Items Authored/Edited by Murtagh, Fionn

Up a level
Export as [feed] Atom [feed] RSS
Group by: Item Type | Date | No Grouping
Number of items: 22.

[img]
Preview
Langham, John; Stamate, Daniel; Wu, Charlotte A.; Murtagh, Fionn; Morgan, Catharine; Reeves, David; Ashcroft, Darren; Kontopantelis, Evan and McMillan, Brian. 2022. 'Predicting risk of dementia with machine learning and survival models using routine primary care records'. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Houston, TX, United States 9-12 December 2021. [Conference or Workshop Item]

[img]
Preview
Stamate, Daniel; Alghambdi, Wajdi; Ogg, Jeremy; Hoile, Richard and Murtagh, Fionn. 2019. 'A Machine Learning Framework for Predicting Dementia and Mild Cognitive Impairment'. In: 17th IEEE International Conference on Machine Learning and Applications (ICMLA 2018). Orlando, Florida, United States 17-20 December 2018. [Conference or Workshop Item]

[img]
Preview
Stamate, Daniel; Alghamdi, Wajdi; Stahl, Daniel; Pu, Ida; Murtagh, Fionn; Belgrave, Danielle; Murray, Robin and di Forti, Marta. 2018. 'Predicting First-Episode Psychosis Associated with Cannabis Use with Artificial Neural Networks and Deep Learning'. In: IPMU 2018: 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Cadiz, Spain. [Conference or Workshop Item]

[img]
Murtagh, Fionn and Contreras, Pedro. 2016. Linear Storage and Potentially Constant Time Hierarchical Clustering Using the Baire Metric and Random Spanning Paths. In: Adalbert F.X. Wilhelm and Hans A. Kestler, eds. Analysis of Large and Complex Data. Springer, pp. 43-52. ISBN ISBN-10: 3319252240 ISBN-13: 978-3319252247 [Book Section]

[img]
Preview
Murtagh, Fionn. 2016. Sparse p-Adic Data Coding for Computationally Efficient and Effective Big Data Analytics. Journal of p-Adic Numbers, Ultrametric Analysis and Applications, 8(3), pp. 236-247. ISSN 2070-0466 [Article]

[img]
Preview
Murtagh, Fionn; Pianosi, Monica and Bull, Richard. 2016. Semantic mapping of discourse and activity, using Habermas’s theory of communicative action to analyze process. Quality and Quantity, 50(4), pp. 1675-1694. ISSN 0033-5177 [Article]

Murtagh, Fionn and Kurtz, Michael J.. 2016. The Classification Society's Bibliography over four decades: History and content analysis. Journal of Classification, 33(1), pp. 6-29. ISSN 0176-4268 [Article]

Murtagh, Fionn and Contreras, P. 2016. Linear storage and potentially constant time hierarchical clustering using the Baire metric and random spanning paths. In: Adalberg F.X. Wilhelm and Hans A. Kestler, eds. Analysis of Large and Complex Data, Studies in Classification, Data Analysis, and Knowledge Organization. Springer, pp. 43-52. ISBN 978-3-319-25226-1 [Book Section]

[img]
Preview
Murtagh, Fionn; Olaniyan, Rapheal and Stamate, Daniel. 2015. 'A novel statistical and machine learning hybrid approach to predicting S&P500 using sentiment analysis'. In: 8th International Conference of the ERCIM Working Group on Computational and Methodological Statistics. Senate House, University of London, United Kingdom. [Conference or Workshop Item]

[img]
Preview
Murtagh, Fionn; Hennig, Christian; Meila, Marina and Rocci, Roberto, eds. 2015. Handbook of Cluster Analysis. Chapman and Hall/CRC. ISBN 9781466551886 [Edited Book]

Murtagh, Fionn and Contreras, P. 2015. Random projection towards the Baire metric for high dimensional clustering. Lecture Notes in Computer Science, 9047, pp. 424-431. ISSN 0302-9743 [Article]

Murtagh, Fionn and Farid, M. 2015. The structure of argument: Semantic mapping of US Supreme Court cases. Lecture Notes in Computer Science, 9047, pp. 397-405. ISSN 0302-9743 [Article]

Murtagh, Fionn. 2014. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? Journal of Classification, 31(3), pp. 274-295. ISSN 0176-4268 [Article]

Murtagh, Fionn. 2014. 'Pattern recognition in mental processes: determining vestiges of the subconscious through ultrametric component analysis'. In: 2014 IEEE 13th International Conference on Cognitive Informatics and Cognitive Computing. London, United Kingdom 18-20 August 2014. [Conference or Workshop Item]

Murtagh, Fionn. 2014. Pattern recognition of subconscious underpinnings of cognition using ultrametric topological mapping of thinking and memory. International Journal of Cognitive Informatics and Natural Intelligence, 8(4), 1. ISSN 1557-3958 [Article]

Murtagh, Fionn. 2014. History of cluster analysis. In: Jörg Blasius and Michael Greenacre, eds. The Visualization and Verbalization of Data. CRC/Chapman and Hall, pp. 117-133. ISBN 978-1466589803 [Book Section]

Murtagh, Fionn. 2014. Thinking ultrametrically, thinking p-adically. In: Fuad Aleskerov; Panos M. Pardalos and Boris Goldengorin, eds. Clusters, Orders, and Trees: Methods and Applications: In Honor of Boris Mirkin's 70th Birthday. Springer, pp. 249-272. ISBN 978-1493907410 [Book Section]

Bosco, Filipe; Murtagh, Fionn; Emneus, Jenny; Agrell, Cecilia; Diamond, Dermot; Guiseppi-Elie, Anthony; Katusabe, Atkins; Lynch, Jim; Morse, Stephen; Moussy, Francis G; Nair, P.K.R; Weathers, Pamela J and Bell, Simon. 2014. Transdisciplinary Sustainability: The Council for Frontiers of Knowledge. International Journal of Transdisciplinary Research, 7(1), pp. 1-26. [Article]

Reddington, Joseph; Murtagh, Fionn and Cowie, Douglas. 2013. Computational Properties of Fiction Writing and Collaborative Work. In: Adam Tucker; F Hoppner; A Siebes and A Swift, eds. Advances in Intelligent Data Analysis XII, Lecture Notes in Computer Science Volume 8207. Springer, pp. 369-379. ISBN 978-3642413971 [Book Section]

Murtagh, Fionn. 2013. The new science of complex systems through ultrametric analysis: Application to search and discovery, to narrative and to thinking. Journal of p-Adic Numbers, Ultrametric Analysis and Applications, 5(4), pp. 326-337. ISSN 2070-0466 [Article]

[img]
Preview
Starck, J-L.; Murtagh, Fionn and Fadili, J.. 2010. Sparse Image and Signal Processing: Wavelets and Related Geometric Multiscale Analysis. Cambridge University Press. ISBN 978-1107088061 [Book]

This list was generated on Fri Nov 22 03:29:03 2024 GMT.