
Tools for Music Scholarship and their Interactions:
A Case Study

David Lewis & Ronald Woodley
Birmingham Conservatoire

Birmingham City University
david.lewis@bcu.ac.uk

Tim Crawford, Jamie Forth,
Christophe Rhodes & Geraint Wiggins

Intelligent Sound and Music Systems
Goldsmiths, University of London

Abstract

In this paper, we introduce AMusE, a music reasoning framework built using Abstract Data Types, describing some of
the advantages of such an approach. We illustrate this with a particular set of tools capable of tapping into the framework’s
capabilities: a score editor with the capability to edit some early music notations, and implementations of the SIA family
of Music Information Retrieval tools. Putting these together, we discuss how the framework enables the general-purpose
pattern-matching tool to operate on very specialised forms of notation. We conclude with a discussion of further work and
the need for a more logic-based design and a more outward-looking deployment.

1 Introduction

Documents representing musical scores cannot, in general,
be analysed or otherwise manipulated satisfactorily using
standard, text-based content-analysis tools. A wide va-
riety of music-encoding methods exist, often tailored to
the specific requirements of a particular musical reper-
tory or notational type. In general, however, there coex-
ist many higher-level musical entities or concepts above
this machine-readable content level which are understood
by musicians as existing in common across repertories or
notations (pitches, scales, rhythms, structural/formal fea-
tures, etc.). It is therefore naturally desirable – at least for
musicians – to be able to access, analyse and compare the
low-level musical data using higher-level musical descrip-
tions. Since the relationship between low-level musical en-
codings and higher-level musical concepts is, in general,
implicit and contextual, rather than a simple and unambigu-
ous mapping, this inevitably requires a degree of inferential
musical reasoning.

The issue becomes all the more acute when dealing with
unfamiliar or obsolete historical musical notations which
have been intensely studied by specialists, but are little un-
derstood by musicians in general. Such is the case with
lute tablature, the subject of the ECOLM project,1 in which
pitches are notated pragmatically by the physical position
of the player’s fingers upon the fingerboard of the instru-
ment rather than by any abstract musical concept. An-
other example is the family of notations that evolved dur-
ing the Renaissance commonly referred to as ‘mensural’
notation. Although superficially resembling modern staff
notation, this assumes a number of conventions affecting
both pitch and rhythm which give rise to significant differ-
ences from the modern system. Low-level encodings of the
graphical features of such disparate notations are, for ob-
vious reasons, likely to be completely incompatible; at the
higher, music-conceptual level, however, searches and anal-
yses could readily be performed across both repertories, so

1www.ecolm.org

that a query expressed as an extract from a lute tablature,
say, could be matched within a set of polyphonic scores
encoded as mensural notation, or vice versa. A strong mo-
tivation for the work described here is exactly this need to
make general musical concepts accessible from specialised
information sources.

There exists, however, a similar problem at a higher con-
ceptual level. Musicology and, more generally, expert inter-
action with music encompasses a wide variety of domains,
ranging from psychological modelling and experimentation
to editing, performing and composing. As these applica-
tions become more focussed, so the skills and vocabulary
used become more specialised. This tends to fragment the
range of computer tools, between those catering for a par-
ticular special task or trying to generalise at the risk of shal-
lowness.

In the past, one of two solutions was commonly pro-
posed for these difficulties – either everyone should use a
common, extensible system or, alternatively, they should
adopt a common interchange format between the various
specialised software packages capable of encoding either
the common ground between them or the union of all the
features they support. The difficulties and limitations inher-
ent in such approaches prompted us to construct instead a
framework based on abstractions that allow the integrity of
a tool or special representation to be preserved whilst those
higher-level operations and data structures that are com-
mon can be shared. Separate applications can thus share
not only data but also, more importantly, functionality. For
academic rigour and the integrity of curated collections, as
well as for copyright considerations, this is a powerful ad-
vantage.

In our paper, after a brief discussion of background
work in music representation, we introduce AMusE, our mu-
sic reasoning framework built using Abstract Data Types
(ADTs), and outline some applications and analysis tools
in which it is used. We then describe GSharp, score-editing
software that is being extended for a digitisation project us-
ing historical music notations. We note how providing a

1

simple extension for GSharp to support the AMusE abstrac-
tion allows us to employ all those tools that use the frame-
work to access and analyse the newly digitised data – thus,
a music editing project still makes data available for other
projects without having to lose sight of its specialised na-
ture. Finally, we describe current developments making
AMusE more powerful for automated reasoning and more
available to others through Semantic Web technologies.

2 Music representation

The ability to analyse or search through musical corpora
is highly dependent on the ability of the analyst (human
or computer) to understand the way in which the musical
information is presented. It is clear, then, that for an auto-
mated process to have any sophistication, it must have the
music and associated data available in ways that make as
much information as possible available to it.

Extensibility has long been an important feature of the
more powerful tools for handling musical information dig-
itally; the most comprehensive example is David Huron’s
Humdrum Toolkit (Huron, 1997). A recurring problem,
however, is that this extensibility is usually at the level of
the representation or its serialisation, leading either to par-
allel, mutually independent languages inhabiting the same
carrier format or to an enforced and artificial commonality
that can cause distortion and misrepresentation.

Certainly a naive encoding of graphical musical sym-
bols is dangerous when the context is unavailable – as
Selfridge-Field (1997b) points out: ‘the apparent continu-
ity of graphic symbols over centuries does not guarantee the
same degree of continuity in practice’. Similarly, means of
transmission for musical information can contain very dif-
ferent levels of detail about given parameters – for exam-
ple, many tablatures supply relative pitch information only
indirectly, providing no absolute pitch at all, with note du-
rations left largely to the performer.

The practical necessity for abstraction in handling mu-
sic digitally was acknowledged in the 1960s (e.g. Kassler,
1966), but its use to permit multiple, extensible underlying
representations was first described by Wiggins et al. (1989)
and called CHARM (Common Hierarchical Abstract Rep-
resentation for Music). The advantage here is that, through
ADTs, diverse musical structures with a variety of repre-
sentations may be handled without the need for them to
be prescribed a priori. This is illustrated by Smaill et al.
(1993), using the same analytical method on two quite dif-
ferent representations of Debussy’s Syrinx (yielding equiv-
alent results) and also on a quarter-tone-based composition
by Charles Ives. There was little further progress towards
more extensive implementation of this idea until the cre-
ation of AMusE at the Intelligent Sound and Music Systems
lab and of Music21 at MIT (Cuthbert and Ariza, 2010). Both
systems use the object and class capabilities in their respec-
tive implementation languages to allow pluggable represen-
tations and tools, though neither system yet fully imple-
ments CHARM in the form originally described.

3 Components

3.1 The abstraction layer: AMusE

Within the core of AMusE, we define a variety of abstract
classes for common musical concepts. These classes in-
clude pitch and moment for points in pitch and time re-
spectively, and pitch-interval and period for pitch
and time regions. Basic arithmetic and logical functions
for interrogating or relating these permit addition, subtrac-
tion, comparison and equality, along with those required
by the temporal interval relations of Allen (1984) (meets,
interval=, before, overlaps, during, starts and
ends). More ‘typical’ concrete classes, representing time
on a simple number line, or pitch on the 12-note chromatic
system (as in MIDI) or the diatonic system (as in Western
European ‘common music notation’) are provided, but in
general, the developer of an individual implementation is
responsible for supplying appropriate concrete classes and
behaviours.

3.2 AMusE implementations

An AMusE implementation provides a set of concrete
(sub-)classes and methods that allow the use of a musical
collection of some kind. Quite commonly, this is simply an
import mechanism for a music representation such as MIDI
or MusicXML, but, crucially, it may also be tailored for
a specific repository: for example, the lab holds a collec-
tion of over 14,000 professionally-produced MIDI arrange-
ments of pop music, which have special conventions of en-
coding, realised within AMusE as a separate implementation
which primarily inherits behaviours from the MIDI imple-
mentation, but with added features. Currently, AMusE sup-
ports MIDI, MusicXML (Good, 2001), TabCode (an encod-
ing for editing lute tablature; Crawford, 1991; Rhodes and
Lewis, 2006) and some MEI (Roland, 2002) and **kern

(Huron, 1997). As will be seen later, some of these imple-
mentations are realised through using the music represen-
tation abilities of GSharp.

Lack of information in a representation may come in a
variety of forms, and the behaviour of tools in each case
should be differentiated. An example of some of these dif-
ferences should illustrate the point. A tool that requires
tempo information will certainly be accommodated by a
MIDI implementation, since that standard includes the pa-
rameter and specifies a default value should it be unspec-
ified in a given file. In European notated music, how-
ever, precise tempo specifications are only available in as
‘metronome marks’ – annotations of the number of times
a duration may fit in a minute – and consequently only
available after the invention and successful marketing of
the metronome in the nineteenth century. Less prescriptive
verbal indications occur from the Baroque period onwards,
but the association between these indications and any nu-
merical value has generally been loose.2

2Fallows (2011) gives an example from the Polonaise of Bach’s B mi-
nor orchestral suite, where the indication lentement is given to the violins,
but moderato to the flute, though most modern readers would probably
have assumed the former to refer to a slower tempo than the latter.

These issues around tempo are important: it is common
for psychologically-motivated analysis to require timings in
milliseconds, and in those cases, a decision must be made.
What is expected of a system when tempo is requested
might be something like this:

• If precise information is available, it is used

• If a verbal indication is given, indicate that no numer-
ical tempo is available, offer either to provide the text
used or guess at a tempo

• If no indication is given, indicate the fact. If enough
is known about the music (if it is a dance movement,
for example, there might be physical and generic limi-
tations) to be able to make an educated guess, offer to
do so

• If the notation is incapable of indications of tempi, in-
dicate the fact.

Our feeling here is that the person best placed to ‘guess’
missing information is likely to be the one who collected
the corpus, or at least created the specialised implementa-
tion. However, the client application may be best placed
to decide how important a numerical tempo is: if the client
is a music engraver, it would be better for it to know that
there is no tempo present; if it is for an experiment, it may
be necessary to omit instances without precise tempi, or an
approximation may suffice.

This means that we must accept that, within AMusE, any
parameter may be meaningless or underspecified in a given
implementation or piece. In such cases an appropriate ‘con-
dition’ is signalled.3 A parameter might, alternatively, be
meaningful but underspecified by the notation or by a par-
ticular source. In this case, it is expected that an implemen-
tation will still generate a condition, but may provide op-
tional recovery strategies from which the user, or the func-
tion requiring the parameter, may choose. No pause in op-
eration is required if recovery strategies are pre-selected. In
this way, the implementation can take responsibility for the
integrity of the information provided, whilst the user takes
responsibility for the way in which it is used.

3.3 AMusE tools
Tools and applications developed with the AMusE data types
include melodic segmentation based on multiple viewpoint
models (Pearce and Wiggins, 2006), chord label generators
(Rhodes et al., 2007), grouping analysis (Frankland and Co-
hen, 2004), pitch-spelling induction (Meredith, 2006b) and
pattern search and discovery algorithms (Meredith et al.,
2002; Meredith, 2006a; Forth and Wiggins, 2009). These
work transparently on music encoded in any supported
representation—any operation that is not directly available
in a given implementation, as in the tempo examples given
earlier, is handled in the condition system as described in
the previous section.

3A feature of the Common Lisp condition system is that conditions
may be signalled and recovery strategies suggested without rewinding the
stack and losing system state – once a choice is made, the programme can
carry on from exactly where the condition was raised.

A primary aim is to allow the interoperation of these
tools and the combination and collation of their results so
that a tool is never itself seen as the end point of the process,
merely as an extra enabling step.4

3.3.1 Pattern discovery: SIA and SIA(TEC)

An illustrative example of a tool implemented with the
framework is the SIA family of algorithms introduced by
Meredith et al. (2002). These algorithms find repeating
structures in multidimensional data, and are well suited to
musical analysis, since their geometrical approach over-
comes some of the limitations of string-based methods,
especially for finding non-contiguous patterns. All SIA-
derived algorithms are based around the detection of sets of
points in a dataset that can be mapped, through translation,
onto other sets of points in the dataset. In musical terms,
its main use has been to find motivic repetition, whether
transposed or at original pitch, and, since it is based on par-
tial matches, it can still detect patterns in cases of extensive
musical embellishment.

Although its development was motivated by a musical
application, SIA is a general-purpose algorithm, with no
domain-specific knowledge required. This makes it ideal
for use with AMusE, since each dimension can be defined in
terms of any ADT that has a sufficiently well-defined arith-
metic. The use of this abstraction allows pattern-matching
across implementations. For SIA(TEC), which groups pat-
terns into equivalence classes, undefined values, such as
duration (as opposed to inter-onset-interval) for tablature
representations are easily accommodated, whilst heuristics
that apply musical criteria for salience to filter the results
have been developed (Forth and Wiggins, 2009).

4 GSharp: an extensible score editor

GSharp (Rhodes and Strandh, 2008) was developed in the
1990s by Robert Strandh as an interactive score editor, in-
tended to be ‘the Emacs of score editors’5. Its functionality
was greatly expanded subsequently by Christophe Rhodes,
who first developed experimental features for supporting
less common music notations. It was clear from this work
that the data model used by GSharp made it ideal to develop
it as an editor for specialised and even mixed music nota-
tions.

Building on this, Birmingham Conservatoire and, sub-
sequently, the Arts and Humanities Research Council have
funded the development of GSharp to support the prepara-
tion of a digital edition of the complete theoretical works of
Johannes Tinctoris (c.1435–1511), a Brabantine musician,
composer and lawyer. The twelve surviving treatises, writ-
ten in the 1470s, are acknowledged as one of the most sig-
nificant and comprehensive sources for late medieval music
notation and compositional process. The texts form a cen-
tral focus for important research on musical aesthetics and

4A more extended illustration of our some of our intentions in this
regard is given in (Lewis et al., 2006)

5This quote comes from the original home page of GSharp, http://
www.labri.fr/perso/strandh/Gsharp/index.html (accessed July
2011). Please note, this is not the current home of the project.

reception at a crucial point in Western European culture,
and demonstrate not only an exceptional technical com-
mand of music notation and theory, but also an intimate
acquaintance with contemporary polyphonic practice, de-
rived from a wide knowledge of the composers of his day
and their music. Despite his importance, many of Tinctoris’
treatises have never been translated into English.6

Unsurprisingly, given their subject matter, the treatises
are copiously illustrated with musical examples and, partly
as a result of the technical nature of their texts, these ex-
ample use an exceptionally wide range of notational prac-
tices, some common, others reflective of more specialised
points under discussion. The main aim is to develop an in-
tuitive and easy-to-use package to replace a graphics pack-
age in producing publication-quality music output. Figure
1 shows a simple music example being transcribed using
the software.7 This example of mensural notation illus-
trates some of the complexities of interpreting rhythm in
this music: that the first breve (the square note on the top
line) lasts for two semibreves, whilst the later breve (the
last of the extract) lasts for three can only be decided based
on a combination of the patterns of neighbouring notes and
the prevailing mensuration sign (the circle at the start of the
extract).

Clearly there is a danger of the project producing spe-
cialised software that does not connect well with other
tools or have impact beyond the editing of these trea-
tises. Exporting and importing files in standard formats—
MEI (Roland, 2002), CMME (Dumitrescu, 2001) and Mu-
sicXML (Good, 2001)8—helps, as does an open-source li-
cence and publicly available source code, but, for reasons
discussed above, this is not a complete solution.

5 Using the AMusE framework

The minimal set of functions needed to allow AMusE to in-
teract with GSharp was implemented before the start of the
Tinctoris project, giving several advantages: it gives AMusE

access to several score encoding formats that would other-
wise require separate implementations; it acts as a visual-
isation tool for the result of AMusE analyses and searches
(including an experimental web application synchronising
musical score page turns with a recording); and, in the other
direction, it provides GSharp with optional AMusE-extended
functionality, such as the ability to provide enharmonic
pitch-spelling guidance in the manner of a word processor’s
spelling checker.

We have expanded our AMusE implementation to allow
access to the newly-added mensural and chant notation in
GSharp. This not only enables searching, segmentation and
other analyses to be carried out on the Tinctoris material,
but opens up new research avenues not applicable to other
notations or encoding styles.

In this notation, rhythm and, to some extent, pitch is an
implicit feature, deduced by reference to a combination of

6For more information, see Tinctoris (2011).
7As will be clear from the screenshot, this goal of ‘publication-quality

output’ has not yet been fully achieved.
8Much of the development of GSharp’s MusicXML functionality re-

sults from a Google Summer of Code project by Brian Gruber.

the note forms, their rhythmic context and a set of rules
derived from contemporary practice and education. As we
discussed in section 2, the ability to analyse music is de-
pendent on the information available and, in cases where
important information is largely implicit, analyses that rely
on this information must either use an algorithm to deduce
it prior to analysis, or the information must be explicitly
provided by an editor.9

Without such sources of extra information, two other
paths are available. Firstly, one can substitute less ambigu-
ously notated versions of the same concept – since AMusE

has abstractions for pitch, it is perfectly reasonable to im-
plement a class that only knows named pitch, without the
chromatic inflections that are so problematic in early mu-
sic, while for our rhythmic representation, we can substi-
tute note forms, knowing only the pattern of longs, breves
and semibreves. Another path is to focus on other fea-
tures. Since these transcriptions come from treatises largely
devoted to music notation, the details of scribal practice
are potentially of enormous interest and, since tools like
SIA(TEC) are not bound to any specific musical features,
we can study notational and scribal aspecs of the docu-
ments, such as the use of ligatures, the grouping of notes
with dots of division or the use of indicators for solmisa-
tion (the precursors of accidentals and key signatures). As
yet, there is insufficient edited musical material to make
large-scale analyses meaningful, however the tools have
been tested for this corpus, and early signs are promising.

6 Future work: more unexpected benefits

Currently, AMusE itself is limited by a number of factors:
firstly, a concrete class is understood largely in terms of its
specific, explicitly-defined behaviour (through method def-
inition), limiting the extent to which automated reasoning
can be deployed; secondly, since it is an offline, Lisp-based
framework, as yet without any public release of code, it is
inaccessible to many potential users and, even within our
research group, is limited to those who can either use Lisp
directly or in some way harness the Lisp code as a client
module to their main language.

The first limitation may be addressed by abstracting not
only the types of musical information being encoded, but
also generalising, where possible, the information struc-
tures in which they are encoded, in the manner of Lewin’s
generalised intervals (Lewin, 1987). This would make it
much easier for automated processes to model the logic of
musical data structures and, we hope, infer novel patterns
from them.

The second limitation can be only partly addressed by a
simple release of code under a permissive licence. We be-
lieve that we also need to facilitate on-line access, and in
particular, harness advances in the Semantic Web. The Mu-
sic Ontology (Raimond et al., 2007) is a widely used vocab-
ulary for describing information about music, ranging from
high-level curatorial concepts such as musical works and

9That such information will be provided cannot necessarily be assumed
in this case, since the primary task is a visual edition of the notation, and
such information is only partially affected by this.

(a) Bologna, Biblioteca Universitaria (I-Bu) Ms 2573, f. 75r

(b) Editing in GSharp

Figure 1: The first music example from Tinctoris’ Tractatus alterationum (1470s) (Tinctoris, 2011), as it appears in a
contemporary source and as entered into GSharp, with a CMN transcription below. Rhythmic values have been quartered –
a common practice to facilitate reading.

artists, down to the description of individual events; and the
recent Segment Ontology (Fields et al., 2011) provides fur-
ther formality for representing segmentation, a central con-
cept in music analysis. The encoding of conceptual spaces
(Raubal and Adams, 2010) on the Semantic Web is also
potentially useful for music psychology-oriented research.
The ability to process semantic data within AMusE will al-
low personal data sources to be enriched by tapping into
growing on-line Linked Data resources, as well as give re-
searchers the means to publish new data in a standardised
form directly usable by other researchers or automated pro-
cesses. Moreover, emerging standards for data access and
processing within the Semantic Web, such as the SPARQL
Query Language10 and SPARQL Update11 are attractive
technologies for Web-based research, an idea that has re-
ceived much recent attention within the Music Information
Retrieval community (De Roure et al., 2011). There is a
wide range of current research and existing infrastructure
relevant to the goal of deploying AMusE services in an on-
line environment. In turn, the design of AMusE, informed
from both musicological and computational perspectives, is
pertinent to ongoing efforts within the Semantic Web com-
munity towards appropriate knowledge-engineering in the
musical domain. Finally for musicology, enabling open-
ness and interoperability of both data and processing tools,
as realised by AMusE, is vital in supporting musicological
research in the digital domain.

Acknowledgements

The authors and the research reported here have been sup-
ported by the following grants: AHRC (AH/I003827/1),
‘The Complete Theoretical Works of Johannes Tinctoris: A
New Digital Edition’, EPSRC (EP/H01294X/1), ‘Informa-
tion and neural dynamics in the perception of musical struc-
ture’ and Andrew W. Mellon Foundation, ‘MeTAMuSE:
Methodologies and Technologies for Advanced Musical
Score Encoding’.

References

Allen, J. F. (1984). Towards a general theory of action and
time. Artificial Intelligence 23(2), 123–154.

Crawford, T. (1991). Applications Involving Tablatures:
TabCode for Lute Repertories. Computing in Musicol-
ogy 7, 57–59.

Cuthbert, M. S. and C. Ariza (2010). Music21: A toolkit for
computer-aided musicology and symbolic music data. In
ISMIR, Utrecht, Netherlands, pp. 637–642.

De Roure, D., K. R. Page, B. Fields, T. Crawford, J. S.
Downie, and I. Fujinaga (2011). An e-research approach
to web-scale music analysis. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and En-
gineering Sciences 369(1949), 3300–3317.

10http://www.w3.org/TR/sparql11-query/
11http://www.w3.org/TR/sparql11-update/

Dumitrescu, T. (2001). Corpus Mensurabilis Musice “Elec-
tronicum”: Toward a flexible electronic representation
of music in mensural notation. In W. B. Hewlett and
E. Selfridge-Field (Eds.), Computing in Musicology,
Volume 12 of Computing in Musicology, Chapter 1, pp.
3–18. Cambridge, MA and Stanford, CA: MIT Press and
Center for Computer Assisted Research in the Humani-
ties.

Fallows, D. (accessed October 2011). Lento. In Grove
Music Online, pp. http://www.oxfordmusiconline.
com/subscriber/article/grove/music/16410.
Oxford Music Online.

Fields, B., K. R. Page, D. De Roure, and T. Crawford (2011,
July). The segment ontology: Bridging music-generic
and domain-specific. In Proceedings of the 3rd Interna-
tional Workshop on Advances in Music Information Re-
search (AdMIRe 2011), Barcelona, Spain.

Forth, J. and G. A. Wiggins (2009). An approache for iden-
tifying salient repetition in multidimensional representa-
tions of polyphonic music. In J. Chan, J. W. Daykin,
and M. S. Rahman (Eds.), London Algorithmics 2008:
Theory and Practice, Texts in Algorithmics, pp. 44–58.
London, UK: College Publications.

Frankland, B. W. and A. J. Cohen (2004). Parsing of
melody: Quantification and testing of the local grouping
rules of Lerdahl and Jackendoff’s A Generative Theory
of Tonal Music. Music Perception 21(4), 499–543.

Good, M. (2001). MusicXML: An Internet-Friendly For-
mat for Sheet Music. In XML Conference & Exposition.

Huron, D. (1997). Humdrum and Kern: Selective feature
encoding. See Selfridge-Field (1997a), pp. 375–401.

Kassler, M. (1966). Toward Music Information Retrieval.
Perspectives of New Music 4, 59–67.

Lewin, D. (1987). Generalized musical intervals and trans-
formations. New Haven and London: Yale University
Press.

Lewis, D., T. Crawford, G. Wiggins, and M. Gale (2006).
Abstracting musical queries: Towards a musicologist’s
workbench. In R. Kronland-Martinet, T. Voinier, and
S. Ystad (Eds.), Computer Music Modeling and Re-
trieval: Third international symposium, CMMR 2005,
Number 3902 in LNCS, Berlin, Germany, pp. 249–258.
Springer.

Meredith, D. (2006a). Point-set algorithms for pattern dis-
covery and pattern matching in music. In T. Crawford
and R. Veltkamp (Eds.), Proceedings of the Dagstuhl
Seminar on Content-Based Retrieval, Number 06171
in Dagstuhl Seminar Proceedings, Dagstuhl, Germany.
IBFI, Schloss Dagstuhl.

Meredith, D. (2006b). The ps13 pitch spelling algorithm.
Journal of New Music Research 35(2), 121–159.

Meredith, D., K. Lemström, and G. A. Wiggins (2002). Al-
gorithms for discovering repeated patterns in multidmen-
sional representations of polyphonic music. Journal of
New Music Research 31(4), 321–345.

Pearce, M. T. and G. A. Wiggins (2006). The information
dynamics of melodic boundary detection. In M. Baroni,
A. R. Addessi, R. Caterina, and M. Costa (Eds.), Pro-
ceedings of the 9th International Conference of Music
Perception and Cognition, Bologna, Italy, pp. 860–867.
SMPC and ESCOM.

Raimond, Y., S. Abdallah, M. Sandler, and F. Glasson
(2007). The music ontology. In ISMIR, Vienna, Aus-
tria, pp. 417–22.

Raubal, M. and B. Adams (2010). The semantic web needs
more cognition. Semantic Web 1(1-2), 69–74.

Rhodes, C. and D. Lewis (2006). An editor for lute tabla-
ture. In R. Kronland-Martinet, T. Voinier, and S. Ystad
(Eds.), Computer Music Modeling and Retrieval: Third
international symposium, CMMR 2005, Number 3902 in
LNCS, Berlin, Germany, pp. 259–263. Springer.

Rhodes, C., D. Lewis, and D. Müllensiefen (2007).
Bayesian Model Selection for Harmonic Labelling. In
Mathematics and Computation in Music, Berlin, Ger-
many.

Rhodes, C. and R. Strandh (2008). Gsharp, un éditeur de
partitions de musique interactif et personnalisable. Doc-
ument Numérique 11(3–4), 9–28.

Roland, P. (2002). The Music Encoding Initiative (MEI).
In Music Applications using XML, New York, NY, pp.
55–59. IEEE.

Selfridge-Field, E. (1997a). Beyond MIDI. Cambridge,
MA: MIT Press.

Selfridge-Field, E. (1997b). Describing Musical Informa-
tion. See Selfridge-Field (1997a), Chapter 1, pp. 3–37.

Smaill, A., G. Wiggins, and M. Harris (1993). Hierarchi-
cal Music Representation for Composition and Analysis.
Journal of Computing and the Humanities 27, 7–17.

Tinctoris, J. (1 July, 2011). The Theoretical Works of Jo-
hannes Tinctoris. http://earlymusictheory.org/

tinctoris/tinctoris.html. Ed. R. Woodley.

Wiggins, G., M. Harris, and A. Smaill (1989). Represent-
ing Music for Analysis and Composition. http://www.
doc.gold.ac.uk/~mas02gw/papers/EWAIM89.pdf.

