Cingulate and cerebellar beta oscillations are engaged in the acquisition of auditory‐motor sequences

Herrojo Ruiz, Maria; Maess, Burkhard; Altenmüller, Eckart; Curio, Gabriel and Nikulin, Vadim. 2017. Cingulate and cerebellar beta oscillations are engaged in the acquisition of auditory‐motor sequences. Human Brain Mapping, 38(10), pp. 5161-5179. ISSN 1065-9471 [Article]

[img]
Preview
Text
HerrojoRuiz_HBM07.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (2MB) | Preview

Abstract or Description

Singing, music performance, and speech rely on the retrieval of complex sounds, which are generated by the corresponding actions and are organized into sequences. It is crucial in these forms of behavior that the serial organization (i.e., order) of both the actions and associated sounds be monitored and learned. To investigate the neural processes involved in the monitoring of serial order during the initial learning of sensorimotor sequences, we performed magnetoencephalographic recordings while participants explicitly learned short piano sequences under the effect of occasional alterations of auditory feedback (AAF). The main result was a prominent and selective modulation of beta (13–30 Hz) oscillations in cingulate and cerebellar regions during the processing of AAF that simulated serial order errors. Furthermore, the AAF-induced modulation of beta oscillations was associated with higher error rates, reflecting compensatory changes in sequence planning. This suggests that cingulate and cerebellar beta oscillations play a role in tracking serial order during initial sensorimotor learning and in updating the mapping of the sensorimotor representations. The findings support the notion that the modulation of beta oscillations is a candidate mechanism for the integration of sequential motor and auditory information during an early stage of skill acquisition in music performance. This has potential implications for singing and speech.

Item Type:

Article

Identification Number (DOI):

https://doi.org/10.1002/hbm.23722

Keywords:

oscillations; sensorimotor learning; error monitoring; cingulate cortex; cerebellum

Departments, Centres and Research Units:

Psychology

Dates:

DateEvent
27 June 2017Accepted
13 July 2017Published Online
October 2017Published

Item ID:

20923

Date Deposited:

31 Aug 2017 10:04

Last Modified:

29 Apr 2020 16:32

Peer Reviewed:

Yes, this version has been peer-reviewed.

URI:

https://research.gold.ac.uk/id/eprint/20923

View statistics for this item...

Edit Record Edit Record (login required)