Optimizing microsurgical skills with EEG neurofeedback
Ros, Tomas; Moseley, Merrick J.; Bloom, Philip A.; Benjamin, Larry; Parkinson, Lesley A. and Gruzelier, John. 2009. Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10(1), 87. ISSN 1471-2202 [Article]
|
Text
1471-2202-10-87.pdf - Published Version Available under License Creative Commons Attribution. Download (909kB) | Preview |
Abstract or Description
Background
By enabling individuals to self-regulate their brainwave activity in the field of optimal performance in healthy individuals, neurofeedback has been found to improve cognitive and artistic performance. Here we assessed whether two distinct EEG neurofeedback protocols could develop surgical skill, given the important role this skill plays in medicine.
Results
National Health Service trainee ophthalmic microsurgeons (N = 20) were randomly assigned to either Sensory Motor Rhythm-Theta (SMR) or Alpha-Theta (AT) groups, a randomized subset of which were also part of a wait-list 'no-treatment' control group (N = 8). Neurofeedback groups received eight 30-minute sessions of EEG training. Pre-post assessment included a skills lab surgical procedure with timed measures and expert ratings from video-recordings by consultant surgeons, together with state/trait anxiety self-reports. SMR training demonstrated advantages absent in the control group, with improvements in surgical skill according to 1) the expert ratings: overall technique (d = 0.6, p < 0.03) and suture task (d = 0.9, p < 0.02) (judges' intraclass correlation coefficient = 0.85); and 2) with overall time on task (d = 0.5, p = 0.02), while everyday anxiety (trait) decreased (d = 0.5, p < 0.02). Importantly the decrease in surgical task time was strongly associated with SMR EEG training changes (p < 0.01), especially with continued reduction of theta (4–7 Hz) power. AT training produced marginal improvements in technique and overall performance time, which were accompanied by a standard error indicative of large individual differences. Notwithstanding, successful within session elevation of the theta-alpha ratio correlated positively with improvements in overall technique (r = 0.64, p = 0.047).
Conclusion
SMR-Theta neurofeedback training provided significant improvement in surgical technique whilst considerably reducing time on task by 26%. There was also evidence that AT training marginally reduced total surgery time, despite suboptimal training efficacies. Overall, the data set provides encouraging evidence of optimised learning of a complex medical specialty via neurofeedback training.
Item Type: |
Article |
||||
Identification Number (DOI): |
|||||
Departments, Centres and Research Units: |
|||||
Dates: |
|
||||
Item ID: |
5232 |
||||
Date Deposited: |
16 Mar 2011 09:13 |
||||
Last Modified: |
03 Aug 2021 15:03 |
||||
Peer Reviewed: |
Yes, this version has been peer-reviewed. |
||||
URI: |
View statistics for this item...
Edit Record (login required) |