
39

Fluid gesture interaction design: applications of continuous
recognition for the design of modern gestural interfaces

BRUNO ZAMBORLIN, Goldsmiths, University of London and IRCAM STMS-CNRS-UPMC
FREDERIC BEVILACQUA, IRCAM STMS-CNRS-UPMC
MARCO GILLIES, Goldsmiths, University of London
MARK D’INVERNO, Goldsmiths, University of London

This paper presents Gesture Interaction DEsigner (GIDE), an innovative application for gesture recognition. Instead of
recognizing gestures only after they have been entirely completed as happens in classic gesture recognition systems, GIDE
exploits the full potential of gestural interaction by tracking gestures continuously and synchronously so allowing users to
both control the target application moment-to-moment and also receive immediate and synchronous feedback about system
recognition states. By this means, they quickly learn how to interact with the system in order to develop better performances.
Furthermore, rather than learning the pre-defined gestures of others, GIDE allows users to design their own gestures so
making interaction more natural and also allowing the applications to be tailored by users’ specific needs. We describe our
system that demonstrates these new qualities - that combine to provide fluid gesture interaction design - through evaluations
with a range of performers and artists.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces—Input devices and
strategies

General Terms: Algorithms, Design,Experimentation,Human Factors, Deployment of Gesture Interaction Systems

Additional Key Words and Phrases: Gesture Interaction, Design and Application of Gesture Interaction Systems, Meaningful
Feedback, Continuous and Synchronous Control, Personalisation

ACM Reference Format:
Zamborlin, B., Gillies, M., Bevilacqua, F. and d’Inverno, M., 2012 . Fluid gesture interaction design: applications of contin-
uous recognition for the design of modern gestural interfaces ACM Trans. Interact. Intell. Syst. 9, 4, Article 39 (June 2012),
28 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Gestural interaction is starting to fulfil its potential of becoming an essential part of modern inter-
action design. For example, touch screen mobile devices have made gesture interfaces ubiquitous,
while motion based game controllers such as the Microsoft Kinect make full body gesture interac-
tion affordable and practical. Historically, gestural interface technologies have been developed for
use in quite specific domains (including, for example, across artistic and performance domains) but
general uptake was limited. More recently, and largely popularised due to the increasing interactive
demands of the game industry, gesture interaction is starting to become more widespread. This in-
creasing uptake signifies the huge potential promise of gesture interaction systems to provide the
future way in which we will all interact with technology. We are at a stage of research into such
systems where the focus needs to move from the novelty of being able to create gestural interfaces
towards how we can create effective gestural interfaces: interfaces that genuinely go beyond what
is possible with the traditional mouse and keyboard devices. In order to frame our paper and the
context of our research, we first provide a desiderata of what we believe to be crucial aspects for
the design of modern gesture interface systems so that they become effective for users and widely
adopted. Ideally, we believe modern gesture interfaces should provide the following four properties.

(1) Continuous control
Users should be able to continuously and synchronously control the target application moment
by moment through their gestures. Although for many applications it may be sufficient to trig-
ger discrete events, enabling additional continuous control will extend the range of possible
control mechanisms. Expressivity of human body movements cannot be fully represented as
a sequence of discrete commands. Continuous synchronisation between user movements and

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:2 B. Zamborlin et al.

digital processes is necessary to enable expressivity in gestural interfaces. For example, it is
generally useful to include the possible modulating effect of continuous changes in gestures
occurring between triggering events. This typically allows for the use of important information
occurring in preparation gestures, which can be in turn used to anticipate specific control. The
standard recognition techniques output results once a given gesture is finished. Using contin-
uous control, it then becomes possible to extend such an approach by extending intermediate
recognition results that become available during a gesture performance.

(2) Tailorable for specific context
Users should be able to define their own personal gestures (irrespective of their expertise or
physical mobility) and adapt the system to the specific application context and across differ-
ent physical environments in which design and/or performance are taking place. Users should
be able to define a personal vocabulary of gestures specifically for the target application in
hand and the environment in which interaction activity will take place. Systems must provide
users with the flexibility to easily modify their gestures as users develop the way in which they
want to interact with the system. The system must enable the user to define gestures which are
natural, meaningful and even metaphorical to them personally with respect to the response be-
haviour of that system. If systems do not allow this, then they risk being worse than traditional
GUIs as users must remember an arbitrary vocabulary of gestures which are not meaningfully
grounded in their own individual movements. In such situations, it becomes at least as diffi-
cult as remembering an arbitrary set of textual commands and possibly even more difficult if
gesture interaction itself is new to the user. We argue that for successful general purpose sys-
tems users must be flexibly accommodated so they can link their personal gestures with their
intended system response. Indeed this becomes not just desirable but necessary when gesture
interaction systems are used as part of an artistic performance such as dance and other con-
temporary productions. In dance scenarios, for example, gestures must be specifically designed
for the choreography of the piece, the specific dancers being involved and even according to
the environment of the venue and technology that is available. If the gesture set is pre-defined
or limited in any way then it is difficult to see how such systems could be effectively used in
performance settings in general.

(3) Meaningful feedback
This specific quality refers to the ability of gesture interfaces to provide meaningful feedback
to users regarding how the system is interpreting their actions. Users need to be able to readily
access as much information as possible from the system during any practice or performance
episode in order to understand the relationship between their action and the system’s response.
A certain level of satisfaction or even virtuosity comes when users can perform their actions
with sufficient accuracy that they can control the system reliably enough to satisfy their inten-
tions. This feedback should refer ideally to every action of the user with the system, including
performing a movement and tuning a parameter of the system to adjust its behaviour. Without
this facility it is prohibitively difficult for users to get better at interacting with the system. Fur-
thermore, users need to access information at different levels of detail. On the one hand certain
tasks might require an immediate overview of the state of the entire system whilst on the other,
tasks would require users to be able to access more detailed information regarding the analysis
of their ongoing gestures at a lower level. Moreover, performers need to have the possibility of
perceiving this feedback without having to look at the screen so that they are free to focus their
attention elsewhere. Different information streams should be available to users so that they can
choose what is most appropriate to the current task in hand. Finally, and perhaps most critically,
users need to access feedback synchronously and continuously over time just as happens when
practicing a musical instrument. This immediacy in the feedback is a critical aspect of designing
systems where users can effectively learn by performing. A combination of accessing different
levels of information, through different available information streams (such as audio, data, vi-
sual), and having this feedback immediately and continuously as the interaction is taking place
are all key to providing meaningful feedback enabling meaningful interaction for the user.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:3

(4) Allow expert and non-expert use
We want to build systems where it is the end users (rather than the system designers) that can
define their own personal gestures. In order for this to be possible, the gesture interaction system
for defining those gestures must be sufficiently simple and the functionality easily accessible by
users not expert in either machine learning or the use of gesture interaction systems in general.
The process of designing the gesture interaction for any individual, for a specific application
in an environment which includes different technological components needs to be intuitive,
quick and straight-forward. When the processes of defining new gestures, testing them in the
practical context and tune the parameters of the system are quick and tightly interleaved and
clear guidance is provided to the user continuously over time, the workflow of gesture design
becomes fluid and enables a sense of flow in users interaction with the system[Csikszentmihalyi
2008].

This ambitious goal of building fluid gesture interaction systems is the driving motivation of our
work. We want to design, build and test a new generation of gesture interaction systems that are
sufficiently simple, responsive and intuitive that users are fully engaged, immersed and involved
with the success of their activity so that flow is possible. In order to achieve such a system we
believe it must, at the very least, satisfy the desiderata we have described above. Next then, we
explore these desiderata in more detail, by grounding our discussion through an illustrative example
concerning the design of a digital musical instrument.

1.1. Use-case: the design of Digital Music Instruments
Let us now consider the design of digital music instruments (DMI) [Wanderley and Depalle 2004] in
the context of these desiderata with the aim of trying to illuminate their significance. The evolution
of computer music has made available many different sound synthesis methods then can be easily
run in inexpensive computer platforms and controlled in realtime by many different kinds of input
devices (such as MIDI controllers, computer keyboard, motion sensors and even by classic musical
instruments). Designing a meaningful and effective mapping between the gesture of a performer
and its effect on the sound of the instrument is an extremely subtle and complex task which not only
matters hugely to the performer but also to the way in which an audience interprets the performance.
Any gesture interface for DMI requires users to be able to define such gestures and should satisfy
the four properties we described above:

(1) The sound needs to be affected by the gesture of the musician continuously during the perfor-
mance. If the gesture control is limited to only triggering discrete events, little benefits might be
gained compared to standard interfaces such as MIDI keyboards and controllers. Capturing the
expressivity found in human performance generally requires us taking into account the intrinsic
continuous nature of human motion. Considering continuous interaction, this implies taking into
account both the detection of discrete triggers and the tracking of continuous variations in the
gesture performance. Conductor’s gestures could be seen as an example, where discrete beats,
tempo and expressive elements can be communicated through the continuous hand trajectories
and body motion. Precisely, the continuous trajectory is key for perception and specification of
discrete event such as an isolated accent: a conductor can signal a strong accentuation through
the preparation movements. This is why conductor gestures should be considered not only as
a mere series of ”triggering” gestures, but also as a complex continuous gestures that commu-
nicates both events and expressive elements. Considering beats indication and the continuous
transition gestures may also help to enable musicians to anticipate new events.
Furthermore, the influence of the gesture to the sound being generated needs to happen as syn-
chronously as possible and certainly with very low latency of less than small fractions of a
second so that the latency is effectively hidden. If the latency is significant, it becomes impos-
sible to control the instrument reliably and to give the sense to the performer and the audience
that they are actually controlling the sound through their gestures.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:4 B. Zamborlin et al.

(2) The gestures need to be tailored by the performer for the specific instrument, the specific per-
former and the environment where the performance is taking place. Moreover, the user should
be able to create the musical metaphors that they want to capture through them [Wessel and
Wright 2002]. Only in this way can the correlation between gesture and sound be clear, in-
tuitive (for the performer and, as a result, for the audience), more meaningful and easier to
remember than generic pre-coded gestures or standard devices such as faders, knobs and foot
pedals, which do not provide any association between the gesture and its meaning in the sound
domain.

(3) When rehearsing, performers need access to meaningful feedback about system behaviour. De-
tailed screen-based information about how their gestures are being interpreted by the system
and how they have been interpreted during the whole performance is a fundamental tool for
allowing users to understand system behaviour and evaluate their performances to achieve bet-
ter results. Having said that, system feedback should also be provided in other formats that do
not force performers to look at the screen. If only screen-based feedback is available during a
performance, it would force the focus of the visual attention of the performer to be fixed to a
specific object which would then potentially detract from the performance itself.

(4) DMI users are not necessary domain experts in gesture recognition algorithms and gesture de-
sign tools must be accessible enough to be used by them (allow expert and non-expert use). For
this reason, performers need to have a feedback from the system during design and performance
which guides them in understanding the system behaviour they are provoking.

As stated above the explicit combination of these factors is necessary to enable fluid gesture
interaction design.

1.2. GIDE: Gesture Interaction Designer application
In this paper we present a new system called Gesture Interaction Designer (GIDE) (figure 1) which
attempts to address each of these four desiderata by employing an algorithm for gesture recognition
called gesture follower that offers two critical results [Bevilacqua et al. 2010b; Bevilacqua et al.
2007]. First, from the moment a performance begins, it enables a continuous estimate to be cal-
culated of which recorded gesture is the one currently being performed. This estimation happens
in real-time, moment by moment over time. Second, for each of these potential target recorded
gestures, the algorithm provides a continuous estimation of the current temporal position of the
performance within each of them. We refer to these features respectively as real-time gesture recog-
nition and real-time gesture following. In this paper we provide a formal evaluation of this algorithm
and show how it compares favourably to existing approaches.

We now re-consider our desiderata and provide a very brief high-level description (that will be
fully elaborated in the paper) of how this algorithm enables those desiderata to be met.

Realtime gesture recognition and particularly realtime gesture following enable GIDE to satisfy
the first of our desiderata by facilitating continuous control. In this paper we present examples
of applications that exploit our algorithm to control digital media in real-time through gesture.
Furthermore, the results calculated by our algorithm allow us to adopt a particular design of the
GIDE application workflow to address the other points of our desiderata.

In order to achieve tailoring, GIDE allows users to define their gestures by recording them just
once (later in the paper we will provide the details of how this feature is implemented). Moreover,
GIDE supplies guidance in tuning the most important parameters of the system by providing a
corresponding graphical feedback on data visualisation and, also, by using metaphorical names
for these parameters. This enables users to tailor the system behaviour with increased precision
in intuitive ways. The act of recording gestures, testing them and tuning system parameters are
proposed as three tightly interleaved processes that make the gesture design workflow an interactive
and fluid process. In this way, dancers can define gestures through performing dance, musicians can
define their gestures through performing music, and players of computer games can define gestures
through interacting with the game.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:5

Fig. 1. Detail of the Gesture Interaction Designer application

We take full advantage of the real-time nature of our algorithm to provide meaningful feedback
to users relating to the output from the real-time recognition and following aspects of our algorithm
mentioned above. This feedback happens in different ways as follows. First, we record video and
audio of users when they record their gestures and we align these information streams with the
performance in real time as it is happening. This allows users to be able to test their gesture vocab-
ulary seeing and hearing the playback of their recorded gestures as they are synchronised with the
performance: it slows down and speeds up exactly matching when users slow down and speed up.
The attempt at constant alignment between the performance and the pre-recorded gesture enables
users to practice the performance of their gestures when rehearsing (which may involve recording
of new improved gestures in the vocabulary.) Moreover, for a more precise comparison between
current and recorded performance of gesture, GIDE allows users to visualise how the system is
aligning the various streams of sensor data of the performance to the corresponding streams of the
performances of the pre-recorded gesture vocabulary. This visualisation offers not only a detailed
measure of the differences between the performance and the reference gestures, it is also provides a
clear understanding of how the system is behaving in response to the current performance.

The combination of the features described above enables the application to allow expert and non-
expert use. The realtime nature of our system, enabling continuous feedback, allows users to have
a much clearer understanding of how the system is responding to their actions. In this paper we not
only describe the details of the GIDE application but we also provide an evaluation of its ease of
use through a case study involving 23 participants from a wide range of performance disciplines
including musicians, visual and interactive artists, dancers and programmers. By doing so we aim
to demonstrate and evaluate the potential for a new kind of fluid gesture interaction design and
performance.

In order to achieve this, the remainder of the paper is structured as follows. In Section 2 we will
discuss the importance of gesture design and what we believe to be the most important work in this
field. Next we will present the algorithm for gesture recognition in Section 3 and provide a detailed
evaluation of the novelty of our approach by comparing it with a widely used algorithm, Dynamic
Time Warping. Section 4 then presents our GIDE system in detail, focusing on the application

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:6 B. Zamborlin et al.

workflow and its usability. Next we present details of our user evaluation study in Section 5 in
which performers and artists were asked to develop gestural interfaces for their own use, before
finishing in Section 6 with reflections on our contributions to this field and summarising our future
areas of scientific and performance investigation.

2. BACKGROUND AND RELATED WORK
Gesture interfaces enable computer interaction using hands or more generally with body move-
ments. Pen [Hinckley et al. 2004], finger, and wand gestures are increasingly relevant to many new
user interfaces for mobile, tablet, large display [Cao and Balakrishnan 2003] [Guimbretière et al.
2001], and tabletop computers [Karlson et al. 2005] [Morris et al. 2006]. Their applications are
manifold [Mitra and Acharya 2007], ranging from medical rehabilitation [Dai et al. 2001] and sign
language recognition [Bowden et al. 2003; Bowden et al. 2004] to video-game (using interfaces
such as the Nintendo Wii and the Microsoft Kinect).

The goal of gesture recognition is to computationally analyze body movements (hand or whole
body) and associate each gesture to a predefined label (sometimes linked to a semantic meaning).
In classical gesture recognition tasks, gestures are treated as whole, indivisible entities. Most ap-
proaches are designed to control discrete events once a given gesture is completed.

2.1. Gesture recognition systems with continuous output
Several systems that allow for real-time recognition have been proposed (for recent reviews see
([Turaga et al. 2008] and [Mitra and Acharya 2007]). Whilst many systems operate in “real-time”,
their output remains essentially discrete quantities, i.e. the gesture labels. Wilson and Bobick pro-
posed to extend the recognition task with parameters describing gesture variations ([Wilson and
Bobick 1999]. We report here more specifically systems that were designed to provide users with a
continuous flow of information characterizing their input gestures.

Visell et al. [Visell and Cooperstock 2007] described a system based on particle filtering that
tracks multiple hypotheses about user’s input, and can display predictions of future trajectories.
This system, targetting applications in physical and neuro-rehabilitation, was designed to allow for
a close-loop between the action and feedback given to the user. Williamson [Williamson 2006] out-
lined a system for displaying information regarding uncertainty in the continuous recognition task,
provided by Monte Carlo sampling methods, and its application for controlling granular synthesis as
auditory display. Rodriguez et al. [Portillo-Rodrguez et al. 2008] presented a camera-based system
based on Probabilistic Neural Networks and Finite State Machines that allows for the comparison
in realtime of Tai-Chi movements between a student performance and that of prerecorded ones by
a teacher. The systems generates spatial sound, vibrotactile and visual feedback based on the differ-
ence between the student and teacher gestures. Bevilacqua et al. [Bevilacqua et al. 2010b], [Bevilac-
qua et al. 2010a] developed a system called Gesture Follower that is designed to continuously output
information about the gesture speed and similarity measures relative to a set prerecorded exemplars.
This system has been used in artistic contexts for music and dance [Bevilacqua et al. 2012], and in
particularly in music and dance pedagogy. However the design of such gestures requires consider-
able tailoring to be used in practical situations. This is a difficult process as interaction designers are
not generally domain experts in gesture or pattern recognition [Fails and Olsen 2003a], and gesture
recognition systems needs to provide guidance to end-users to easily define and test their gestures
and adapt them for their particular needs.

2.2. Interactive Machine Learning
If gesture interfaces are to be effectively designed and tailored, there must be effective and intuitive
sets of tools for interaction designers to use. At the moment gestural interfaces are often hard-
coded based on ad hoc rules which make design difficult, requiring a slow back and forth between
a designer and programmer to create and test the interfaces. Gestures are also limited to those for
which programmers can find simple enough rules. The ability for users to define their own gestures
have been demonstrated to be important in previous work [Wobbrock et al. 2009] and it is critical

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:7

that their design should be undertaken by movement experts rather than programmers [Hummels
et al. 2006] so that any system needs effective and intuitive tools for gesture design. Whilst this
promises generic systems that can be trained by non-programmers to recognise complex gestures
it is currently the case that most current systems (for example Weka [Witten and Frank 2005] and
GT2K [Westeyn et al. 2003]) still require a high degree of sophistication of the user. In many
cases they are required to grapple with highly conceptually difficult machine learning algorithms
and so are worse than the hard-coded methods. The Wekinator [Fiebrink et al. 2011] is a software
package that aims to make the Weka library more accessible for non-experts allowing users to
develop realtime applications, particularly in the music domain. It provides a graphical interface
to help the user in selecting and configuring different algorithms, adopting what et all [Fails and
Olsen 2003b] defined as Interactive Machine Learning approach, which aims to allow users to train,
classify/view and correct the classifications. However, these systems only recognise static frames
rather than temporal gestures and so are limited in their scope and possible use.

2.3. Tools for gesture design
Several tools for gesture design have been released over the last decade. Crayons [Fails and Olsen
2003a] is a system for computer-vision classification of images that explicitly encourages the user to
iterate through the design process by providing immediate feedback on system performance based
on the training set. Exemplar [Hartmann et al. 2007] is a tool for rapid prototyping different as-
sociations between sensor input and application logic by demonstration. It proposes techniques to
both manipulate the input directly and through pattern recognition techniques to enable designers
to control how users’ examples are generalised to interaction rules. Wobbrock et all [Wobbrock
et al. 2009] presented a study for touch-screen gestures, where they asked to users to think and
define gestures to associate to given tasks. Ruiz et all [Ruiz et al. 2011a] presented the results of a
guessability study where they asked to participants to define motion sensors-based gestures using
smartphones. This work demostrates that, in that study, consensus exists on parameters of movement
and on mappings of motion gestures onto specific commands. This information was used to present
a set of motion gestures and to specify an end-user inspired motion gesture set. Lü et all [Lü and
Li 2012] presented a system for multi-touch screens that allows application developers to program
gestures by providing few examples, showing that the system lowers the threshold of programming
multi-touch gestures. Magic [Ruiz et al. 2011b] is an accelerometers-based gesture designer tool
that graphically plots recorded gestures and makes available video of the designer while perform-
ing them. It also gives feedback about the quality of the training set by testing it against a corpus
of everyday activity. However, Magic is a discrete system that can only recognise gestures at the
completion of their movement. No feedback is provided during the performance of such gestures.

It is our view that to fully realise the potential of gesture interfaces we need general, usable
gesture design systems that support continuous and immediate control and feedback and in response
we describe our own system called GIDE in the next section.

3. GESTURE INTERACTION DESIGNER
In this section we present an overview of GIDE, an application for gesture interaction design (figure
1). The application allows for recording a series of gestures (the “gesture vocabulary”), visualising
them and using them as a training set for the recognition of future gestures. GIDE adopts an inter-
active approach for setting-up the machine learning environment, in order to allow non-expert users
to take advantage of gesture recognition techniques and develop their own applications.

Keeping in mind our proposed desiderata, we want the application to satisfy the following re-
quirements: 1) it should compute analysis regarding users performance moment by moment over
time and use this information for allowing continuous control of the target application; 2) it should
allow users to define their own gestures and tailor them for their needs; 3) it should provide mean-
ingful feedback regarding system behaviour and the state of the system’s recognition; 4) it should
provide clear guidance through the whole gesture design process and should be easy to use by users
non-expert in gesture recognition technologies.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:8 B. Zamborlin et al.

GIDE has been designed to be a general purpose application for gesture recognition that can
work across different application domains and media. The application is completely agnostic about
the origin and type of sensor data that are used by it, and can work equally well with any kind
of temporal data that are regularly sampled and sent to it through the OpenSoundControl protocol
[Wright et al. 2003]. We have successfully tested GIDE with several devices: motion sensors such
as accelerometers and gyroscopes, video camera using image descriptors, sound input (e.g. micro-
phone) using audio descriptors. However, describing in detail all these different applications goes
beyond the aims of this article and we will instead focus on the use of two distance yet common-
place examples: finger gestures (captured using mouse or tablet) and hand gestures (captured using
accelerometer-based motion sensor).

As we previously mentioned, a fundamental requirement for our system is to provide feedback
about the state of the recognition during the performance. Furthermore, we want users to be able
to easily record and edit their gesture vocabulary based on the feedback that they receive from the
system. However, most classic machine learning algorithms, such as Hidden Markov Models, need
to access to the entire gesture before give a result and are therefore not suitable for our purposes.
We thus developed a modified version of Hidden Markov Models called the Gesture Follower which
has been previously described by Bevilacqua et al. [Bevilacqua et al. 2010b]. Here, we summarise
the the principles of the procedure and provide a comparison with standard Dynamic Time Warping.
We then explain in details how the features provided by this algorithm are used by GIDE to comply
with our proposed desiderata. Then we describe several case studies of the GIDE application with
the intention of demonstrating the wide ranging potential of our system.

3.1. Features of the algorithm
GIDE uses a variant form of Hidden Markov Model for gesture recognition. Hidden Markov Models
(HMM) can recognise sequential data using a probabilistic approach. Series of observations are
modelled using a finite number of states, whose transitions are defined by transition probabilities.
Each state emits observations based on a probability distribution function. Generally, the HMM’s
parameters are set through training procedures using a large database statistically representative of
all possible variations. However, for interactive gesture design this would require to collect a large
number of users data, with each user repeating gestures many times. This would obviously limit the
interactive procedure between designing gestures and receiving feedback on the gestural interface
behaviour. On the contrary, GIDE is designed to allow users to rapidly define and test gestures
as required by our second desiderata: tailorability. This is why the learning procedure needs to be
as quick and simple as possible. GIDE therefore uses an hybrid approach between probabilistic
HMM and exemplar based approaches such as Dynamic Time Warping (DTW) that requires only
a single gesture example to specify gestures class. The ”modified” HMM approach used by GIDE
sets the Markov models from a single example, by associating each example sample data with a
state, as shown in Figure 2. Such a choice leads us to consider a large number of states and is thus a
less efficient decoding computation compared to standard HMM approaches. However, two points
should be noted. First, the loss of efficiency was never found limiting in our application. Second,
our approach offers the crucial advantage to closely model the data time profiles, which might be
lacking in a standard HHM. In particular, similarly to DTW, it is possible to temporally align the
incoming data with the original example at the granularity of individual samples. Compared to
DTW, our approach allows for real-time decoding during the performance (using the HMM forward
procedure) while standard DTW is operated only at the end of the gesture. A similarity measure
can be estimated with the same time granularity (at the sample level). These two features together
enable the first desideratum: continuous control. Moreover, when performing recognition, the HMM
associated with each gesture is evaluated and the one with the highest similarity measure (i.e. highest
likelihood) is used to classify the gesture. When performing recognition, the HMM associated with
each gesture is evaluated and the one with the highest computed probability is used to classify the
gesture.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:9

As in standard machine learning techniques, the workflow is divided into two phases, learning
and decoding. During the learning phase, the temporal profile of the gesture is recorded and used to
create a left-to-right Hidden Markov Model by directly associating each sampled point to a state of
the HMM. Each state i corresponds to a sample in the training data and is associated with a gaussian
probability distribution bi, which is used to compute the probability of an observation O:

bi(O) =
1

σi
√
2π
exp[−((O − µi)

2

2σ2
i

)] (1)

where µi is the ith sampled value associated with state i, and σi is parameter that can be inter-
preted as the standard deviation occurring between recorded references and performances. Since the
HMM is trained using a single example, σi cannot be estimated and therefore must be set using prior
knowledge or dynamically adapted depending on the accuracy of the performance. This parameter
σi is directly related one of the important parameter of the application, that we called tolerance, that
is defined by 2σi and is expressed in the same unit measure as the sensor data.

Because the states correspond to frames in the original gesture, transitions between states cor-
respond to transitions from one frame of the original motion to another. We have three non-zero
transitions probabilities: a0, which is the probability of staying in the same frame; a1, which is the
probability of moving to the next frame; and a2 which is the probability of jumping to two frames
ahead. These transitions probabilities correspond to different speeds of performing the gesture: re-
spectively movements that are slower than the original; the same speed; and faster. In order not to
bias the model toward certain movement speeds, we set these transitions probabilities to have equal
values: 0.33, 0.34 and 0.33, respectively.

time

measured

value

Observation probability

left to right Hidden Markov Model

a
0

a
1

a
2

Fig. 2. Learning procedure: a left-to-right HMM is used to model the recorded reference. The HMM has a separate state
for each sample of the training data.

The decoding phase follows standard forward procedure to HMM [Rabiner 1989], corresponding
to a causal inference (i.e. the inference is estimate without the knowledge of future events, as appro-
priate standard Viterbi algorithm that operates, without causality constraints, on complete gestures).
This procedure requires the computation of a distribution αi(t) which corresponds to the probability
distribution of the partial observation sequence until time t, and state i. This distribution is estimated
iteratively in real-time each time a new observation is received and makes it possible to compute

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:10 B. Zamborlin et al.

two important values: the time progression of the sequence, that is related to the recorded example,
and its likelihood. For details regarding such a procedure, please refer to Appendix A.

The likelihood estimation depends on the tolerance and a second parameter called latency. Pre-
cisely, for every incoming sensor observation, the system computes a likelihood relative to each
reference gesture. These likelihoods are computed by averaging “instantaneous” likelihoods, ref-
ereed to each coming observation. The average is computed using a sliding window, which size
depends to the number of frames taken into account. For example a window size of 50 frames at
a frame period of 20ms will consider one second of the performance. High value of this parame-
ter guarantee more stable results, but it will also add latency to the system in outputting accurate
recognition estimation, typically during the transition between two gestures.

Finally, note that the computation of the selection of the correct gesture can be performed in
two different manners: either selecting directly the one with highest likelihood value computed as
explained above, or adding a constraint on the speed of the gesture performance to be in a given
range, such as between half and twice the speed of the reference gesture and rejecting those outside
this criteria.

This algorithm allows our application GIDE to provide the following features:

Real-time recognition. This algorithm returns a real-time moment-by-moment probability that
the gesture being performed is the same as each of the pre-recorded gestures in the recorded
gesture vocabulary. This probability information is updated continuously while the gesture is
being performed. In other words it is updated with a frequency that corresponds to the sample-
rate of the incoming sensors signal (typically around 5-20 ms) from the very first sample of the
gesture.
Following. Our algorithm also tracks a best estimate of the temporal position of the currently
performed gesture compared to pre-recorded ones. In other words, in realtime the system aligns
users’ performances to their gesture references. We refer to this property as following a gesture.
Quick learning . As explained above, only one example per gesture is needed. This makes the
procedure of defining new gestures quick and simple. In Section 4 we will explain in details
how this feature is used in GIDE to help enabling an interactive machine learning process.

As it will be explained in detail in the next section, one important feature of GIDE is the possi-
bility of changing the parameters of the algorithm in real-time and thus directly observing how this
affects the behaviour of the system.

In figure 3 we show how the tolerance and latency parameters are important and strongly affect
the performance of the system. As we can see from the figure, performances of the system against
the database converge to an highest peak with a tolerance value equal to 0.125 and a window size
equal to 100% of the gesture size used for testing. This graph shows that an optimal setting exists and
it is important to guide users into the process of parameters tuning. In the next section 4, ’Workflow’,
we will explain how the Gide application provides realtime feedback about the influence of these
parameters.

3.1.1. Implementation. The GIDE application has been implemented using the software Max (Cy-
cling74), MuBu [Schnell et al. 2009] and a C++ library called gf [Bevilacqua et al. 2010a] which
implements the algorithm for gesture recognition described above.

3.2. Algorithm evaluation
In order to evaluate the algorithm, we used the 2D gesture database provided by Wobbrock et all
[Wobbrock et al. 2009]. This database contains data from 10 users drawing 16 different symbols in
two dimensions. Users repeated the drawing 10 times at three different speed rates: fast, medium
and slow. The total number of examples within the database are then 10*16*10*3 = 4800. Unlike
Woobrock’s evaluation, which is offline, we evaluated our system under real-time constraints, with-
out any data transformation that typically require knowledge about the entire gesture, such as the
average scaling or rotation angle around the centroid. The only pre-processing treatment we used

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:11

tolerance (abs value)

accuracy

Fig. 3. Evaluation of algorithm performances in success rate using Wobbrock’s 2D database. Results are shown for different
values of the “latency” parameter. X axis represents variations of the tolerance parameter, which is a parameter of the
algorithm explained in section 3.1. Y axis displays the success rate. The value of the tolerance parameter is expressed in the
same unit as the sensor data, which in our evaluation have been normalised by their maximum value so to be in the range of
[0,1].

was the translation of gestures to the origin, which is obtained by subtracting each of the points
from the previous ones and can thus be computed in realtime conditions.

For each speed rate and for each user, we iterated over the 10 examples provided considering one
series of recording as training-set and the other 9*16 for testing. In Table I we report the success
rate of our algorithm after respectively 25%, 50%, 75% and 100% of the gesture length. The table
also reports results of our algorithm using the speed constraint mentioned above. We then compare
these results with the standard Dynamic Time Warping (DTW) algorithm.

As we can see in table I, results show that Gesture Follower recognition can be almost as good as
a standard offline output such as the one provided by DTW and that the correct answer is estimated
correctly in real-time in most cases. Our algorithm estimates the result correctly with 62.4% of
success rate after a quarter of the gesture, 83.7% at half, 92.2% at three quarters and 95.3% at the
end. This also shows that, as expected, the recognition rate increases with the degree of gesture
completion. Interestingly, the convergence is relatively fast considering that the difference of the
recognition rate between 50% and 100% is only 11%. Note also that the algorithm reaches 97.4%
of success rate if an additional constraint is added (which is slightly higher than the 97.1% given
by DTW). This constraint corresponds to taking into account only gestures with duration comprised
between half and twice the template duration. This is equivalent to taking into account a gesture
only if their average relative speed (to the template speed) is between 0.5 and 2.

Parameters setting is critical to achieve high performances with our algorithm. In figure 3 we
report performance measurements using Wobbrock’s database varying the latency and the tolerance
parameters. As clearly shown in the figure, performance results converge to optimal with a given
setting of these two parameters.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:12 B. Zamborlin et al.

Table I. Gesture Follower vs Dynamic Time Warping

Algorithm Gesture Length in % Success rate in %
GF 25 62.3953
GF 50 83.6696
GF 75 92.2431
GF 100 95.3385
GF with constraint on the speed 100 97.3675
DTW 100 97.1788

Success rate of Gesture Follower and Dynamic Time Warping algorithms at different
temporal position of the gesture length using Wobbrock’s 2D database.

3.3. Implications for the proposed desiderata
Now that we have described what the algorithm for the recognition offers, we want to discuss how
these link with our proposed desiderata for gesture interfaces.

The real-time nature of the algorithm and its moment-by-moment computation of recognition and
following tasks provides information that can be used to control the target application continuously
over time. In section 4.4 we show three example applications that exploit these features to control
digital media in real-time through gesture.

The second desideratum, tailorability, is satisfied by allowing end users to define their own ges-
ture vocabulary. As explained above, the application allows users to define and test their gestures
by recording them just once. Additionally, the parameters of the algorithm described above can be
tuned by users when they design and test their gestures. The application provides guidance through
this process by visual feedback and the use of metaphorical names. This feature will be described
in detail in the next section. The act of recording gestures, testing them and tuning system param-
eters are proposed as three tightly interleaved processes that make the gesture design workflow an
interactive process.

Information regarding real-time gesture recognition and following are displayed to users con-
tinuously during their performance, providing meaningful feedback and guidance in understanding
system behaviour. Such feedback is provided by the application in three different modalities: video
alignment, audio alignment and data alignment. These features are explained in detail in the next
section of the paper.

The combinations of the features described above allows the design of the application to be
particularly easy to use by non-expert users. The realtime nature of our system, and consequently the
continuous feedback provided by the application, allows users to have a clear understanding of how
the system responds to their actions. Furthermore, the graphical feedback on the effect that system
parameters have on the performances of the system, combined with the adoption of metaphorical
names, aims to make the task of parameter tuning (which has been traditionally difficult in machine
learning) as easy as possible. In Section 5, we provide details about the usability of the application
through an user evaluation case study.

4. WORKFLOW
As shown in figure 4, the workflow of the application consists in three tightly interleaved phases that
allow user interaction with all aspects of the design process: gesture recording, gesture following
and parameter tuning. To accomplish the fast and focused UI principle, the entire process is iterative
and users can quickly switch between phases during the design process. In this section we describe
these phases in detail.

4.1. Phase 1: recording a gesture
GIDE allows users to easily build the gesture vocabulary. They can quickly record a gesture, view
it in the graphical interface, test it and, in the case they are not satisfied with it, record it again. We
refer to the set of recorded gestures as gesture vocabulary.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:13

Fig. 4. GIDE workflow. The gesture design workflow divided into three tightly interleaved phases: gesture recording,
gesture following and parameter tuning.

Each gesture within the vocabulary is accompanied with a graphic component, called the “gesture
editor” as seen in Figure 1. A gesture can be of any length of time and it is represented by the
following components: a name, a multi-waveform for sensor data and optionally a video sequence
and an audio waveform. As we described in the previous section, our algorithm allows users to
define gestures by recording them just once. This ability has allowed us to design this phase to be
as close as possible to the one of recording audio and video in standard AV production sequencers
so making the handling of sensors data as straightforward as possible.

At the beginning of a new session, the gesture vocabulary is empty. The user can then decide
to record a gesture either by pressing the “record button” via the GUI or triggering the ‘record’
command remotely. In the Evaluation section, later in this paper, participants were able to trigger
the record function both with the mouse and with a Nintendo Wiimote.

Once this happens, the application starts recording incoming sensor data together with video
and audio from attached cameras and microphones. Users are encouraged to also record a sound
while recording a gesture (for example spoken sentences), in order to have richer feedback during
recognition. This multimodal stream of data is graphically represented in the Input View on the top-
left on the application. Furthermore, during the recording the user can see the recorded data in the
gesture editor related to the gesture that is being recorded.

After the recording, the user can select a part of the gesture (for example to discard a silence at
the beginning or the end), zoom, scroll and playback at different speeds. A button called ”Pop-Out”
is available to open a new resizable window if more space is required. It is also possible to add a
temporal marker in a specific point of the multi-waveform by double-clicking on it.

4.2. Phase 2: ”Follow” mode and real-time feedback
When the gesture vocabulary contains at least one gesture, users can start evaluating their vocabulary
with a real performance. GIDE supports the traditional batch testing, present in classic machine
learning tools, but also a realtime testing called follow mode. Batch testing is described in more
details in the next section.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:14 B. Zamborlin et al.

Fig. 5. Realtime gesture recognition. GIDE allows for realtime gesture recognition continuously computing a likelihood
measure between the performance and every pre-recorded gesture. The likelihood of a gesture graphically corresponds to
a level of transparency. The green gesture is the likeliest one. The contrast parameter increases or decreases the difference
between high and low likelihood values, so the associated colours.

Fig. 6. Realtime gesture following. GIDE allows for realtime gesture following aligning the performance with pre-recorded
gesture continuously over time. In the figure we see the waveform of the incoming data stream (purple) aligned frame by
frame with the corresponding position of the pre-recorded one (blue). The red cursor represents the temporal position of the
gesture.

In follow mode, as users perform a live gesture, the application gives a moment by moment
probability estimate of which gesture they are performing and where they are within that gesture.
The system performs continuous recognition based on incoming data and gives a realtime estimation
on its similarities against each pre-recorded gesture.

The probability of each gesture is represented visually by how transparent the associated edi-
tor is, while the likeliest one becomes green (Figure 5). As well as the current probabilities for
each gesture, we have a precise estimate of the temporal position within the gesture. As previously
mentioned, we refer to this feature as following a gesture.

This enables GIDE to provide a realtime multimodal feedback on the recognition during the
performance. This multimodal feedback is composed by the three following aspects:

Video alignment. Each video panel plays back the pre-recorded video synchronised with the
performance. Typically this allows users to compare their performance with the corresponding
video image of themselves when performing the recorded gesture.
Audio alignment. The audio that users recorded is played back synchronously during the per-
formance. The application allows the user to decide between playing back only the audio of the
likeliest gesture or to do a mix, i.e. associating each gesture to a volume playback that is propor-
tional to its likelihood. In this way users have an auditory feedback on which gesture has been
recognised. They also have an auditory feedback of the alignment of their performance with the
pre-recorded gesture, as the pre-recorded sound is played back on the temporal position of the
follower.
Waveform alignment. The temporal position of the performance within the pre-recorded ges-
ture is displayed through a red cursor over the data multi-waveform (Figure 6) together with
a probability function, an orange waveform that displays the probability associated to every
frame. Furthermore, we have implemented what we call an ”alignment view” which, when en-
abled by the user, displays a pink multi-waveform superposed to the original one, representing

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:15

the incoming sensor data aligned to the reference gesture frame by frame. In this way, the user
can clearly see the difference between his performance and the pre-recorded one as a vertical
distance between the two multi-waveforms in every point. This representation works particu-
larly well in association with the tolerance parameter described later in the paper.

4.2.1. Batch testing. Within phase 2 GIDE also supports batch testing by a facility called the test-
ing performance. In our design we have given the testing performance a very similar appearance to
the gestures contained in the gesture vocabulary. The testing performance allows the user to record
an arbitrarily long real-world dataset and then test it iteratively against the gesture vocabulary while
changing gestures and parameters to obtain best results.

When the user clicks the test button, the system reads in a row all the data stored into the testing
performance as if this data was coming in real time from a performance by a user and so instantly
highlights all the areas in its multi-waveform where the likeliest gesture reached a threshold given
by the user.

As for the gesture vocabulary, it contains both sensor data, video and audio and supports the
retrospection property: users can select gestures, play them back and re-record.

Thanks to the low computational cost of the algorithm, the time for testing a dataset of few min-
utes is typically few milliseconds. This provides the user with information in order to redefine the
gesture vocabulary and tune parameters in an interactive way, seeing the results appear instanta-
neously in the graphical interface.

4.3. Phase 3: parameters tuning
As previous studies have shown [Fiebrink et al. 2011], users often have difficulties understanding
how to tune parameters of machine learning algorithms. However, as we show in figure 3, param-
eters of our algorithm are critical to reach high performance in the recognition task. We provide
support for this process in three different ways.

First of all, we assigned a name for each parameter that aims to supply a useful metaphor for
the user describing a common digital media practice. Second, we have added short text hints about
how to use each of the parameters. Finally, the effect of two of the three parameters (tolerance
and contrast) have a corresponding representation in the graphical interface, helping users to better
understand how they affect system performances.

(1) Tolerance
The role of this parameter in the algorithm corresponds to a constant standard deviation of the
Hidden Markov Model as has been explained in section 3.1. This parameter has been explained
to users as “how much the performance is allowed to be different from pre-recorded gestures”
and we have therefore named it tolerance. This name is a useful example of a metaphor based on
common digital media practice: in Adobe Photoshop there is a parameter with the same name
which determines the range of colour that the Magic Hand tool selects. Similarly, in GIDE this
parameter is graphically associated with the thickness of the sensor data multi-waveform and
shows the range of values that determine whether the performance belongs to the gesture. We
have found that this works particularly well in combination with the “waveform alignment”
described in previous section, as users can see the distance of their aligned gesture compared to
the ‘tolerated’ range of values.

(2) Latency
The actual probability that each gesture recorded in the vocabulary is a match for the current
performance is computed as an average of probabilities calculated for each frame and stored on
a sliding window. Thus the size of this window specifies the amount of time taken into account
for accurate gesture estimations. The effect of this parameter is basically to affect the latency of
the system. If the parameter is set high, it will recognise gestures highly reliably but it will react
slowly to changes in user input. If it is set low the system will react faster but less reliably.

(3) Contrast

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:16 B. Zamborlin et al.

In our system, the value of the probability of each gesture in the vocabulary is normalised
such that their sum is always equal to 1. For practical reasons, we have designed a parameter
to tune this normalisation in order to increase or decrease the difference between high and low
probability values. The definition that is given to the users is: “turning up the contrast parameter
heightens the differences between gestures.”
The word contrast works as a metaphor as we think about the contrast of an image quickly. As
gesture probabilities are graphically represented as the transparency of their associated gesture
editor, tuning up the contrast parameter will increase the contrast of the colours of such editors.
Figure 5 shows the application with the contrast parameter set to a high value.

4.4. Example Applications of GIDE
Having looked at the workflow of the application for designing new gestures, we now move our at-
tention to consider how user-defined gesture following can be applied in real-world scenarios. Here
we show three different standalone applications for the gestural control of digital media. Theses sce-
narios are based from cases that were previously prototyped with the gesture follower, but without
the integration of the user interface of GIDE.

(1) Video scrubbing This first application is inspired from used in the installation if/then installed
(by Siegal, Bevilacqua, Berenger, Goidell,Lambert http://www.thebakery.org/interactive-if-
then-installed). This installation, using the gesture follower algorithm, demonstrated the in-
terest of a ”videoscrubbing”, which is explained below. The installation was designed using
pre-defined gestures. The use of the GIDE interface, allowing users to add their own gestures,
could extend this interaction paradigms to a wide range of applications.
The gesture-driven video scrubbing works as follows. First, users select different video files,
one for each gesture they want to learn. Then, as soon as they start recording a new gesture,
the corresponding video file is played back. This allows users to ‘mime’ to the video while
they record their gesture. When users switch to follow mode, the video of each of the recorded
gestures in the vocabulary is aligned to the most likely position and played back by GIDE. The
user can switch between the likeliest mode, where only the video that corresponds to the likeliest
gesture is played, and the mix mode, where all videos are played back and their transparency is
mapped with the likelihood of the associated gesture. This could result as a gestural interface
for VJing, where users can continuously control the video playback though their gestures.

(2) Supervised continuous sonification
The second application is similar to the one described above but uses sound instead of video. It
allows the user to continuously align the playback of a sound file with a gestural performance.
This paradigm was previously validated in pedagogical scenarios where students can ”conduct”
recorded music using gesture input [Bevilacqua et al. 2010b; Bevilacqua et al. 2007].
First, the user loads different sound files, each one associated with an empty slot in the gesture
vocabulary. Second, as soon as the user starts recording a gesture, the loaded sound associated
to it is played back. Thus the user listens the sound when recording the gesture, adapting the
performance with the tempo of the sound or mime the sound itself.
When the user switches to follow mode, the sound is played back following the temporal posi-
tion of the performance, which is given by GIDE. So, when the speed of the performance slows
down the sound playback slows down as well; when the performance accelerates, the playback
accelerates as well. The sound is thus continuously aligned with the performance. This allows
the user for a supervised sonification of a gesture based on previous recording.
In order to keep the sound more natural and close to the original one, we employ a phase
vocoder. This technique allows to leave the pitch of the sound unchanged while changing its
playback speed. As for the previous application, two options are available: in the likeliest mode,
only the sound associated to the likeliest gesture is played back; in the mix mode, all the sounds
are played back and their volume corresponds to their likelihood.

(3) Triggering

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:17

The last application allows to trigger a series of digital media based on discrete temporal posi-
tions along a single gesture. Such scenario is similar to previous artistic applications of the
gesture follower allowing gesture-based system to trigger sound processes, as described in
[Bevilacqua et al. 2012].
We have designed GIDE so that it is possible to place a named marker at a specific temporal
position within a gesture. During a performance, at anytime the temporal position of the likeliest
gesture reaches one of these temporal markers, a different sound of video can be played. Other
types of digital media, such as MIDI notes and light control, could be controllable in the same
way.

Having described the interaction design process and looked at the architecture of the application
in detail and especially its novel mechanisms for real time feedback, we now move onto a presenta-
tion of our set of experiments to show how the system was used in practice.

5. USER EVALUATION
We perform a user study to assess how well the application fits our desiderata when used by artists,
musicians and designers. Specifically, we were interested in evaluating how the multimodal feed-
back that happened during performance could be used to help design and modify gesture vocabu-
laries. Moreover, we set up our experiments with the intention of assessing the importance of each
component of the multimodal feedback channels: the video of the user performing the gesture, the
auditory feedback, the sensor multi-waveform and its cursor and the waveform alignment. Finally,
we wanted to evaluate the degree of which using metaphorical, intuitive names along with graphical
feedback for parameters helped users tune them effectively.

5.1. Participants
In order to gain a better understanding of how users might experience GIDE, we organised a work-
shop inviting 23 participants from different domains including five professional music players, thir-
teen electronic music performers, three visual or interactive artists, one dancer-choreographer and
one programmer. All participants had experience of using digital media in their artistic practice and
were familiar with many standard digital production tools such as Digidesign ProTools and Apple
Final Cut. In addition, 15 of the 23 were familiar with visual programming environments such as
MaxMSP and PureData, 7 of these were also used textual programming language in their artistic
practice, and 4 of these had some familiarity with machine learning theory. 8 of the 23 had no
familiarity with anything other than standard digital media production tools.

Ten of our participants were PhD students in music and computational art, two were university
faculty members in music and the others were independent artists. All participants were aged be-
tween 23 and 35 and the experiments took place over six sessions in London and Edinburgh. Each
session had between 3 and 8 participants and lasted about two and a half hours. We named the work-
shop “Workshop on realtime gesture recognition for performing arts” and all participants applied
spontaneously and were not remunerated.

5.2. Workshop procedure
Every session of the workshop has been divided into five parts and participants were asked to fill
in the relative section of our questionnaire after each part. All sessions were video recorded in their
entirety. The five parts are introduced below.

(1) Introduction to gesture recognition systems
We started each workshop by explaining to users the general concept behind gesture recognition
and the difference between direct mapping from sensors data and control parameters as opposed
to user-defined gesture recognition.
The first video depicts the video scrubbing paradigm previously described and can be found
at http://tiny.cc/9mpibw . It detailed an interactive installation that was built several years ago
(using the previous gesture follower system) and shows a dancer performing live in front of a

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:18 B. Zamborlin et al.

big screen. The screen displays a recorded second dancer that appears to mirror the live dancer
doing the same actions at the same time. This video clearly shows an interaction based on a
continuous output of the gesture recognition system.
The second example, called “Augmented Violin”, explains the supervised continuous sonifica-
tion paradigm (also using the previous gesture follower system). It shows a live violin player
performing a piece at different speeds while a second recorded violin (recorded by the same
player) accompanies the live performance following the tempo.
The section of the questionnaire relative to this first part asked to users to evaluate whether
they felt they understood the basic concept of continuous gesture recognition and what was the
interaction between the gesture and the sound in the two videos we showed.

(2) Playing with an existing application
We showed to users a video about an interactive installation called Granularia that we presented
at the Festival of Science in Genoa in 2010 (which is publicly available at http://tiny.cc/d1bux).
This installation allowed the user to control different sound engines by moving a mobile phone
on the air. Specific gestures were recognised and used to trigger associated sounds. We then
ask users to try the same application using a Nintendo Wii Remote in order to get familiar
with the possibilities offered by supervised gesture interaction. Through the questionnaire we
asked whether users understood the goal of this application and were able to control this system
reliably.

(3) Designing a single gesture
At this point we asked users to run the GIDE application on their computers. We demonstrated
how to record and follow a gesture through the application using a Nintendo Wiiremote. We
explained that both video and audio were being recorded, and showed a basic example of an
association between a gesture and a vocal sound. We then asked users to try to record their own
gesture in their computers and evaluate the different components of the application.

(4) Building a gesture vocabulary and testing the recognition in realtime
In this phase users were asked to record several gestures to create a vocabulary and experiment
whether or not they could be triggered in a subsequent performance. They tested the gestures
that they had recorded switching the application in the ’follow mode’ and performed similar
gestures again looking at the various realtime feedbacks provides by the application as explained
in section 4.2. We also gave particular hints about how to tune parameters as explain in section
4.3. As they were perform this task, we recorded and monitored the strategies they took to
record their gestures and tune the proposed parameters.

(5) Batch testing In this part of the workshop we explained to users how to evaluate performances
using the batch testing feature we described in section 4.2.1.

(6) Developing an application for gesture sonification
As users got familiar enough with the application, we showed them how to use information
provided by GIDE to accomplish the task explained in section 2 which is supervised continuous
gesture sonification. We showed how to create an application in the MaxMSP environment
http://www.cycling74.com that loads sound files and develop a mimicking paradigm between
gestures and sounds through gesture recognition: the provided application allow users listening
to a sound and mime it with their hands; then perform the same gesture again at a different
speed and hear the stretched sound.

(7) Developing an application for video scrubbing
In this part, we explained the video scrubbing paradigm (section 1) and showed users how to
build their own application using the MaxMSP environment.

5.3. Measures
We evaluated the study through both a questionnaire and a semi-structured interview. After each of
the seven sections of the workshop just described, we asked participants to fill the relevant part of
the questionnaire. For all but the first two sections of the workshop we asked users if the application
worked as they expected to accomplish the proposed task. Furthermore, we ask them to evaluate

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:19

the different components of the application, which are the video scrubber, the waveform cursor,
the alignment view, the probability waveform, the tolerance parameter, the responsiveness contrast
and the background colour changing. Questions about both usability and evaluation were repeated
for each section of the workshop with each question presented as a 7 point Likert like scale. Users
were invited to add commentaries at every stage. The semi-structured interview took place after the
session and asked how much participants were happy with their results, the kind of strategies they
used to design their gestures, the level of usability and usefulness of the system and whether they
would use this application for their works.

5.4. Results
In this section we first present the results of the questionnaire and we relate them to the achievement
of our proposed desiderata. We then discuss the different strategies used by participants. Finally we
debate some issue of the application arisen during the workshop.

5.4.1. Questionnaire. The questionnaire results are shown in table II. The questionnaire responses
were analysed with a one sample Wilcoxon signed-rank measuring the difference between the sam-
ple responses and the mid point of the scale (4). The mean of all answers was above the mid point
(indicating a favourable response) with all but two being significant to at least p=0.1 and the majority
being significant to p=0.001. Some of the later questions had a lower number of responses due to not
all participants reaching the last part of the study in the allocated time. This might account for the
lower levels of significance to the later questions. For all sections participants were asked whether
the system worked as they expected, in all sections the mean answer was higher than the midpoint
with p=0.01, except the final (video scrubbing) section where the significance was p=0.05. For the
final two sections they were asked whether they understood the interaction between their gestures
and the sound or video, mean answers to both these questions were significantly above the midpoint
to p=0.01. In the final two sections they were also asked whether they could control the system
reliably, mean answers to these questions were significantly about the midpoint to p=0.05 (audio
condition) and p=0.1 (video condition). Participants were also asked to rate the usefulness of each
of visualisations for each stage of the study. Mean ratings were significantly above the midpoint in
all but two cases. There was no significant difference in the ratings of different visualisations.

5.4.2. Achievement of the desiderata. In this section we describe participants’ behaviour at each
stage of the study in respect of the desiderata of gesture interfaces we proposed in the introduction
of the paper.

(1) Continuous Control
Continuous control has shown to be a very important feature of GIDE in terms of the range of
applications it can allow to control. In section 3.1 we have shown that our algorithm is capable
of real time control and our participants answers to the questions “Did you understand the
interaction between the gesture and the [sound/video]?” and “Are you able to control the system
reliably” shows that they were able to understand and use continuous control. Furthermore, in
the semi-structured interview at the end of the workshop, when we asked participants to imagine
how GIDE could be useful for their own practice they answered enthusiastically and many of
the strategies they developed, described in section 5.4.4 are clearly inspired by the possibility
of controlling the target application continuously over time.

(2) Tailorability
All of our participants were able to record gestures of their own design and use those gestures
effectively, demonstrating their ability to tailoring the application by tuning parameters of the
algorithm and using different strategies for designing gestures. We discuss these points in details
in sections 5.4.3 and 5.4.4.

(3) Meaningful feedback The continuous control features of our algorithm also enable us to give
the different forms of realtime multimodal feedback described in section 4. The questionnaire
responses show that the participants found these to be useful. When we asked them, in our semi-

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:20 B. Zamborlin et al.

Table II. Questionnaire results

QUESTION N mean W
1 - Introduction
Did you understand the interaction 19 6.63 190 ****
between the gesture and the sound?
2 - Playing with an existing application
Do you understand the goal 15 6.93 120 ****
of the application?
Are you able to control 15 5.93 105 ****
the system reliably?
3 - Designing a single gesture
Did it work as you expected 22 6.00 210 ****
video 22 6.05 224 ****
waveform cursor 22 5.86 241 ****
warping view 22 6.00 231 ****
probability waveform 22 5.27 183.5 ***
tolerance parameter 21 6.43 231 ****
4 - Building a gesture vocabulary and testing the recognition in realtime
Did it work as you expected 22 5.59 219 ****
video 22 5.91 206 ****
waveform cursor 22 5.77 204 ****
warping view 20 5.10 169.5 **
tolerance 22 6.09 210 ****
responsiveness contrast 21 6.05 229 ****
background colors 22 5.55 162.5 ****
5 - Batch testing
Did it work as you expected 20 6.30 190 ****
video 18 5.39 114 **
waveform cursor 19 5.47 161 ***
warping view 19 5.37 103.5 **
tolerance 18 6.44 153 ****
responsiveness contrast 18 6.33 166.5 ****
background colors 18 5.83 144 ***
batch testing 19 6.42 190 ****
6 - Developing an application for gesture sonification
Did it work as you expected 11 5.82 64 ***
video 10 5.90 42.5 **
waveform cursor 11 6.27 55 ***
warping view 10 5.20 29
tolerance 11 6.55 66 ***
responsiveness contrast 11 5.73 57 **
background colors 11 5.36 30 *
batch testing 9 6.44 45 ***
Did you understand the interaction 10 6.10 55 ***
between the gesture and the sound?
Are you able to control 9 5.22 26.5 **
the system reliably?
7 - Developing an application for video scrubbing
Did it work as you expected 10 5.80 52 **
video 10 6.40 45 ***
waveform cursor 9 6.44 36 ***
warping view 9 6.44 45 ***
tolerance 9 6.00 42 **
responsiveness contrast 8 5.75 32.5 **
background colors 7 5.57 23
batch testing 7 6.43 28 **
Did you understand the interaction 10 6.00 45 ***
between the gesture and the video?
Are you able to control 9 5.33 31 *
the system reliably?

Note: The significance levels are: **** p < 0.001, *** p < 0.01, ** p < 0.05, * p < 0.1. N is the number of
participants answering a question. W is the Wilcoxon signed-rank statistic

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:21

structured interviews, which component they found the most useful between video, audio and
waveform, almost every participant claimed that they could not decide as it was the combination
of all of them together that was needed to be useful. This is supported by the lack of significant
difference in our questionnaire results. Some remarked that only one of them on its own would
not be enough for a controlled performance.
However, in terms of ranking they took video to be the most important at the beginning, but
slightly less important compared to the others after working with the system as they could
begin to remember their gesture and not need it so much. They remarked that if they did not
work on a piece for several days they would then need to look back at the video to remember
how they performed as the waveform alone would not be sufficient.
Participants described the sensor multi-waveform as an useful way to get an overview of the
whole gesture and that the red cursor over the waveform was extremely useful in initially un-
derstanding the concept of following a gesture. They claimed that even if they were not familiar
with acceleration they understood the relationship between the gesture and the waveform quite
soon. However, many of them also said they were not able to discriminate between the 3 differ-
ent axes of the acceleration and they would focus more on the global ’motion’ of the gesture.
This emphases the point made by others that raw motion data is often not expressive enough
and we need a better representation. (For example see [Kratz and Ballagas 2009] and [Linjama
et al. 2008].)
Almost every participant recorded their voice in association with the gesture and usually associ-
ated specific words or sounds to particular parts of a gesture instead of recording one continuous
sound. For example, different syllables or screams were often associated with the more energetic
parts of the gesture. Auditory feedback was felt to be the most precise one about the likelihood
and the speed of their performance. Some participants, specially the performers, expressed par-
ticular interest in the ability to use auditory feedback as it permitted them not to have to be
forced to look at the screen so enabling performances to be more free. However they said this
was possible only after a number of iterations as this freedom relied on the ability to remember
their gesture vocabulary quite well.
Participants familiar with audio-video production tools found a clear analogy in GIDE even if
they had never seen an acceleration waveform before.

(4) Allow expert and non-expert use
It was clear from the completed questionnaires and interviews that participants understood the
goal and the behaviour of the application after just a few minutes of testing. What was a nice
surprise for us is that almost most everybody found it fun as soon as they started to perform the
recording-testing loop by themselves. A lot of the fun was due to the surprise of participants in
seeing and hearing themselves through software that they could control through their gestures
and as they were quickly successful in designing and re-performing their own gestures.

5.4.3. Parameter tuning. In general, users tuned parameters quite often when defining their ges-
tures and when asked When you were not satisfied with a gesture, did you prefer to record it again
or find a better parameters setting?’, they all claimed they did both. A user said: “if the system is
kind of working but not very well, I try to play with parameters, but when it doesn’t work at all I
preferred to re-record again”. All other participants of that session agreed with him and we saw this
behaviour across the workshops in general.

During the first task of the workshop, when we asked participants to record only one gesture
and follow it, initially they usually re-performed the same gesture either in the same way or slower
and judged the result based on the auditory feedback and the red cursor. Often, when they tried to
perform something that was too different from the pre-recorded gesture, they understood that the
system was not following the gesture very well by seeing the red cursor suddendly ’jumping’ to
different temporal positions and by receiving a noisy auditory feedback. In those cases they were
able to understand the problem quite quickly and work to find a solution, either recording the gesture
again or changing the tolerance parameter. We gave them practical tips about this last parameter,

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:22 B. Zamborlin et al.

such as “if the cursor starts going forward by itself, it means that the system is too tolerant”, or “if
the cursor starts jumping too much and the audio starts becoming mad even if you are performing
well, turn up the tolerance a bit”. The association between the tolerance and the thickness of the
waveform was straightforward to understand for all our participants.

When we asked users to record more than one gesture to experiment with recognition, they all
started recording very basic gestures each very different from each other. This allowed them to make
the system work immediately and get a real sense of its behaviour, before moving on to record more
complex and subtle gestures.

Using an accelerometer as an input device, some of them initially recorded gestures in which the
motion in one axis was clearly predominant compared to the others which was useful because it
often enabled them to achieve a quicker and better understanding of the meaning of the waveform.

The contrast parameter was used mainly when the system was uncertain between two or more
gestures. By increasing this parameter they could see the likeliest gesture more clearly referring to it
as the green gesture, pointing out that the association between the likelihood and this specific colour
was pretty clear. On the other hand, when colours started flickering too much, they knew quickly
that it meant that it was a good idea to decrease the value of the contrast.

One of the more surprising results for us was that the latency parameter was much less used than
the others. Some participants admitted that the effect of this parameter was not clear and reflecting
on it at the time we thought it was because there was no graphical feedback associated with this
parameter which provoked a fear in the user to changing the value of this parameter. In response we
will release in the next version of GIDE a graphical feedback to this parameter, i.e. highlighting the
part of the data input view that corresponds to the amount of time specified by the parameter.

5.4.4. Participant Strategies. GIDE proved to be a tool that strongly engaged users from different
backgrounds and for different applications and here we discuss some of them. Both a professional
piano player and a professional dancer spent most of their time training themselves to perform
their own gestures reliably by recording quite expressive gestures and using their voice as audio
at the same time. They both used the warping view function to measure the differences between
performance and that which they pre-recorded gesture and were not satisfied until the audio output
was sufficiently close to what they recorded. It was interesting to see how they played with the
value of the tolerance parameter quite a lot. The dancer said that they had a much better concept of
accelerometers after trying to perform the same gesture several times and watching at the warping
view.

The dancer particularly liked the testing performance component. She said that the user of the
application and the performer would often not be the same person and this enabled her to record the
performance just once and work on parameter tuning later. She also explained the following mode is
interesting for live situations, where the choreography and other theatrical and technical affects need
to be directly synchronised with the performer and so not requiring a human to trigger them. She
also suggested a new feature that we had not thought of previously. Her idea was to build a gesture
vocabulary from the testing performance: this means recording the testing performance before, and
then copy and paste certain parts of it for defining gestures.

Computer artists generally preferred a more methodical approach tending to think about their
gestures in advance and then record one gesture after the other. Then they usually tested one single
gesture or a fixed series of gestures changing one parameter at time. Other contemporary music
performers took a radically different strategy and recorded quite complex gestures and then they
played with the system trying to ’confuse’ it. One user said “I got how the system works, now I just
want to hack it”. In doing that they also played a lot with the tolerance and the contrast, keeping the
contrast high enough to see major differences between their gestures. This shows that participants
with different artistic background developed different strategies for using GIDE that were tailored
to their needs.

Finally, it is worth to mention that working with accelerometers caused some problems. First
because participants who were not familiar with this kind of device found it a lot more natural to

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:23

think in terms of absolute position. Furthermore, they were surprised to see that, due to hardware
limitations of accelerometers, slow movement was not recognised.

6. DISCUSSION
In this paper we have described the design, implementation and evaluation of a novel gesture inter-
action system called GIDE. We believe it is sufficiently simple, responsive and intuitive to enable
users to become fully engaged, immersed and involved with the success of their activity so that a
state of flow [Csikszentmihalyi 2008] is possible. We have proposed a set of four desiderata that we
believe define a new approach to the design and use of the next generation of gesture interaction sys-
tems which we call fluid gesture interaction design. The four qualities critical to the design of such
systems are that: (i) it enables target applications to be controlled continuously and synchronously
over time; (ii) it can be tailored and personalised according to the individual, the activity they wish
to engage in, and the environment and context in which that activity is taking place; (iii) it provides
users with meaningful feedback as to how the system is currently interpreting their gestures; and
(iv) it is easy to use and so can be readily adopted and used by anyone irrespective of their expertise
and background.

This section summarises the main contributions and limitations of the proposed work as well as
outlining future research.

6.1. Contributions
The research described in this paper has demonstrated the value of our approach in several different
ways. First, through a quantitative evaluation on a standard set of 2D gestures, we demonstrated that
the algorithm used by GIDE can perform as well as that of Dynamic Time Warping (DTW) which is
a standard template-based algorithm in the field of gesture recognition systems. Nevertheless, unlike
DTW, the algorithm can provide moment by moment information during the gesture performance
itself, such as the relative speed, and a early estimation of the recognition results. The recognition
efficiency of the algorithm depends on the tuning of two parameters called tolerance and latency.
We have demonstrated that the dependance of these parameters to the recognition efficiency follows
wide bell-shaped curves with one maximum. What this means is that, whatever the initial value of
the parameters, the optimal values can easily be found manually by any user through simple trial
and error. The user simply tunes the parameters so as to increase recognition efficiency and when
no further increase can be found the user can then be confident they are operating with a system
which is operating at maximal recognition efficiency. This ability - for users to easily tune system
parameters for maximum efficiency - is an extremely important result in terms of demonstrating
how the system can be used by a range of users with different expertise.

The second aspect of our work concerned an evaluation of the system through a workshop with
23 users from different performance backgrounds. Through the analysis of the questionnaires that
each participant completed at various stages of the experiment and a semi-structured interview, we
have evidenced how our system has met each of the four desiderata for fluid gesture interaction
design. We have described how quickly participants were able to understand and enjoy using the
system, engaging with the real-time gesture recognition and gesture following during the workflow
of gesture design almost immediately. Almost every user taking part in the evaluation was able to
control the application reliably after a few minutes and to develop a set of gestures to control the
system in a way that they found satisfying with system behaviour meeting intention and expectation.
The evaluation demonstrated how users could seamlessly move between recording new gestures,
testing them and tuning parameters and that this enabled the relationship with the system to be
fluid and spontaneous. Participants adopted different working strategies imagining a wide range
of possible applications across different domains and were extremely enthusiastic about the future
potential for developing new performances in their own creative practice.

One of the main contributions of our research is that we have developed a system which enables
users to design by doing where gesture interfaces are created by performing gestures. Our partici-
pants’ enthusiasm supports Fiebrink’s conclusion that this embodied way of designing gestures is

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:24 B. Zamborlin et al.

both liberating for users and allows for the creation of rich styles of interaction [Fiebrink et al. 2011].
The fact that GIDE gives real-time feedback about the recognition process in different modalities
was found by participants to be extremely useful at different stages in the workshop. They claimed
that the combination of (i) video to remember the details of the gesture, (ii) audio for precise and in-
stant feedback, and (iii) data waveform for the ability to see an overview of the gesture over time and
its temporal alignment with the pre-recorded gesture was critical to their engagement with the sys-
tem. This real-time feedback on the performance of gestures also helped participants understanding
the function of the various parameters of the algorithm and so to be able to tune these parameters to
produce their desired results effectively and efficiently. We believe that this is an especially signifi-
cant result as the parameters setting has been a challenge for interactive machine learning [Fiebrink
2010]. If non-expert users are able to effectively tune these parameters as we have described in this
paper, it opens the way to using more sophisticated machine learning algorithms, such as Hidden
Markov Models, that require considerable amount of tuning in order to be effective. Moreover, it
paves the way for experimenting as to how realtime feedback can become a crucial feature of future
interactive machine learning research in general.

6.2. Limitations
We have attempted to demonstrate in this paper the importance, to our method, of making the pro-
cess of gesture definition as quick and engaging as possible, with users recording gestures just once,
in order to make this operation part of the interactive workflow. This enables the whole recognition
process easier to understand, as gesture performed by users simply need to be similar to the ones
they pre-recorded. This is very different from the standard approach where systems create models
of gestures based on a large number of examples which are hidden to the user and so make system
much less transparent. However, our method has certain limitations as it does not support gener-
alisation and any performance needs to be sufficiently similar to the set of pre-recorded gestures.
While it is important not to lose the feature of “quick recording”, adding new system functionality
that enables users to record more than one example per gesture, and therefore create a more complex
and flexible model of the gesture defined by the user, is very much central to our ongoing research
investigation. We envisage achieving this is by allowing users to record one or more examples for
each type of gesture and then building separate Hidden Markov Models for each recorded example.
Then, at run-time, recognition can be achieved by considering the correct type of gesture to be the
one which corresponds to the HMM with highest likelihood value. However, this would require us
to design new methods for data visualisation and auditory feedback, as well as new ways of inter-
acting with the system, but in such a way would still keep the workflow as fluid and intuitive as it
currently is.

Another problem of the proposed approach is in handling the output during the very beginning of
a gesture, when the likelihood of recognising the correct one is still low (table I). This results in a
period of uncertainty when the system is first started and also when a user transitions from making
one gesture to another. For certain scenarios, this issue can be handled at the application level. As
showed in the two applications described in section 4.4, audio and video scrubbing, we can use this
feature to blend between different media based on the likelihood value of their associated gestures.
As GIDE provides continuous likelihood estimates for each gesture, transitions between gestures
will corresponds in smooth transitions between different likelihood levels until the algorithm gets a
clear result. This was a reasonable solution for the applications we described in the paper.

However, for different applications where a more defined segmentation is required, further re-
search is needed. For instance, it would be possible to add constraints to avoid that users record
gestures that are too similar at the beginning. Another solution could be to add a variable latency to
the system to compensate the initial time of incertitude.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:25

6.3. Conclusions and perspectives
Although we evaluated our system with users chosen from the performing arts domain specifically,
we believe the novel functionality offered by GIDE are important for any modern gesture interface.
Our participants used a number of different design strategies and developed different forms of in-
terface, influenced by their different artistic backgrounds. This suggests both that different design
strategies will be required for different domains and that GIDE successfully supports them. Our
criterion of tailorability is therefore likely to be increasingly important as we target more diverse
domains of application. There is, however, one aspect of the current application that is still quite
domain specific. We have used visualisations that will be familiar to users of digital arts production
tools (e.g. waveforms) and used metaphors drawn from these tools (e.g. our parameter names). Our
evaluation demonstrated that this familiarity was particularly helpful in understanding the effect of
parameters. However, it is our intention to focus future research onto the design of new visualisation
tools and metaphors that can be appropriate to users from any background and to any conceivable
application domain. Another venue for future investigation in the near future is to exploit the real-
time feedback of our system in order to build a predictive feedback system that provides guidance
by estimating the next incoming action of the user.

In conclusion, we believe that our new notion of fluid gesture interaction design provides the
platform for the future widespread uptake of gesture interaction systems across a whole range of
activity in the near future.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:26 B. Zamborlin et al.

A. HMM PROCEDURE
As described in [Rabiner 1989], the forward procedure can be used to estimate the probability
distribution of a sequence of observation O1, O2, ...Ot. This requires the computation of the αi(t)
variable which corresponds to the probability distribution of the partial observation sequence until
time t, and state i . It is computed inductively as follows:

Initialisation

α1(i) = πibi(O1) 1 ≤ i ≤ N (2)

where π is the initial state distribution, and b is the observation probability distribution.

Induction

αt+1(j) = [

N∑
i=1

αt(i)aij]bj(Ot + 1) 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (3)

where aij is the state transition probability distribution.

From the αi(t) variable we can compute two important quantities:

(1) Time progression of the sequence, related to the recorded example
time progression index(t) = argmax[αt(i)] (4)

This last value can be alternatively estimated by the mean (expected value) of the distribution
αi(t)

(2) Likelihood of the sequence.

likelihood(t) =

N∑
i=1

αt(i) (5)

This quantity can been used directly as a similarity measure between the gesture being per-
formed and the recorded reference. Other similarity measures could also be derived by combin-
ing the likelihood and the smoothness of the time progression index.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

Fluid gesture interaction design 39:27

REFERENCES
BEVILACQUA, F., BASCHET, F., AND LEMOUTON, S. 2012. The augmented string quartet: Experiments and gesture fol-

lowing. Journal of New Music Research 41, 1, 103–119.
BEVILACQUA, F., GUÉDY, F., SCHNELL, N., FLÉTY, E., AND LEROY, N. 2007. Wireless sensor interface and gesture-

follower for music pedagogy. In Proceedings of the 7th international conference on New interfaces for musical expres-
sion. NIME ’07. ACM, New York, NY, USA, 124–129.

BEVILACQUA, F., SCHNELL, N., RASAMIMANANA, N., ZAMBORLIN, B., AND GUEDY, F. 2010a. Online Gesture Analysis
and Control of Audio Processing. In Musical Robots and Interactive Multimodal Systems. Springer Tracts in Advanced
Robotics.

BEVILACQUA, F., ZAMBORLIN, B., SYPNIEWSKI, A., SCHNELL, N., GUÉDY, F., AND RASAMIMANANA, N. 2010b.
Continuous realtime gesture following and recognition. In Proceedings of the 8th international conference on Gesture
in Embodied Communication and Human-Computer Interaction. GW’09. Springer-Verlag, Berlin, Heidelberg, 73–84.

BOWDEN, R., WINDRIDGE, D., KADIR, T., ZISSERMAN, A., AND BRADY, M. 2004. A linguistic feature vector for the
visual interpretation of sign language. In European Conference on Computer Vision. Springer-Verlag, 391–401.

BOWDEN, R., ZISSERMAN, A., KADIR, T., AND BRADY, M. 2003. Vision based interpretation of natural sign languages.
In In: Exhibition at ICVS03: The 3rd International Conference on Computer Vision Systems. ACM Press, 391–401.

CAO, X. AND BALAKRISHNAN, R. 2003. Visionwand: interaction techniques for large displays using a passive wand tracked
in 3d. In Proceedings of the 16th annual ACM symposium on User interface software and technology. UIST ’03. ACM,
New York, NY, USA, 173–182.

CSIKSZENTMIHALYI, M. 2008. Flow: The Psychology of Optimal Experience. P. S. Series. HarperCollins.
DAI, Y., SHIBATA, Y., ISHII, T., HASHIMOTO, K., KATAMACHI, K., NOGUCHI, K., KAKIZAKI, N., AND CAI, D. 2001.

An associate memory model of facial expressions and its application in facial expression recognition of patients on bed.
In ICME (2005-04-08). IEEE Computer Society.

FAILS, J. AND OLSEN, D. 2003a. A design tool for camera-based interaction. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI ’03. ACM, New York, NY, USA, 449–456.

FAILS, J. A. AND OLSEN, JR., D. R. 2003b. Interactive machine learning. In Proceedings of the 8th international conference
on Intelligent user interfaces. IUI ’03. ACM, New York, NY, USA, 39–45.

FIEBRINK, R. 2010. Real-time interaction with supervised learning. In CHI ’10 Extended Abstracts on Human Factors in
Computing Systems. CHI EA ’10. ACM, New York, NY, USA, 2935–2938.

FIEBRINK, R., COOK, P. R., AND TRUEMAN, D. 2011. Human model evaluation in interactive supervised learning. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’11. ACM, New York, NY,
USA, 147–156.

GUIMBRETIÈRE, F., STONE, M., AND WINOGRAD, T. 2001. Fluid interaction with high-resolution wall-size displays. In
Proceedings of the 14th annual ACM symposium on User interface software and technology. UIST ’01. ACM, New
York, NY, USA, 21–30.

HARTMANN, B., ABDULLA, L., MITTAL, M., AND KLEMMER, S. R. 2007. Authoring sensor-based interactions by demon-
stration with direct manipulation and pattern recognition. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’07. ACM, New York, NY, USA, 145–154.

HINCKLEY, K., RAMOS, G., GUIMBRETIERE, F., BAUDISCH, P., AND SMITH, M. 2004. Stitching: pen gestures that span
multiple displays. In Proceedings of the working conference on Advanced visual interfaces. AVI ’04. ACM, New York,
NY, USA, 23–31.

HUMMELS, C., OVERBEEKE, K. C. J., AND KLOOSTER, S. 2006. Move to get moved: a search for methods, tools and
knowledge to design for expressive and rich movement-based interaction. Personal and Ubiquitous Computing 11, 8,
677–690.

KARLSON, A. K., BEDERSON, B. B., AND SANGIOVANNI, J. 2005. Applens and launchtile: two designs for one-handed
thumb use on small devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI
’05. ACM, New York, NY, USA, 201–210.

KRATZ, S. AND BALLAGAS, R. 2009. Unravelling seams: improving mobile gesture recognition with visual feedback
techniques. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’09. ACM, New
York, NY, USA, 937–940.

LINJAMA, J., KORPIPÄÄ, P., KELA, J., AND RANTAKOKKO, T. 2008. ActionCube: a tangible mobile gesture interaction
tutorial. In Proceedings of the 2nd international conference on Tangible and embedded interaction. ACM, 169–172.

LÜ, H. AND LI, Y. 2012. Gesture coder: a tool for programming multi-touch gestures by demonstration. In Proceedings
of the 2012 ACM annual conference on Human Factors in Computing Systems. CHI ’12. ACM, New York, NY, USA,
2875–2884.

MITRA, S. AND ACHARYA, T. 2007. Gesture Recognition: A Survey. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on 37, 3, 311–324.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

39:28 B. Zamborlin et al.

MORRIS, M. R., HUANG, A., PAEPCKE, A., AND WINOGRAD, T. 2006. Cooperative gestures: Multi-user gestural interac-
tions for co-located groupware. In Proceedings of the ACM CHI Conference on Human Factors in Computing Systems.
ACM Press, 1201–1210.

PORTILLO-RODRGUEZ, O., SANDOVAL-GONZALEZ, O. O., RUFFALDI, E., LEONARDI, R., AVIZZANO, C. A., AND
BERGAMASCO, M. 2008. Real-time gesture recognition, evaluation and feed-forward correction of a multimodal tai-
chi platform. In HAID, A. Pirhonen and S. A. Brewster, Eds. Lecture Notes in Computer Science Series, vol. 5270.
Springer, 30–39.

RABINER, L. 1989. A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of
the IEEE 77, 2, 257–286.

RUIZ, J., LI, Y., AND LANK, E. 2011a. User-defined motion gestures for mobile interaction. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’11. ACM, New York, NY, USA, 197–206.

RUIZ, J., LI, Y., AND LANK, E. 2011b. User-defined motion gestures for mobile interaction. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’11. ACM, New York, NY, USA, 197–206.

SCHNELL, N., RÖBEL, A., SCHWARZ, D., PEETERS, G., AND BORGHESI, R. 2009. Mubu and friends: Assembling tools
for content based real-time interactive audio processing in max/msp. In Proceedings of the International Computer
Music Conference (ICMC).

TURAGA, P., CHELLAPPA, R., SUBRAHMANIAN, V., AND UDREA, O. 2008. Machine recognition of human activities: A
survey. Circuits and Systems for Video Technology, IEEE Transactions on 18, 11, 1473–1488.

VISELL, Y. AND COOPERSTOCK, J. 2007. Enabling gestural interaction by means of tracking dynamical systems models
and assistive feedback. In Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on. 3373–3378.

WANDERLEY, M. M. AND DEPALLE, P. 2004. Gestural Control of Sound Synthesis. Proceedings of the IEEE 92, 4, 632–
644.

WESSEL, D. AND WRIGHT, M. 2002. Problems and Prospects for Intimate Musical Control of Computers. Computer Music
Journal 26, 3, 11–22.

WESTEYN, T., BRASHEAR, H., ATRASH, A., AND STARNER, T. 2003. Georgia tech gesture toolkit: supporting experiments
in gesture recognition. In Proceedings of the 5th international conference on Multimodal interfaces. ACM, 85–92.

WILLIAMSON, J. 2006. Continuous uncertain interaction. Ph.D. thesis, University of Glasgow.
WILSON, A. AND BOBICK, A. 1999. Parametric hidden markov models for gesture recognition. Pattern Analysis and

Machine Intelligence, IEEE Transactions on 21, 9, 884–900.
WITTEN, I. H. AND FRANK, E. 2005. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition

(Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
WOBBROCK, J. O., MORRIS, M. R., AND WILSON, A. D. 2009. User-defined gestures for surface computing. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’09. ACM, New York, NY, USA,
1083–1092.

WRIGHT, M., FREED, A., AND MOMENI, A. 2003. Opensound control: state of the art 2003. In Proceedings of the 2003
conference on New interfaces for musical expression. NIME ’03. National University of Singapore, Singapore, Singa-
pore, 153–160.

ACM Transactions on Interactive Intelligent Systems, Vol. 9, No. 4, Article 39, Pub. date: June 2012.

