highlight the need of 

longitudinal designs as well as paying particular attention to the ages of the 

compared samples.  

 One large study that has extensive longitudinal data on a wide range of 

cognitive traits is the Twin Early Developmental Studies (TEDS). Mathematical 

assessment conducted on this sample at 9 years of age, estimated heritability at .68, 

with non-significant shared environment (Haworth, Kovas, Petrill, & Plomin, 2007). 

Moderate genetic influences (between .29 and .46) and moderate non shared 

environmental influences were found in the TEDS sample at 10 year of age (Kovas, 

Petrill, & Plomin, 2007c).  

 Multivariate genetic methods have also been used to investigate the 

relationship between mathematical and other cognitive abilities and achievement 

measures. Genetic and environmental correlations have been estimated between 

mathematics and reading (e.g. Thompson et al., 1991; Knopik & DeFries, 1999); 
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mathematics and language abilities (Plomin & Kovas, 2005); and between 

mathematics, reading and g (Kovas et al., 2005). This suggests that mathematical 

skills share some of the same aetiology with reading, language and g. These findings 

support the “Generalist Genes Hypothesis” (Kovas & Plomin, 2006), which suggests 

that different cognitive domains are, to a large extent, influenced by the same genes. 

Under this assumption, most genes influencing mathematics also influence reading 

and/or language. These results are also consistent with behavioural literature that 

argues that general cognitive abilities are shared across domains.  

 Although a large number of genetic factors influence both mathematical skills 

and other general cognitive abilities, it appears that there might be a set of genes that 

is specific only to mathematics (Kovas et al., 2005). It is possible that this specificity 

relates to some specific aspects of numerical or mathematical cognition. In support of 

this hypothesis, a recent study found that mathematical fluency (the ease and 

accuracy with which maths facts are retrieved and strategies to solve arithmetic 

problems are adopted), unlike other mathematics-related measures in this study, 

showed some unique variance (Hart et al., 2009).  

 

4.2.5 Research question 

 From the evidence discussed so far, it emerges that research has not yet 

satisfactorily answered the fundamental questions of what mechanisms are driving 

mathematical acquisition and the aetiology of mathematical abilities. Quantitative 

genetic research suggests that many genetic factors that affect reading, language 

abilities, and g are involved in the mathematical domain. This is consistent with 

behavioural findings where a number of general cognitive abilities have been shown 

to be involved in the acquisition of mathematical skills. Number specific processes of 

estimation of numerosity and of numerical magnitudes may be the skills associated 

with the mathematics-specific genetic influences, independent from other abilities 

reported at the age of 7, 10 and 12. 
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 A question that still needs to be addressed is to what extent genetic and 

environmental factors contribute to individual differences in specific number abilities. 

Another question, yet to be addressed, is the extent of the aetiological overlap 

between specific number abilities, mathematics and other abilities. In order to 

investigate these issues, the first step is to identify and assess the abilities of interest.  

 As shown by genetic studies, heritability may change across development, 

therefore age-homogeneous samples are preferred to control for developmental 

bias. The genetically sensitive investigations in this thesis are conducted on the twins 

of the TEDS sample at the age of 16, therefore the tests needed to be appropriate for 

this age. The aim of the study reported in this chapter was to design and validate a 

battery of tests assessing mathematical abilities, as well as number specific and 

general abilities involved in mathematical acquisition as discussed earlier.  

This pilot study was devised in two phases of testing and validation on a sample of 

singleton students, with an additional third phase of validation in a subset of the TEDS 

sample. 

 Phase 1. The first phase involved the identification of measures of specific 

numerical abilities of estimation, approximation of numerosities, general 

cognitive abilities, and mathematical performance. This newly developed 

instrument was administered to a sample of 16 year-old singletons.    

 Phase 2. The second phase involved the online implementation of the selected 

measure and their administration to the same sample of 16 year-old students 

for test-retest reliability and online validation purposes.  

 The ultimate aim was to use this new instrument as part of the TEDS 

assessment at the age of 16. 

 Phase 3. The newly developed instrument was administered to the TEDS 

sample. From the first cohort of assessment, a small subset of twins was 

retested on the same tests two months after they completed the online 

assessment at 16. 
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4.3 Methods 

 

4.3.1 Participants 

 A sample of one hundred 16 year olds was recruited (as described in section 

2.3.3) from secondary schools, at the beginning of the first term, after completion of 

the GCSE exams. The age of the sample was chosen to match that of TEDS. The GCSE 

scores in mathematics provided a further assessment of mathematical achievement. 

 

4.3.1.1 Participants in Phase 1 

 The final sample of the Phase 1 was comprised of ninety-eight 16 year old 

students (mean age = 16.78, SD = .91). All participants had successfully taken the 

General Certificate of Secondary Education (GCSE) exam in mathematics. Testing took 

place at the beginning of Autumn Term after completion of their GCSEs. 

 

4.3.1.2 Participants Phase 2 

 Out of 98 initial participants, 75 students (mean age = 16.74, SD = 0.93) 

repeated the tests online for test-retest reliability and online validation purposes 

during Spring Term (the year after completion of their GCSE). 

 

4.3.1.3 Participants in the final validation on the TEDS sample. 

 The assessment of the first cohort of TEDS started in October 2010. By January 

2011, around 600 families had completed the web testing. 48 twins recruited for the 

validation sample were selected from these families. The selection criteria and 

sample description are provided in section 2.2.4.7.   
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4.3.2 Procedures and material 

 

4.3.2.1 Procedures and materials in Phase 1  

 The tasks chosen for this first phase of assessment were selected among the 

tests that from the behavioural literature were considered to tap into the abilities of 

interest for this investigation. Nine of these tasks, assessing number specific abilities, 

visuo-spatial working memory, speed of processing and mathematical skills, were 

administered online, using a laptop. Two tasks (Number Line and Corsi Block) were in 

pen and paper format. The assessment was carried out, on a one-to-one basis, on 

school premises with the permission of the school. The whole battery lasted 45-60 

minutes. The students were given a £10 voucher for their participation. Detailed 

procedure is described in section 2.3.2. 

 

4.3.2.2 Procedures and materials in Phase 2  

 Analysis on the data from the first wave of testing informed the choice of the 

tests to include in the second wave of assessment. Six out of the eleven tasks that 

were used in the first wave of testing, and one new mathematical task, were 

programmed and assembled in a web-based battery. The tests were implemented 

online at: http://e-businesssystems.co.uk/teds. This testing session lasted 

approximately 35-40 minutes and was designed to be carried out without 

supervision. Detailed procedure is also described in section 2.3.2. 

 

4.3.2.3 Procedure in Phase 3 

 Twenty four twin-pairs were invited (via mail) to the Social Genetic 

Developmental Psychiatry Centre at King's College, University of London (Centre of 

the TEDS study) to repeat the whole battery on the Centre premises, using the 

Centre's equipment. The re-test took place two months after the twins completed the 

http://e-businesssystems.co.uk/teds
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online assessment for the first time (description of the sample and testing procedures 

are described in section 2.2.4.7).  

 

4.3.3 Measures 

 

4.3.3.1 Measures Phase 1  

 Students' number specific abilities were assessed with three tests: Dot Task, 

Dot Matching, and Number Line. As part of general cognitive abilities, speed of 

processing was assessed with Reaction Time task; and visuo-spatial working memory 

was assessed with the Corsi Tapping block task. Mathematical skills were assessed 

with a timed task of arithmetic (Problem Verification Task); as well as a series of tests 

containing addition, multiplication, and subtraction. The battery also contained two 

mathematical Stroop tasks. 

1. Dot Task (Halberda et al., 2008). This computerised task administered via laptop 

assessed the specific numerical ability to estimate large numerosity. Stimuli and 

parameters have been provided by the author of the task, Dr. Justin Halberda. The 

trials consisted of arrays of yellow and blue dots mixed together flashing on the 

screen for 400 ms (see Appendix 3 for a sample trial). There were 55 trials with ratios 

ranging between 0.33 and 0.66; 115 trials had ratios ranging between 0.66 and 0.83 

and in 80 trials ratios ranged between 0.83 and 0.89.The trials were administered in 

random order. The task required to judge which of the two arrays had more dots. 

Responses were given by pressing the "F" key for more yellow, "J" for more blue. To 

facilitate response, the keys on the keyboard were colour coded. After response, the 

next trial was shown by pressing the space-bar. The 250 trials were divided in 5 blocks 

of 50 trials. At the end of each block it was possible to pause the test and take a break 

from it. If the students wanted to continue they had to press the space-bar to start a 

new block of trials. The Weber Fraction measure derived from this assessment was 

the acuity of the ANS (Approximate Number System) (see Halberda et al., 2008 

method section). Cronbach alpha in this test was .89 with split half of .74. 
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2. Number Line (Opfer & Siegler, 2003). The task assessed estimation of numerical 

magnitudes and was in pen and paper format. Participants were shown an A4 paper 

with a line 25 cm long drawn in the middle with the extremes marked 0 and 100 

(sample in Appendix - 4). The task required to estimate the position of a series of 

integers along the line. The 20 numbers to be estimate were presented with same 

order to all participants as follow: 25, 75, 50, 20, 5, 11, 17, 22, 29, 33, 40, 44, 95, 57, 

60, 65, 71, 78, 83, 86. The choice of the range 0-100 was driven to make sure that the 

task was suitable for 16 year-olds and that students were able to perform the task 

within this range. Administration mode and stimuli were the same used in the 

assessment of the US twins of the Western Reserve Reading Project Math. This would 

have given comparable data for the Number Line in different twin samples. In the 

instructions given prior to the test trials, students were shown an A4 sheet displaying 

the line divided in 10 portions (Appendix - 5) and did one practice by estimating the 

number 50. Scores were the mean absolute difference between the correct location 

of the number on the line and the point of estimation made by participants. Cronbach 

alpha in this assessment was .75 with split half .29. The low split half correlation was 

probably due to the presentation order. The second half of the trials contained more 

numbers with larger magnitudes compared to the first half. Magnitude comparison in 

the higher range can be more sensitive to fluctuation in estimation as the numbers 

are represented "compressed". The presentation order was modified in the final 

version of the task, with large and small magnitudes randomly and evenly allocated. 

This improved the split half of the final version to .87 (section 4.3.3.2). 

3. Dot Matching task. This computerised task assessed estimation of small and large 

numerosities. The task was available online at the website of our collaborators in 

Hong Kong:  http://lab.kctam.com/stroop. The 36 stimuli consisted of arrays of dots 

presented with a number on the side (see Appendix - 6 for sample trial). Numbers 

and dots ranged between 1 and 9. Half of the trials were congruent (the number 

matched the dots) and half incongruent. Half of the trials had the numbers of the 

right-side and the dots on the left-side. The program also varied the spread and 

layout of the dots across participants. Students had to judge if the number matched 

the dots in the array. Responses were given by pressing the "J" for a match, "F" if 

there was no match between dots and numbers. For left-handed participants the keys 

http://lab.kctam.com/stroop/
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were reversed. To avoid confusion with the responding keys, an A4 sheet with a 

reminder of the response keys was placed next to the screen. After response the next 

trial followed without delay. Time out for response was 8 seconds, but students were 

encouraged to answer as quickly as possible. To start the test students had to provide 

their date of birth and handedness, after which the program generated a unique log-

in. There was a set of on screen instruction and 4 practice trials with feedback. The 

practice could be repeated if needed. One point was awarded for each correct 

response, incorrect answers received zero points. The first 4 test trials allowed to 

adjust to the task therefore they did not concur to the calculation of the final score. 

Maximum score for this task was 32. Reaction time and accuracy on response were 

recorded. However, due to the slow internet connection and slow download times 

experienced during the administration of the task, reaction time was not used in the 

analyses. For the purpose of the analyses, proportion of correct answers computed as 

the total of correct answers divided by 32, was derived for each participant. Cronbach 

alpha in this assessment was .93 with split half .82. 

4. Reaction Time (Deary et al., 2001). This task was a measure of general cognitive 

ability - speed of processing. It was programmed in E-Prime 2 following the procedure 

described in Deary et al. (2001) and was administered via laptop. The trials consisted 

of a single number presented in the middle of the screen. The computer program 

generated random sequences of the numbers 1, 2, 3 and 4 repeating them 10 times 

each (for a total of 40 trials) with a random interval of 1, 2 and 3 seconds; the 10 trials 

displaying the same number had an equal number of 1 second, 2 seconds and 3 

seconds intervals. The task required to press as fast and accurately as possible the key 

corresponding to the number appearing on the screen. The responding keys were: X = 

1, C = 2, B = 3, N = 4. In order to facilitate response the responding keys had stickers 

with the corresponding numbers. Reaction time and accuracy were recorded. Each 

correct answer was given one point, incorrect answers scored zero. To correct for 

speed-accuracy trade off effects in the analysis we used Efficiency (median Response 

time/proportion of correct response). Cronbach alpha in this assessment was .96 with 

split half .94. 
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5. Corsi Tapping Block (Corsi, 1972; Pagulayan et al., 2006). This test assessed non-

verbal visuo-spatial short term memory. During phase 1 the test was administered 

using the Corsi Block apparatus. This consisted of a 25cm X 20cm wooden block with 

nine 3.1cm cubes placed as in Figure 4.1. The procedure and apparatus for this task 

are described in Pagulayan et al. (2006).  

 

 

 

 

 

 

 Briefly, the experimenter tapped the cubes in predetermined patterns. The 

patterns were the same for all participants. Students had to reproduce the patterns 

or sequences by tapping the cubes back in the same order. The list of sequences and 

administration test rules are shown in Table 4.1. The number of cubes tapped 

increased up to a maximum of nine or until participants failed to correctly reproduce 

5 sequences with the same number of tapping. Each level had a maximum of 5 

sequences. One point score was assigned for each correct sequence. Maximum score 

for this test was 30. Cronbach alpha in this assessment was .75 with split half .40. 

 

 

 

9

9 

6

6 

6 
5

5

 

5 

3

3 1

1

1 

8

  

8 

4

4

4 2

  

2 

7

7

7

 

7

7

7 

Figure 4.1:  Corsi Block apparatus 
 
The numbers are not visible to 
participants. They can be seen 
only by the experimenter and are 
used to determine the pattern of 
tapping.  
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Table 4.1                                                                                                                                                                                                                                                
Corsi Block tapping sequence  - Phase 1 of testing    

Level 4 Level 5 Level 6 Level 7      Level 8      Level 9 

4 sequences 5 sequences 6 sequences 7 sequences 8 sequences 9 sequences 

 3 2 4 9  3 4 8 7 5  5 6 8 1 9 4   5 4 1 6 3 9 7  1 4 7 2 8 3 6 9  3 7 4 1 9 2 5 6 8 

 1 7 6 5  8 1 5 3 6  4 1 6 7 8 2   7 1 9 3 4 6 2  5 9 3 7 2 1 8 4  7 5 2 8 6 4 1 9 3 

 3 5 7 1  6 4 5 2 9  2 5 9 6 3 1   9 5 3 6 8 1 7  7 6 9 3 1 5 4 8  9 5 3 7 1 2 6 4 8 

 6 8 4 9  3 1 7 2 4  7 9 2 5 1 3   2 6 8 1 4 9 5  4 2 1 3 9 5 7 8  6 3 7 4 2 5 1 9 8 

(5 2 6 4) (4 9 3 6 2) (8 6 1 4 3 9)  (2 9 1 7 4 8 3) (9 3 1 4 2 6 5 7) (5 8 6 2 9 1 4 3 7) 
 

The first level starts with a sequence of 4 numbers/items. This is an appropriate level of 

difficulty for 16 year-olds. Each level is successfully completed if 4 sequences are 

reproduced correctly. Five points score are awarded for each level successfully 

completed. The sequences in brackets are administered only if one of the first 4 is 

reproduced incorrectly. If all the first 4 sequences are successfully reproduced, one point 

for the sequence is bracket is credited. The test is discontinued after failure to reproduce 

all the 5 sequences in one level. 

 

 

6. Problem Verification Task: This test was a timed task assessing mathematical 

fluency. It was programmed in E-Prime 2 following the procedure described in 

Murphy & Mazzocco (2008) and it was administered via laptop. The stimuli consisted 

of 88 arithmetic problems as follow: 14 additions (7 small double-digit and 7 large-

three or four digits operands); 14 subtractions (10 small single and double-digit 

operands, 4 large three or four-digit); 14 multiplication (7 small single digit, 7 large-

two and three-digit operands); 14 divisions (7 small one or two-digits, and 7 large two 

and three-digits); 32 fraction (12 additions and 20 equations). The problems were 

presented on screen in a fixed sequence together with a proposed answer. The task 

required to judge whether the answer was correct or not; the proposed answers 

were correct half of the times. Response was given by pressing the keys "T" for 

correct, "Y" incorrect, "U", don't know. In addition, participants used the same keys to 

rate how confident they were about their response: "T" confident, "Y" not confident, 

"U", don't know. The responding keys were colour coded to facilitate response: T was 

green, Y was red and U yellow. An A4 sheet with the coloured letters T, Y, U and their 

meaning for response was placed next to screen as reminder. After response was 

given the next trial followed without delay. One point was given for correct 

responses, the incorrect and "don't know" answers received zero point. The ratings 

on the confidence of response were coded as 1 = confident, 2 = not confident, 3 = 
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don't know. The task had on screen instructions and two practice trials. The program 

recorded accuracy and reaction time on correct responses. Accuracy was used for the 

analyses. Cronbach alpha in this assessment was .91 with split half .84. 

7. Arithmetic Problems. This test assessed mathematical fluency. It was composed of 

3 separate subtests: 20 single digits addition and multiplication problems, 20 

subtractions (10 single digits and 10 with 1 double digit operand). The tasks were 

available online on the website: http://lab.kctam.com/stroop. The arithmetic 

problems were presented sequentially on screen together with a proposed answer. 

Students had to judge whether the answer was correct or not, within 8 seconds time 

limit. Right handed participants responded by pressing "J" for correct, "F" for 

incorrect. The keys were reversed for left-handed participants to allow correct 

responses with the dominant hand. Each sub-test started with its own on-line 

instructions followed by 4 practice trials. To avoid confusion with the keys to be 

pressed, a reminder with the responding keys was placed next to the screen. 

Accuracy and reaction time on response were recorded. The analyses were carried 

out on accuracy scores. 

8. Numerical Stroop tasks - Physical and Numerical Comparison tests were taken from 

the website: http://lab.kctam.com/stroop. The stimuli consisted of two double digit 

numbers presented next to each other in the middle of the screen. The font-size of 

one of the numbers in the pair was always bigger than the other. The task involved 

identifying a larger number in the pair, according to its size in the physical 

comparison; or in numerical value (regardless the size) in the numerical comparison. 

Response was given by pressing "J" if the numbers larger in magnitude or larger in 

physical size were on the right side of the screen. Participants pressed "F" if the 

numbers larger in size or in magnitudes were on the left side of the screen. The keys 

were reversed for left-handed participants. Time out for response was 8 seconds. 

Both tests started with their own instructions followed by 4 practice trials; 

participants completed 52 numerical and 52 physical comparisons. Accuracy and 

reaction time on response were recorded. 

 

 

http://lab.kctam.com/stroop/
http://lab.kctam.com/stroop/
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4.3.3.2 Measures in Phase 2  

 The analysis of the data collected from Phase 1 informed the choice of tests to 

be used in Phase 2. The online tests of addition, subtraction, multiplication and the 

two Stroop tasks revealed a ceiling effect in participants’ response. The small 

variation in the distribution of the above measures did not add new information to 

the analysis. It was decided to limit the duration of the whole battery to 30 minutes in 

order to maximise participation in the main TEDS data collection. With these time 

constraints, it was decided to keep only Problem Verification Task as a test of 

mathematical fluency, as it showed the best distribution and validity. For this reason, 

the 3 tests of arithmetic problems were dropped from the battery, together with the 

two Stroop tasks.  

 The six remaining tasks and a new test were programmed and assembled in a 

web-based battery found online at: http://e-businesssystems.co.uk/teds. This 

website was used only for Phase 2 of the pilot testing. In order to be programmed 

online, the six tests used in Phase 1 were modified from the description given in 

section 4.3.3. Therefore, the following description pertains only to the changes made 

to the six tests from Phase 1 and to the new test 'Understanding Numbers'.  

1. Understanding Numbers. This test was introduced in the on-line battery as further 

assessment of mathematical skills according to the standards of the UK National 

Curriculum. Test items were word problems selected from the nferNelson booklets 

(level 1 to 8) (NFER-Nelson, 1994, 1999, 2001), from the mathematical component 

"understanding numbers". The solution of the problems required understanding of 

the relationship between numerical expressions and patterns of numbers, 

understanding of mathematical operations, as well as of relationships among 

mathematical operations (e.g., subtraction is the inverse of addition). One example of 

a trial: "Work out the value of x: 6x + 9 = 8x. Click on your answer" - 5 options were 

given as possible responses. A graphic sample of a test trial is provided in Appendix 7. 

The test comprised 27 items arranged in increasing level of difficulty. Difficulty was 

assessed by the percentage correct on the National Curriculum standardisation 

sample (reported in the Group Record Sheets; NFER-Nelson). 20 items were already 

http://e-businesssystems.co.uk/teds
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been used in the web assessment of TEDS at age 12 and for these the level of 

difficulty was assessed taking also into account the percentage of accuracy in 

response received during the previous TEDS web testing. The 27 questions were 

organized in 3 levels of 9 items each. Each level was further divided into 3 sub-levels 

of items with increasing difficulty. All participants started with the same question of 

medium difficulty. The subsequent presentation order was determined by 

participants’ answers: answering correctly to the problems of one level advanced the 

test progressively to the more difficult questions; and items from the easier levels 

were credited as correct. If the problems within a level were answered incorrectly the 

test branched down to easier levels. The task stopped when three questions in a row 

were answered incorrectly. The test started with a set of instructions and there was 

no practice trial. For some problems, the answers needed to be typed in; others had 

multiple choice answers and response required to click on the correct answers. For 

some problems, a simple calculator appeared on the screen alongside the question. 

After response was given, participants submitted their answers by clicking on the 

provided "ok" button. A new screen presented the option to progress to the next 

question or take a break and resume the test later. Maximum response time was 5 

minutes and prompts encouraged participants to answer during this time. If no 

answer was given during the 5 minutes, participants were given the choice to go to 

the next question or take a break from the test. One point was awarded for each 

correct/credited answer; no points were given for timed out or incorrect answers, 

therefore maximum score on this test was 27. The program recorded accuracy and 

time of response computed from the onset of the problem on screen to the 

submission of the answer. Cronbach alpha in this assessment was .82 with split half 

.61. 

2. Dot Task. The length was shortened from 250 to 150 trials. The reduction was 

carried out by the author of the task on the basis of analyses conducted on the data 

from Phase 1. The 150 stimuli were chosen from the original 250, their ratios 

maximised performance of this shorter version. The length of the original test (250 

trials) was split in 3 and each third was correlated with the length of the whole test. 

The subset of stimuli chosen yielded a correlation of .91 with the full length test. It 

was also decided to administer the test in a fixed sequence to reduce eventual fatigue 
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and disadvantages deriving from random sequences where more difficult trials were 

presented towards the end of the test. The number of dots ranged between 5 and 21 

for each colour with ratios organised in 8 bins with the lowest ratio of each bin 

serving as the top boundary of the following bin. The bins’ ratios were organised as 

follow: 11 trials with a ratio randomly chosen between 8/7 and 7/6; 26 trials between 

7/6 and 6/5; 28 trials between 6/5 and 5/4; 29 trials between 5/4 and 4/3; 26 trials 

between 4/3 and 3/2; 18 trials between 3/2 and 2; 8 trials between 2 and 3; 4 trials 

between 3 and 4. In all trials the average size of yellow dots was equal to the average 

size of blue dots. With this display, the array with more dots also occupied more area 

on the screen. Such change in the design of the task may have induced responses to 

the stimuli on the basis of the area rather than numerosity. However, studies have 

shown that, if required, adults can suppress response on the basis of continuous 

properties of a stimulus (area) and respond to numerosity (Nys & Content, 2012). The 

decision to control for size only and not for area, was taken on the basis of previous 

unpublished studies conducted by the author of the Dot Task. These studies showed 

no changes in individuals' Weber Fractions if calculated on trials controlled for area 

only, size only or both provided that the task was able to measure fine grain 

individual variation (personal communication from the author of the task). A greater 

sensitivity of the task could have been reached with a greater number of ratios. After 

the reduction of the number of trials, controlling only for one parameter gave the 

possibility to increase the number of ratios (the previous version of the task used 

three ratio-bins). The exposure time remained the same (400 ms) but the responding 

keys were changed to “Y” for more yellow and “B” for more blue dots. Maximum time 

allowed for response was 8 seconds. If no answer was given during this time, the 

answer was recorded as wrong and a message appeared on the screen to encourage 

pressing the space bar to see the next trial. The message disappeared after 20 

seconds and the next trial was displayed only after a press of the space-bar. There 

was a two item practice trial, with feedback and an option to repeat the practice. At 

the end of the practice trial it was made clear that the task measured speed as well as 

accuracy and invited participants to respond as quickly as possible. The task was 

divided in three blocks of 50 trials. At the end of each block it was possible to take a 

break and resume the test later. The test recorded accuracy and reaction time for 
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each trial. A Weber Fraction score for each individual was derived using the method 

described in the supplementary information of Halberda et al. (2008). In addition, 

reaction time on response was used for a further correction. The Weber Fraction for 

each participant was derived only on trials not considered outliers according to the 

Jolicoeur method (Van Selts & Jolicoeur, 1994). On average, 3.9 trials were removed 

from each performance, with a minimum of 0 and a maximum of 10. Cronbach alpha 

in this assessment was .88 with split half .80. 

3. Number Line. The test was an online adaptation of the pen and paper version 

administered during the first wave of testing. As documented in many studies (e.g., 

Siegler & Booth, 2004; Booth & Siegler, 2006), at 16 years most children rely on linear 

representations of numerical magnitudes on a mental number line from 0 to 1,000. 

Consistent with this finding, the analysis of the pen and paper data from Phase 1 of 

testing revealed a linear trend in the pattern of estimation. Moreover the data 

collected using estimations of numerical values from 0 to 100 did not add any 

predictive value to the analysis. For this reason, it was decided to change the 

estimations range from 0 to 1,000 for the on-line battery. In this new version, a line, 

with the left edge marked with “0” and the right edge marked with “1000” was 

presented in the middle of the screen with a numeral above the line. The task 

required participants to indicate where they thought the numeral should be, by 

dragging and releasing a red cursor along the line. The twenty-two numbers to be 

estimated were taken from Opfer and Sigler (2007) and were arranged in random 

order with low and high magnitudes evenly spread. They were presented in the same 

order to all participants as follow: 246, 179, 818, 78, 722, 150, 366, 122, 738, 5, 147, 

938, 18, 606, 2, 34, 754, 100, 56, 163, 486, and 725. The choice of a fixed order was 

driven to minimise advantages - favouring accuracy - that may have been produced 

by easier random presentations (where numbers in the same range were presented 

in close trials). Total length of the line was 500 pixels with each unit 0.5 pixels long, 

therefore accuracy in response recorded to the nearest 0.5 units. The marks on the 

line were converted into numbers based on number of units (pixels); the scores were 

calculated as the mean of the absolute deviations from the correct position of the 

numbers on the line. This test allowed only one practice trial to reduce the effects of 

training/learning as this has been shown to positively affect estimation accuracy. At 
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each screen participants were given the option to continue with the task or to resume 

it later. The program recorded the scores as described as well as response reaction 

time. Cronbach alpha in this assessment was .87 with split half .87. 

4. Dot-Number Matching. The changes implemented in this task involved the 

presentation and exposure of the stimuli. The stimuli consisted in static pictures 

resembling the same arrays presented in the first wave of testing. Differently from 

the first wave of testing, the spread and arrangement of the dots was also the same 

for all participants. To prevent participants from counting the dots, especially in the 

estimation of large numerosity, exposure of the stimuli was reduced to 2 seconds; the 

instruction however, invited participants to respond as quickly and accurately as 

possible. There was no option to pause the test. Cronbach alpha in this assessment 

was .85 with split half .78. 

5. Reaction Time. The only change implemented in the task was in the presentation 

and the change of the responding key to adapt the test for online testing. The 

numbers 1, 2, 3 and 4 appeared 10 times each in the same randomised order for all 

participants. The interval between numbers was also maintained the same: the 

interval of 1 second between presentations was repeated 14 times and the interval of 

2 and 3 seconds was repeated 13 times each. Instructions reminded participants to 

respond as quickly and accurately as possible. The responding keys were changed 

from letters to the numbers on the keyboard due to technical constraints. Cronbach 

alpha in this assessment was .94 with split half .91. 

6. Corsi Tapping. The test was an online adaptation of the pen and paper version 

administered during the first wave of testing. The number of levels remained the 

same. The total number of trials was reduced from 30 to 18 based on an internal 

validity analysis conducted on data from Phase 1. The list of sequence and the 

administration rules are shown in Table 4.2. 
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 The trials of the online version showed on the screen an image, depicting a 

black rectangle similar to the original Corsi apparatus, with 9 small cubes-blocks 

arranged inside as shown in Figure 4.2.  

 

 

 

 

 

 The cubes lit up turning yellow for 1 sec in a patterned sequence, with a 1 sec 

interval between each cube. Participants had to reproduce the pattern by clicking on 

the cubes with a mouse. Each cube had a number from 1 to 9 associated with it, so 

that each sequence could be identified with the numerical string shown in Table 4.2 

Table 4.2                                                                                                                                                                                                                                                
Corsi Block tapping sequence  - Phase 2 of testing    

Level 4 Level 5 Level 6 Level 7      Level 8      Level 9 

4 sequences 5 sequences 6 sequences 7 sequences 8 sequences 9 sequences 

1 7 6 5 3 4 8 7 5 5 6 8 1 9 4 5 4 1 6 3 9 7 1 4 7 2 8 3 6 9 3 7 4 1 9 2 5 6 8 

3 5 7 1 8 1 5 3 6 4 1 6 7 8 2 7 1 9 3 4 6 2 5 9 3 7 2 1 8 4 7 5 2 8 6 4 1 9 3 

5 2 6 4 6 4 5 2 9 7 9 2 5 1 3 2 6 8 1 4 9 5 7 6 9 3 1 5 4 8 5 8 6 2 9 1 4 3 7 

The number of items per level has been reduced based on reliability analysis. The 

difference in loss of reliability items deleted was very small for all items. We retained the 

items that generated the least of correct responses, although for some item these 

differences were of one or two responses. Each level is successfully completed to the 

correct sequence of 3 trials. The test is discontinued after failure to reproduce all the 3 items 

in one level. 

 
 

Figure 4.2:  Online image Corsi 
Block display 
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(the numbers were not showing on the screen). 6 difficulty levels were administered, 

with three sequences within each level. In hardest level, participants had to 

reproduce patterns of 9 numbers. Immediately after the last item of the sequence 

was presented, a text prompt appeared on the screen inviting participants to start 

reproducing the sequence; they responded by clicking on the blocks in turn, using a 

mouse. As participants clicked on the block, this turned yellow and remained yellow 

until the next block was clicked. Clicks in the black areas between blocks were not 

registered. Responses were irreversible. After each response participants were 

presented with a screen with two buttons to choose either to continue with the test, 

or to come back to it later. The test had audio-visual instructions and 3 item practice 

trial which could be repeated until the participant was familiar with the task. If 

students correctly completed at least one sequences in a level, they progressed to the 

first item of the next level. The test was terminated when all the sequences in the 

same level were reproduced incorrectly. One point was assigned for each sequence 

correctly reproduced, with maximum score of 18. There was no time limit for 

response. The program recorded accuracy and reaction time for each trial. Cronbach 

alpha in this assessment was .75 with split half .63 

7. Problem Verification Task. The off-line version of the task was implemented online 

with the only change of dropping the confidence rating of response. Besides to time 

constraints, this decision was driven by the fact that this rating did not add useful 

information to the analysis: the ratings did not produce any variability as ~90% of the 

students answered 1 = confident. At the bottom of the screen the letters T, Y, U, and 

their meaning were displayed as reminder for response. Cronbach alpha in this 

assessment was .92 with split half .87. 

 

4.3.3.3 Final version of the Battery 

 The tests described in the above section, were administered to the same 

sample of students for on-line validation purposes. Following this new wave of 

assessment some tests were modified and optimised for web testing. For some of the 

test the total duration needed to be reduced. The description that follows is limited 

to the modification implemented. 
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1. Understanding Numbers. The total number of items was reduced from 27 to 18. An 

internal reliability analysis conducted on the data of Phase 2 of testing, revealed that 

the differences in reliability from dropping any of the items was minimal. It was 

decided to drop the first item of each level. Each level of difficulty comprised 2 items 

and the test branched up or down after two questions. The discontinue rules 

accommodated this change: the test was discontinued after two consecutive items 

answered incorrectly.  

2. Corsi Block. The only change implemented in this test was the reduction of the 

total number of items from 18 to 12. The internal validity analysis on the data of the 

Phase 2 of testing showed almost no change in reliability by dropping any of the 

items. For this reason it was decided to remove the first sequence of each level. As a 

consequence of the reduced numbers of items on each level, the discontinue rule 

applied after two incorrect answers at the same level. 

3. Problem Verification Task. The total number of items was reduced from 88 to 48. 

The final version of this task consisted of 24 fraction problems and 6 of each: 

multiplication, division, subtraction and addition problems. The selection of the items 

was based on correlation and reliability analysis conducted on the data of Phase 2 of 

testing. The test composed of the final 48 items correlated .97 with the test 

composed of 88. Cronbach alpha on the 48 items was .86 with split half of .79. In 

order to unify the responding keys across the battery, responding keys were modified 

to "F", "J" or "K" respectively for “correct”, “incorrect”, and “don’t know”. The 

reminder of which keys to press was shown at the bottom of the screen. A sample of 

a test trial is provided in Appendix 8. Instructions reminded participants to respond as 

quickly and accurately as possible. Maximum time for response was changed to 10 

sec and a time bar added on the top-left corner of the screen reminded participants 

of the elapsing time. If no answer was given during this time the next trial followed. 

The next item was presented immediately following a response. After the 24th trial 

participants were presented with a screen with two buttons that gave the option 

either to continue with the test or to take a break.  
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4.4 Results and discussion of Phases 1 and 2 

 The main aim of this study was to create a valid battery with the power and 

sensitivity to predict mathematical performance and achievement from measures of 

number sense abilities in the presence of other general cognitive abilities. The 

analysis presented is not aimed at addressing a specific hypothesis, but rather to 

evaluate the predictive validity and reliability of the measures employed in the newly 

developed battery.  

 It was important that in the process of implementation on the web and length 

reduction, the measures would not lose any of their reliability. The internal validity of 

the measures was accurately monitored throughout the process; overall the 

measures were accurately translated from different formats into a bespoke online 

tool of assessment. The second point of attention was that the measures employed 

were consistent with existing literature. In other words, we needed to make sure that 

the measures tapped into the cognitive domains of interest for future analyses. 

4.4.1 Identification of outliers and transformation of the variables 

 Comparison of the students' performance between the online and one-to-one 

administration of the computerised tests was crucial in understanding whether the 

variation in performance was due to the change of administration modality, or due to 

other confounding variables. For the 75 students who completed both waves of 

testing, new variables were derived computing the difference between Phase 1 and 

Phase 2 testing scores as follow: for Reaction Time task this variable was created on 

both Accuracy and Efficiency scores; for all the remaining variables the variable was 

created only on the accuracy scores. As Corsi Block and Number Line were in pen and 

paper format during Phase 1 of assessment, the comparison of the tests scores 

between Phase 1 and Phase 2 could have been affected by the change of format. For 

this reason no variable was created for these two tasks. For Number Line and Corsi 

Block, the outlier scores were identified if laying outside +/- 3 standard deviations. 

The new computed variables were plotted and observations falling outside 3 standard 

deviations were used to identify participants with inconsistent performance between 
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the two waves of testing. Outlier cases were identified in the frequency tables for 

each variable and removed on both on-line and one-to-one tests, for that variable.  A 

total of 25 cases (on different variables) were excluded from the analyses. Two more 

cases were excluded from Number Line and Dot Task analysis as their z-scores were 

above 3 standard deviations  

 The analyses were conducted on standardised scores with the exception of 

Weber Fraction and Reaction Time which is reported as Reaction Time Efficiency (see 

section 4.3.3.1). The GCSE were provided in grades ranging from A* to E. These 

grades were scored from 6 to 1 assigning 6 to the highest score (A*) to 1 for the 

lowest (E). The GCSE were therefore transformed in scores as follow; 6 = A*; 5 = A; 4 

= B, 3 = C; 2 = D; 1 = E. These scores were standardised to carry out the analyses. 

4.4.2 Results summary from Phase1  

 Table 4.3 shows the correlation between measures of general cognitive 

abilities and specific number abilities with mathematical scores. For the purposes of 

the analysis, Fraction problems were analysed separately from the total score in the 

task, as the solution of fractions requires conceptual knowledge (Hecht, 1998), as 

opposed to the procedural knowledge required for the rest of problems in the task. 

Mathematical performance indexed by the GCSE significantly correlated with the 

general cognitive measures: positively with Corsi and negatively with Reaction time 

efficiency (lower efficiency scores index better performance, hence the negative 

correlation with GCSEs). However, mathematical performance did not correlate with 

the two number sense measures. Weber Fraction negatively correlated with 

mathematical fluency, assessed by the Problem Verification Task (smaller Weber 

Fraction scores indicate more accurate performance on the Dot Task). Number Line 

significantly correlated only with Weber Fraction, and not with any of the 

mathematical scores. This correlation was positive as for both measures smaller 

scores indicate better performance.  
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4.4.3 Test re-tests Phase 1 and 2 of testing 

 A reduction in test re-test correlation between Phase 1 and 2 of testing was 

expected since all the tasks' format, administration parameters and length changed. 

during the two phases However, despite all the modifications, the measures showed 

significant correlations between the two waves of testing. The tasks with the least 

changes in administration parameters showed the highest correlations. A summary of 

these correlations is shown in Table 4.4.  

 

 

 

Table 4.3 

Descriptive statistics and correlations among measures of general cognitive ability, 

specific numerical ability, and mathematical performance – Phase 1 of testing.                       

 Measure        Mean (SD) 1 2 3 4 5 6 7 8 

1 GCSE scores  4.5 (    .82) --        

2 Fraction  .62 (    .20)   .62** --       

3 Problem Verif. .73 (    .15)  .55**   .91** --      

4 Weber Fraction .25 (    .09) -.17  -.34**   -.33** --     

5 Dot Matching .90 (    .07) .14 .18   .22* -.17 --    

6 Number Line 3.37 (  1.23) -.21 -.05 -.04   .23* -.02 --   

7 Corsi  .67 (    .08)   .30
** 

.14 .12 -.16 .08 -.10 --  

8 Reaction Time Eff. 596.82 ( 84.30) -.27** -.24* -.21*   .09 -.13 .11 -.14 -- 

 *p<.05;  **p<.01 (2-tailed test)    

SD = Standard deviation; Reaction Time Eff. = Reaction Time Efficiency (computed 

as median reaction time of correct answers/proportion of correct answers); Problem 

Verif. = Problem Verification Task total score. Means and standard deviations for 

Fraction, Problem Verification, Corsi and Dot-Matching are reported for 

unstandardised proportion of correct answer. For GCSEs, Weber Fraction, Number 

Line and Reaction time efficiency means and standard deviations are reported on 

the unstandardised accuracy scores.  
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Table 4.4                                                                                       
Test- retest coefficients between  Phase 1 and 2 of 
testing 

Measures r test re-test N 

Fraction    .71** 63 

Problem Verificat. (tot.)    .60** 66 

Weber Fraction    .43** 67 

Dot Matching .12 67 

Number Line  .30* 64 

Corsi    .57** 61 

Reaction Time Efficiency    .41** 67 

**p <.000; *p <.05 

r = correlation coefficient; N = number of cases; 

Problem Verificat. (tot.) = Total score for the Problem 

verification task; Fraction = Fraction problems from the 

Problem verification task. The correlation between the 

Phase 1 and 2 of testing of the Dot Matching task is 

non-significant. 

 

 

 Only the Dot Matching task had a non-significant re-test coefficient. It has to 

be noted that during the first phase of the pilot, when the Dot Matching task was 

downloaded from the website in Hong Kong, students experienced problems with the 

stimuli-images. This was probably due to internet bandwidth issues and the image 

size of the stimuli. Other tasks downloaded from the same website were not affected 

as the stimuli were only text based. This technical problem was completely resolved 

in the second wave of assessment. 

 

4.4.4 Results summary from Phase 2 of testing  

 Means and standard deviations of the measures used in Phase 2 of testing are 

shown in Table 4.5. It can be noted that estimations on the Number Line in the range 

0-1000 showed an average mean greater than in the range 0-100 (43.85 vs 3.35), the 

standard deviation was however smaller in Phase 2 compared to Phase 1 (the SD = 

1.23 of Phase 1 is 1/3 of the average mean, while the SD = 17.30 of Phase 2 is less 

that 1/3 of the average mean). This shows that by small amount, the error in 
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estimation was less spread when students did the test online. Perhaps this indicates 

that the online task generated a more consistent performance-less variability of the 

estimation error. However, the two versions of the Number Line differed in both 

administration mode and range of the magnitudes of estimation, so inferences on the 

less variability of the errors cannot be made in this occasion. This point is also 

supported by the modest test re-test correlation (.30). On the other hand, consistent 

with existent literature, this version of the Number Line task showed a significant 

correlation with mathematical school achievement measured by the GCSEs (-.35).  

 

Table 4.5                                                                                                                                                                                                                      
Descriptive statistics and  correlation among measures of general cognitive ability, specific 
numerical ability and  mathematical performance – Phase 2 of testing                         

  Measures Means (SD) 1 2 3 4 5 6 7 8 9 

1 GCSE scores         4.6 (    .80)     - 
        2 Underst. Numbers .77(      .09)  .48

**
 - 

       3 Fractions .58 (      .21)  .46
**

   .32
**

 - 
      4 Problem Verif. .69 (      .16)  .44

**
   .29

**
    .91

**
 - 

     5 Weber Fraction .36 (      .22) -.04 -.16  -.16 -.31
*
 - 

    6 Dot Matching .77(      .09) -.04 -.10   .11  .11 -.22
*
 - 

   7 Number line 43.85 (  17.30) -.35
**

 -.04  -.26 -.21  .12  -.21 - 
  8 Corsi .50 (      .14)  .26  .15    23

*
  .28

* 
-.17   .08 -.21 - 

 9 React. Time Eff. 645.93 (121.54) -.37
**

 -.22  -.26
*
 -.26

*
  .30

*
 -.04 .24 .03 - 

        **p<.01; *p<.05 (2-tailed test)  
 

SD = Standard deviation; Underst. Numbers = Understanding Numbers total score; Problem 
Verif. = Problem Verification Task total score; React. Time Eff. = Reaction Time Efficiency 
(calculated as median reaction time of correct responses/proportion of correct responses). 
Means and standard deviations for Understanding Numbers, Fraction, Problem Verification, 
Corsi and Dot-Matching are reported for unstandardised proportion of correct answer. For 
GCSEs, Weber Fraction, Number Line and Reaction time efficiency means and standard 
deviations are reported on the unstandardised accuracy scores. The GSCE scores mean is 
calculated assigning values from 1=E to 6=A*. 

  

 The mean of the Weber Fraction scores also showed some difference between 

the two phases of testing. It has to be noted that only in the second phase, reaction 

time was used to correct outlier-trials according to the Van Selts & Jolicoeur (1994) 

method. Similarly to the Phase 1, in this second phase Weber Fraction showed a 

significant correlation with mathematical fluency (with Problem Verification, r= -.31). 

It also showed significant correlation with Reaction Time efficiency (.30) and Dot 

Matching (-.22). It is not excluded that these correlations may have been partially 

driven by the perceptual and timed nature of the tasks.  



 

 

141 

 The GCSE scores showed significant correlations with Reaction Time efficiency 

(-.37) but not with the other measure of general cognitive ability Corsi. As expected 

GCSE scores correlated with all the mathematical tests: Understanding Numbers 

(.48), Problem Verification (.44) and the Fractions (.46).  

 Besides GCSEs and mathematical fluency, the new test, Understanding 

Numbers, showed no significant correlations with any of the measures. It is possible 

that the small sample used in the pilot was not suited for this kind of analysis. It is of 

value to note that this test was adapted from a previous version used in TEDS where 

it successfully assessed mathematical skills.  

 Although the mean and standard deviation of Reaction Time efficiency was 

higher than in Phase 1, the measure still correlated with mathematical achievement (-

.37 as mentioned earlier) and fluency (r= -.26 for both Problem Verification and 

Fraction). Corsi showed significant correlation with mathematical fluency: .23 with 

Problem verification and .28 with Fractions.  

 Overall, this pilot study was successful in selecting and validating measures for 

a new bespoke tool of assessment of mathematics, general abilities and number 

sense skills. The measures implemented online showed reliability and the ability to 

capture different aspects of the mathematical construct. 

 

4.5 Methods and results of Phase 3 

 The pilot study described above dealt with the selection and implementation 

on line of the tests in the mathematical battery. The tests showed consistent internal 

validity throughout this process. However, the tests already piloted needed to go 

through further changes, mainly aimed to reduce the time of the whole battery. 

These changes took place prior to implementation in the final battery just before 

being administered to the twins. The first cohort of TEDS started the online 

assessment with the modified tests as described in section 4.3.2.2.  
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 Although the modification of the tests was guided by the pilot data, internal 

validity needed to be re-examined to assess the effects of these changes to the tests. 

Test re-test reliability analysis was conducted during the pilot study, however, the 

modification of the tests between these two phases could have compromised the 

correlation, for this reason a second reliability analysis was conducted with this 

validation study. 

  

4.5.1 Data collection and analyses 

 Data for the complete TEDS' battery at 16, which also included tests of 

language, reading, and general intelligence, were collected from the sample of 48 

twins, selected as described in section 4.3.1.3. 

Reliability: Intraclass correlations were used to assess the relationship between the 

twins' performance (24 pairs) on the first web assessment and performance on the 

same tests after two months. As the re-test was administered online, this analysis 

allowed investigating stability of the online measurements over time. It was also 

possible to assess if the result of the tests were affected or not by changes in testing 

environment. 

Internal validity: Cronbach alpha coefficients were calculated for the items within 

each test. For the purposes of these analyses only one randomly selected twin in each 

pair was used. The analyses were conducted on all the data collected from the testing 

of the first cohort, over 2,000 twin-pairs.  
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4.5.2 Results and discussion 

 

4.5.2.1 Test re-tests reliability 

 The mathematical battery was created as a bespoke tool of assessment. We 

therefore have no reliability data from previous studies to which to compare the test 

re-test reliability of our measures. However, the test re-retests correlation of the 

battery ranged between .44 and .78, as shown in Table 4.6. The magnitude of these 

correlations is within the range of reliability of many cognitive tests 

 The major changes occurring in the process of online implementation of 

Problem Verification involved the reduction of the items. This task was the least 

affected by changes in format and procedures of administration. Its reliability 

correlation during the pilot was higher compared to other tasks (.60). The re-test 

correlation in the validation study was the highest (.78) and reliable as shown by the 

narrow confidence intervals (Table 4.6). Overall, all other tests showed an 

improvement in test re-test correlation from the pilot. The only test for which it was 

possible to compare reliability was Understanding Numbers. As mentioned in section 

3.3.5, this test was modified from previous versions of the online TEDS assessments, 

to make it age appropriate to 16 year-olds. In previous assessments (at age 12), its 

test re-rest reliability was .92. This validation study reported a strong, although lower 

reliability correlation of .67.  
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 Dot Matching was the only test with a moderate reliability coefficient (.44). 

Although the test re-test correlation improved from the pilot, it is possible that this 

test is particularly affected by extreme scores as shown by the plots of the 

distributions on the test and re-test scores (Figure 4.3). Larger samples may provide 

more accurate estimates for this measure. The other non-mathematical tests showed 

good test re-test reliability with correlations ranging between .65 and .81.  

 

Table 4.6 
 

 

Test re-test reliability correlations with 95% Confidence Intervals. Cronbach 
alpha is calculated on the data from the whole web-assessment at 16 years. 
 

Measures 
Test re-test  from 
validation study 

  

Cronbach 
alpha on all 
TEDS data 
from the 
web-testing 

  r (95% C.I.) N 

 

α N 

Corsi Visuo-Spatial Memory  .64 (.01 - .90) 44 
 

.67 742 

Number Line .50 (.25 - .69) 48 
 

.62 822 

Problem Verification .78 (.64 - .87) 48 
 

.86 776 

Reaction Time (on accuracy) .68 (.48 - .80) 48 
 

  --   -- 

Reaction Time (on time of response) .58 (.35 - .73) 48 
 

.96 728 

Weber Fraction (on accuracy) .62 (.40 - .76) 48 
 

.79 824 

Dot Matching .44 (.47 - .80) 46 
 

  --   -- 

Number Game .67 (.18 - .65) 48 
 

.91 713 

Non Verbal -Raven .72 (.53 - .82) 48 
 

.79 756 

Verbal - Vocabulary .65 (.44 - .78) 48 
 

.81 891 

Language .74 (.54 - .83) 48 
 

.69 818 

Reading Fluency .81 (.69 - .89) 48 
 

.96 836 

Reading Comprehension  .67 (.43 - .78) 48   .72 645 

The 24 twin-pairs repeated the test for the second time two months after the first 

web-assessment. Cronbach alpha is calculated on the data from the first wave 

of web-assessment at age 16. Test re-test on Reaction Time test is calculated 

on accuracy of response and on reaction time of response. Cronbach alpha on 

Reaction Time test is calculated only on time of response because of the speed-

accuracy trade off effects on this task. Weber Fraction validation is conducted on 

the scores of the Dot Task. 

 

 .72 
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4.5.2.2 Internal validity 

The internal consistency of the measures was examined with the Cronbach alpha 

coefficients, shown in Table 4.6. The average alpha coefficient for the mathematical 

battery was high, .78, ranging between .54 and .96. The average Cronbach alpha for 

the non-mathematical tests was .79. The test Understanding Numbers showed an 

internal validity of .91. This result was consistent with the internal validity of the 

previous assessment at age 12 for which the same test yielded a value of .92.      

 

4.5.2.3 Conclusion 

 The results of this validation study showed good reliability and validity of the 

measures in the mathematical battery and in the whole TEDS online battery. Overall, 

the measures had high Cronbach alpha values before being reduced in length. It is 

acknowledged that a high number of items may inflate the value of alpha (Cortina, 

1993), however, after reducing the number of items on all the test, we did not 

observe a drastic decrease in alpha coefficients. This suggests that the modifications 

Figure 4.3:  Plots distribution of Dot Matching during the tests phase (1st graph) 
and re-test (2nd graph). The plot of the re-test shows the same trend of the test 
phase, this plot shows also presence of extreme scores.  



 

 

146 

performed on the tests have not altered the original internal consistency. Also, the 

strong tests re-test reliability correlations suggest stability of the data obtained with 

these instruments.  

 However, Cronbach alpha may not be the best parameter to assess validity. In 

fact, internal consistency can be inflated in tests with branching or discontinue rules 

(Understanding Numbers and Corsi Block) because participants may answer only a 

few questions before being discontinued, for example. Another consideration 

concerns the change of the environment in the re-test phase. Although the twins 

were re-tested on the same battery, online, using a computer, we do not know if 

using a different computer or being in an unfamiliar place has affected performance. 

Also, the whole battery is quite long and breaks are allowed to avoid fatigue; it is 

possible that some children may have felt pressure to finish the battery quickly and 

not have taken breaks or rushed through the tests. This may explain some of the 

extreme scores of some test (Dot Matching). 

 Overall, it can be concluded that the mathematical battery was successfully 

implemented online. This instrument can be considered a reliable tool to gather data 

via Internet.  
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Chapter 5: Mathematics and Number Sense (or Number 

Senses?) across the school years: a multivariate longitudinal 

investigation in 7 to 16 year old school children* 

 

5.1 Abstract 

 Variation in number sense (awareness about numerosity, numbers and their 

relationships) correlates with mathematics. We used Weber Fraction scores (from a 

non-symbolic numerosity discrimination task) and  Symbolic  magnitudes estimation 

scores (from the Number Line task) to assess number sense in a sample of 2,382 16-

year-olds, who were also assessed on measures of mathematics, verbal and non-

verbal ability at ages 7, 9, 10, 12, 14, and 16. Although Weber Fraction and Number 

Line scores correlated 0.22 with each other, they correlated 0.33 and 0.47, 

respectively, with mathematical performance. We also found significant correlations 

between both number sense measures at age 16 and mathematics as early as age 7. 

However, after controlling for the contemporaneous mathematical performance (age 

16), only mathematics at age 7 predicted Weber Fraction; and none of the earlier 

measures of mathematics predicted Number Line scores. After controlling for 

mathematical ability, reading and non-verbal ability at earlier ages were not 

significant predictors of number sense at 16. Our results suggest that the two number 

sense abilities may be largely supported by distinct processes and have a different 

relationship with mathematics across development. For example, better ability to 

approximate numerosity (measured by a Dot task) may bootstrap early mathematical 

development by facilitating the association between numerosity and its symbolic 

meaning. This ability may be bootstrapped by mathematical training later in 

development.  No sex differences were found in the means or variances in number 

sense, suggesting that any observed mean differences in mathematical achievement 

do not relate to number sense.   

 

                                                 
*

 This Chapter has been adapted from Tosto et al. (in preparation-a) 

 



 

 

148 

5.2 Introduction 

 In day to day situations, approximate solutions to problems are often 

satisfactory. For example, determining whether the train is more crowded in the 

morning than in the afternoon, does not require counting all the people in; a 

judgment in terms of more or less suffices. Similarly, we may spot an error in our bill 

if the total is different from the ball-park figure we had in mind. These are two 

examples of estimation. The first case is a process of non-symbolic estimation as it is 

carried out on discrete items; this process does not require any knowledge of 

numbers and their symbols. The second process is a symbolic estimation as involves 

numerical comparison and requires numerical knowledge.  

 Recent literature on mathematical development suggests that non-symbolic 

quantity estimation and discrimination abilities may provide the basis for the 

development of mathematical ability. These "number sense" abilities (Dehaene, 

1997) may have evolutionary origins.  For example, basic numerical perceptions and 

discriminations have been reported for various species of animals (e.g.: Stevens, 

Wood, Hauser, 2007; Wood, Hauser, Glynn, Barner, 2008; Al Aïn, Giret, Grand, 

Kreutzer, Bovet, 2009; Agrillo, Piffer, Bisazza, 2011; Reznikova & Ryab, 2011) and for 

human infants (Feigenson, Carey, Spelke, 2002; Xu, 2003;  Xu &Spelke, 2005; Jordan, 

Suanda, Brannon, 2008; Libertus & Brannon, 2010). Despite this evolutionarily 

preserved ability to perceive quantity, a large amount of individual variation in 

judgment of numerosity (i.e. number of items grouped together) seems to exist in 

humans. For example, some adult individuals are able to discriminate without 

counting between displays of discrete visual or auditory stimuli, even when the ratio 

between the smaller and the larger numerosity is very small (9:10) (Halberda & 

Feigenson, 2008). Estimation skills are shown to progressively improve with 

development, leading to the ability to discriminate larger numerosities and smaller 

ratios (Xu, 2003; Xu & Arriaga, 2007, Halberda & Feigenson, 2008).  

 The same ratio dependency that is observed in comparisons of non-symbolic 

numerosities, is present in comparisons of numerals (which requires mapping 

between symbolic number representations and their meaning in terms of 
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numerosity). This ability is also regarded as another measure of number sense (e.g. 

Berch, 2005). For example, adults and children are faster and more accurate in 

judging the difference between two numerical magnitudes when the numerical 

distance between the numerals is larger (1 vs 9) than when it is smaller (6 vs 8) (e.g., 

Moyer & Landauer, 1967; Dehaene, Dupoux & Meheler, 1990). This distance effect 

has been taken as indirect evidence that the symbolic representation of numbers 

builds on the approximate representation of non-symbolic numersosity (Feigenson, 

Dehaene, & Spelke, 2004) and that numbers are mentally represented along a mental 

“number line” (Siegler & Opfer, 2003). It is hypothesized that numbers on the mental 

number line are represented logarithmically compressed, so that the mental distance 

between numbers at the low end of the line are over-estimated compared to that at 

the high end (for example, the representation of the distance between 1 and 20 is 

greater than the mental distance between 130 and 150). Logarithmic representations 

are therefore less accurate than linear ones. Over the course of development a 

gradual shift occurs from a less accurate logarithmic mental number representation 

to the more precise linear representation.  Although both systems seem to operate at 

the same time, from the age of 6 to 8 years a linear representation becomes 

dominant as evidenced from improved performance on estimation on the number 

line task (Siegler & Booth, 2004). 

 There is evidence that individual differences in estimation of symbolic 

numerical magnitudes on a number line positively correlate with mathematical 

achievement (Siegler and Opfer, 2003; Siegler & Booth, 2004; Siegler & Mu, 2008). 

This relationship may be at least partially mediated by visuo-spatial working memory 

(Geary et al., 2008). Similarly, several recent studies suggested that individual 

differences in non-symbolic estimation, assessed by numerosity comparison tasks, 

also correlate with concurrent and past mathematical achievement all the way back 

to kindergarten (Halberda et al., 2008) and predict mathematical skills in 6 year olds 

(Mazzocco et al.,  2011). However, at least one study did not find any relationship 

between numerosity estimation and mathematical ability in kindergarten children 

after controlling for verbal abilities, verbal and numerical short-term memory, 

knowledge of numerals, and mathematical fact retrieval (Soltész, et al., 2010).  The 

sources of these inconsistencies remain unclear and more research is required to 
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clarify whether the variation in non-symbolic and symbolic number sense is 

consistently and causally related to variation in mathematical ability across 

development.   

 It is possible that the relationship between number sense and mathematics is 

uneven across development, so that number sense bootstraps mathematical 

development at one age, and the relationship is reversed at other ages.  It is also 

possible that the relationship differs in different cultures, as suggested by a recent 

cross-cultural study with 5-7 year old children (Rodic, et al., in press). It is not 

excluded that the cross-cultural differences are at least partially explained by 

differences in exposure or training to numerical material. Both symbolic (on number 

line task) and non-symbolic (numerosity) estimation abilities are sensitive to training 

(e.g., Jordan, Suanda & Brannon, 2008; Siegler & Ramani, 2008).  It has been 

proposed that the superior number line estimation of Chinese kindergarten children 

compared to their American peers stems from the greater exposure to numerical 

activities of the Chinese children before entering school (Siegler & Mu, 2008).  

However, currently there is little evidence of long lasting effects of training in 

estimation skills. One intervention study (Booth & Siegler, 2008) suggested a causal 

relationship between numerical estimations and mathematical skills. In this study, 7 

year old children were presented with a number line on a computer screen. One of 

the experimental manipulations consisted in the exposure to the correct visual 

information of numerical magnitudes: the number line in this condition showed the 

correct position of the numbers constituting addition-problems (the two addends and 

the total). Children who received this type of intervention/feedback showed 

improved estimation abilities on a number line task compared to children in other 

experimental conditions. Moreover, two weeks later, these children showed 

increased learning of novel mathematical problems compared to the other groups. 

The authors argued that exposures to accurate visual representation of numerical 

magnitudes contribute to the structure of a more accurate mental number line. This 

in turn influences learning by providing a solid framework in which organising 

numerical knowledge. Much more research on the links between mathematical ability 

and numerical abilities of estimation is necessary in order to establish the 

developmental course and the direction of effect of these associations.  
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 Another important question that is yet to be fully addressed is the issue of 

specificity of association between estimation skills and mathematics. Recent 

longitudinal studies suggest that the association between non-symbolic estimation 

and mathematics is unique. For example, one study found no correlations between 

estimation of numerosities on a dot estimation task at age 14 and sixteen cognitive 

measures, including visuo-spatial reasoning, working memory, reading, word 

knowledge and object perception at age 9 - after controlling for mathematical ability 

(Halberda et al., 2008). Similarly, non-symbolic estimation skills measured prior 

entering school, were found to be uniquely associated with mathematical abilities 

measured in primary school (Mazzocco et al., 2011). On the other hand, 

mathematical ability consistently co-varies with reading, language, and general 

cognitive factors (Lewis, Hitch, & Walker, 1994; Dirks et al., 2008; Fuchs et al., 2010b; 

Kovas et al., 2005; Kovas et al., 2007d). Working memory, including phonological 

loop, visuo-spatial sketchpad and central executive, have been found to be related to 

mathematical achievement and performance (e.g.: Swanson and Sachse-Lee, 2001; 

McLean and Hitch, 1999; D’Amico and Guarnera, 2005; Siegler & Ryan, 1989; McLean 

and Hitch, 1999; Bull, Johnston, & Roy, 1999; Geary, 2011). However, the association 

between mathematics and memory may be mediated by speed of processing (Case, 

Kurland & Goldberg, 1982; Bull & Johnston, 1997; Bull et al., 1999).   

 Because of the relationship between estimation and mathematics, 

investigating sex difference in estimation abilities may help to understand the 

reported sex differences in mathematical achievement and performance. Similarly to 

mathematics, the issue of sex differences in symbolic and non symbolic estimation is 

debated. One study that measured non-symbolic numerosity estimation using a 

computerised task reported a small male advantage in 4 year olds (Soltész et al., 

2010). However, the authors attributed this finding to the different use/familiarity of 

computers between boys and girls. This explanation is in line with literature on non-

symbolic estimation suggesting that the same biological mechanisms provide the 

basis of mathematical learning in boys and girls (Spelke, 2005; Spelke & Grace, 2006). 

For symbolic estimation, sex differences have been reported between the ages of 7 

and 9 years, with better performance of boys in number line tasks (LeFevre et al., 

2010; Thomson & Opfer, 2008). However, Thomson and Opfer also noted some 
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developmental changes, as sex differences were significant at the age of 7, while 

decreased when the children were around the age of 9 (boys performed better in 

number line estimating integer numerals, while girls performed better than boys in 

estimating fractions). Sex differences in number line estimation suggest that 

numerical magnitude representation may be involved in the observed sex differences 

in mathematical performance. Besides providing some evidence for sex differences, 

these studies also suggest developmental changes; therefore the investigation of sex 

differences at later ages is of particular importance. 

 

5.2.1 Research question 

 The present study is the first large-scale longitudinal multivariate investigation 

into specificity and stability of the relationship between two number sense measures 

(symbolic estimation with Number Line task and non-symbolic comparison with a Dot 

Estimation task) and mathematics across school years (age 7 to 16). The study had 

three major aims: (1) to examine whether the two measures of number sense - 

symbolic estimation and  non-symbolic numerosity comparison - are closely related 

to each other; (2) to examine the stability of the relationship between mathematical 

abilities and number sense measures across development; (3) to examine the 

specificity of the longitudinal relationships between number sense and mathematics, 

by including in the analyses data on language, reading, verbal and non verbal abilities 

available from the same children at 7, 9, 10, 12, and 14 years of age.  The large 

sample employed in this study also allowed us to investigate any potential gender 

differences in number sense at 16 years of age. 
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5.3 Methods 

 

5.3.1 Participants and procedure 

 This study used data collected from the TEDS sample (described in section 2.2) 

at various school ages. At age 16 the analyses were conducted using data from the 

first cohort as described in section 2.2.4.6. The final sample at this age consisted of 

2,100 twins (1,050 pairs) with mean age 16.5 (SD = .19). For the purpose of the 

longitudinal analyses, all the data collected at ages of 14, 12, 10, 9 and 7 was used.  At 

age 14, there were 6,209 twins (3,105 pairs) with mean age 14.10 (SD = .55). At age 

12 the final sample was of 10,878 twins (5,439 pairs) with mean age 11.72 (SD =.67). 

At age 10 there were 5,634 twin (2,817 pairs) with mean age 10.09 years (SD = .28). 

At the age of 9 there were 6,329 twins (3,164 pairs) with mean age 9.03 (SD = .28) 

and at age 7 there were 9,824 twins (4,912 pairs) with mean age 7.11 (SD = .25). The 

procedure of data collection at each age has been described in details in section 

2.2.4. 

 

5.3.2 Measures 

 The measures used in the analyses are described in details in sections 2.4 and 

4.3.3.2; section 1.2.11 provides justifications for the choice of measures used. Here 

we provide a brief summary of the variables grouped by age of testing. 

 

5.3.2.1 Contemporaneous measures age 16 

1. Number sense ability - Number Line task, assessing estimation of numerical 

magnitude; Dot Task, assessing estimation of large numerosity. The analyses used 

Weber Fraction scores derived from the Dot Task as described in section 4.3.3.2. 
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2. Tests of Mathematical performance – This was the composite score of following 

tests: Problem Verification Task, a measure of mathematical fluency and 

Understanding Numbers, a measure of mathematical school achievement according 

the UK National Curriculum. 

3. Tests of General Cognitive ability - Corsi Tapping Block, measuring visuo-spatial 

working memory; Reaction Time task, measuring speed of processing; Raven’s 

Progressive Matrices, a measure of non-verbal intelligence; Mill Hill Vocabulary test, 

measuring verbal ability; Figurative Language, assessing language ability; Reading, 

assessing reading fluency and reading comprehension. 

 

5.3.2.2 Longitudinal measures 

 

14 years  

1. Mathematics - Mathematical achievement as assessed by teachers. 

2. Verbal ability - Vocabulary test. 

3. Non Verbal ability - Raven’s Standard Progressive Matrices test. 

 

12 years 

1. Mathematics - Mathematical achievement as assessed by teachers; Mathematical 

web test. The two measures are analysed separately. 

2. Verbal ability - General Knowledge test 

3. Non Verbal ability - : Composite score of Raven’s Standard Progressive Matrices 

test and Picture Completion Test. 

4. Spatial ability - Composite score of Hidden Shape and Jigsaw tests. 
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5.  Reading ability - Composite score of reading fluency (TOWRE, reading words, 

TOWRE, reading non-words; Woodcock-Johnson-III Reading Fluency Test) and reading 

comprehension (GOAL and PIAT). 

6. Language ability - Composite of Figurative language, Inferences and Grammar tests 

 

10 years 

1. Mathematics - Mathematical achievement as assessed by teachers; Mathematical 

web test. The two measures are analysed separately. 

2. Verbal ability - Composite of Vocabulary and General Knowledge tests. 

3. Non Verbal ability - : Composite score of Raven’s Standard Progressive Matrices 

test and Picture Completion Test. 

4. Reading ability - PIAT, test of reading comprehension. 

 

9 years 

1. Mathematics - Mathematical achievement as assessed by teachers. 

2. Verbal ability - Composite of Vocabulary and General Knowledge tests. 

3. Non Verbal ability - Composite score of Conceptual Grouping and Picture 

Completion tests. 

 

7 years 

1. Mathematics - Mathematical achievement as assessed by teachers. 

2. Verbal ability - Composite of Vocabulary and Similarity tests. 

3. Non Verbal ability - Composite score of Puzzle and Shapes tests. 
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4. Reading ability - Composite score of TOWRE, reading words and TOWRE, reading 

non-words. Both tests assessed reading fluency. 

 

5.4 Results 

 All the variables were standardised with mean of zero and standard deviation 

of one. The analyses were conducted on the sample constituted by one randomly 

selected twin from each pair. The analyses were replicated on the sample constituted 

by the co-twins and only results holding statistical significance in both samples were 

considered significant. Table 5.1 shows the correlations among all the measures. 

Consistent with the analyses conducted during the pilot study (previous sections 4.4.2 

and 4.4.4) both number sense measures had significant negative correlation with 

contemporaneous mathemtics, at age 16. Their correlation with mathematics was 

also significant at all the previous ages. The two measures had also significant 

negative relationship with contemporaneous and previous measures of: reading, 

language, verbal, non-verbal ability, spatial ability and visuo-spatial working memory. 

The sign of the negative correlation reflects the fact that smaller values of Weber 

Fraction and Number Line scores indicate better performance in the two number 

sense tasks - and are associated with higher performance in the mentioned abilities. 

Both Number Line and Weber Fraction held a positive relationship only with Reaction 

Time (efficiency) as for the three measures, the smaller the score, the better the 

performance on the tasks. In addition to mathematics, the two number sense 

measures correlated with all the other cognitive measures, contemporaneous and 

longitudinal, suggesting a non-unique relationship mathematics-number sense.  
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5.4.1 Examining the number sense construct 

 The correlation (Table 5.1) between Number Line and Weber Fraction scores 

was modest (.22) and did not justify the creation of a composite score of number 

sense. We further explored the Number Line and Weber Fraction measures by 

including them in a Factor Analysis (FA) together with the mathematics and reading 

composite scores, verbal, non-verbal scores, language, reaction time and visuo-spatial 

working memory. We used FA rather than Principal Component Analysis (PCA) to 

carry out this investigation and used the extraction method of Principal Axis Factoring 

on the 9 variables obtained from the web testing at 16. Although FA and PCA often 

yield similar results in reducing large set of variables they deal differently with the 

variables' variances-covariances. PCA calculates the factors on the basis of the total 

variance in the variables belonging to the structure. FA extracts factors that explain 

the variables' covariance. FA is suited to investigate constructs underlying the data. 

 The adequacy of the sample size (N = 490) was confirmed with Kaiser Meyer 

Olkin test which returned a good KMO value of .83 with the Bartlett’s sphericity test 

χ2 (36) = 989.56, p < .001. The eigen values were first obtained for all components, 

only two components with an eigen value greater than 1 were retained. A 

comparison with the scree plot confirmed the retention of these two factors. The 

analysis was performed with orthogonal and oblique rotation (Table 5.2). The two 

rotations yielded similar results in terms of loadings although the oblique rotation 

provided a cleaner output as mathematics and non-verbal abilities did not cross-load 

on the two factors. This suggested a relationship between the two dimensions. Non-

Verbal abilities clustered on Factor 1, while Factor 2 represented a verbal and 

language dimension. Both Weber Fraction and Number Line loaded on Factor 1. As 

Weber Fraction, Number Line and Reaction Time correlated negatively with 

mathematics (and positively among them)  (Table 5.1), their correlation with Factor 1 

was in the opposite direction (negative) than the correlation of the Mathematics 

composite with Factor 1 (positive). Similarly, Non-Verbal ability and Visuo-Spatial 

memory had a positive relationship with Factor 1. 
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Table 5.2 

Summary of the Exploratory Factor Analysis- Analysis carried out with orthogonal and 
oblique rotation. Extraction method Principal Axis Factoring. The analysis is conducted on 
the measures obtained from the web testing at 16 years. 
 

 

Orthogonal rotation 2 

factors extraction 

(Varimax) 

Oblique rotation   2 

factors extraction              

(Oblimin) 

Oblique rotation    3     

factors extraction              

(Oblimin) 

 Total Variance 

explained after 

rotation 36.5% 

Total Variance 

explained after 

rotation 36.5% 

Total Variance  

explained after  

rotation 40.5% 

  N=490 
Factor 

1 

Factor 

2 

         Factor 

           1 

Factor 

2 

Factor 

1 

Factor 

2 

Factor     

3 

Language 
 

.67 
 

.68  .66  

Reading Composite 
 

.73 
 

.74  .75  

Verbal ability 
 

.64 
 

.69  .68  

Mathematics composite  .73 .42 .70 
 

.72 .21  

Non-Verbal Ability (Raven) .50 .34 .46 
 

.46 .21  

Visuo-Spatial Memory (Corsi) .42 
 

.45 
 

.38   

Reaction Time -.32 
 

-.30 
 

  .60 

Number Line -.47 
 

-.51 
 

-.55   

Weber Fraction -.32 
 

-.35 
 

-.22  .21 

Eigen values 3.3 1.1 3.3 1.2 3.3 1.2 .94 

   α .41 .80 .41 .76 .25 .80 .40 

 

In the extraction of two factors, both orthogonal and oblique, only factors with loading greater 

than 3 were retained. In the extraction of three factors the threshold was lowered at factors 

with loading greater than 2. 

  

 Although there was a concordance between the scree plot and the Kaiser 

criterion based on the eigen values  in extracting only two factors, a third factor 

yielded an eigen value of .94 in the initial extraction. As the factor analysis had the 

purpose to understand the underlying structure within the data, a second analysis 

was performed to extract three factors. These results are shown in Table 5.2. In this 

analysis a Factor 1 representing a non verbal dimension and Factor 2 a verbal-general 

dimension could still be identified. The third factor could be mapped to speed. 

Reaction Time loaded only on Factor 3 while Weber Fraction loaded on both Factor 3 

and Factor 1 together with Number Line and mathematics. The load of Weber 

Fraction was small on both factors, and only present when retaining variables with 

loadings greater than .2. In fact, Weber fraction did not significantly load on Factor 3 

in the replication sample.   
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 To summarise, Number Line, Weber Fraction, mathematics and non verbal 

abilities clustered on Factor 1 with a Cronbach alpha of .25. Language, reading and 

verbal abilities loaded on Factor 2 (α = .80). Reaction Time and Weber Fraction loaded 

on Factor 3 (α = .40). In addition it was observed that deleting the non-verbal ability 

scores from Factor 1 (in the 3 factors extraction), its internal validity increased to .72. 

This may indicate a weaker relationship of non-verbal abilities with the mathematics-

estimation construct. These results further suggested that Weber Fraction, Number 

Line and mathematics belong to the same construct, but perhaps estimation of 

numerosities (Weber Fraction) has a weaker relationship with the mathematical/non-

verbal dimension compared to estimation of numerical magnitudes (Number Line). 

More importantly these analyses showed that even forcing the model to three factors 

we could not detect a singular “number sense dimension”.  For this reason, all further 

analyses were conducted separately for Weber Fraction and Number Line measures – 

representing different hypothesised aspects of number sense. 

5.4.2 Examining Sex Differences in number sense 

 Table 5.3 shows descriptive statistics of the standardised scores for the 

number sense measures and mathematics. Means and standard deviation on raw 

data were as follow: Problem Verification, Mean = 35.86, SD = 6.97; Understanding 

Numbers Mean = 11.63, SD = 4.39; Number Line Mean = 36.41, SD = 15.32; Weber 

Fraction Mean = .28, SD = .13. The divergence of the means from zero indicates that 

Mathematics composite and Weber Fraction were not normally distributed. Weber 

fraction was negatively skewed; Mathematics composite had a small positive 

skewness. However, the mathematical composite, was less kurtotic as its standard 

deviation was closer to 1 compared to the Weber Fraction's. Independent sample t-

tests with equal variance assumed showed no significant differences between the 

mean scores of males and females in Number Line or Weber Fraction. Further 

ANOVAs on Number Line, Weber Fraction and mathematics at 16 confirmed no sex 

effects in number sense, and significant but very modest (η² =.04)  effect on 

mathematics (Table 5.3). In the following multiple regressions sex was not found to 

be a significant predictor of either measure of number sense.   
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5.4.3 Predicting Mathematics from number sense  

 As shown in the correlational matrix (Table 5.1), Number Line and Weber 

Fraction, assessed at 16 years of age, correlated significantly with mathematics and 

other cognitive measures at all ages. Smaller values of Number Line scores indicate 

more accurate estimations, while smaller values of Weber Fraction refer to greater 

accuracy in discriminating finer ratios – reflected in negative correlations of these 

parameters with other cognitive measures. 

 First, we investigated whether any relationship exists between mathematics at 

different ages and number sense at age 16. We conducted a series of regressions, 

entering both Number Line and Weber Fraction scores simultaneously as predictor 

variables, and mathematics at different ages as criterion.  Separate regressions were 

run for teacher rated mathematics and for the web-assessed mathematics.  The 

results, summarised in Table 5.4, suggested an overall weaker and less consistent 

relationship between mathematics and Weber Fraction than that between 

mathematics and Number Line. Moreover, both number sense measures explained 

more variance in web-assessed mathematics than in teacher-rated mathematics.   

  

 

Table5.3                                                                                                                                                                                 

Mean, Standard deviation and ANOVA  results by Sex 

 

Mathematics  composite 16 N=644 N=242 N=402  

   Weber Fraction at 16 N=729 N=272 N=457  

    Number Line at 16   N=857 N=329 N=528  

   
 

      

 Effect Size   

 

All Males Females  Sex R² 

Measures   M   SD    M   SD   M   SD  p η²   

Mathematics composite 16 .02 .99 .05 .97 .01 1.0  .00 .04 .04 

Weber Fraction at 16  -.12 .77 -.11 .81 -.13 .75  .83 .00 .00 

Number Line at 16   .00 .98 .03 .99 -.02 .98  .55 .00 .00 

 

M = Mean; SD = Standard Deviation; p = p-value;  η² = effect size; R
2 
= variance 

explained by sex in the model.  
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Table 5.4 

Summary regression method forced entry of Mathematics Teachers' Ratings and Mathematics 
Web tests at all ages. Mathematics has been entered as DV, Weber Fraction and Number 
Line were entered as IV. 

 

 

Mathematics Teacher’s Ratings 

 

Mathematics  Web Tests 

 

B 
SE- 

B 
Beta 

CI (95%)  

for B 
 B 

SE- 

B 
Beta 

CI (95%)  

for B   
        Age 7

 

         Number Line @ 16 -.26 .04 -.28
*** 

(-.34, -.19) 

     Weber Fraction @ 16 -.25 .05 -.20
***

 (-.35, -.15) 

       R²=.149;  F(2,525)=45.89*** 

       Age 9
 

         Number Line @ 16 -.30 .05 -.31
***

 (-.39, -.21) 

     Weber Fraction @ 16  -.20 .06 -.15
**
 (-.33, -.08)

▲
 

       R²=.143;  F(2,410)=34.25*** 

     Age 10
 

         Number Line @ 16 -.33 .04 -.34
***

 (-.41, -.24) 

 

-.25 .04 -.30
***

 (-.32, -.18)  

Weber Fraction @ 16  -.20 .06 -.15
**
 (-.31, -.08)

▲
 

 

-.32 .05 -.29
***

 (-.41, -.23)
▲

 

  R²=.162;  F(2,412)=39.91*** 

 

R²=.213;  F(2,445)=60.10*** 

Age 12
 

         Number Line @ 16 -.30 .04 -.37
***

 (-.39, -.22) 

 

-.34 .04 -.35
***

 (-.42, -.26) 

Weber Fraction @ 16 -.11 .06 -.09 (-.22,  .01)   

 

-.34 .05 -.27
***

 (-.44, -.24)
▲

 

  R²=.160;  F(2,364)=34.60*** 

 

R²=.241;  F(2,474)=75.27*** 

   Age 14
 

 

   

  

   

Number Line @ 16 -.29 .04 -.33
***

 (-.37,  -.21) 

  

   

Weber Fraction @ 16 -.21 .06 -.17
***

 (-.32,  -.09) 

  

   

 

R²=.167;  F(2,412)=41.22*** 

  

   

Age 16
 

       Number Line @ 16 

     

-.41 .04 -.41
***

 (-.48, -.34) 

Weber Fraction @ 16 

     

-.32 .05 -.25
***

 (-.41, -.23) 

          

 

R²=.271;  F(2,577)=107.43*** 

*p<.05; **p<.01; ***p<.001 
▲   indicates discrepancy of significance on the analysis conducted 

       on the  replication sample 
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5.4.4  Predicting number sense from contemporaneous and earlier 

measures of mathematics 

 The next series of analyses explored whether early mathematical achievement 

explained additional variance in individual differences in estimation abilities at 16, 

beyond contemporaneous mathematical achievement - addressing the causal links 

between estimation abilities and mathematics. Number Line and Weber Fraction 

were entered as dependent variables in two separate stepwise regressions. 

Mathematics at 16 was entered as predictor in the first step, while mathematics 

scores at the earlier ages were added in the second step. The results are summarised 

in Table 5.5. The first regression showed that the contribution of early mathematics 

to the variance in Weber Fraction was not significant, with the possible exception of 

age 7. This result suggests that if the causal relationship between mathematics and 

Weber Fraction exists, it may not be consistent across development.  The results of 

the second regression showed that none of the early mathematics measures 

significantly predicted Number Line scores, after controlling for association with 

mathematics at 16. 

Table 5.5 

Regression stepwise method: Weber fraction and Number Line scores predicted by 
mathematics at all ages. Mathematics web-scores at 16 have been entered in the first step, 
mathematics at earlier years have been entered in the second step. 
 

Weber fraction predicted by Mathematics  Number Line predicted by Mathematics 

  B 

SE

-B Beta 

CI (95%) 

 for B 

  

B 

SE 

- B Beta 

CI (95%) 

   for B 

1st step   
 

  1st step   
 

 

Maths  16-web -.23 .07 -.36** (-.38,  -.08) 
 

Maths  16-web -.39 .09 -.44*** (-.57, -.21) 

R²=.130;  F(1,65)=9.67, p<.01  R²=.194;  F(1,75)=18.10, p<.001 

2nd step   
 

  2nd step   
 

 

Maths 16-web -.27 .13 -.42* (-.52,  -.01) 
 

Maths 16-web -.43 .17 -.49** (-.77,  -.09) 

Maths 14-teach   .21 .17 .32 (-.12,   .55) 
 

Maths 14-teach -.00 .23 -.00 (-.46,   .45) 

Maths 12-teach   .10 .14 .12 (-.18,   .38) 
 

Maths 12-teach -.31 .19 -.26 (-.68,   .07) 

Maths 12-web -.37 .16 -.05 (-.35,   .28) 
 

Maths 12-web  .14 .20  .13 (-.25,   .52) 

Maths 10-teach  .02 .12 .02 (-.23,   .26) 
 

Maths 10-teach  .06 .15  .06 (-.24,   .35) 

Maths 10-web -.22 .15 -.27 (-.53,   .08) 
 

Maths 10-web  .09 .20  .08 (-.31,   .49) 

Maths   9 -teach  .09 .13 .14 (-.17,   .35) 
 

Maths   9 -teach  .14 .16  .14 (-.18,   .46) 

Maths   7-teach -.22 .11 -.31*  (-.43,  -.01) ▲ Maths   7-teach -.16 .15 -.16 (-.45,   .13) 

ΔR=.107;  Sig. F-change=.34   ΔR=.064;  Sig. F-change=.56 

***p<.001,  ** p<.01,  *p=.05 

 ▲   Indicates discrepancy of significance in the  analysis conducted  
on the replication  sample.; Maths web = Mathematics assessed with 
the web tests; Maths teach. = Mathematics assessed by teachers. 
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5.4.5  Predicting Mathematics from number sense and other cognitive 

abilities 

 Next, we examined the specificity of the relationship between mathematics 

and number sense. In a series of multiple regressions, Number Line and Weber 

Fraction were entered into regressions as predictors of mathematics (separately for 

Web Tests and Teacher’s Ratings), together with the general cognitive abilities 

(separately at ages 7, 9, 10, 12, 14, and 16).  The results are summarised in Table 5.6. 

In the presence of other cognitive abilities, Number Line maintained a significant 

relationship with mathematics (both Teachers’ Ratings and Web Tests) across all ages. 

On the other hand, Weber Fraction did not maintain a consistent significant 

relationship with mathematics, with the exception of the contemporaneous 

mathematics measure. As evident from Table 6.6, controlling for 6 other cognitive 

measures, variance in mathematics at 16 was significantly explained by Weber 

Fraction (6%), Number Line (22%), Reaction Time (11%), spatial memory (Corsi) (12%), 

verbal intelligence (14%), non-verbal intelligence (23%), and language (20%).  These 

results speak against the specificity of the relationship between number sense and 

mathematics at this age. In other words, it is likely that the relationship between 

number sense and mathematics is largely explained by the variance overlapping with 

other cognitive measures.  In fact, as shown in Table 6.1, Number Line and Weber 

Fraction presented significant correlation with all general cognitive abilities in the 

study.  
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Table 5.6  

Summary multiple regressions, method  forced entry, Mathematics Web Tests and Mathematics 

Teachers' Ratings  were entered as DV in the models at all ages, the General Cognitive measure at  

the age of 7,9,10,12, 14  and Weber Fraction and Number Line at 16 were entered as IV. 
 

  

Mathematics Teacher’s Ratings 
  

Mathematics Web Tests 

 
B 

SE 

- B 
Beta CI (95%) for B  B 

SE - 

B 
Beta CI (95%) for B 

  
Age 7 

        
Number Line -16 -.16 .04 -.17*** (-.23,  -.09) 

     
Weber Fraction -16   -.14 .05 -.11** (-.23,  -.05) ▲ 

    
Verbal Comp. - 7  .11 .04  .12** ( .04,   .18) 

     
Non-Verbal Comp. - 7  .12 .04  .12** ( .04,   .19) 

     
Reading -7  .40 .04  .39*** ( .32,   .48) 

     
Sex    .13 .07  .07 ( .00,   .26)   

     
R²=.373;  F(6,494)=49.06*** 

      Age 9 

   
      

Number Line- 16 -.21 .05 -.22*** (-.30, -.12) 
     

Weber Fraction- 16 -.16 .06 -.12* (-.28, -.04)  ▲ 
    

Verbal Comp. - 9  .15 .05  .14** ( .05,  .25) 
     

Non-Verbal Comp. - 9  .25 .05  .25*** ( .15,  .25) 
     

Sex  .12 .09  .06 (-.05,  .29) 
     

 

R²=.236;  F(5,380)=23.49***       

Age 10 

   
      

Number Line - 16 -.22 .05 -.23*** (-.31, -.13) 
 

-.15 .03 -.18*** (-.20,  -.09) 

Weber Fraction - 16 -.11 .06 -.08 (-.23,  .02) 
 

-.14 .04 -.13*** (-.22,  -.07)  ▲ 

Verbal Comp. - 10   .24 .06  .23*** ( .11,  .36)   
 

 .19 .04  .22*** (  .11,  .26) 

Non-Verbal Comp. -10    .12 .06  .11 (-.01,  .24)  ▲  .29 .04  .31*** (  .21,  .38) 

Reading -10     .12 .06  .11 (-.01,  .24)  ▲  .12 .04  .14** (  .04,  .19) 

Sex     .17 .09  .09 (-.02,  .35)  ▲  .11 .06  .66 (-.01,   .22) 

 

R²=.282;  F(6,309)=20.27*** 

 
 R²=.472; F(6,421)=62.71*** 

  

Age 12 

   
  

   
 

Number Line -16 -.19 .05 -.23*** (-.29, -.09) 
 

-.15 .04 -.16*** (-.23,  -.08) 

Weber Fraction -16 -.02 .07 -.01 (-.16,  .13) 
 

-.14 .05 -.12** (-.24,  -.05)  ▲ 

Verbal Comp. -12  .09 .07  .09 (-.06,  .23) 
 

 .12 .05 .12* ( .02,   .21) 

Non-Verbal Comp.-12 -.03 .07 -.03 (-.16,  .10) 
 

 .08 .04 .08 (-.00,   .17)  ▲ 

Reading  Comp.-12  .12 .06  .14 (-.01,  .24)  ▲  .27 .05 .28*** ( .17,   .35) 

Language  Comp.- 12  .20 .07  .23** ( .06,  .33) 
 

.19 .04 .21*** ( .10,   .28) 

Spatial Comp. -12  .10 .05  .12 (-.01,  .21) 
 

.13 .03 .15*** ( .06,   .19) 

Sex -.02 .10 -.01 (-022, .18) 
 

.10 .07 .06 (-.03,   .24) 

R²=.309,F(8,213)=11.93*** 

  

R²=.574; F(8,319)=53.65*** 

 Age 14 

   
  

   
 

Number Line -16 -.19 .04 -.22*** (-.26, -.11) 
 

   
 

Weber Fraction -16 -.04 .05 -.04 (-.15,  .06) 
 

   
 

Verbal Comp. -14  .24 .04  .24*** ( .05,  .25) 
 

   
 

Non-Verbal Comp. - 14  .33 .04 .37*** ( .25,  .41) 
 

   
 

Sex  .20 .07 .11** ( .06,  .33) 
 

   
 

R²=.387;  F(5,373)=47.11*** 

     
 

Age 16 

   
  

   
 

Number Line - 16 
     

-.21 .03 -.22*** (-.27,  -14) 

Weber Fraction - 16 
     

-.08 .04 -.06* (-.17,   .00) 

Reaction Time -16 
     

-.13 .04 -.11** (-.21,  -.06) 

Corsi -16 
     

 .12 .03  .12** ( .05,   .18) 

Verbal Comp.- 16 
     

 .14 .04  .14*** ( .07,   .22) 

Non-Verbal Comp. -16 
     

 .23 .04  .23*** ( .16,   .30) 

Reading  Comp.-16 
     

 .07 .04  .08 (-.00,   .15)  ▲ 

Language  Comp. - 16 
     

 .21 .04  .20*** ( .13,   .28) 

Sex 
    

   .36 .06  .19*** ( .25,   .48) 

      
R²=.537;  F(9,480)=61.79*** 

*p<.05; **p<.01; 

***p<.001 

▲  indicates discrepancy of significance on the analysis  conducted  on the other half of 

the  sample 
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5.4.6  Predicting number sense from Mathematics and cognitive skills 

 The observed relationship between number sense and mathematics may 

reflect the influence of formal mathematical activities. To examine whether number 

sense at 16 is best predicted by mathematics, as opposed to other cognitive skills, 

Number Line and Weber Fraction were entered as dependent variables in two 

separate blocks of multiple regressions, where general cognitive abilities and 

mathematics at ages 7, 9, 10, 12, 14, and 16 were the independent predictors (Table 

5.7).  

 At age 16, Number Line estimation was significantly associated only with 

mathematics, after controlling for speed of processing (Reaction Time), visuo-spatial 

working memory (Corsi), verbal, non-verbal, reading and language abilities at the 

same age. In the replication sample, non verbal ability also showed a significant 

correlation with Number Line. All the longitudinal measures of mathematics also 

significantly predicted individual differences in Number Line estimation at 16, after 

controlling for other cognitive abilities at the same ages. Although reading abilities 

and non-verbal ability also predicted Number Line performance at some ages, these 

relationships were weaker than those with mathematics and were not replicated in 

both samples.  

 At age 16, Weber Fraction was associated only with mathematics and speed of 

processing (Reaction Time), after controlling for contemporaneous measures of 

cognitive ability. The relationship with visuo-spatial working memory (Corsi) and non-

verbal scores were only significant in one sample. Similarly to Number Line, Weber 

Fraction scores at 16 were significantly predicted by mathematics in the presence of 

other general cognitive abilities at earlier ages. However, the relationship between 

mathematics and Weber Fraction was overall weaker and less consistent across ages. 

Weber Fraction significantly correlated with the earliest (age 7) and the 

contemporaneous (age 16) mathematics in the presence of other cognitive abilities. 

Besides mathematics, the only significant correlations were with the non-verbal 

ability at 9 and 10  
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Table 5.7 
 

Summary of multiple regressions, method forced entry, Weber Fraction and Number Line measures at 
16 were entered as DV. - , The general cognitive measure and mathematics at the age of 7,9,10,12 and 
16 were entered as IV. At the ages of 10 and 12 Number Line and Weber Fraction were estimated in two 
different models having alternatively Teacher's rating and Web assessment. Sex was entered in all the 
regression but was non-significant at all ages for both DV and it is not reported in this table. The degrees 
of freedom reflect Sex entered in the regression 
 

 Weber Fraction  Number Line 

 
 B 

SE - 
B 

Beta CI (95%) for B   B 
SE - 

B 
Beta CI (95%) for B 

        Teachers-Maths -7 -.17 .04 -.22*** (-.25,  -.09) 
 

-.29 .05 -.27*** (-.39,  -.19) 

Verbal Composite -7 .01 .04   .01 (-.06,   .08) 
 

-.03 .04 -.03 (-.12,   .05) 

Non-Verbal Comp. - 7 .00 .04   .00 (-.07,   .07) 
 

-.03 .04 -.03 (-.12,   .05) 

Reading  Ability - 7 -.10 .04 -.13* (-.18,  -.02)  ▲ 
 

-.10 .05 -.09* (-.20,  -.00) ▲ 

                          R²=.093;     F(5,500)=10.25***   
 

R²=.127;  F(5,585)=17.08***   

Teachers-Maths - 9 -.15 .04 -.19*** (-.23,  -.07)  ▲ 
 

-.28 .05 -.28*** (-.30,  -.18) 

Verbal Composite - 9   .06 .04   .08 (-.03,   .15) 
 

-.02 .05 -.02 (-.13,   .08) 

Non-Verbal Comp. - 9 -.12 .04 -.16** (-.21,  -.04) 
 

-.08 .05 -.08 (-.19,   .02) ▲ 

                      R²=.072;  F(4,385)=7.42***   
 

R²=.109;  F(4,449)=13.74***   

Teachers-Maths @ 10 -.10 .05 -.13* (-.20,  -.01)  ▲ 
 

-.30 .06 -.28*** (-.42,  -.18) 

Verbal Composite - 10 .03 .06  .03 (-.09,   .14) 
 

.04 .07   .04 (-.10,   .19) 

Non-Verbal Com. - 10 -.23 .06 -.26*** (-.34,  -.12)  ▲ 
 

-.17 .07 -.15* (-.31,  -.04) ▲ 

Reading  Ability - 10 -.02 .06 -.02 (-.13,   .09) 
 

-.07 .07 -.06 (-.20,   .06) ▲ 

                          R²=.109;  F(5,313)=7.64***   
 

R²=.140;  F(5,352)=11.45***   

WEB-Maths - 10 -.22 .06 -.24*** (-.33,  -.11)  ▲ 
 

-.44 .07 -.36*** (-.57,  -.31) 

Verbal Composite - 10 .02 .05  .03 (-.07,   .12) 
 

.05 .06  .04 (-.07,   .16) 

Non-Verbal Com - 10 -.14 .05 -.15** (-.24,  -.03) 
 

-.07 .06 -.06 (-.19,   .05) 

Reading  Ability - 10 -.01 .05 -.02 (-.11,   .08) 
 

-.07 .06 -.06 (-.18,   .04) 

                          R²=.116;  F(5,427)=11.26***   
 

R²=.164;  F(5,488)=19.11***   

Teachers-Maths -12 -.04 .06 -.05 (-.16,   .09) 
 

-.36 .08 -.30*** (-.52,  -.20) 

Verbal  Ability  - 12 -.02 .07 -.03 (-.16,   .11) 
 

 .08 .09   .07 (-.09,   .26) 

Non-Verbal Comp -12 -.02 .06 -.03 (-.15,   .10) 
 

-.18 .08 -.16* (-.34,  -.03) ▲ 

Reading  ]Comp.- 12 -.08 .06 -.11 (-.20,   .04)  ▲ 
 

-.17 .08 -.16* (-.32,  -.02) ▲ 

Language  Comp.- 12 -.02 .07 -.02 (-.14,   .11) 
 

-.02 .08 -.02 (-.18,   .15) 

Spatial Composite- 12 -.12 .05 -.18* (-.22,  -.02)  ▲ 
 

-.02 .07 -.02 (-.15,   .11) ▲ 

                          R²=.094;  F(7,216)=3.21**   
 

R²=.201;  F(7,244)=8.77***   

WEB- Maths - 12 -.21 .06 -.26** (-.34,  -.09)  ▲ 
 

-.34 .07 -.32*** (-.48,  -.19) 

Verbal  Ability  - 12 .07 .05  .09 (-.03,   .18) 
 

 .08 .07  .08 (-.05,   .21) 

Non-Verb. Comp. -12 -.06 .05 -.08 (-.16,   .04) 
 

-.05 .06 -.05 (-.17,   .07) 

Reading  Comp. - 12 -.12 .06 -.15* (-.23,  -.00)  ▲ 
 

-.13 .07 -.13* (-.26,   .00) ▲ 

Language  Comp. - 12 .04 .05  .05 (-.07,   .14) 
 

.03 .06  .03 (-.09,   .16) 

Spatial Comp. - 12 -.02 .04 -.03 (-.10,   .06) 
 

-.02 .05 -.02 (-.12,   .08) ▲ 

                          R²=.124;  F(7,323)=6.55***   
 

R²=.150;  F(7,378)=9.54***   

Teachers-Maths - 14 -.07 .05 -.08 (-.17,   .03) 
 

-.40 .06 -.34*** (-.52,  -.27) 

Verbal Comp. - 14   -.10 .05 -.12* (-.19,  -.01)  ▲ 
 

-.04 .06 -.04 (-.15,   .07) ▲ 

Non-Verbal Comp- 14 -.11 .04 -.14* (-.19,  -.13) 
 

-.05 .06 -.04 (-.16,   .06) ▲ 

                          R²=.076;  F(4,378)=7.79***   R²=.151;  F(4,431)=19.22*** 

WEB-Maths 16 -.11 .05 -.15* (-.20,  -.02) 
 

-.41 .06 -.40*** (-.52,  -.30) 

Reaction Time -16 .11 .04  .13** ( .04,   .19) 
 

-.01 .05  .00 (-.10,   .09) 

Corsi -16 -.07 .04 -.10* (-.14,  -.01)  ▲ 
 

-.04 .04 -.04 (-.12,   .05) 

Verbal  Ability - 16 -.02 .04 -.02 (-.10,   .06) 
 

.06 .05  .06 (-.04,   .16) 

Non-Verb.  Ability -16 -.03 .04 -.05 (-.11,   .04)  ▲ 
 

-.08 .05 -.08 (-.18,   .01) ▲ 

Reading  Ability.- 16 .01 .04  .02 (-.07,   .09)   
 

-.05 .05 -.06 (-.15,   .04) 

Language  Ability- 16 .01 .04  .02 (-.07,   .10) 
 

.02 .05  .02 (-.09,   .12) 

                          R²=.084;  F(8,483)=5.55***   
 

R²=.204;  F(8,514)=16.52***   

*p<.05; **p<.01; 
***p<.001 

▲   Indicates discrepancy of significance on the analysis conducted on the  
       replication sample.  
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 It is important to note, that much of the variance in number sense measures 

remained unexplained. Even for contemporaneous analyses at 16, only 8.4% and 

20.4% of the variance was explained by all available measures in Weber Fraction and 

Number Line respectively, of which most of the variance in both regressions was 

attributed to mathematics.   

 

5.5 Discussion 

  The study reported here is the first large-scale investigation into the 

relationship between mathematics and two different measures of number sense, 

administered to the representative longitudinal TEDS sample. The longitudinal design 

allowed us to explore the continuity of this relationship. Specifically, we tested 

number sense at age 16 and looked at its retrospective relationship with 

mathematical achievement (rated by teachers) and performance (on web tests) 

measured at 7, 9, 10, 12 and 14 years.  The strength and uniqueness of the 

relationship between mathematics and the two measures was also assessed, 

controlling for a number of cognitive abilities measured across ages. Lastly, sex 

differences in number sense were explored. A particular strength of this study was 

the employment of a discovery-replication approach, by using one twin from each 

pair - generating two matching samples.  

 In order to thoroughly assess individuals’ number sense, this study utilized 

two tasks of estimation abilities. As expected, the two measures were significantly 

related to mathematics at 16, collectively explaining 27.1% of the total variance in 

mathematics. Despite their correlation with mathematics, the two number sense 

measures correlated only modestly (.22) with each other, seemingly tapping into 

different aspects of estimating ability. Therefore, no "number sense" construct could 

be derived from the two measures, as reflected in the results of the exploratory 

Factor Analysis carried out on the measures at 16. Although Number Line and Weber 

Fraction loaded on a common (non-verbal ability) factor, Weber Fraction also loaded 

partially onto another factor, revealing a certain degree of autonomy between the 

two measures. It is likely that this autonomy reflects the fact that Number Line 
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requires knowledge of the symbolic numerosity, whereas Dot Task relies purely on 

non-symbolic estimation. Moreover, the results suggest that both tasks may simply 

reflect two aspects of the general cognitive domain, as both loaded on the non-verbal 

ability factor. These findings suggest that the concept of number sense may be 

misleading, and that different estimation abilities may instead be viewed as separate 

measures of general intelligence. For these reasons, we discuss the relationship 

between number sense and mathematics separately.  

 

5.5.1 Weber Fraction 

 The results confirmed the existence of the relationship between mathematics 

and Weber Fraction. However, this relationship was weak and was not constant 

across development. Controlling for Number Line, Weber Fraction showed a 

significant correlation with mathematics at ages 7, 14 and 16, but not at 10 and 12. 

When other cognitive abilities were also controlled for, only the relationship with 

contemporaneous mathematics (at 16) survived significance. The absence of the 

stable relationship between early mathematics and Weber fraction at 16 suggests the 

absence of a causal link between the two abilities.  

 The result of the stepwise regression suggested that only mathematics at 7 

predicted variance in non-symbolic estimation skills beyond current mathematical 

proficiency. It is possible, that engaging in mathematical activities at an early age 

improves non-symbolic estimation skills, or that early mathematics is built on this 

aspect of number sense. In the current study we could not assess the relationship 

between early number sense and mathematics. However, the suggested relationship 

between mathematics at 7 and Weber Fraction at 16 may be the product of this early 

association. The absence of the relationship between mathematics at other ages (9, 

10, 12, 14) and Weber Fraction at 16 may indicate that mathematical skills learned at 

these ages rely more on other cognitive abilities than on estimation of numerosity. 

For example, as mathematics becomes more complex and abstract, a basic process 

such non-symbolic estimation is no longer sufficient or even required for 
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mathematical acquisition, while abilities like spatial memory, speed of processing, 

and language become more relevant.   

 At 16, after controlling for reading, language, verbal and non verbal abilities, 

Weber Fraction maintained a significant relationship only with speed of processing, 

mathematics, and visuo-spatial short term memory (although this last association was 

not significant in the replication sample). This pattern of correlations may indicate a 

mediation of speed of processing in the relationship between mathematics and 

Weber Fraction. This is also suggested by the fact that the association with teacher 

rated mathematics was overall weaker than with the web-assessed mathematics, 

which included the component of fluency - the ease with which numerical material 

and strategies are retrieved from memory. Previous research suggests that speed of 

processing mediates the relationship between mathematic and memory in: (1) the 

creation of automaticity for the basic arithmetic that arise when practicing numerical 

material and (2) in retrieval for mathematics (Geary & Wiley, 1991; Hitch and 

McAuley, 1991; Bull and Johnston, 1997). It is possible that non-symbolic estimation 

skills are involved in acquiring automaticity in basic arithmetic but no longer 

necessary to mathematical acquisition once such automaticity has been achieved; 

this is supported by the association found between Weber Fraction and mathematics 

at 7, when children start to learn the symbols and rule of mathematics. This 

explanation reconciles with findings of a recent study which found that in adults,   

higher mathematical skills were associated with faster or more automatic access to 

non-symbolic numerosity information rather that with the precision of non-symbolic 

discrimination. (Nys & Content, 2012).  

 There is to consider that in addition to speed of processing, the Reaction Time 

task may have assessed processes involving number and key identification and 

number-key mapping. In Bull and Johnston (1997), speed of processing was measured 

with a task of simple motor skill and another that used numerical stimuli. Children 

with poor mathematical abilities performed poorly in both tasks (compare to normal 

achieving children) suggesting that lower speed is a feature in poor mathematical 

ability irrespectively of the stimuli used. In this study we did not have a task 

measuring pure perceptual speed, however the element of speed was captured by 
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the Factor Analysis. In a three dimension construct Reaction Time and Weber Fraction 

loaded on a single factor. If Reaction Time would have measured some numerical or 

mapping processing, we would have seen a cross-loading of Reaction Time on Factor 

1 (non-verbal ability factor) even in a 3 dimension construct. Weber Fraction on the 

other hand cross-loaded in the non-verbal dimension as the task required both speed 

and non-symbolic numerical processing. 

 Weber Fraction was also associated with reading and non-verbal abilities at 

some ages. For reading, this association was true when word recognition/decoding 

was assessed (age 7, 12), but not when only comprehension was assessed (age 10).  

Word recognition relies on pattern recognition processing (so do the non-verbal tests 

in this study: Raven, Puzzle and Shapes), and it is possible that the same mechanism 

may be involved in the estimating of numerosities. The process of pattern recognition 

may be at the core of the reading-mathematics-estimation association. Previous 

research suggests, that word recognition deficits in children are associated with 

problems in retrieving numerical material from memory (e.g. Geary, 1993). It is 

possible that pattern processing is at the core of the development of the 

correspondence between numerosity of a set and its symbolic representation of 

number, underlying mathematical learning (Gelman & Galistel, 1978; Butterworth, 

2005). 

 

5.5.2 Number Line  

 Individual differences in Number Line accuracy were significantly related to   

teacher-rated and web-assessed mathematics at all ages, even after controlling for 

general cognitive abilities. However, after controlling for mathematics at 16, early 

mathematics was not associated with Number Line scores. This could indicate that 

the process of symbolic estimation is dynamic, where more efficient numerical 

representations take place with more advanced mathematics. Therefore the earlier 

mathematics did add any variance to the Number Line scores to the variance already 

explained by the contemporaneous - more updated number representation. This 
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explanation fits with previous findings reporting improvements in Number Line tasks 

after training (e.g. Siegler & Booth, 2004; Siegler & Mu, 2008). These results also 

suggest that, contrarily to non-symbolic estimation skills, being able to mentally 

represent numbers in their symbolic system is a process continuously required in 

mathematical acquisition. The directionality of this relationship remains still unclear. 

 The nature of the association of Number Line and mathematics seemed to be 

specific. Out of 7 cognitive measures, assessed at age 16, Number Line estimation 

was significantly associated only with mathematics. Similarly, when all cognitive 

measures at earlier ages were entered in the regressions as predictors of Number 

Line scores, only mathematics (both teacher and web assessed) was significantly 

associated with Number Line in both samples. 

 In line with previous findings (Geary et al., 2008), we did not find a 

relationship between Number Line estimation and speed of processing at 16. 

However, some weak correlations were also observed between Number Line and 

spatial abilities, reading, verbal abilities, and non-verbal abilities. These results 

suggest that, representation of numerical magnitude is part of a general cognitive 

mechanism captured by number line tasks. As argued by Geary et al. (2008) a certain 

degree of intelligence is required in order to organise numbers in a logical structure 

(e.g. a mental number line) that facilitate mathematical learning. These results are 

consistent with previous research which shows that children with relatively low IQ 

have impaired representation of numerical magnitudes on number line (Bachot, 

Gevers, Fias, Roeyers, 2005). 

 In summary, the results of these analyses suggest that symbolic and non-

symbolic estimation may represent distinct processes. These distinct processes do not 

belong to the same construct just because they correlate with mathematics and 

because involve the processing of numerical information of different type. With these 

results in mind, the use of "number sense" referring to estimation as a global process, 

can be misleading. Further, the relationship with mathematics and the two processes 

seems quite different; non-symbolic estimation processes may bootstrap 

mathematics just at some stages of mathematical development, while symbolic 

estimation seems a pervasive process in mathematics. 
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5.5.3 Sex Differences 

 Our large sample was well suited to explore sex differences in number sense.  

No sex differences were observed in either Weber Fraction or Number Line 

estimation. Previous studies that have reported sex differences on number line tasks 

have used samples of young children (between 4.5 and 9 years; LeFevre et al., 2010; 

Thomson & Opfer, 2008). These studies have also suggested a decrease of sex 

differences with development. It is possible that the absence of sex differences in 

symbolic estimation of numerical magnitudes at the age 16 is the product of the 

development of magnitude estimation skills. Conversely, consistently with previous 

literature (e.g. Kovas et al., 2007a), we found small, but significant sex differences in 

mathematics at age 16. These results are in favour of the theory suggesting that 

cognitive mechanisms providing the basis for mathematical learning are the same for 

boys and girls (Spelke, 2005). As suggested by Spelke, perhaps the roots of sex 

differences in mathematics are to be searched beyond cognitive abilities or biological 

factors. 

   

5.5.4 Conclusion 

 The results of this study suggest that estimation of numerosities (Weber 

Fraction) and estimation of numerical magnitude (Number Line) rely on independent 

mechanisms to a large extent. We propose that "number sense" should not be used 

as an umbrella term, as different measures seem to be characterised by different 

processes and differentially relate to other cognitive traits. In the presence of the 

Number Line task, which showed a consistent strong association with mathematical 

ability, Weber Fraction task was overall not related to mathematics. Contrary to the 

suggestions in the literature of the importance of the number sense for mathematical 

development, both measures explained only a small fraction of variation in 

mathematical ability at all ages. 
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Chapter 6: How heritable is number sense? A genetic 

investigation into numerosity estimation abilities in 16 year-

old students* 

 

6.1 Abstract 

 Basic abilities of quantity and numerosity estimation have been detected 

across animal species. Such skills are referred to as "number sense". For human 

species, individual differences in number sense are detectable early in life, and persist 

in later development. The origins of these individual differences are unknown. To 

address this question, we conducted the first large-scale genetically sensitive 

investigation of number sense, assessing estimation abilities in 1,241 pairs of 

monozygotic and 2,348 pairs of dizygotic 16-year-old twin pairs. Univariate genetic 

analysis of the twin data revealed that number sense is only modestly heritable 

(32%), with individual differences being largely explained by non-shared 

environmental influences (68%), with no contribution from shared environmental 

factors. Sex-limitation model fitting revealed the same aetiology individual 

differences in estimation skills in males and females. We also carried out the 

Genome-wide Complex Trait Analysis (GCTA) that estimates the population variance 

explained by DNA differences among unrelated individuals. For 1118 unrelated 

individuals in our sample with genotyping information on 1.7 million DNA markers, 

GCTA-estimated non significant, zero heritability of number sense , unlike results for 

other cognitive abilities from this study where the GCTA heritability estimates were 

about 25%. Because directional selection reduces genetic variance, the low 

heritability of number sense suggests the evolutionary importance of this trait.   

 

 

 

 

                                                 
*
 This Chapter has been adapted from Tosto et al. (in preparation b) 
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6.2 Introduction 

 Numbers, in their symbolic notation, form a basic tally system to answer the 

questions of "how much" or "how many". Numerals are an efficient way to keep track 

of discrete quantities and numerosities. This is particularly useful if the numerosities 

to be represented are relatively large. An alternative way to represent quantities and 

numerosities is to evaluate them in terms of "more" or "less"; this approach does not 

require the use of symbols or any learned system and is based on approximation. The 

mechanism supporting such approximations, the approximate number system, is also 

often referred to as "number sense" (see Dehaene, 1997 for a review). The exact 

definition and measurement of number sense are often debated (see Berch, 2005). 

This paper will refer to number sense as the skill allowing us to represent, estimate 

and manipulate non-symbolic quantities/numerosities. A practical example of when 

we use our number sense is when, without counting and after a quick glance, we join 

the queue with the least people.   

 One of the theories underlying mathematical learning is that numeracy skills 

partially originate from the non-symbolic/numerosity ability interfacing with the 

taught  numerical system (e.g. Dehaene, 1997; Feigenson, Dehaene, & Spelke, 2004; 

Izard Pica, Spelke, & Dehaene, 2008). For example, it has been proposed, that deficits 

in manipulating numerosity are one of the signatures of mathematical difficulties 

(Butterworth, 1999; 2010; Landerl et al., 2004; Mazzocco, Feigenson & Halberda, 

2011a). There is evidence that the symbolic and non-symbolic number systems 

contribute interactively to the development of normal arithmetic skills. For example, 

the native language of a small Amazonian tribe, the Mundurukú , has words for 

numbers only up to five. Although Mundurukú participants can approximate 

quantities well above their naming range, they fail to manipulate exact numbers. This 

indicates that the approximate number system is independent from the verbal 

encoding of numbers that produces exact numerical representations. Further, if the 

non-symbolic quantities fail to map onto their symbolic correspondence, the 

emergence of exact arithmetic may not typically develop (Pica et al., 2004).  
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 Some studies, however, challenge the view of a significant relationship 

between symbolic and non-symbolic representation of numbers. In one study, 

mathematical achievement in 6- to 7-year-old children correlated with Numerical 

Distance Effect (speed and accuracy in number comparison are greater when the 

numerical distance separating two numbers is relatively large, i.e. 3 and 9 vs 3 and 5) 

in symbolic, but not in non-symbolic comparisons (Holloway & Ansari, 2009). 

Similarly, Rousselle & Noël (2007) found that children with mathematical disabilities 

show impairments in comparisons of number symbols, but not in the processing of 

non-symbolic numerical magnitudes.   

 The approximate number system is not unique to humans; many animal 

species can approximate numerosities and to some extent can remember discrete 

number of objects and events. Basic numerical competences have been reported in 

ants (Reznikova & Ryabko, 2011). Rats can distinguish between arrays with different 

numbers of auditory signals (Meck & Church, 1983); mosquito fish discriminate 

quantities using numerical cues and can be trained to recognise a set of two items 

from another with three (Agrillo, Dadda, Serena,  & Bisazza, 2009; Agrillo, Piffer, & 

Bisazza, 2011). In addition to estimation abilities, rudimentary arithmetic skills 

performed on numerosity sets (i.e. collection of discrete items) have been reported 

by studies that used attachment paradigms with newborn chicks (Rugani et al., 2009; 

2011).  

 Animal evidence suggests that basic numerical competences are independent 

from language and are present at birth. Studies of human infants also show that this 

ability is preverbal. Using habituation paradigms it has been shown that babies as old 

as 6 months are able to distinguish between arrays of items or sequences of sounds 

of 4 from 8, and 8 from 16 (ratio 1:2) (Lipton & Spelke, 2003; Xu & Spelke, 2000). 

Older babies can discriminate between finer ratios. At 9 months for example, babies 

can discriminate between displays of 8 and 12 items (ratio 2:3) (Lipton & Spelke, 

2003) and between the age of 3 and 6 years, children can distinguish between ratios 

of 3:4 and 5:6 (Halberda & Feigenson, 2008). In adulthood, estimation skills peak, 

allowing to discriminate between arrays with ratios of 9:10 (Pica, Lemer, Izard, 

Dehaene, 2004; Halberda, Mazzocco, & Feigenson, 2008). Such evidence from animal 
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and infant studies indicates that basic estimation skills involved in number sense are 

unlearned and present across species, which suggests that number sense may have 

been evolutionarily preserved. However, if number sense has evolved, this does not 

imply that the origins of individual differences in number sense are genetic in origin. 

An example from another field is attachment which appears to have evolved in 

mammalian species yet individual differences in attachment in the human species 

show little genetic influence (Plomin, DeFries, Knopik, & Neiderhiser, 2013). 

 One fundamental parameter in estimation skills, used to assess an individual’s 

number sense acuity, is the ratio of the items in the arrays that are being compared. 

Discrimination of numerosities in animals, infant humans and adult humans follows 

the Weber Law (Nieder & Miller, 2003; 2004; Libertus & Brannon, 2009; 2010; Pica et 

al. 2004; Halberda et al., 2008). The Weber Law (Weber, 1834) describes the 

relationship between the magnitude of the stimulus appraised and the ability to 

detect "the just noticeable change" in such magnitude. Judging whether a set has 

more items than another is difficult when the discrepancy between the two displays 

is small. According to the Weber Law, the threshold of the minimum difference that 

can be detected is equal to the difference between the numbers of items in the two 

sets (the increment in quantity) divided by the number of items in the smallest of the 

two sets. This threshold is indexed by the Weber Fraction. In a practical example, if 

one can tell, without counting, which is the larger set between a display with 5 items 

and one with 7 (ratio 5:7), the Weber Fraction associated to the number sense acuity 

for that person is 0.4, [(7-5)/5]. As previously mentioned, estimation abilities improve 

with development, therefore Weber Fraction values have been measured in the 

range from 1, on performance at 6 months, to 0.11 in adulthood. 

 Individual differences in the ability to approximate and compare numerosities 

emerge early in life. At 6 months, infants already show stable individual differences in 

numerical discrimination (Libertus & Brannon, 2010). Individual differences in the 

ability to detect changes in numerosity at 6 months have been shown to predict this 

ability at 9 months beyond short-term memory skills. Individual differences in 

estimation abilities were also detected in 3- to 4 year-olds, as well as, 6, 14 and 16-

year-olds (Halberda & Feigenson, 2008; Mazzocco et al., 2011b; Halberda et al. 2008; 



 

 

178 

study in Chapter 5). Investigation of number sense have been carried out mainly on 

young children, however, a recent study surveyed number sense in over 10,000 

individuals between 11 and 85 years old (Halberda, Ly, Wilmer, Naiman & Germine, 

2012). The study reported individual differences and developmental changes in non-

symbolic estimation skills, identifying three main transitional age-related trends in the 

population: a rapid increase in estimation accuracy between the age of 11 and 16, a 

steady improvement up the age of ~30 and a decline from 30 to 85. 

 It is possible that individual differences in estimation abilities in children are 

driven by differences in the processing of perceptual characteristics of the stimuli 

rather than of the numerical information per se. Pre-school children have difficulties 

in ignoring continuous, non-numerical irrelevant information (e.g., the area occupied 

by the dots in display) in non-symbolic numerical comparisons (Rousselle & Noël, 

2008). For example, when the perceptual information was in conflict with the 

numerical information (e.g., when arrays with more number of dots had smaller 

physical dot size than the array with less dots), 4 year-olds were unable to 

discriminate between numerosities independently from the physical appearance of 

the stimuli (Soltesz, et al., 2010). Adults also seem to automatically process irrelevant 

non-numerical information (the area occupied by the dots for example) in numerosity 

discrimination, (e.g. Gebuis, Cohen Kadosh, de Haan, & Henik, 2009; Barth, La Mont, 

Lipton, Dehaene, Kanwisher, & Spelke, 2006). However, in adulthood the numerical 

information is as salient as the non-numerical (area) information, allowing to respond 

to numerosity (discrete) rather than continuous properties of the stimulus (Nys & 

Content, 2012). 

 Whether individual differences in the processing of numerosity stem from 

perceptual processing of continuous or discrete information, accuracy in a simple task 

of judging which of two arrays has more items, has been associated with 

mathematical abilities (e.g. Harberda et al., 2008; Mazzocco et al., 2011b; Nys & 

Content, 2012, study in Chapter 5). Further, this association has been shown to 

persist across the life span (Halberda et al., 2012). Understanding the aetiology of 

individual differences in number sense skills can contribute to our understanding of 

processes involved in mathematical learning. 
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6.2.1 Research question 

 The present study is the first large scale genetic investigation into the 

aetiology of individual differences in number sense. We assessed number sense in 16-

year-old twins and conducted univariate genetic analysis in order to estimate the 

relative contribution of genetic and environmental factors to variation in number 

sense. The large representative sample, which included both same-sex and opposite-

sex twin pairs, also allowed the investigation of any sex differences in the aetiology of 

the variation in number sense. We hypothesised, that the ability to judge more from 

less might be a product of "directional" evolutionary selection due to importance of 

this ability for survival (for example, increasing success in foraging) ,Such "directional 

natural selection" should reduce individual variability through de-selection of 

"unhelpful" genetic variants, leading to reduced trait-relevant genetic population 

variation (Plomin, DeFries, McClearn, & McGuffin, 2008). Therefore, we did not 

expect a large genetic contribution to individual differences in number sense. 

 In addition to estimating heritability of number sense using the twin method, 

we used the Genome-wide Complex Trait Analysis (GCTA), to estimate heritability 

directly from DNA, using 1.7 million DNA markers genotyped in 1118 unrelated 

individuals in our sample.   

 

6.3 Methods 

6.3.1 Participants and procedure  

 Participants of this study were the twins of TEDS (Twin Early Developments 

Study) of the first and second cohort. These were the twins born between January 

1994 and August 1995 tested when they were 16 years old. Detailed description of 

the sample and procedure of recruitment can be found in section 2.2.4.6. For the 

purpose of this study, twins with specific medical problems and whose English was 

not the first language were excluded from the analyses. The final sample consisted of 
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4,518 twins [2,259 pairs of which 838 monozygotic (MZ), 733 dizygotic same-sex 

(DZss) and 689 dizygotic opposite-sex (DZos)]. The mean age for the sample was 16.6 

(SD = .28)  

 

6.3.2 Measures 

 The number sense measure used in this study was the Weber Fraction. Scores 

for this variable were derived variable from the web-based  Dot Task - assessing 

discrimination of large numerosity, Full description of the Dot task and Weber 

Fraction scores is found in section 4.3.3.2. 

 

6.3.3 Analyses 

 Standard quantitative methodologies were used to estimate genetic and 

environmental contribution on individual differences in number sense (Plomin et al., 

2013). The twin method used here is described in sections 3.3.1 and 3.3.2; the 

univariate genetic analysis and model fitting are described in section.  3.3.3.  

 

6.3.3.1 Sex-limitation model 

 Sex limitation model fitting was used to investigate the aetiology of gender 

differences in number sense. Sex-limitation models are an extension of the basic 

univariate model. They are used to uncover differences between males and females 

A, C, E parameters (Neale & Maes, 2003). Quantitative sex differences refer to 

differences in the magnitude of the A, C, E estimates of males and females.  

Qualitative sex differences rest on comparisons between same-sex and opposite-sex 

DZ twins, which indicates the extent to which the same genetic or environmental 

factors affect individual differences for males and females. It should be noted that 

quantitative and qualitative sex differences in the aetiology of individual differences 
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are unrelated to any observed mean gender difference. Scalar differences refer to 

differences in variance of the measured trait between males and females.  

 The model relies on comparison of DZos and DZss genetic relatedness 

coefficient (rg). This genetic relatedness is assumed to be 0.5 because DZ twin share 

on average 50% of their segregating genes. If different genes affect males and 

females the genetic relatedness of the DZos will be less than 0.5, this is the case of 

qualitative differences. If sex differences are quantitative, the same genetic factors 

influence males and females, therefore the rg in the DZos will be 0.5, but the A, C, E 

estimates for males and females will be significantly different. The same logic applies 

to the coefficient indicating relatedness due to shared environmental factors (rc), this 

coeeficient should be equal to 1 as twins in the same family share the same 

environments. It is not possible to estimate rg and rc at the same time (the model is 

not statistically defined), so qualitative and quantitative differences in genetic 

influences have to be modeled separately from shared environmental influences.  

 

6.3.3.2 Sex-limitation model fitting 

 The ACE parameters and their 95% confidence intervals are estimated 

separately for males and females in a full sex-limitation model. The data is entered 

dividing the groups in MZ male (MZm), MZ female (MZf), DZ male (DZm), DZ female 

(DZF), and DZ opposite-sex (DZos) twin pairs. In this model the rg (or rc) are also free 

to be estimated. Subsequently, three nested models are compared to the full model 

in order to determine which model best describe the observed data. 

 In the Common Effects Sex-Limitation model, the A, C, E parameters are 

estimated separately for males and females but the rg of the DZos, is constrained to 

0.5. The model allows for quantitative and variance differences to occur. If the fit of 

this model is not worse compared to the full model, quantitative but not qualitative 

differences between males and females would be indicated. The goodness of fit is 

evaluated following the same criteria described in the univariate model fitting 

(section 3.3.3). The Scalar Effects Sex-Limitation model tests for variance differences 

between males and females. The A, C, E parameters of the females are constrained to 
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be the same as males parameters, while rg is constrained to 0.5 in the DZos. The 

model allows for phenotypic variance by constraining the variance of one sex to be a 

multiple scalar of the other sex. If this model is not a worse fit compared to the full 

model, this indicated differences in variances between males and females.  In the Null 

model, all the parameters are constrained to be the same for males and females, thus 

testing the null hypothesis: non-worse fit of this compared to the full model would 

indicate no aetiological or phenotypic variance differences between males and 

females. 

 

6.3.3.3 Genome-wide Complex Trait Analysis (GCTA) Genome-wide Complex Trait  

 Analysis (GCTA), can be used to estimate genetic variance accounted for by all 

the SNPs genotyped in samples free from constraints of family relationships such as 

twins or relatives. (Lee, Wray, Goddard, & Visscher, 2011; Yang, Lee, Goddard, & 

Visscher, 2011a; Yang, Manolio et al., 2011b). GCTA requires large samples in which 

each individual has been genotyped for hundreds of thousands of DNA markers, 

typically SNPs. Large samples and extensive genotyping are also needed in genome-

wide association studies (GWAS), thus data collected in GWAS are suitable to conduct 

GCTA analyses. GWA genotyping data of the TEDS sample has been used to conduct 

the first GWAS of general cognitive abilities, mathematics and reading  (e.g. Docherty 

et al., 2010; Haworth et al., 2007) and the first GCTA studies of cognitive abilities at 

the age of 12, estimating heritability between 20% to 35% for diverse cognitive 

abilities (Plomin et al., 2012). GCTA has been used to estimate heritability as captured 

by genotyping arrays for height (Yang et al., 2010), weight (Yang, et al., 2011b), 

psychiatric and other medical disorders (Lee et al., 2011, 2012; Lubke et al., 2012), 

and personality (Vinkhuyzen et al., 2012a). GCTA has also been applied to general 

cognitive ability in studies of adults (Chabris et al., in press; Davies et al., 2011) and 

children (Deary et al., 2012).   

 At age 16, GWA genotyping TEDS data was available on around 1,000 

individuals. Because GWA analysis needs to correct for multiple testing of hundreds 

of thousands of genotyping tests, this data is not suitable for GWAS but can be used 
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in GCTA analyses to estimate of genetic influence as a check on the heritability 

estimate based on the twin method. 

 GWAS design associate a SNP with a trait using statistical tests, GCTA instead, 

uses chance similarity across hundreds of thousands of SNPs to predict phenotypic 

similarity pair by pair in a large sample of unrelated individuals. The essence of GCTA 

is to estimate genetic influence on a trait by predicting phenotypic similarity for each 

pair of individuals in the sample from their total SNP similarity. In contrast to the twin 

method, which estimates heritability by comparing phenotypic similarity of identical 

and fraternal twin pairs whose genetic similarity is roughly 100 percent and 50 

percent respectively, GCTA relies on comparisons of pairs of individuals whose 

genetic similarity varies from 0 to 2 percent. GCTA extracts this tiny genetic signal 

from the noise of hundreds of thousands of DNA markers (single nucleotide 

polymorphisms, SNPs) using the massive information available from a large sample of 

individuals, each compared pair by pair with every other individual in the sample.     

 GCTA genetic similarity is not limited to the genotyped SNPs themselves but 

also includes unknown causal variants to the extent that they are correlated with the 

SNPs. Mendel’s second law of inheritance is that genes (as we now call them) are 

inherited independently (now called linkage equilibrium), but Mendel did not know 

that genes can be on the same chromosome, in which case they are not inherited 

independently (linkage disequilibrium). This violation of Mendel’s second law is 

complicated by the fact that during meiosis, chromosomes from the mother and 

father recombine on average once per meiosis, which means that, in the population, 

genes on the same chromosome are separated by this process of recombination to 

the extent that the genes are not close together on the chromosome. GCTA provides 

a lower-limit estimate of heritability because it misses genetic influence due to causal 

variants that are not highly correlated with the common SNPs on genotyping arrays.   

 The genetic effect on a trait may not just derive from the simple sum of 

independent genetic actions, they may stem from more complex gene-gene 

interactions. One of the assumptions of the twin method is that the variance 

explained by genetic influences is attributed to additive genetic effects.  In practice, 

the method captures both additive and non-additive genetic effects because the DNA 
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sequence of identical twins is virtually identical and thus they share all genetic effects 

including non-additive effects (see Plomin et al. 2012, for details). Conversely GCTA 

adds up the effect of each SNP, therefore it does not include gene-gene interaction 

effects; this is why the method provides lower-limit estimates of heritability. 

 Genotyping on the Affymetrix 6.0 GeneChip and subsequent quality control 

was carried out as part of the WTCCC2 project (The UK IBD Genetics Consortium & 

the Wellcome Trust Case Control Consortium, 2009) for 1118 individuals (one 

member of a twin pair) for whom number sense data at age 16 were also available. In 

addition to nearly 700,000 genotyped single-nucleotide polymorphisms (SNPs), more 

than one million other SNPs were imputed using IMPUTE v.2 software (Howie, 

Donnelly, & Marchini, 2009). GCTA estimates were obtained using the GCTA software 

package (Yang et al., 2011a). In GCTA, any pairs whose genetic similarity exceeded +/- 

0.025 (i.e., greater genetic relatedness than fourth-degree relatives) are removed so 

that genetic similarity is random and can be treated in a random effects model.  By 

this criterion, no individuals were excluded.   

 

6.4 Results 

 The analyses were conducted using Weber Fraction and accuracy scores on 

the Dot Task. Prior to analyses, accuracy scores were squared and a square root 

transformation was applied to Weber Fraction scores. The variables were then 

standardised (mean of zero and standard deviation of one); corrected for age and sex; 

and scores outside +/- 3 standard deviations were considered as outliers and 

excluded. The transformation improved normality of both variables. However, even 

after transformation, Weber Fraction scores did not fully meet assumptions of 

normality as skewness was 1.09 (SE = .05) and kurtosis 1.27 (SE = .10). Maximum 

Likelihood estimation provides efficient parameter estimates under the assumption 

of normality of the data, but the method has also been shown to be reliable when 

assumptions of normality are violated (c.f. Boomsma & Hoogland, 2001). We 

therefore report also the results of the analyses conducted on the accuracy as on this 

variable skweness was -.43 (SE = .05) and kurtosis -.02 (SE = .10). The Number Sense 
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measure (accuracy scores) showed good internal validity (alpha = .79) and test-retest 

(.62) (see Table 4.6 in section 4.5.2.1 for internal validity and test re-test correlations). 

Descriptives of the data collected on the TEDS sample are also consistent with 

estimation abilities reported for 16 year-olds in Halberda et al. (2012) (Figure 6.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.1: Scatter plots correlations MZ (Monozygotic, in brown) and DZ 
(Dizygotic, in grey) twins with their co-twins in Weber Fraction. The Weber 
Fraction scores were derived from accuracy in the Dot Task. The display of yellow 
and blue dots is an example of a test trial. The twins had to judge whether there 
were more yellow or blue dot following an exposure of 400 milliseconds. 
The overlapping distributions of the Weber Fraction scores of the MZ (brown) 
and DZ (grey) show the means: MZ= .28 (yellow line); DZ= .27 (red line). These are 
compared with the 16-year olds means reported in Halberda et al. (2012) = .275 
(green dashed line). 
 



 

 

186 

 Table 6.1 shows means, standard deviations and ANOVA result by sex and 

zygosity for Number Sense accuracy and Weber Fraction scores. One twin was chosen 

at random from each pair (N = 2,472). Mean accuracy score on the Number Sense 

accuracy was 115.82 (SD = 9.57; range = 79 – 140, out of a possible 150). Mean 

Weber Fraction score was 0.28  ( SD = .13; range .10 - .99). No significant mean sex 

differences were found, nor were there zygosity differences. Descriptive analyses run 

on the second half of the sample yielded highly similar results (available from the 

authors). 
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 Table 6.2 shows the intraclass correlations (indexing the similarity of co-twins) 

of Number Sense accuracy and Weber Fraction scores with 95% confidence intervals. 

The most striking finding is that, despite good validity of the measure, the intraclass 

correlations for number sense were modest, even for MZ twins, suggesting that twins 

differ markedly in their number sense ability and pointing to a significant contribution 

of non-shared environmental influences. Nonetheless, MZ twin correlations were 

greater than DZ correlations, suggesting the presence of genetic influences on 

number sense as well. 

 

 

Table 6.2 

Intraclass correlations on number sense variables and model fitting parameters estimates 

  

  

r MZ N 

  

r DZ N 

  

Variance 
of  A 
(95%CI) 

Variance 
of  C 
(95%CI) 

Variance 
of  E 
(95%CI) 

   
 

  

   
Number Sense acc. 0.35 

730 
0.18 

1175 
0.35 N/A 0.65 

95% CI (.28 - .41) (.13 - .24) (.30 - .41) 
 

(.59 - .70) 

Weber Fraction 0.31 
700 

0.15 
1140 

0.32 N/A 0.68 

95% CI (.24 - .38) (.09 - .20) (.26- .37) 
 

(.63 - .74) 
 

rMZ = intraclass correlation for monozygotic twins; rDZ = intraclass correlation for dizygotic twins; N = 
number of complete pairs; Variance components A,C,E = estimates respectively of genetic influences, 
shared environment, non shared environment . 95% CI = 95% Confidence Intervals. The best fitting 
model did not include estimates for shared environment. 

         
 

  

 

 Indeed, the result of the univariate genetic analyses (Table 6.3) showed that 

individual differences in Weber Fraction scores were explained by modest genetic 

influences (.32) and largely by non-shared environmental influences (.68). Shared 

environmental influences were non-significant. The parameter estimates for the 

accuracy scores were similar to the estimates of the Weber Fraction scores, .35 and 

.65 respectively for genetic and non-shared environmental influences. The most 

parsimonious models explaining the observed data were the AE models, as indicated 

in Table 6.3. 
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Table 6.3 

Model Fitting univariate genetic analysis: model-fit statistics 

Measure Model Model Fit 

  

-2LL df (Δ -2LL) AIC 
(Δ-
AIC) 

BIC 
p-
value   

 
 

      
 

 Number 
Sense      
accuracy  

Saturated -12649.05 4505 
 

3639.05 
 

-12009.57 - 

 ACE -12658.33 4511 -9.28 3636.33 2.72 -12029.34 .10 

 

 

AE -12658.58 4512 -.25 3634.58 1.75 -12033.29 .60 

 

 

E -12791.82 4513 -133.49 3765.82 -129.49 -11970.74 .00 

 

 
 

      
 

 
Weber 
Fraction 

Saturated -11170.54 4415 
 

2340.54 
 

-12382.55 - 

 ACE -11185.37 4421 -14.83 2343.37 -2.83 -12399.55 .02 

 

 

AE -11185.37 4422 .00 2341.37 2.00 -12403.62 1.00 

 
  E -11282.29 4423 -96.92 2436.29 -92.92 -12359.23 .00 

  

-2LL = minus log-likelihood; df = degrees of freedom; Δ-2LL = difference in likelihood; AIC = 

Akaike's Information Criterion; Δ-AIC = difference in AIC, this is calculated between the 
Saturated and full ACE model, and between the full ACE model and the AE, E nested 
models. BIC = Bayesian Information Criterion; p-value = associated with the differences in 
likelihood ratio between the Saturated and the full ACE model, and between the full ACE 
model and the AE, E nested models. Ep = parameters estimated.  
The p-value shows no significant differences in likelihood between the Saturated and the full 
ACE model for accuracy in the Number Sense task.  AIC shows good fit of the ACE model 
compared to the Saturated model in Number Sense scores (lower AIC of full ACE). The same 
parameter shows the better fit of the AE model. The goodness of fit for the Weber Fraction 
model is demonstrated to a lesser extent by the AIC. The BIC however shows a good fit of 
the full ACE model to the observed data and confirms the best fit of the AE model for the 
Weber fraction variables.                                                                                                                                                                                                    
 

 The results of the sex-limitation model fitting are shown in Table 6.4. In 

summary, no quantitative or qualitative sex differences were found for Number Sense 

accuracy or Weber Fraction. Genetic and environmental influences were estimated 

separately for males and females by fitting a Full Sex-Limitation model. The 

parameters for the accuracy and the Weber Fraction scores with their 95% 

confidence intervals are also shown in Table 6.4. The models testing for qualitative 

and quantitative differences in both number sense variables (respectively the 

Common Effects and Scalar Effects models), did not differ significantly from the Full 

Sex-Limitation model. The AIC and BIC parameters confirmed that the best fit was 

provided by the Null Model, indicating that there are no qualitative or quantitative 

differences in the aetiology of number sense between males and females.   
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 Genome-wide Complex Trait Analysis (GCTA) yielded a non-significant 

estimate of zero heritability for number sense. Because the GCTA heritability estimate 

was so low and the sample size was relatively small for GCTA analysis, the standard 

error of estimate was large (0.29). Nonetheless, this GCTA analysis provides strong 

support for the relatively low twin study estimate of heritability for number sense. 

 

6.5 Discussion 

 In this study we performed the first large-scale genetic analysis on number 

sense; we found that individual differences in this ability at 16, as indexed by the 

Weber Fraction, were largely influenced by non-shared environment (.68), with the 

rest of the variance explained by genetic influences (.32). This modest estimate of 

heritability from the twin study was underlined by a GCTA estimate of zero 

heritability. As number sense is an evolutionarily preserved trait (many animal species 

are equipped to deal with quantities and numerosities), the low heritability estimate 

may come as a surprise. However, heritability estimates refer to genetic influences on 

individual differences, which may be different from those affecting the presence of a 

trait in evolutionary terms. As discussed earlier, evolutionarily useful traits are not 

necessarily heritable, in fact there is evidence that they are to some extent learned. 

Acquisition, habituation and extinction of fear of snakes and spiders for example, are 

moderately heritable, with most of variance in individual differences explained by the 

environmental influences (Hettema, Annas, Neale, Kendler, & Fredrikson, 2003). In 

terms of genetic influences on such an evolutionarily preserved trait as number 

sense, one set of genes may provide a blueprint for the development of this ability 

across many species; whereas a different set of genes may contribute to variation in it 

within any population. Such "individual differences" genes may work through various 

mechanisms, affecting for example perceptual processes, speed of processing, and 

other functions relevant to perform estimation of numerosities.   

 Heritability estimates are time and population specific as the genetic 

influences captured by the parameters depend on how the genes express in the 

environmental condition at the time of the assessment. For this reason, we cannot 
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extend the heritability of number sense at 16 to other ages or other 

cultures/populations. For example, reading abilities show consistent genetic and 

environmental estimates across ages and across populations (Byrne et al., 2005, 

2006; Stromswold, 2001), while the heritability of "g" increases from early age to 

young adulthood (Davis et al., 2009; Haworth et al., 2010). Similarly, we cannot 

exclude the possibility of developmental changes in the heritability of number sense. 

It is possible that the marked individual differences in number sense acuity observed 

in infancy (Libertus & Brannon, 2010) may be under stronger influence of genes. This 

could explain why during infancy babies already show individual differences in 

estimation of numerosities. However, later in development, factors such as exposure 

to numerical stimuli, individual’s interest and amount of practice in number-related 

activities, may all contribute to the development of this ability. With number sense 

becoming more and more precise, individual differences in this precision may be 

under stronger and stronger environmental influences. Since this study is the first 

large scale genetically sensitive investigation on number sense, further research 

needs to be conducted using longitudinal twin samples assessing aetiological change 

and continuity of influences on number sense. In addition, the strong non-shared 

environmental influences indicated in this study call for cross-cultural genetically-

sensitive investigations to examine the relative contributions of genes and 

environments to the number sense in different cultures, where different educational, 

linguistic, and social practices are in operation.   

 One of the implications of the large environmental influence is that higher 

levels of accuracy in estimation of numerosity may be achieved through training. One 

study involving 6 month-old infants showed that when babies were simultaneously 

presented with a congruent visual and auditory stimulus they were able to 

discriminate numerosities with a ratio usually present in 9 month-old infants (Jordan, 

Suanda, Brannon, 2008). One explanation given by the authors was that the greater 

amount of numerical information received in two rather than one sensory modality 

increases infants' arousal leading to increased sensitivity to numerical changes. The 

number sense in animals seems also to be influenced by external cues in the same 

way as in humans. In one study, fish learned to discriminate numerosity faster if the 

numerical information was available in more than one sensory source, suggesting 
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that multisensory numerical information facilitate discrimination learning (Agrillo, et 

al., 2011). 

 Although we need to understand in more depth the mechanisms through 

which the environment acts upon estimation skills, there are some studies showing 

how estimation of numerosity skills can be manipulated through exposure to 

numerical material. It has been suggested that playing numerical board games gives 

children familiarity about numbers and improves their estimation of numerical 

magnitudes (Siegler & Ramani, 2008). It is not clear why such influences should be 

non-shared by twins in the same family. It is possible that active and evocative gene-

environment correlations, by which children choose specific activities or receive 

specific environmental inputs partly based on their genetic predispositions, play a 

role. Future studies should examine the similarity in twin and non-twin siblings in the 

willingness and frequency of engagement in the relevant activities – to evaluate 

whether they can explain some of the non-shared environmental influences on 

number sense development. Ultimately, understanding which environments 

influence number sense may help to understand how people learn mathematics. 

 Studies on artificial learning provide further evidence that individual 

differences in numerosity skills similar to number sense can emerge from differences 

in training. Neural network models can be modeled to detect numerosity from visual 

inputs (Domijan, 2004), with the quality of detection depending on the quality (e.g., 

frequency) of the inputs  One study has shown that models not programmed a priori 

in numerosity recognition can learn to discriminate numerosities according to the 

Weber Law through "unsupervised learning" (Stoianov & Zorzi, 2012). The model in 

the study was also able to simulate response to numerosities similarly to the neurons 

in the areas responsible for numerosity representation (later intraparietal area, LIP) 

of the human (Santens et al., 2010) and monkey brain (Roitman, Brannon, Platt, 

2007). As it is possible for models to develop different levels of number sense just by 

being exposed to different quality of visual stimuli, humans could develop differences 

in number sense through different exposure to numerical material - as opposed to 

genetic influences setting individual differences (programs in the case of the models). 
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 Our results add a novel perspective on a current debate in the mathematical 

literature. One theory proposes that mathematical disability, more precisely 

Developmental Dyscalculia, emerges from difficulties in understanding numerosity 

concepts and dealing with numerosity. This occurs even in the absence of general 

cognitive impairments (Butterworth, 2005; Landerl et al., 2004). It has been 

suggested that this problem with basic numerosity manipulation may be genetic in 

origin (Butterworth, 2005). Indeed, although multivariate genetic research suggests 

that individual differences in mathematical ability and disability are largely influenced 

by the same genetic factors as those that affect other learning and cognitive traits, 

some unique genetic effects also exist (Kovas et al., 2007a). These unique genetic 

effects could be those shared between number sense and mathematics.   

 Evidence shows that, variation in number sense may also arise under the 

influences of general cognitive development (e.g. Geary et al., 2008, 2011; Swanson 

and Sachse-Lee, 2001, Cowan et al., in press). It is possible that children with poor 

reading or poor memory engage in less effective or insufficient numerical practices 

(e.g. less games with numerical content during pre-school age,), compared to children 

with non-impaired general abilities. In the long term, these discrepancies in numerical 

environments may lead to the poorer numerosity estimation in children with poor 

mathematical abilities. Alternatively, the same aetiological factors could affect both 

traits without any reciprocal contributions between the two. Under these 

circumstances and with the large environmental estimates found in this study for 

estimation ability, it is possible that this skill may be a product, rather than a cause of 

mathematical variation. 

 As previously mentioned, earlier quantitative genetic investigations have 

found no sex differences in the aetiology of different aspects of mathematical 

abilities, disabilities, or high abilities. This indicates that same genetic and 

environmental factors affect individual differences in mathematics equally in males 

and females (e.g. Kovas et al., 2007a, 2007b; Markowitz, Willemsen, Trumbetta, van 

Beijsterveldt, & Boomsma, 2005; Petrill, Kovas, Hart, Thompson, Plomin, 2009). For 

number sense, no mean sex differences have been reported, with the exception of 

one study that reported marginal male advantage in estimation abilities in 4 year-old 
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children (Soltesz et al., 2010). In our study we did not find any mean sex differences in 

number sense. This result suggests that any observed average sex differences in 

mathematics are not mediated by estimation of numerosity skills. 

 As mentioned earlier, the aetiology of average differences may be 

independent of the aetiology of the variation. The present study was the first to 

examine whether the aetiology of individual differences in number sense was the 

same for males and females.  We found no quantitative or qualitative differences 

between the two sexes.  In other words, factors that make males differ from one 

another in number sense are the same that make females differ from one another.    

 

6.5.1 Conclusion 

 The two methods employed in this study, the twin method and the GCTA 

analysis, showed that individual differences in numerosity estimation skill are 

modestly influenced by genetic factors. In fact, the heritability of number sense in this 

study seems significantly lower than that of other cognitive abilities in this sample at 

the same age (study in Chapter 7). Similarly to many other naturally selected traits 

the dis-advantageous "genes" may have been successfully de-selected in population, 

leading to reduced within trait variability due to genetic influences. The same genetic 

factors influence estimation skills in males and females equally. In order to take 

advantage of the positive relationship between number sense and mathematics, our 

efforts should proceed in identifying the successful environments contributing to 

individual differences in number sense. 
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Chapter 7:    The myth of maths: is there anything 'special' 

about it?* 

 

7.1 Abstract 

 Symbolic (Arabic numbers) and non symbolic (arrays of dots) estimation tasks 

have been recently used as predictors of mathematical achievement. These tasks are 

thought to tap into a cognitive mechanism known as number sense. This study 

employed a web-based task of symbolic estimation (Number Line) and a non-

symbolic one (Dot Task to assess number sense in a sample of 7,598 twins (3,799 

pairs) of the TEDS sample at the age of 16. The twins' mathematical abilities were 

measured with two web-based tasks assessing fluency and mathematical skills 

according to the UK National Curriculum. A measure of g was derived from two tests 

of verbal and non-verbal abilities. Multivariate and univariate genetic analyses 

revealed that individual differences in number sense are largely driven by non-shared 

environmental influences (~ .70), very small genetic influences (~.26) with negligible 

influences from shared environment (.04). There was an almost complete genetic 

overlap between symbolic and non-symbolic estimation skills (.90), with phenotypic 

correlation between the Dot Task and Number Line (.21) entirely mediated by the 

common genetic factors. The results also showed no genetic influences shared 

between the two number sense measures and Mathematics independently from g. 

These results suggest that the number sense measured at 16 years of age can be 

identified as a component of a g factor. No qualitative or quantitative sex differences 

were detected in the aetiology of individual differences in the four measures, 

suggesting that the same genetic and environmental factors equally influence 

number sense, Mathematics and g in boys and girls. 

 

 

                                                 
*

 This Chapter has been adapted from Tosto et al. (in preparation c) 
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7.2 Introduction 

 Mathematics is a complex domain drawing resources from different cognitive 

mechanisms. The links between mathematics and other cognitive abilities have been 

explored to gain further understanding into mathematical disabilities and the 

mechanisms of normal mathematical acquisition. Several studies suggest that 

impairment in other general cognitive abilities, such as reading, memory, or 

intelligence is associated with lower mathematical performance (e.g. Jordan, Bull & 

Johnston, 1997; McLean & Hitch, 1999; Passolunghi & Siegler, 2001, Swanson & 

Sachse-Lee, 2001; Hanich & Kaplan, 2003; Fuchs, Fuchs, & Prentice, 2004). However 

the extent to which low mathematical performance is a consequence of other 

impairments, or co-occurs independently remains unclear. With such variability in 

mathematical difficulties and outcomes, diagnostic criteria of mathematical disability, 

or the distinction between disability and difficulties, are object of debate (e.g. Shalev, 

Manor, & Gross- Tsur, 2005; Murphy, Mazzocco, Hanich, & Early, 2007). Moreover, 

the complex relationships between mathematics and other abilities make it difficult 

to predict mathematical proficiency (e.g. Gersten, Jordan, Flojo, 2005). On the other 

hand, the most prevalent approach in assessing and predicting mathematical abilities 

involves general intelligence and number sense ability (e.g. Geary et al., 2009; Geary, 

2011). The focus of this study is the investigation of the relationship between 

mathematics, general intelligence (g) and number sense using a genetically sensitive 

design. 

 

7.2.1 Mathematics and intelligence  

 Intelligence can be conceptualised as a general mental capability indicating 

the ease with which novel things are assimilated; it also includes broader capabilities 

such understanding our surroundings, planning and reasoning (Gottfredson, 1997). 

Overall, intelligence (g) is considered the best single predictor of school achievement 

and other cognitive outcomes (Jensen, 1998). Not surprisingly, individual differences 

in g have been found to be associated with many mathematical outcomes (Hoard, 
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Geary, & Hamson, 1999). The first formal definition of learning disability was provided 

by Kirk & Bateman (1962) as a retardation, disorder or delay in the development of 

cognitive abilities, such as mathematics. In line with this tradition, mathematical 

difficulties are often identified on the basis of scores that fall below arbitrary cut offs 

on the normal distribution of performance. Severe mathematical problems are 

identified by restrictive cut offs (usually below the 5th or 10th percentile); 

performance falling below the 30th percentile diagnoses milder mathematical 

disabilities. IQ scores are often taken into account, so that specific mathematical 

disability is defined as low mathematical performance in the presence of average or 

above average IQ scores; or simply as a significant discrepancy between 

mathematical and IQ performance (e.g., Geary, Hamson, & Hoard, 2000; Gross-Tsur, 

Manor, & Shalev, 1996). However, such IQ discrepancy criterion has been criticised by 

many researchers as lower than expected mathematical performance does not 

always identify a mathematical disability (see Kavale & Forness, 2000; Geary, 2004).  

 Recent quantitative genetic research found a common genetic aetiology for 

learning ability and disability, leading to the formulation of the so called "Generalist 

Genes Hypothesis" (Plomin & Kovas, 2005). According to this hypothesis, largely the 

same genes influence all learning. This means that despite the uneven relationship 

between mathematics and g observed in behavioural research, the Generalist Genes 

theory predicts common genetic influences largely contributing to their covariation, 

with discrepancies between them largely explained by environmental factors (Plomin 

& Kovas, 2005). 

 One of the early twin studies investigated the relationship between 

mathematics and IQ, in a sample where at least one of the twins had reading 

disability (Light, DeFries, & Olson, 1998). In agreement with the Generalist Genes 

Hypothesis, it was found that around 82% of the phenotypic correlation between 

mathematics and reading was mediated by the same genetic factors influencing 

verbal IQ and phonological decoding. Following studies found a genetic correlation of 

.95 between g and mathematics in a sample of normally achieving twins aged 8 to 20 

years (Alarcón, Knopik, & DeFries, 2000). The same study showed a similarly high 

genetic correlation between mathematics and g in a sample of twins where at least 
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one of the twins showed reading, mathematical problems, or both. Another study 

used the WRRPM US sample of 6 to 10 year old normally developing twins to 

investigate the relationship between a general factor of intelligence and the 

mathematical components of fluency, applied problems, quantitative concepts, and 

calculation (Hart et al., 2009). The results showed common genetic influences 

between the mathematical components and g ranging between .20 and .51. In 

normally developing twins of the TEDS sample, between the ages 7 to 10, the genetic 

correlation between mathematics and g ranged from .54 to .67 (Kovas et al., 2005; 

Kovas et al., 2007a). At the age of 12 the correlation was .86 (Davis, Haworth, & 

Plomin, 2009b).  

 To sum up, quantitative genetic studies across different samples, different 

levels of mathematical abilities, and different ages suggest a substantial and stable 

genetic overlap between mathematics and g. However, this genetic overlap is not 

complete; the studies also indicate some genetic effects that influence mathematics 

independently from g (Kovas et al., 2005; Hart et al., 2009; Chapter 3 of this thesis). 

Understanding which cognitive mechanisms may be associated with these 

mathematics-specific genetic factors could aid better understanding of mathematical 

learning. One candidate for a cognitive process that may be uniquely associated with 

mathematics is number sense.   

 

7.2.2 Mathematics, number sense and cognitive ability 

  Recent research endeavours have successfully identified some early 

predictors of mathematical abilities. Tools such as the Number Sets Test (Geary, 

Bailey, & Hoard, 2009), have been developed and used to predict mathematical 

achievement and to identify children at risks of low mathematical ability (e.g. Fuchs et 

al., 2010a). Tests such as Estimation (Baroody & Gatzke, 1991) have been found to 

correlate with mathematical achievement (Jordan et al., 2006). Such tests seem to 

tap into a cognitive mechanism pivotal to mathematical acquisition - the number 

sense (Dehaene, 1997). There is disagreement in the definition of number sense and 
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what this ability exactly entails. However, it is generally accepted that number sense 

abilities allow the appreciation of the relative and absolute magnitudes of numerosity 

sets (i.e. discrimination of which of two arrays has more items); and of numbers in 

their symbolic system (i.e. estimation of numerical magnitudes of number symbols).  

 In estimation of numerosities, quantities are appreciated in terms of more and 

less, for this reason this process does not require counting and can be performed 

without any formal mathematical training. Numerosity discrimination can be 

performed by infant humans (Xu & Spelke, 2000; Libertus & Brannon, 2009), children 

(Halberda et al., 2008), and adults (Pica et al., 2004; Halberda et al., 2012). The ability 

to discriminate numerosities without counting has also been detected in various 

animal species (Uller, Jaeger, Guidry, & Martin, 2003; Pisa & Agrillo, 2009), suggesting 

a continuity of this ability across species. For this reason it has been proposed that 

number sense may have evolutionary origin. Although infants show discrimination 

abilities as early as 6 months, this ability improves from infancy to childhood (Xu & 

Spelke, 2000; Lipton & Spelke, 2003; Halberda & Feigenson, 2008; Mazzocco et al., 

2011). A recent study that assessed estimation of numerosity skills in a sample of 

over 10,000 people, from the age of 11 to 85 year was able to map the 

developmental trajectory of this ability, with a rapid improvement from the age of 11 

to 16, a peak at 30, and a decline between the ages of 30 and 85 (Halberda et al., 

2012). This study also suggested a specific relationship between estimation of 

numerosity skills and mathematical achievement across ages, after controlling for 

age, sex, science ability, writing, and computer skills. Similarly to Halberda et al. 

(2012), another study found non-symbolic estimation exclusively associated with 

mathematics after controlling for general intelligence (Lourenco, Bonny, Fernandez, & 

Rao, 2012). Estimation of numerosity measured in a sample of 3 to 6 year old 

children, predicted only numerical skills measures in the same children two years 

later (Mazzocco et al., 2011). Non-symbolic estimation measured in preschool 

children, predicted mathematical outcomes two months later, after controlling for 

Verbal IQ (Gilmore, McCarthy, & Spelke, 2010). Another study showed a significant 

relationship between estimation of numerosity measured at 14 years and school 

mathematical achievement in previous years after controlling for 16 cognitive abilities 

(Halberda et al., 2008). Although these studies suggest a unique relationship between 
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mathematics and non-symbolic estimation, some other studies have shown that this 

relationship may be mediated by IQ (Soltész, Szűcs, Szűcs, 2010) or other cognitive 

abilities (Chapter 5 of this thesis for a relationship of non-symbolic estimation and 

early reading). Some of the studies are cross-sectional therefore some of the 

inconsistencies in the association between non-symbolic estimations and other 

abilities may stem by different developmental trajectories of other abilities. For 

example, some longitudinal studies have shown that mean IQ scores in teenage years 

highly correlate, suggesting a large degree of stability but also some changes (Neisser 

et al., 1996). In light of these variations in abilities it is possible that non-symbolic 

estimation links with other abilities only in particular stages of development. 

Although more longitudinal studies are needed to understand the relationship 

between non-symbolic estimation and IQ, the literature suggests that this aspect of 

number sense may have a unique and stable relationship with mathematics across 

ages, therefore making a good candidate for the mechanism behind the mathematic-

specific genetic influences discussed above. 

 Similarly to estimation of numerosity, numerical estimation (in Arabic number 

symbols) does not require exact calculation. This process is driven by reasoning as 

opposed to instinct, and relies on numerical concepts and knowledge about the 

characteristics of the magnitudes. For example, we do not need to compute 4 x 5 to 

decide that the magnitude of this product is greater than 4 x 3. This process however, 

involves some knowledge and training as it requires understanding of numbers and 

their relationships. A process that does not require any previous experience or 

training in mathematical processes is estimation of numerical magnitudes on a 

number line. To perform on this task the only skill required is number knowledge. 

Based on these properties, Booth and Siegler (2006) refer to number line estimation 

as a process of "pure numerical estimation". In a number line task participants are 

presented with a line with the edges marked, for example, 0 and 100; they are then 

required to place on the line some numerals ranging from 0 and 100.  

 Estimation skills improve with development and experience (Dowker, 2003), 

and number line estimation also seems to improve with age (Siegler & Opfer, 2003), 

and with exposure to number knowledge (Siegler & Ramani, 2008). Children’s 
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difficulties in estimation compared to adults are due to the use of an immature 

logarithmic mental representation of numbers. In a logarithmic numerical 

representation the distance between numerical magnitudes at the end of the range 

are underestimated compared to magnitudes at the beginning and the middle. For 

example the distance between 10 and 20 is mentally represented greater than the 

distance between 90 and 100. As a result, in a logarithmic representation the 

numbers at the end of the range are “compressed”. Adults produce more accurate 

estimates, as they rely on the more efficient linear representation of numbers, 

although a logarithmic representation is still present (Siegler & Opfer, 2003; Siegler & 

Booth, 2004; Booth & Siegler, 2006). The accuracy of the mental numerical 

magnitudes representation varies across individuals. These individual differences 

positively correlate with mathematical test scores and achievement (Booth & Siegler, 

2006). 

 Numerical estimation has shown association with other abilities, besides 

mathematics. For example, patients with unilateral neglect (attention deficit as a 

consequence of damage to one brain-hemisphere) show poor performance on the 

number line task (Zorzi et al., 2002). Number Line estimation accuracy was associated 

with individual differences in IQ in a sample of 7 to 8 years old children (Geary et al., 

2008). These studies suggest that mental representation of numbers, irrespectively of 

their magnitudes, relies on visual-imagery and logical thinking associated with general 

intelligence. It is also possible that the association between numerical estimation and 

other abilities is subject to developmental changes. The association between the 

Number Line task and visuo-spatial working memory was found significant at age 7, 

while in the same children at the age of 8 executive functions, but not visuo-spatial 

working memory predicted performance on the Number Line task (Geary et al., 

2008). This suggests that visual imagery is necessary just at the early stages of mental 

number representation. Once the Number Line structure is in place, numerical 

representation may rely on attentional control driven by the central executive. 
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7.2.3 Research question 

The present study is the first genetically sensitive investigation into the aetiology of 

number sense and its relationship with mathematics and g, using the large and age 

homogeneous TEDS sample. The study uses multivariate genetic analyses to 

investigate: 

 the aetiology of the  relationship between  two aspects of number sense at 

age 16: estimation of numerosity, assessed with a Dot Task; and estimation of 

numerical magnitudes, assessed with a Number Line task. 

 the aetiology of the contemporaneous relationship between mathematics,  

two aspects of number sense; and  g, assessed with verbal and a non-verbal 

ability tasks at 16 years of age.  

 According to the Generalist Genes Hypothesis a certain degree of genetic 

overlap among all the measures is expected. A substantial genetic overlap is 

predicted between the two measures of Number sense (Number Line and Dot Task).  

On the other hand, if number sense abilities are specific to mathematics, as suggested 

by the behavioral literature, it is possible that they may share genetic aetiology only 

with mathematics. However, given the relationship between Number Line with IQ 

shown in behavioral studies, it is reasonable to expect a degree of genetic overlap 

between Number Line and g.   

 Although the main questions of this study are multivariate (examining the 

aetiology of the covariance among the measures), this research also provides the first 

estimates of genetic and environmental contributions to the variance in Number Line, 

mathematics and g at 16 years of age in the TEDS sample. The study employs the sex-

limitation model to investigate for the first time the aetiology of sex differences in 

Number Line estimation, as well as the aetiology of sex differences in mathematics 

and g at age 16. 
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7.3 Methods 

7.3.1 Participants 

 At the age of 16, data were collected on the web from 7,598 twins (3,799 

pairs) of the first two cohorts (twins born between January 1994 and August 1995). 

As described in section 2.2.4.1, twins with medical problems and for who English was 

not the first language were removed from the analyses. Table 7.1 summarises the 

number of twins and their age by sex and zygosity 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

Table 7.1 

Number of twins and their age in each zygosity group at 
16 

Groups N (pairs) AGE (SD) 

All 6,854 (3,427)  16.6 (.26) 

All Males 3,097 16.6 (.28) 

All Females 3,757 16.6 (.27) 

MZ 2,482   (1,241) 16.6 (.27) 

DZ 4,372   (2,186) 16.6 (.28) 

MZm 1,034   (517) 16.6 (.27) 

DZm 2,063   (1,031) 16.6 (.28) 

MZf 1,448   (724) 16.6 (.27) 

DZf 2,309   (1,154) 16.6 (.27) 

DZss 2,214   (1,107) 16.6 (.28) 

Dzos 2,158   (1,079) 16.6 (.28) 
 

MZ = Monozygotic, DZ = Dizygotic, MZm = Monozygotic 
males, DZm = Dizygotic males, MZf = Monozygotic 
females, DZf = Dizygotic females, DZss = Dizygotic same 
sex (male-male couples or female-females couples), 
DZos = Dizygotic opposite sex (male-female couple) SD = 
standard deviation 
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7.3.2 Measures 

 The number sense measures included in these analyses were the Weber 

Fraction (obtained from the Dot Task scores) and Number Line scores, derived as 

described in section 4.3.3.2. Weber Fraction scores were corrected for normality 

using a square root transformation; Number Line scores were log10 transformed. The 

mathematical measure was obtained averaging the standardised accuracy scores of 

the two web tests, Problem Verification and Understanding Numbers. A measure of 

general intelligence g was obtained averaging the standardised means of the two web 

tests of non verbal ability (Raven progressive matrices) and verbal ability (Vocabulary 

test), these two measures are described in section 2.4.2. The analyses were 

conducted on the standardised scores, corrected for the effects of age and sex 

(McGue & Bouchard, 1984). Scores outside +/-3standard deviation were removed as 

outliers. 

 

7.3.3 Genetic analyses 

 This study makes use of multivariate genetic analysis to investigate the 

aetiology of the covariation between g, mathematics, Number Line and Weber 

Fraction. Sex-Limitation models are used to investigate the aetiology of sex 

differences in the four measures. 

 

7.3.3.1 Multivariate genetic analyses 

 Univariate genetic analysis is primarily designed to estimate the relative 

contribution of genetic and environmental factors in variation in a trait. In this 

analysis, the cross-twin correlation on the same trait is modeled. One of the aims of 

multivariate genetic analysis is to estimate the genetic and environmental sources of 

covariation among different traits (Martin & Eaves, 1977). The comparison between 

MZ and DZ twins is conducted on the cross-trait twin correlations (for example, the 
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correlation between performance of one of the twins in the pair in mathematics, and 

the co-twin’s performance in number sense). When MZ twin cross-trait correlation is 

greater than the DZ twin cross-trait correlation, this indicates that the covariation 

between the two traits is due to common genetic factors. When the DZ twin 

correlation is more than half the MZ twin correlation, this indicates shared 

environmental influences. If the cross-trait twin correlations are non-significant, this 

implies that the co-occurrence of the two traits is due to non-shared environmental 

factors. 

 In multivariate genetic analyses, the sources of covariation among traits are 

attributed to 3 latent factor responsible for: genetic influences (A), shared 

environmental (C) and non-shared (E) environmental influences. These latent 

variables are estimated using structural equation modeling of the cross-trait and 

within-trait twin variances. There are several models that can be used to model the 

variance and covariance among traits. Each model is based on different sets of 

assumptions. For example, in the Independent pathway it is assumed that the traits 

are directly influenced by one common set of A, C, E, latent variables; the magnitude 

of the influences can be different for each variable. The residual variance in each 

variable is then explained by a set of trait specific A, C, E factors. In the Common 

pathway model, a single latent common factor mediates genetic and environmental 

factors across all traits; the residual variance, not explained by the common factor is 

further decomposed in A, C, E variance of trait specific variables. 

 One of the methods most used to conduct multivariate genetic analyses is the 

Cholesky decomposition (Loehlin, 1996). This approach assumes genetic and 

environmental factors specific for each trait with genetic and environmental factors 

on each trait correlating to some extent. In a classic Cholesky decomposition, the 

order of the variables is defined by a priori hypotheses. In the diagram in Figure 7.1 

the order of Trait 1 and Trait 2 has been established on the basis of some logical 

assumptions. For example, in longitudinal analyses the sequence of the variables is 

established by the temporal order, in multivariate cases, the first variable should be 

the most general and more likely to share variance with the others. 

 



 

 

207 

                  

                        

 

 

 

 

 

 

 

 

 The path diagram shown in Figure 7.1 illustrates a Cholesky decomposition. 

The variables, Trait 1 and Trait 2 are influenced by genetic, shared and non-shared 

environmental latent variables, respectively A1, C1, E1, and A2, C2, E2. The influences 

from a latent variable to the trait are represented by the arrows or paths. The first set 

of variables influences both traits. Genetic influences on Trait 1 are represented by 

the path h1. The influence of A1 on Trait 2 are the genetic influences in common 

between the two traits and are represented by the path x. The second set of latent 

variables A2, C2, E2 influences Trait 2 only. The Cholesky procedure is conceptually 

similar to a hierarchical regression where the trait specific variance is explained by 

trait-specific factors after the common variance has been accounted for by common 

factors. In such model the genetic variance explained by A1 in Trait 1 corresponds to 

its heritability estimate as this is its total genetic variance for Trait 1. The total genetic 

variance in Trait 2 is explained by trait-specific variance, (h2) and the genetic variance 

in common with Trait 1 (x). The heritability of Trait 2 is the sum of h2 + x. The same 

Trait 1 Trait 2

h1
c1

e1

h2
c2

e2

x

y

z

A1 C1 E1 A2 C2 E2

Figure 7.1:  Path diagram Cholesky decomposition. 
 

The latent variables represented by the circles A1, C1, E1 explain all 
the variance in Trait 1 and some of the variance in Trait 2 (traits are 
represented by squares). The residual variance in Trait 2 is explained 
by the latent variables A2, C2, E2 specific to Trait 2, independent 
from Trait 1. The vectors x, y and z represent the genetic (x), shared 
environmental influences (y) and non-shared environmental 
influence (z) in common between the two traits or variables. 
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logic is applied to shared and non-shared environmental influences. Multivariate 

analyses may be used to investigate the covariation of more than two variables. In 

these cases rather than establishing the order of the variables a priori, it is useful to 

transform the initial Cholesky decomposition in a model that is free from hierarchical 

constraints.   

 The Correlated Factor solution is one of the possible transformations of the 

initial Cholesky decomposition. In this model a set of A, C, E variables explains 

genetic, shared and non-shared environmental components in each trait. The degree 

of covariation among the variables is indexed by the correlations of the latent 

variable across traits. Figure 7.2 illustrates the diagram of the Correlated Factor 

Model.   

 

 

 

 

                 

               

 

Trait 1

h1 c1 e1

Trait 2

h2 c2 e2

ra rc re

A1 C1 E1 A2 C2 E2

Figure 7.2:  Correlated Factor Model 
 

The total variance in Trait 1 is the sum of the path coefficients h1, c1, 
e1. The squared path-values (h21, c21, e21) represent the univariate 
heritability estimates for Trait 1. The coefficient ra indexes the 
correlation between the genetic factors A1 and A2. Similarly, the 
shared (rc) and non shared (re) environmental correlations index the 
correlation between the latent shared environmental factors C1 and 
C2, and between E1 and E2.    
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 Like in the Cholesky path diagram, in the Correlated Factor solution a set of 

latent variables explains the contribution of genetic and environmental influence on 

each trait. For Trait 1 the latent variables A1, C1, E1, explain the relative contribution 

of genetic (h1), shared (c1) and non-shared (e1) influences in Trait 1. The variance of 

Trait 2 is decomposed in the same way. The parameter ra indexes the genetic 

correlation between Trait 1 and Trait 2 and represents the amount of genetic overlap 

between the two traits. In other words, the genetic correlation is the extent to which 

the genetic effects of one trait are in common with another trait. The shared (rc) and 

non-shared (re) environmental correlations index the extent to which these 

environmental influences affect two traits. The absence of common paths between 

latent variables releases from the necessity to establish the order of variables a 

priory.  It is of value to note that the term non-shared environmental correlation 

refers to influences non-shared between family members (not between traits). Non-

shared environmental correlation exists between two traits as effects of 

environments that family members do not share but that influence the two traits. 

 Genetic correlation is independent from heritability. For example, if the 

genetic correlation between two traits is 1, all the genes involved in Trait 1 are also 

involved in Trait 2. These two traits may have low heritability (meaning that individual 

differences in that trait are only modestly influenced by genetic factors) but their high 

genetic correlation implies that all the genes involved in the individual differences in 

Trait 1 are also involved in Trait 2. The same logic applies to environmental 

correlations. A low shared environmental correlation indicates that factors that make 

the twins or family members more similar in Trait 1 are independent from the 

environmental factors that make the twins or family members more similar in Trait 2. 

  Another important statistic that is derived from multivariate analysis is the 

bivariate heritability. This represents the contribution of genetic factors to the 

phenotypic correlation between traits. The bivariate heritability is obtained with the 

formula:  
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where          is the square root of the univariate heritability of the two traits and ra 

is the genetic correlation between Trait 1 and Trait 2. Similarly, it is possible to derive 

the bivariate shared and non-shared environmental heritability that index how much 

of the phenotypic correlation is mediated respectively by shared and non shared 

environmental factors. 

 

7.3.3.2 Sex-Limitation models 

 The aetiology of gender differences in individual differences in the four 

measures was investigated using sex-limitation model fitting. The procedure has been 

described in section 6.3.3.1. 

7.3.4 Model fitting  

 The genetic and environmental variance components were estimated using 

structural equation model fitting. As described in section 3.3.3.3 for the univariate 

model fitting, the multivariate and sex-limitation model fitting were performed using 

OpenMx software (Boker et al, 2011) running in the R environment (www.R-

project.org). The criteria of the model fitting are the same as described in section 

3.3.3.3.  

 

7.4 Results 

7.4.1 ANOVA results 

 Descriptive statistics and analyses of variance (ANOVA) by sex and zygosity are 

presented in Table 7.2.  These analyses show that there are no significant effects of 

sex and zygosity on the means of the four variables. Overall, sex and zygosity effects 

were non-significant in all the four variables.  
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7.4.2 Sex differences  

 Twins' similarity on traits is indexed by the intraclass correlation coefficients 

(ICC, Shrout, & Fleiss, 1979). These are presented in Table 7.3 for all the twins, 

separate males and females; and by zygosity. 

 

 

 The correlations show higher values for MZ than DZ twins, suggesting genetic 

influences on all the measures. In addition, the DZ correlation for Mathematics and g 

is more than half of the MZ correlation, suggesting shared environmental influences 

for these two measures. The correlations of the dizygotic same sex twins are higher 

than the dizygotic opposite sex; this may indicate the presence of qualitative sex 

differences in the measures. However, the confidence intervals for the two groups 

almost overlap for all the measures, suggesting that the correlation of the DZ 

opposite and same sex may not be significantly different. 

 The univariate sex-limitation model fitting was performed to assess the 

presence of qualitative or quantitative sex differences in the four measures. The 

results are summarised in Table 7.4.  The table shows that the fit of the Null Model is 

not significantly worse than the Full sex-limitation model, thus suggesting the 

absence of qualitative, quantitative or variance sex differences in the aetiology of 

individual differences in the four measures. 

  

Table 7.3
Intraclass correlations with 95% Confidence Intervals

Measure MZ (all) DZ (all) MZm MZf DZm DZf DZss Dzos

g .59 (.54-.64) .36 (.31-.41) .66 (.59-.72) .55 (.49-.61) .39 (.28-.49) .42 (.33-.49) .40 (.34-.47) .30 (.23-.38)

Mathematics .76 (.73-.79) .46 (.41-.51) .73 (.66-.78) .78 (.74-.81) .47 (.36-.56) .49 (.41-.57) .48 (.42-.54) .43 (.35-.49)

Number Line .26 (.20-.32) .14 (.09-.19) .32 (.22-.42) .23 (.15-.31) .10 (-.02-.21) .19 (.10-.27) .15 (.08-.22) .13 (.06-.20)

Weber Fraction .31 (.24-.38) .15 (.09-.20) .36 (.24-.46) .29 (.20-.37) .08 (-.05-.20) .13 (.02-.23) .11 (.03-.19) .19 (.11-.27)

MZ = Monozygotic; DZ = Dizygotic; MZm=Monozygotic males MZf =Monozygotic females; DZm = Dizygotic

males; DZf = Dizygotic females; DZss = Dizygotic same sex; DZos = Dizygotic opposite sex. Confidence

Intervals are in brackets.
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7.4.3 Multivariate genetic analysis 

 Table 7.5 shows the loading of the factors in the Cholesky decomposition with 

the variables ordered as follows: g, Mathematics, Number Line and Weber Fraction.  

 

Table   7.5    
                                                                                                                                                                                       

Standardised Cholesky squared paths coefficients and 95% Confidence Intervals 
 

Path g Mathematics Number Line Weber Fraction 

     
A1 .45 (.15 - .57) .34 (.24 - .47) .11 (.05 - .20) .11 (.04 - .21) 

C1 .15 (.06 - .25) .13 (.06 - .25) .01 (.00 - .06) .00 (.00 - .03) 

E1 .40 (.35 - .43) .01 (.00 - .02) .01 (.00 - .02) .01 (.00 - .02) 

     
A2  

.23 (.11 - .33) .06 (.00 - .15) .01 (.00 - .05) 

C2  
.08 (.00 - .16) .01 (.00 - .05) .01 (.00 - .01) 

E2  
.21 (.19 - .23) .01 (.00 - .02) .01 (.00 - .02) 

     
A3   

.07 (.01 - .13) .16 (.01 - .26) 

C3   
.02 (.00 - .07) .03 (.00 - .11) 

E3   
.70 (.66 - .75) .00 (.00 - .00) 

     
A4    

.00 (.00 - .20) 

C4    
.00 (.00 - .01) 

E4       .66 (.60 - .71) 

The effects of the first latent variable are decomposed into genetic (A1), shared 
environmental (C1), and non-shared environmental factors (E1) - influencing g, Mathematics, 
Number Line and Weber Fraction. The variance unexplained by the first latent variable is 
further decomposed into A2, C2, E2 influences affecting Mathematics, Number Line and 
Weber Fraction independently from g. The next variables explain all the unaccounted 
variance. 

 

 From this table it is possible to observe that the first genetic latent variable A1 

accounts for genetic influence on g (.45), and also influences Mathematics (.34), 

Number Line (.11) and Weber Fraction (.11). The influences of A1 on Mathematics, 

Number Line and Weber Fraction represent the common genetic influences between 

g and the three variables. For example, .34 of the genetic influences on Mathematics 

are in common with g. Similarly, .11 of genetic influences are shared between 

Number Line and g. Also .11 of the genetic influences are shared between Weber 
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Fraction and g. The second latent variable A2 explains .23 of the genetic variance in 

Mathematics, independent of genetic influences on g. This second variable contribute 

very little (and non-significantly) to the variance in Number Line (.06) and Weber 

Fraction (.01). A third genetic factor (A3) exerts a small (.07) but significant influence 

on Number Line, independently from g and Mathematics. A3 also contributes to 

Weber Fraction (.16). No specific genetic effects are present for the Weber Fraction 

(A4 factor has 0 effect on it).   

 To summarise, most of the genetic influences in the 4 variables are explained 

by two genetic latent variables (A1 and A2). All the genetic influences in Weber 

Fraction are explained by genetic factors shared with the other 3 variables with the 

absence of genetic specific influences on this trait. Only less than 10% of genetic 

influences in Number Line are independent from genetic factors in common with the 

other three traits (A3 influences in Number Line are .07). From the same table it is 

possible to observe that most of the shared environmental influences are very small 

in magnitude and specific to each trait. This suggests that between-families 

environments important to individual differences in mathematical skills are mostly 

different from the family environments important for numerosity estimation skills or 

g. Similarly, the non-shared environmental influences are specific to each trait.  

 Changing the order of the variables in the Cholesky decomposition did not 

affect the pattern of the results reported above. However, a Correlated Factor model 

was fitted in order to obtain information about genetic and environmental 

correlations and bivariate heritability. The results of this analysis are visually 

summarised in the path diagrams in Figure 7.3 
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A1

G

A2

Mathem
atics

A3

Number 
Line

A4

Weber 
Fraction

rg= .77 (.66, .89) rg= .85 (.70, .97) rg= .90 (.60, .99)

rg= .63 (.39, .88)

rg= .68 (.45 .91) rg= .57 (.39, .79)

√.45 (.34, .57) √.57 (.48, .60) √.24 (.16, .31) √.28 (.17, .36)

C1

G

C2

Mathem
atics

C3

Number 
Line

C4

Weber 
Fraction

rc= .78 (.50, 1.0) rc= .63 (-1.0, .1.0) rc= .46 (-1.0, .1.0)

rc= .07 (-1.0, 1.0)

rc= .54 (-.38, 1.0) rc= .37 (-1.0, 1.0)

√.15 (.06, .25) √.21 (.12, .29) √.04 (.00, .09) √.04 (.00, .12)

E1

G

E2

Mathem
atics

E3

Number 
Line

E4

Weber 
Fraction

re= .24 (.18, .31) re= .12 (.05, .19) re= .01 (-.07, .04)

re= .13 (.06, .20)

re= .11 .05, .17) re= .14 (.07, .21)

√.39 (.35, .43) √.22 (.20, .25) √.72 (.67, .77) √.68 (.62, .73)

Figure 7.3: 
Cholesky 
Correlated Factor 
Solution 
Each of the path 
reports the 
univariate estimate 
with the 95% 
Confidence 
Intervals. The 
double headed 
arrows between 
the latent variables 
represent the 
genetic correlation 
(ra), shared 
environmental (rc) 
and non-shared 
environmental 
correlation (re).  
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 The first part of the diagram summarises the genetic influences, where each 

latent variable explains the entire genetic variance specific to the trait.  Therefore, the 

path from the genetic latent variable to the trait represents the total genetic variance 

for that trait, the univariate estimate of the heritability. The heritability of g and 

Mathematics at 16 is .45 and .57, respectively. The two number sense measures, 

indexed by Number Line and Weber Fraction, both show modest heritability of .24 

and .28, respectively. It has to be noted that the univariate estimates of the Weber 

Fraction reported here are slightly different compared to what is reported in the 

study in Chapter 6; the difference is within the tolerance of the different models 

fitted to the data. In the study described earlier, the best model describing the data 

did not include the shared environmental estimate as this was non-significant. By 

fitting an AE model, the small variance component of c2 was incorporated in the 

heritability estimate h2. Here we decided to fit a Cholesky ACE model to better 

illustrate the pattern of correlations among the measures, although some of these 

relationships are not statistically significant.  

 The genetic correlations among all the measures are quite substantial, ranging 

between .57 (between Mathematics and Weber Fraction); and .90 (between Number 

Line and Weber Fraction). For example, the genetic correlation between g and Weber 

Fraction is .63; meaning that if a gene is involved in g there is 63% probability that the 

same gene is also involved in estimation of numerosity skills (as indexed by Weber 

Fraction). Overall, there is a greater genetic overlap between Weber Fraction and g, 

compared to the genetic overlap between Weber Fraction and Mathematics. The 

genetic correlation between the two number sense measures is almost complete 

(90%).  

 The estimates of the genetic bivariate heritability derived from the model 

fitting are reported in Table 7.6 These estimates index the proportion of phenotypic 

correlation mediated by genetic factors.  

 Bivariate heritability can be calculated using the formula 7.1. For example, the 

genetic contribution to the phenotypic relationship between g and Mathematics is: 

                               = .65.  This indicates that 65% of the .60 correlation 

between Mathematics and g is mediated by common genetic factors. From Table 7.6 
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it can be seen that the mediation of genetic factors is substantial for all of the 

phenotypic correlations. Although the correlation between Number Line and Weber 

Fraction is modest (.21), it is entirely mediated by common genetic factors, indicating 

that all the genes involved in individual differences in Number Line are also involved 

in individual differences in Weber Fraction. 

 

 

 

 The second part of Figure 7.3 illustrates the shared environmental 

correlations. The univariate estimates - represented by the arrows from the shared 

environmental latent factor to each variable - show a small contribution of shared 

environmental factors to individual differences in g and Mathematics (respectively 

.15 and .21) and almost nonexistent in the two number sense variables (.04). This 

diagram also shows that the only significant shared environmental correlation is 

between g and Mathematics.  The confidence intervals of all the other correlation 

estimates cross zero, indicating that are non-significant. These shared environmental 

Table 7.6

Correlated Factor Solution

Phenotypic correlations, genetic, shared and  non-shared environmental correlation,  bivariate

heritability between g, Mathematics, Number Line and Weber Fraction with  95% Conf idence Interval (in 

brackets)

g                               

and              

Mathematics

g                         

and                

Number Line

g                          

and                      

Weber 

Fraction

Mathematics

and                     

Number 

Line

Mathematics     

and                  

Weber 

Fraction

Number Line     

and                 

Weber 

Fraction

Phenotypic 

correlation
.60 (.52, .63) -.28 (-.32, -.24) -.25 (-.29, -.21) -.40 (-.43, -.36) -.29 (-.33, -.25) .21 (.15, .22)

Genetic, Shared & 

Non-shared Environ. 

Correlations

ra .77 (.66, .89) .68 ( .45 .91) .63 ( .39, .88) .85 ( .70, .97) .57 ( .39, .79) .90 ( .60, .99)

rc .78 (.50, 1.0) .54 (-.38, 1.0) .07 (-1.0, 1.0) .63 (-1.0, .1.0) .37 (-1.0, 1.0) .46 (-1.0, .1.0)

re .24 (.18, .31) .11 ( .05, .17) .13 (.06, .20) .12 ( .05, .19) .14 ( .07, .21) .01 (-.07, .04)

Bivariate heritability 

estimates

A .65 (.52 - .78) .69 (.44  - .93) .75 (.46 - 1.0) .75 (.56 - .92) .72 (.46 - .97) 1.0 (.75 - 1.0)

C .23 (.01 - .34) .12 (-.05 - .32) .01 (-.01 - .25) .13 (.00 - .28) .11 (.00 - .32) .08 (.00 - .09)

E .12 (.01 - .16) .18 (.01  - .28) .22 (.11 - .36) .11 (.05 - .18) .17 (.01 - .26) .05 (.00 - .21)

ra = Genetic correlation, rc = Shared Environmental correlation, re = Non-shared Environmental

correlation. The bivariate heritabilily estimates: A, C, E, indicate the proportion of phenotypic correlation

mediated by genetic factors (A), shared environmental factors (C), non-shared environmental factors E).
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correlations suggest that the environment that make people more similar in 

Mathematics, are different from the environments that make people more similar in 

estimation skills, but some shared environments important for Mathematics are also 

important for g. That is to say, that the small influences of shared environments are 

largely specific to each measure. This is also reflected in the small bivariate shared 

environmental estimates, indicating that the contribution of shared environmental 

factors to the correlation among the measures is very small. These range between .01 

(between g and Weber Fraction) and .23 (between g and Mathematics).  

 The third section of Figure 7.3 illustrates the Correlated Factor solution for the 

non-shared environmental influence. The univariate estimates indicate that individual 

differences in g and Mathematics are moderately affected by non-shared 

environmental factors (estimates respectively of .39 and .22). The correlation of these 

environments is also small (re = .24), indicating that the non-shared environmental 

influence are largely specific to each trait. The contribution of non-shared 

environmental influences to the phenotypic correlation between g and Mathematics 

(.60) is also small (.12). Conversely, the contribution of the non-shared environment 

to individual differences in number sense is very large (e2 = .72 for Number Line and 

e2 = .68 for Weber Fraction). The non-shared environmental correlation between the 

two number sense measures is almost nonexistent (.01, and statistically non 

significant as the confidence intervals cross zero), indicating that individual-specific 

experiences important for the Number Line skills are not important for the 

numerosity estimation skills (Weber Fraction). The results also suggest that the two 

tests may have uncorrelated measurement error. Overall, the non-shared 

environmental correlations among the four measures are low, ranging between .01 

and .24, suggesting that the non-shared environmental influences are specific to each 

trait. Similarly, the contribution of the non-shared environment to the phenotypic 

correlations is small, as shown in Table 8.4, ranging from .05 (between Number Line 

and Weber Fraction) to .22 (between g and Weber Fraction). 
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7.5 Discussion 

 The aims of the present study were threefold. First, the study presented the 

first genetically sensitive investigation into the aetiology of number sense by 

examining the covariation of two number sense measures. The first univariate genetic 

and environmental estimates for symbolic estimation skills, as measured with a 

Number Line estimation task, were also obtained from the analyses. The second aim 

was to investigate the aetiology of the relationship between mathematics and 

number sense (as assessed by Number Line and Weber Fraction), examining the 

relationship with g at the same time The analyses also allowed for the first 

investigations of the genetic and environmental aetiology of the individual 

differences in mathematical abilities and g at  16. Lastly, sex-limitation models were 

used to investigate the aetiology of gender differences in number sense, mathematics 

and g. 

 

7.5.1 Number sense measures 

 The results showed that individual differences in Number Line estimation at 

16 years are largely driven by non shared environmental influences (.72), very small 

genetic influence (.24), and negligible shared environmental influences (.04). These 

heritability estimates are not surprising given the nature of this estimation ability. 

Many behavioural studies (e.g. Siegler & Booth, 2004; Siegler & Ramani, 2008, 2009) 

have suggested training and numerical activities as promoters of Number Line 

estimation skills. The findings of this study suggest that individual specific experiences 

and environments, rather than genes, play a major role in people's differences in 

estimation skills. This means that school, family and other objectively shared 

environments may not contribute to individuals' resemblance in estimation of 

numerical magnitudes beyond their genetic similarity. What also emerged from the 

analyses is the striking similarity in heritability estimates for Number Line and Weber 

Fraction. Being both regarded as number sense measures, the similarity in the 

aetiology of individual differences in these skills is not surprising. However, this is not 
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a necessary condition for different aspects of a domain. In fact, other studies have 

found a degree of variability in heritability within measures of mathematics (Kovas et 

al., 2007c; Hart et al., 2009). Other twin studies have reported a trend of more shared 

environmental influences for untimed tests of mathematical skills and more genetic 

influences for timed tests (Hart et al., 2009). If the heritability estimates would have 

been influenced by the nature of the task, we would have expected Weber Fraction 

(scores derived from the timed Dots task) to have more genetic influences compared 

to Number Line (untimed task). This was not the case, as both measures showed the 

same heritability. Although there are many factors that contribute to differences in 

heritability estimates (see section 1.2.9.2), it is possible that the similarity in the 

magnitude of the heritability estimates is a reflection of a common aetiology. 

Evidence of a common aetiology in the two estimation abilities is provided by the 

multivariate results of this study. The genetic correlation between Number Line and 

Weber Fraction was .90; this suggests that there is 90% probability that the same 

genes are involved in individual differences in the two abilities. However, the low 

heritability indicates that these influences, although almost overlapping are very 

small, resulting in a low covariation between the two number sense measures. In the 

absence of shared environmental influences, and with the non-significant non-shared 

environmental correlation between the two measures, the phenotypic correlation 

between Number Line and Weber Fraction is entirely mediated by the small genetic 

influences.  

In summary, heritability of number sense is modest, and lower than for mathematics 

and g. Individual differences in both measures of number sense are largely explained 

by non-shared environmental factors. The small relationship that does exist between 

the two measures is entirely explained by overlapping genetic factors. The two traits 

seem to be differentiated by effects of totally independent environmental influences.  
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7.5.2 Mathematics and number sense 

 Despite developmental changes and changes in the mathematical phenotype, 

heritability estimates for mathematics in TEDS have shown consistency throughout 

the school years. Overall, from early to middle childhood, individual differences in 

mathematics, are driven by moderate genetic influences with modest contributions 

from shared and non-shared environmental influences (e.g. Kovas et al., 2007a). At 

the age of 16, the heritability estimates are in agreement with previous results. With 

estimates h2 = .57, c2 = .21, e2 = .22 mathematics still shows to be a moderate-high 

heritable trait.   

 Beyond the univariate estimates of genetic and environmental effects on 

mathematics, another goal of this study was to investigate the nature of the 

relationship between Mathematics and number sense. The results showed a higher 

genetic overlap between Mathematics and Number Line (.85), compared to that 

between Mathematics and Weber Fraction (.57). The environmental correlation was 

small, or non significant. This suggests that the extent to which number sense and 

Mathematics covary is due to genetic influences. In fact, genes explained ~ 74% of the 

phenotypic correlation between Mathematics and number sense. On the other hand, 

most of the environmental influences were largely specific to each trait and 

contributed almost non-significantly to the link between Mathematics and number 

sense.  

 

7.5.3 Mathematics, number sense and g 

 The inclusion  of g in the analyses gives a clearer picture of the relationship 

between number sense and Mathematics. From the results in Table 7.5 it is clear that 

there are almost no genetic influences specific to Weber Fraction beyond the small 

influences shared with g (.11) and Number Line (.16). Weber Fraction and 

Mathematics have no common genetic influence beyond what they share with g. 

Number Line seems to have a very small specific genetic influence (.07), but like 
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Weber Fraction, the remaining genetic influences are largely shared with g. These 

results partially agree with our predictions. We expected a genetic correlation 

between Number Line and g since the two mesures have previously been shown to 

be related (Geary et al., 2008). However, the results of this investigation do not 

confirm a unique relationship between Mathematics and Weber Fraction, as all the 

genetic variance in Weber Fraction is shared with g and Number Line, but not with 

Mathematics. Mathematics on the other hand, maintains a stable amount of genetic 

overlap with g, as shown at earlier ages (e.g. Kovas et al., 2005; Davis et al., 2008a). 

The shared environmental correlation between g and Mathematics was .78, 

indicating that the environments contributing to similarities in g in children in the 

same family, also contribute to similarity in mathematics. In practical terms this 

means that, although of small magnitudes (the bivariate heritability for the shared 

environments was .23) environmental effects contributing to people’s similarity in g 

would also contribute to people’s similarity in mathematics. This cannot be said for 

the number sense measures. There would be no common environments benefiting g 

and number sense as the shared environmental correlations with g were non-

significant for both measures. 

 

7.5.4 Sex-differences 

 The results of the sex-limiation models did not find qualitative or quantitative 

sex differences in any of the measures. This suggests that for number sense, 

Mathematics and g,  the same genetic and environmental factors influence individual 

differences in boys and girls to the same extent. These results are consistent with 

previous findings in TEDS that did not find sex differences in the aetiology of 

individual differences in mathematics or g across school ages (e.g. Kovas et al., 2007a; 

Davis et al., 2008b). The absence of average or aetiological sex differences in Number 

Line and Weber Fraction suggest that genetic and environmetal influences important 

for estimation abilities are the same for boys and girls. More importantly, these 

results suggest that any observed mean sex differences in mathematics are not 

meadited by g or number sense.  
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7.5.5 Conclusion 

 The results of this study support the Generalist Genes Hypothesis (Plomin & 

Kovas, 2005), that proposes that largely the same set of pleiotropic genes influence 

congnitive abilities associated with learning. In this study we found that genetic 

contribution to the four traits is largely due to the same genetic effects.    

 It is therefore difficult to claim that number sense indexes a unique ability 

which is not part ofthe general factor of intelligence. While Mathematics shows some 

independent genetic influences, we may say that what there is in common between 

Mathematics and number sense is g.  It also should be emphasised that although 

genetic influences on number sense greatly overlap with Mathematics, the overall 

genetic influence on number sense is very small. Specialist environments shape up 

estimation abilities, but the contribution of these environments to the correlation 

with Mathematics is minor. In fact, we could say that what it is "special" about 

number sense is the environment. 

  It needs to be noted that these estimates refer to the snapshot of time at age 

16, with its specific environmental settings. In Chapter 5, the potential involvement of 

numerosity estimation at the early stage of mathematical learning was discussed. It is 

possible that at earlier ages different aetiological relationships exist between number 

sense and mathematics, such as more environmental and/or genetic influences in 

common between early mathematics and number sense. These hypotheses need to 

be investigated using samples of different ages and in different cultural and 

educational settings. 
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Chapter 8: General Discussion 

 

 This thesis set out to investigate various aspects of the number sense domain. 

The first aim was the creation and validation of an internet-based battery of tests 

designed to assess different aspects of number sense (estimation of non-symbolic 

numerosity and of magnitude of numerical symbols), mathematics, and general 

cognitive abilities associated with mathematical acquisition, in 16 year olds. This 

battery was then used in other studies presented in this thesis, to conduct the first 

large-scale genetically sensitive investigation into the number sense at 16 years of 

age and of its links with mathematics and general cognitive abilities. Taken together, 

the studies presented in this thesis provided further understanding of the nature of 

estimation abilities, as well as new insights into the origins of individual differences in 

number sense and of the relationship between number sense, mathematics and 

general cognitive ability.  

 

8.1 General summary and findings 

 Chapter 1 provided an overview of the current understanding of number 

sense from a behavioural perspective. Previous research has shown that the number 

sense is involved in the development of early mathematical concepts beyond the 

contribution of other cognitive abilities such as reading or memory. The chapter also 

presented behavioural genetic findings showing the existence of genetic factors 

influencing mathematics, independently from reading and g. This thesis investigated 

whether these genetic factors were related to the variance in the number sense.  

 Most of the analyses reported in this thesis were conducted using the 

longitudinal TEDS sample. The sample and the longitudinal measures adopted in this 

thesis were described in Chapter 2. The studies reported in the thesis relied on data 

collected with a bespoke on-line battery. The development and validation of the 

online battery was based on a sample of 16 year-old singletons. This sample was also 

described in Chapter 2.  
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 The study reported in Chapter 3 offered further evidence for the existence of 

mathematics-specific genetic influences. In previous studies, these specific genetic 

influences were identified by using multivariate genetic analyses. In the multivariate 

analyses, the overlapping variance among traits is decomposed into 3 components, 

respectively attributed to genetic, shared and non-shared environmental factors. The 

approach used in the study presented in Chapter 3 was to remove all the variance 

explained by reading and g from the mathematical scores. Consistent with the results 

of the multivariate analyses, this new mathematics variable showed to be heritable, 

thus suggesting that some genetic factors influence mathematics independently from 

reading and g.  

 The tests included in the online battery were selected to tap into abilities that 

have shown to be related to mathematical development in behavioural literature. 

Chapter 4 presented the methods used for the online implementation of these tasks, 

as well as evidence for the reliability and efficiency of the battery as an assessment 

tool.  

 Chapter 5 examined the relationship of number sense, measured at 16, with 

contemporaneous and past mathematical and cognitive abilities. In line with findings 

in the current literature, number sense showed a relationship with mathematics at 16 

and previous mathematical school achievement. This relationship was stronger for 

estimation of numerical magnitudes than for estimation of numerosity. The study did 

not support the hypothesis that number sense (numerosity estimation) is uniquely 

related to mathematics. The results showed the relationship of numerosity 

estimation with other cognitive abilities. The results in Chapter 5 suggested that 

estimation abilities that make up the number sense construct are heterogeneous. It 

was also suggested that numerosity estimation may provide the basis for the 

automatic processes of mathematics by using the same mechanism of pattern 

recognition used in reading.  

 The contribution of genes and environment to individual differences in 

estimation of numerosity (indexed by Weber Fraction scores) were investigated in 

Chapter 6. Individual differences in numerosity estimation were found to be largely 

driven by non shared environmental factors (.68). The low heritability of the Weber 
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Fraction (.32) supported the hypothesis that this evolutionarily important trait 

developed through de-selection of negative variants, leading to reduced genetic 

variance relevant for this trait.  

 The aetiology of the relationship between number sense, mathematics and g 

was investigated in Chapter 7. The striking findings of this study were that the 

relationship between mathematics and number sense was entirely mediated by g.  

 

8.1.1 Number sense 

 Number symbols and numerosity concepts are interlinked, as numbers are 

used to identify numerosities. However, the extent to which number processing and 

numerosity processing are similar to each other required further investigation. This 

research showed a low phenotypic correlation (.22) between the two estimation 

tasks (numerical magnitudes - Number Line, and numerosity estimation - Weber 

Fraction). This may mean that despite dealing with numerical material, estimation of 

numerosities and of numerical magnitudes reflect two different processes. Indeed, 

the multivariate genetic analyses suggested the same genetic aetiology for 

numerosity and magnitude estimation (the study presented in Chapter 7 showed the 

genetic correlation of .90 between Number Line and Weber Fraction). However, this 

common genetic aetiology was not sufficient to ensure a degree of correlation higher 

than .22, at least at 16 years of age. This low phenotypic correlation can be explained 

by low heritability of both measures (.32 for Weber Fraction and .24 for Number 

Line); as well as high (~70%) but uncorrelated non-shared environmental influences 

on the two traits. Overall, the results suggest that individual differences in estimation 

abilities, both numerosity and of numerical magnitudes are mostly driven by 

environments specific to the individuals, and to each trait. The genetic effects on 

individual differences in number sense are very modest.  

 The low heritability of numerosity estimation was confirmed by the GCTA 

analysis (reported in Chapter 6). Low heritability indicates that there is very little 

genetic variability relevant to estimation abilities in a particular population. If 
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numerosity estimation has been evolutionarily selected, as suggested by evidence 

from non-human animals, low heritability should be expected. The capacity to 

discriminate items according to numerosity (simply, being able to tell apart more 

from less) is a useful skill for hunting, gathering and for social situations. For this 

reason, these skills must have provided important adaptive evolutionary advantages. 

From an evolutionary standpoint, the successful transmission of these abilities across 

generations is ensured by the natural selection of the protective alleles and de-

selection of those genetic influences that negatively affect the trait. In other words, 

individuals with better estimation abilities may have been more adaptable to adverse 

conditions requiring estimations skills and perhaps this may have lead to their 

increased reproductive fitness. This process leads to a reduction in the genetic 

variability in this trait in the population. It is possible that one set of (largely invariant) 

genes is involved in the mechanisms enabling discrimination, such as the neural 

network involved in numerosity discrimination in intraparietal areas of the brain (e.g. 

Piazza et al., 2006). The same genes may also be involved in number magnitude 

estimation, as the same brain areas are involved in numerosity and number symbols 

processing (e.g. Cohen Kadosh et al., 2011). On the contrary, as the results of the 

present study suggests, individual differences in these traits may largely stem from 

environmental influences 

 

8.1.2 Number sense, mathematics, and g 

 An unpredicted finding of this work was the lack of genetic influences that are 

uniquely shared between number sense and mathematics. As presented in Chapter 7, 

there was no genetic overlap between mathematics and either measures of number 

sense, aside common genetic factors shared with g. Although this finding is congruent 

with the Generalist Genes Hypothesis, this result suggests that number sense is not 

the source of the specific genetic influences on mathematics found by previous 

behavioural genetic studies (e.g. Kovas et al., 2005; Hart et al., 2009; Chapter 3); in 

fact genetic effects on number sense, as measured by estimation abilities, do not 
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overlap with the unique (unshared with g and reading) genetic influences on 

mathematics. 

 In addition, the study did not find any overlap between the environmental 

influences on mathematics and number sense. This suggests that the observed 

moderate association between mathematics and number sense at age 16 (-.40 with 

Number Line; and -.29 with Weber Fraction) can be largely explained by genetic 

influences that mathematics also shares with g.  

 The analyses also showed that the two estimation measures shared a small 

genetic influence (.16) independently from mathematics and g. As seen in Chapter 5, 

Number Line and Weber Fraction, measured at 16, showed small associations with 

spatial abilities and reading across the ages. It is possible that the two estimation 

measures share some genetic influences with reading, spatial abilities or other 

abilities not included in this investigation. These genetic influences may be 

independent from mathematics and g, thus explaining the specific-number sense 

genetic variance. These results further suggest that number sense, as measured by 

estimation skills, is part of a general cognitive construct rather than specific to 

mathematical domain. The genetic overlap between Weber Fraction and g also 

suggests that numerosity estimation may account for some perceptual processes, 

together with numerical processes. 

 

8.2 General implications and future directions 

 The low phenotypic correlation, as well as largely uncorrelated aetiology, 

between Number Line and Weber Fraction implies that, at 16 years of age, twins with 

low numerosity estimation abilities do not necessarily have low magnitude 

estimations skills. A normally developing child may start off with low estimation of 

numerosity skills. As individual differences in numerosity estimation and of numerical 

magnitudes are driven by the same genetic influences, there is a possibility that 

magnitude estimation skills may also be low in this child, at least early in 

development. However, the child may engage in activities boosting estimation of 
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magnitudes, which will not affect numerosity estimation (the two traits are 

influenced by non-overlapping non-shared environments). This may explain the lack 

of a significant relationship between symbolic and non-symbolic estimation found in 

some studies (e.g. Rousselle, & Noël, 2007; Holloway & Ansari, 2009). As both abilities 

positively correlated with mathematical abilities, a deficit in either one of them is 

neither necessary nor sufficient to associate with low/high maths skills.  

 Further consideration can be made regarding the purpose of estimation skills. 

The results in Chapter 5 suggested that numerosity estimation (Weber Fraction) may 

be involved in the acquisition of the automatic mathematical processes that are 

important at the beginning of mathematical learning. Once these processes are in 

place, estimation of numerosity may still be relevant to mathematical learning, but 

may no longer be as important as estimation in the number symbols. In support of 

this hypothesis, a recent longitudinal study found that non-symbolic estimation 

measured in kindergarten children was associated with arithmetic achievement in the 

first but not in second grade. Symbolic estimation, measured in kindergarten, was 

found to predict arithmetic only in the second grade (Desoete et al., 2010). This result 

is congruent with the hypothesis that numerosity estimation is involved in the 

development of some processes relevant only for very early mathematics. In the 

same study, children diagnosed with mathematical difficulties, and displaying poor 

numerosity estimation skills when in kindergarten, still showed poor numerosity 

estimation in the second grade. However, they did not differ in symbolic estimation 

compared to normally achieving children. This last finding provides evidence of how 

numerosity estimation and numerical magnitudes estimation may follow different 

developmental trajectory, most likely due to environmental influences that are 

different for the two abilities. 

 Although this thesis is primarily concerned with normal abilities, inferences 

can be extended to disabilities. A further implication stemming from the findings of 

this thesis is that mathematical disabilities are more likely to be the product of 

general cognitive impairments rather than specific disability in number sense. Our 

results have shown a large genetic overlap between number sense and g. Therefore, 

any selective impairment in number sense (in the absence of a general cognitive 
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impairment) stems from the influence of non-shared environments. Further research 

is necessary to identify specific environments involved.  

 As with all behavioural genetic findings, the results presented in this thesis are 

age and population specific. With regards to the sample, we need to consider that 

different settings may change the relative genetic and environmental contribution to 

estimation abilities. For example, studies have shown that the contribution of shared 

environmental factors to individual differences in mathematical abilities was greater 

in the WRRPM US sample compared to the UK TEDS sample (e.g. Hart et al., 2009; 

Kovas et al. 2007a). One of the possible causes for this discrepancy in heritability 

estimates is the differences in the type of mathematical instruction and teaching that 

children receive in the two countries. In the UK, the National Curriculum and the 

unified teachers' training ensure more homogenous educational standards compared 

to the US. It is possible that the unified educational environment in the UK reduces 

the inter-individual variations attributed to the shared environment.  

 Other samples may therefore show different heritability of estimation 

abilities. One reasonable question is whether Eastern cultures, whose population 

have higher mathematical performance compared to many Western countries (e.g. 

OECD, 2010b), benefit from some environments positively influencing number sense. 

For example, it has been suggested that languages influence the way we think and 

conceptualise numbers (Ito & Hatta, 2004; Dehaene et al., 1993). Based on the 

relationship between reading and Weber Fraction shown in Chapter 5, numerosity 

estimation may rely on pattern recognition processing to create the link between 

numerosity sets and the corresponding numerals. In the UK TEDS sample, the 

relationship between mathematics and number sense was largely mediated by 

genetic influences. However, it is possible that in samples with different languages (or 

other different cultural settings) the relationship between mathematics and number 

sense/estimation may be different. For instance, the correlation between number 

sense and mathematics may be mediated by environmental factors (e.g. influencing 

language and reading development), in addition to genetic factors. Such hypotheses 

can be investigated using genetically sensitive cross-cultural designs. These studies 

may help to advance our knowledge of mathematics and number sense processes. 
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They may also help to identify environments beneficial to the number sense-

mathematics relationship. 

  The research reported in this thesis suggested that estimation processes are 

heterogeneous. Cross-cultural studies, using the same tools of assessment, can 

provide further insights into the nature of the different aspects of number sense. A 

large cross-cultural investigation in 3 countries, that uses twin and non-twin children 

of all ages, is currently underway. This investigation is adopting the battery of tests 

used in this thesis to address some of these issues. In addition to collecting new data, 

the results will be cross-analysed with existing TEDS' data in the UK. This 

investigation, to which the author of this thesis is contributing, aims to provide 

insights into those environments that are more likely to be beneficial for the 

development of number sense skills. 

 As mentioned previously, the two aspects of number sense follow different 

developmental trajectories. For this reason, studies addressing the relationship 

between number sense and mathematics both from a behavioural and behavioural 

genetic perspective need to use both, numerosity and magnitude estimation tasks.  

 This thesis addressed the origins of number sense skills within a normal range 

of abilities. However, low and high number sense abilities need further investigation. 

According to the Generalist Genes Hypothesis, the same generalist genes affect 

abilities and disabilities. As this investigation has supported other predictions of the 

Generalist Genes Hypothesis, it is possible that low and high number sense abilities 

are driven by the same genetic influences as normal variation. However, there is 

evidence that mathematical abilities in the high range are driven by some specific 

genetic influences (Haworth et al., 2009b). A new study, in which the author of the 

thesis is involved, is underway to investigate the aetiology of the relationship of 

mathematical, general, and number sense abilities at the low and high extremes of 

the distribution in the TEDS sample. Cross-cultural investigations in low and high 

number sense and its relationship with mathematics should also be designed. The 

investigation of different levels of number sense abilities seems appropriate if we 

consider this ability as the analogous of phonemic awareness (Gersten & Chard, 

1999). As discussed in section 1.2.1, children with normal reading abilities seem to 
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benefit more from phonemic awareness instructions compared to children with low 

reading abilities (Smith, Simmons, & Kameenui, 1998). Similarly, we may find 

different kinds of involvement of the environment with different levels of number 

sense skills.  

 Future genetically-sensitive studies in number sense will also need to consider 

the age of the sample. For example, twin studies have shown that the heritability of 

mathematics is stable across development (e.g. Kovas et al., 2007a; Haworth et al., 

2007). Between the ages of 7 and 10, despite the changes in mathematical 

complexity, individual differences in mathematical abilities were influenced mostly by 

the same genetic factors. From behavioural studies we understand that estimation 

abilities change with development (e.g. Halberda et al., 2012; Booth & Siegler, 2006; 

Siegler & Opfer, 2003). It is possible that new genetic influences arise or different 

environments become relevant to estimation abilities potentially leading to different 

estimates of heritability at different ages. This study provides heritability estimates at 

16 years of age, but future genetically sensitive studies should assess estimation 

abilities at earlier ages. This is particularly important considering that numerosity 

estimation may be more relevant to mathematics at the beginning of mathematical 

learning. Ideally, a longitudinal genetically sensitive study into the number sense and 

mathematics would help to understand the dynamic and nature of their relationship 

across development. At 16, this relationship is largely influenced by genetic factors, 

but at early ages the relationship between mathematics and number sense may be 

influenced more by environmental factors. This is a reasonable assumption since 

environmental factors have such strong influence on the development of number 

sense skills. Identifying the environmental sources driving this relationship could 

contribute to a more effective mathematical learning.  

 One of the implications of the large non-shared environmental influences on 

number sense is that number sense skills can be acquired and be manipulated 

through the environment. At the start, this investigation attempted to identify the 

genetic influences on estimation abilities as the unique genetic influences (unshared 

with reading and g) on individual differences in mathematics. We found no such 

influences. In fact, number sense showed genetic overlap with mathematics through 
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g, suggesting that genetic influences on number sense may also act on such cognitive 

mechanisms as memory, speed of processing, and attention. Another possibility is 

that these genetic effects are the same as those acting on motivation and attitude 

towards numerical material. Motivation at early ages has been found to be associated 

with later mathematics; moreover this association was largely genetically mediated 

(Luo et al., 2011). It also has been found that some children, already at the age of 5/6 

years show spontaneous focus of attention to numerosity and generally to numerical 

material (Hannula, Lepola, & Lehtinen, 2010). In these children, this attentional 

process was found to correlate positively with later arithmetic skills.  

 Lastly, this investigation did not find sex differences in the means or in the 

aetiology of individual differences in number sense, mathematics and g at 16 years of 

age. Earlier TEDS assessments showed a significant but very small male advantage in 

mathematical scores. Sex explained less than 2% of mathematical scores between the 

ages of 7 and 10 (Kovas et al., 2007a). The absence of mean sex difference at 16 could 

indicate that mathematical sex differences level out with development. However, the 

TEDS sample is not the only case where mean sex differences were not detected. The 

latest PISA assessment, carried out on 15 year old students in 65 countries, did not 

find measurable differences in mathematical performance between boys and girls in 

23 countries (OECD, 2010b). It needs to be noted that the UK was not among these 23 

nations. It is possible that mean sex differences are detected when mathematics is 

measured on a broader range of skills such as school achievement, rather than the 

tests used in this study. It is planned to extend this investigation in TEDS to the 

measures of school achievement, such as GCSE grades. Irrespective of whether small 

sex differences in mathematical achievement exist at this age, the aetiology individual 

differences was found to be the same for boys and girls at age 16 in this study, in line 

with results of TEDS at earlier ages. The absence of aetiological differences between 

the sexes in mathematics and in the abilities associated with it (number sense and g) 

suggests that any average differences in mathematical performance reported in the 

UK (the PISA assessment in 2009, OEDC, 2010b) may stem from completely different 

factors from those driving variation in these traits.  
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8.3 Limitations and strengths  

 General limitations of the twin method apply to the studies of this thesis. 

However, as discussed in Chapter 3, TEDS has minimised many of such concerns. For 

example, zygosity determination has been carried out by both questionnaire and 

molecular methods; and the sample has been shown as highly representative of the 

UK population, ensuring good generalisability of findings. Assortative mating and 

equal environment may be the two assumptions having significance for the studies of 

this thesis. Assortative mating implies non random pairing of spouses that may affect 

the genetic transmission from parents to offspring as well as environmental 

correlations. For example, partners tend to choose each other on the same level of 

education, which in turn correlates with g (Plomin et al., 2008). This phenomenon 

generally leads to an increase of shared environment and a decrease of genetic 

influences. If number sense abilities constitute a preferred trait in partners' selection, 

then we would observe a decrease in heritability and increase in shared 

environmental influence in the population. However, the analyses in this thesis 

showed very negligible shared environmental influence on number sense, suggesting 

the absence of assortative mating for this trait. 

  Equal environment assumption violation would be more difficult to detect, as 

different environments may decrease or increase the MZ and DZ twins' similarity. 

One environment concerning number sense abilities could be the class environment. 

Previous studies suggest that twins' similarity in mathematics does not increase as a 

function of being in the same class with the co-twin and being taught by the same 

teacher (Kovas et al., 2007a). This finding suggests that teachers and other aspects of 

the classroom environment may act as non-shared environments in influencing 

mathematical abilities. Although our research suggests that the non-shared 

environments between mathematics and number sense are unrelated, the influence 

of the teachers, especially at early age could be relevant for number sense. In this 

case, a larger (or smaller) number of MZ compared to DZ twins could lead to 

overestimation or underestimation of genetic influences. In the TEDS sample at the 

age of 7 and 9 there is similar proportion of MZ and DZ twins attending a class with 



 

 

236 

their co-twin or separately. This ensures that any teacher effect does not influence 

the heritability estimates.  

 TEDS sample is homogeneous in age. This property ensured that the findings 

of this study were free from a developmental bias. However, as mentioned 

previously, the findings cannot be extended to other ages. This study has pioneered 

the investigation of number sense using behavioural genetic methodology; however 

results will need to be replicated across samples and ages to assess the change and 

continuity of this trait. 

 Furthermore the study in Chapter 5 indicated that a number of cognitive 

abilities had an association with mathematics across the school ages. This 

investigation was primarily concerned with the relationship between number sense 

and mathematics, also including g in the models. This investigation suggests that 

there is a small genetic variance shared between Number Line and Weber Fraction, 

independently from mathematics and g. This variance may be shared with other 

abilities not measured as part of this investigation. It is also possible that this variance 

uniquely pertains to estimation abilities. Future research should include other 

variables, such as reading-decoding as reading showed the most robust association 

with estimation of numerosity at the beginning of mathematical learning in this 

study.  

 The use of the large longitudinal representative TEDS sample in this 

investigation was its major strength. The study in Chapter 5 conducted the 

longitudinal-retrospective analyses on one twin in each pair and used the co-twins as 

replication sample – another major strength of the investigation. Another strength of 

the investigation was the extensive piloting of the measures used in the TEDS 

assessment. During the process of online implementation of the task, internal validity 

was continuously monitored. The validation study conducted on the subset of TEDS 

(illustrated in Chapter 4) confirmed the reliability of the battery, as all the measures 

showed a good test re-test reliability and internal validity. 
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8.4 Conclusion 

 This investigation has provided an unprecedented opportunity to use the large 

and representative UK TEDS sample to advance the knowledge of the origins of 

number sense abilities and the nature of their relationship with mathematics. These 

results chart the course for future research into the relationship of number sense and 

other cognitive abilities to better understand mathematical development. The 

number sense domain has proven to be more complicated than what previously 

thought. A more comprehensive understanding is likely to result from 

interdisciplinary, collaborative and cross-cultural investigation. Further understanding 

into mathematical abilities is likely to result from the cross-cultural investigations that 

use the same measurements and procedures. The test battery developed as part of 

this interdisciplinary PhD project, as well as new research directions charted by this 

thesis, are currently being used in new large scale cross-cultural investigations.  
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Appendix 1: Information sheet validation study 

 

 

 

         Numerical Ability in 16-year olds: Tests validation study 

 

 

We would like to invite you to take part in a special project conducted by Dr Yulia 

Kovas and Maria Grazia Tosto at Goldsmiths College.   The information below should 

help you understand why this study is being done and what it will involve.  Ask us if 

there is anything that is not clear or if you would like more information.  Take time to 

decide whether or not you wish to take part. 

 

 Thank you for reading this. 

 

The purpose of the study 

Little is known about why people differ in their capacity to recognise and 

evaluate numerosity.  We are planning a large study that aims to improve our 

understanding in this area, which will involve thousands of 16-year olds.  This study 

will also help us to understand whether this ability of recognising numerosity and the 

ability to approximate are related to the development of mathematical ability.  

Ultimately, the results of this large study might help us to understand why some 

people struggle with mathematics and others do well in it.  We have developed a 

battery of tests that assess numerical ability, but before we can start the large study, 

we need a 100 volunteers to help us to evaluate how well this battery of tests works 

and to find the best way of administering these tests.  

 

Do I have to take part? 

 

 It is up to you to decide whether or not you would like to take part in this 

study.  If you do decide to take part you will be asked to sign a consent form. We will 

also ask your parent or guardian to provide consent for your participation by signing 

the consent form.  You are still free to withdraw from the study at any time and 

without giving a reason.  We would like to emphasise that the participation in this 

research is entirely voluntary.  
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What does taking part involve? 

 

 We will make two appointments with you.  At the first appointment, we will 

ask you to complete several tests on a computer in the presence of one researcher.  

The researcher will come to your school; alternatively, you can come to Goldsmiths 

College if you prefer.  The procedure should take between 30 and 60 minutes.  

Approximately one months later, we will send you a web-link and ask you to 

complete a battery of tests on the internet using log-in information that we will 

provide.  This procedure should take approximately 30 minutes. 

Reward 

 

 We will give you two £10 Love2Shop vouchers (one for each assessment) as 

appreciation of the time and effort that you devoted to our research. These vouchers 

can be redeemed in many high street stores, including HMV, Waterstone’s, and New 

Look, as well as some leisure activities.  You can look up Love2Shop vouchers on the 

internet or ask us for more information.  In addition, if you choose to come to 

Goldsmiths College for the first assessment, we will reimburse all your travel 

expenses.   

 

Will my taking part in this study be kept confidential? 

 

 All information collected during the course of the research will be kept strictly 

confidential.  The data that you will provide will be entered into a dataset together 

with other participants’ data, and you will be identified in this dataset only by 

participant number.  Your name and contact information will be stored separately 

and will be deleted from our records as soon as you have completed both 

assessments and have received the reward, or if you choose to withdraw from the 

study earlier. 

 

What will happen to the results of the research study? 

 

 It will take us a few weeks to collect the data from all 100 participants and to 

analyze the results.  Once we have done that, we will choose the tests and methods 

that have worked the best in order to conduct the study with thousands of 

participants.  This bigger study will take a couple of years to complete, and once the 

results are available, they will be published in reputable journals.  
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Who is organising and funding the research? 

 

 The validation study in which we are asking you to participate is organised by 

Dr Yulia Kovas. Goldsmiths College is funding this project.   

 

Who has reviewed the study? 

 

 The Ethics Committee of Goldsmiths College has reviewed the ethical aspects 

of this study.  

 

Contacts for Further Information 

 Please contact Dr Yulia Kovas and Maria Grazia Tosto for further information 

(see contact details below). 

 

 

If you would like to participate in this study, please complete and sign the consent 

form.  Your parent or guardian should also sign this form if agree to your 

participation.   

 

 

Dr Yulia Kovas                                                                                          

Department of Psychology 

Goldsmiths, University of London 

SE 14 6NW 

Tel. (0)207 078 5025 

Fax  (0)207 919 7873 

 

 

Maria Grazia Tosto 

Department of Psychology 

Goldsmiths, University of London 

SE 14 6NW 

Tel. (0)207 7919 7171 4286 

 e-mail : ps_n_16@gold.ac.uk 
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Appendix 2:  Consent form pilot study 

 

    
 

CONSENT FORM: Numerical Ability in 16-year olds: Tests 
validation study  

 

     Please tick appropriate box: 

 

             Participant                                                                                     

 

       Yes,  I would like to participate in this study.  

       No,  I do not want to participate in this study. 

 

             Parent/Guardian                                                                                    

 

       Yes,  I would like my child to participate in this study.  

       No,  I do not want my child to participate in this study. 

   

            Participant 

            If Yes, please complete the following: 

 

         I have read the Information Sheet about the study.   

         I understand that I do not have to take part in this study if I do not want to.  

         I understand that I can withdraw from the study at any time without giving a reason. 

         I have had the opportunity to ask any questions I wish to ask.      

         I have access to the names and telephone numbers of the research team in case I have any  

         questions. 

 

            Participant’s Name: __________________________________________     

 

 

            Participant’s Signature: ________________________    Date: _____________ 
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            Parent’s/Guardian’s Name: ____________________________________    

 

 

 

             Parent’s/Guardian’s Signature: _____________________  Date: _____________  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Contacts  for further information: 

 

Dr Yulia Kovas ,Department of Psychology, Goldsmiths, University of London SE 

14 6NW 

Tel. (0)207 078 5025 

Fax  (0)207 919 7873 

 

Maria Grazia Tosto Department of Psychology Goldsmiths, University of London 

SE 14 6NW 

Tel. (0)207 078 4286     

e-mail : ps_n_16@gold.ac.uk 

 

 

 

SE 14 6NW 

Tel. (0)207 078 4286 

 e-mail : ps_n_16@gold.ac.uk 
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Appendix 3: Trial sample Dot Task 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

17 yellow  and  14 blue dots 
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Appendix 4: Number Line test trial 
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Appendix 5: Number Line practice trial 
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Appendix 6: Dot Matching test trial sample 
 

 

 

 

             

 

 

 

             

 

  

F  =   MATCH                                J   = NO  MATCH 

F  =  NO MATCH                              J   =   MATCH 

Presentation trial right handed participants 

Presentation trial left handed participants 
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Appendix 7: Understanding Number test trial sample 
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Appendix 8: Problem Verification Task trial sample 
 

 

 

 

 

 

 

 

 

 

 

 


